
1

ResIPy, an intuitive open source software for 1

complex geoelectrical inversion/modeling 2

Authors: 3
Guillaume Blanchy1, * 4
Sina Saneiyan2 5
James Boyd1, 3 6
Paul McLachlan1 7
Andrew Binley1 8
 9
Affiliations: 10
1Lancaster Environment Centre, Lancaster University, Lancaster, UK 11
2Department of Earth and Environmental Sciences, Rutgers, The State University of New 12
Jersey, Newark, NJ, United States 13
3British Geological Survey, Keyworth, Nottingham, UK 14
 15
Corresponding author: 16
Guillaume Blanchy (g.blanchy@lancaster.ac.uk) Lancaster Environment Centre, Lancaster 17
University, Lancaster, LA1 4YQ, UK 18

 19
Authorship statement: 20
GB and SS contributed to the GUI 21
GB, SS, JB and PM contributed to the API 22
GB specifically contributed to the R2 and Survey classes 23
JB specifically contributed to the mesh generation and handling 24
SS specifically contributed to the IP part of the API and GUI 25
PM specifically contributed to the sequence generation of the API and the testing of the GUI 26
GB, SS, JB and PM wrote the paper 27
AB wrote all the Fortran executables and provided feedback on the manuscript 28
 29
Code availability 30
The open-source code (GPL license) is available on GitLab: https://gitlab.com/hkex/pyr2. 31
 32
Highlights 33

• Geophysics is more frequently used in interdisciplinary projects by non-specialists. 34

• ResIPy is a simple to use, intuitive, open source graphical user interface and API. 35

• ResIPy is a good teaching tool to learn how to invert and model geoelectrical data. 36

• Data filtering and error modeling of resistivity and IP data improve inversion. 37

• Field applications and survey design with ResIPy is demonstrated. 38
Declaration of interest 39
None 40

Abstract 41

Electrical resistivity tomography (ERT) and induced polarization (IP) methods are now widely 42

used in many interdisciplinary projects. Although field surveys using these methods are 43

2

relatively straightforward, ERT and IP data require the application of inverse methods prior to 44

any interpretation. Several established non-commercial inversion codes exist, but they typically 45

require advanced knowledge to use effectively. ResIPy was developed to provide a more 46

intuitive, user-friendly, approach to inversion of geoelectrical data, using an open source 47

graphical user interface (GUI) and a Python application programming interface (API). ResIPy 48

utilizes the mature R2/cR2 inversion codes for ERT and IP, respectively. The ResIPy GUI 49

facilitates data importing, data filtering, error modeling, mesh generation, data inversion and 50

plotting of inverse models. Furthermore, the easy to use design of ResIPy and the help provided 51

inside makes it an effective educational tool. This paper highlights the rationale and structure 52

behind the interface, before demonstrating its capabilities in a range of environmental problems. 53

Specifically, we demonstrate the ease at which ResIPy deals with topography, advanced data 54

processing, the ability to fix and constrain regions of known geoelectrical properties, time-lapse 55

analysis and the capability for forward modeling and survey design. 56

Keywords 57

Geophysics, inversion, data filtering, electrical resistivity tomography, induced polarization, 58

R2/cR2 59

 60

3

1 Introduction 61

Geoelectrical methods are powerful and well-established tools for non-intrusive characterization 62

of subsurface geoelectrical properties. These methods were developed in the early 1900s for 63

mineral resource exploration (e.g., Schlumberger, 1920). However, electrical resistivity 64

tomography (ERT) and induced polarization (IP) are now extensively used in a wide range of 65

environmental studies. Applications include monitoring landslides (Uhlemann et al., 2018), 66

precision agriculture (Vanella et al., 2018), assessing permafrost degradation (Mewes et al., 67

2017), determining hydraulic properties (Benoit et al., 2018), imaging of landfill sites 68

(Ntarlagiannis et al., 2016), monitoring groundwater-surface water interactions (McLachlan et 69

al., 2017) and monitoring of bio-mediated soil stabilization (Saneiyan et al., 2019). As 70

geoelectrical methods become embedded in cross-disciplinary studies there is a need for 71

relatively easy to use data inversion tools, which retain levels of complexity required for 72

modeling of more sophisticated applications. 73

The translation of geoelectrical measurements to geoelectrical properties requires the use of 74

inverse methods. These methods aim to find the best distribution of geoelectrical parameters 75

that is consistent with observed measurements. This involves minimizing the misfit between the 76

set of four electrode measurements and the predicted response from a geoelectrical model. 77

