Spectroscopic confirmation of a Coma Cluster progenitor at z~2.2

Darvish, Behnam and Scoville, Nicholas and Martin, Christopher and Sobral, David and Mobasher, Bahram and Rettura, Alessandro and Matthee, Jorryt and Capak, Peter and Chartab, Nima and Hemmati, Shoubaneh and Masters, Daniel and Nayyeri, Hooshang and O'Sullivan, Donal and Paulino-Afonso, Ana and Sattari, Zahra and Shahidi, Abtin and Salvato, Mara (2020) Spectroscopic confirmation of a Coma Cluster progenitor at z~2.2. The Astrophysical Journal, 892 (1): 8. ISSN 0004-637X

[thumbnail of protocluster-v4]
Text (protocluster-v4)
protocluster_v4.pdf - Accepted Version

Download (21MB)


We report the spectroscopic confirmation of a new protocluster in the COSMOS field at z ∼ 2.2, originally identified as an overdensity of narrow-band selected Hα emitting candidates. With only two masks of Keck/MOSFIRE near-IR spectroscopy in both H (∼ 1.47-1.81 μm) and K (∼ 1.92- 2.40 μm) bands (∼ 1.5 hour each), we confirm 35 unique protocluster members with at least two emission lines detected with S/N > 3. Combined with 12 extra members from the zCOSMOS-deep spectroscopic survey (47 in total), we estimate a mean redshift, line-of-sight velocity dispersion, and total mass of zmean=2.23224 ± 0.00101, σlos=645 ± 69 km s−1, and Mvir ∼ (1 − 2)×10^14 M⊙ for this protocluster, respectively. We estimate a number density enhancement of δg ∼ 7 for this system and we argue that the structure is likely not virialized at z ∼ 2.2. However, in a spherical collapse model, δg is expected to grow to a linear matter enhancement of ∼ 1.9 by z=0, exceeding the collapse threshold of 1.69, and leading to a fully collapsed and virialized Coma-type structure with a total mass of Mdyn(z=0) ∼ 9.2×10^14 M⊙ by now. This observationally efficient confirmation suggests that large narrow-band emission-line galaxy surveys, when combined with ancillary photometric data, can be used to effectively trace the large-scale structure and protoclusters at a time when they are mostly dominated by star-forming galaxies.

Item Type:
Journal Article
Journal or Publication Title:
The Astrophysical Journal
Additional Information:
This is an author-created, un-copyedited version of an article accepted for publication/published in The Astrophysical Journal. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi: 10.3847/1538-4357/ab75c3
Uncontrolled Keywords:
?? astronomy and astrophysicsspace and planetary science ??
ID Code:
Deposited By:
Deposited On:
12 Feb 2020 12:40
Last Modified:
15 Jul 2024 19:44