Because of the non-linear nature of the problem, the inversion proceeds in an iterative manner 78

until the misfit between the predicted response and the measurements are within a given 79

tolerance. Forward modeling can also be used to generate synthetic data given a synthetic 80

geoelectrical model (workflow shown with red arrows in Figure 1). Typically, the measurements 81

are composed of a set of transfer resistances (or apparent resistivities) from different four 82

electrode configurations (quadrupoles). If the induced polarization (IP) method is used, the 83

chargeability (in time-domain IP surveys) or phase angle (in frequency domain IP surveys) is 84

4

also recorded in addition to the transfer resistance. At low frequencies (below 10Hz, i.e. the 85

usual operation frequencies of resistivity/IP instruments) chargeability and phase angle have a 86

linear relationship and the complex transfer impedance can be derived from time domain IP 87

measurements. Therefore, the inversion seeks to find the resistivity (or complex resistivity – in 88

the case of an IP survey) distribution that can explain the measurements. For more details 89

about the inverse methods used here, see Binley (2015) and Binley and Kemna (2005). 90

Several established tools exist for inverting geoelectrical data (e.g. Pidlisecky and Knight, 2008). 91

Some codes are specialized for inverting monitoring (time-lapse) measurements (e.g. Karaoulis 92

et al., 2013) or for including hydrological or other geophysical information in the inversion (e.g. 93

Johnson et al., 2017; Nath et al., 2000). Most non-commercial tools are built around command-94

line software implementations that require significant experience to operate effectively, which 95

can be challenging for new users, and limits use in an educational environment. There is a 96

growing interest in open source codes within the scientific community, as they provide both 97

users and developers access to comment and advance codes, allowing contributions from 98

multiple developers. More significantly, perhaps, is the increasing demand for the sharing of 99

tools for reproducible science. An open source approach allows users to tailor a given code to 100

suit their needs. Successful examples of open source codes in geophysics include pyGIMLI 101

(Rücker et al., 2017) and SIMPEG (Cockett et al., 2015) both providing a Python application 102

programming interface (API). 103

In the spirit of open source provision, we developed ResIPy (formerly named pyR2) to facilitate 104

processing, modeling and inversion of geoelectrical data. ResIPy is written in Python and is 105

open source (source code is available on a GitLab repository: https://gitlab.com/hkex/pyr2). The 106

software handles importing, filtering, error modeling of geoelectrical data and makes use of the 107

freely available R2, cR2 and R3t codes 108

(http://www.es.lancs.ac.uk/people/amb/Freeware/Freeware.htm) for modeling/inversion of data. 109

5

R2, cR2 and R3t are mature codes for resistivity and IP problems but lack any graphical user 110

interface. Befus (2018) recently documented a Python wrapper for R2. In contrast, ResIPy 111

offers full IP capability and data quality control features, and has been developed to suit 112

educational/training needs. ResIPy also has 3D capabilities (Boyd et al. 2019) but these will not 113

be detailed in this 2D-focused manuscript. R2 and cR2 are finite element based, allowing the 114

incorporation of complex topography and modeling of bounded regions. They allow full flexibility 115

of electrode assignment; accommodating, for example, surface electrode and borehole 116

electrode based surveys. Inverse modeling in the codes is conducted using a weighted least 117

squares objective function coupled with a range of regularization options, including time-lapse 118

data analysis (e.g. Binley, 2015). 119

R2 was developed for solving DC resistivity problems. cR2, in contrast, is tailored for IP 120

problems by formulating the problem in terms of complex resistivity (e.g. Binley and Kemna, 121

2005). Both codes require specifically formatted text files for data input, specification of forward 122

or inverse model settings, and mesh construction. ResIPy removes the need for such text input 123

in a graphic user interface (GUI), whilst assisting the user in pre- and post-processing stages. 124

Use is made of the freely available meshing code Gmsh (Geuzaine and Remacle, 2009) for 125

complex mesh construction. The underlying philosophy of ResIPy is to retain the necessary 126

sophistication of geoelectrical inversion whilst enhancing the accessibility to a wider range of 127

users. Moreover, ResIPy provides an environment for training that may be refined and 128

customized to meet user needs. Hence, ResIPy is particularly well suited for educational 129

purposes. Its intuitive interface, open source nature and wide capabilities allow new users to 130

explore, at their pace, geoelectrical data analysis. Figure 1 shows the main capabilities of 131

ResIPy. 132

6

Figure 1: Diagram of the capabilities of ResIPy. Inversion workflow (green arrows): data can be imported

and bad measurements or electrodes can be filtered out (a). If reciprocal measurements are present an

error model can be fitted for DC resistivity (b) and for IP (c). A quadrilateral (e) or triangular (f) mesh is

then generated. The mesh and the filtered data (d) are sent to the inversion pipeline. Different inversion

settings can be defined such as blocking regions of the mesh or time-lapse settings. The resulting

inverted section is then produced with R2/cR2 (j) along with diagnostic pseudo section of the normalized

error of the inversion (k). Modeling workflow (red arrows): based on a hypothesis, a mesh is created and

a synthetic model designed (d). After creating a sequence (e) the forward response can be computed (f)

using R2/cR2. Those synthetic data can then be sent to the inversion pipeline to be inverted.

 133

We first describe the general design of the code with the API and GUI. Then, data processing 134

and mesh generation options are explained. Finally, different aspects of ResIPy are illustrated 135

through different environmental field and synthetic cases. 136

7

2 Structure of the code 137

2.1 Software design 138

Figure 2: ResIPy internal working with three main layers. On top, the visualization layer. In the middle

the Python API that is in charge of all calling the executable. At the base are the compiled executable

R2, cR2 and Gmsh.

 139

ResIPy is made of three layers (Figure 2). The bottom layer is composed of the compiled 140

inversion codes R2 (and R3t) and cR2 that are called during inversion or forward modeling for 141

DC resistivity and complex resistivity, respectively. This layer also contains the software Gmsh 142

(http://gmsh.info) that is used to generate triangular meshes. The middle layer is composed of 143

the Python API. This interface contains a set of functions that acts as a wrapper around the 144

executables, facilitating the writing of their input files (R2.in, cR2.in, mesh.geo) and the reading 145

of their outputs. The Python API also contains specific processing routines such as for filtering 146

the data or performing advanced error modeling of DC and IP data. A detailed list of the API 147

functions can be found in Appendix 1. The top layer is composed of visualization tools that 148

provide a graphical environment to the user. 149

8

The Python API is object-oriented and has several classes. The main class is called R2 (R2.py) 150

which manages the data processing and inversion. The GUI initiates an R2 object each time a 151

new inversion/modeling problem is started. Next is the Survey class (Survey.py) that handles 152

one dataset for one survey. Multiple surveys (e.g. from a time-lapse experiment), can be 153

handled inside the same R2 object using the R2.surveys attribute. Finally, the Mesh class 154

(meshTools.py) handles the tasks associated with the construction of the finite element mesh 155

(e.g. mesh generation, mesh refinement, electrode positioning, etc.). Each R2 object contains an 156

instance of the Mesh class in R2.mesh. More details about the mesh as well as a full overview of 157

the classes and their respective methods are provided in Appendix 1. 158

The Python API is documented within the code according to scipy/numpy docstring guidelines 159

(https://docs.scipy.org/doc/numpy-1.15.0/docs/howto_document.html). The advantage of this 160

approach is that html documentation can be easily compiled and updated using the Python 161

documentation generator Sphinx (https://hkex.gitlab.io/pyr2). The GUI also provides help 162

through the interface (tool tips), which allows the user to learn more about different aspect of the 163

inversion and error modeling. 164

2.2 Standalone graphical user interface 165

The standalone GUI is written in PyQt5, making it easy to modify and therefore allows for future 166

development. Moreover, graphs are plotted using matplotlib (Hunter, 2007) and can be exported 167

at every step. The GUI uses a series of tabs (Figure 3) that allows a non-linear workflow and 168

takes the user through the necessary stages of importing and filtering data (or creating synthetic 169

data for forward modeling), generating a mesh and inverting data. The import tab is used to load 170

geoelectrical and topographical data. Geoelectrical data can be imported directly using a 171

number of standard formats (e.g. IRIS Instruments Syscal files, Res2DInv files, and the 172

9

standard R2 and cR2 input files) or manually imported using the “Custom Parser” tab. 173

Additionally, topographical data can be entered manually or loaded from a comma separated 174

value (csv) file at “Electrode (XYZ/Topo)” tab. After importing data, the user can continue 175

through the workflow, as outlined in the following sections, or move directly to inversion using 176

default settings with the “Invert” button in the “Importing” tab. Using default settings allows the 177

user to generate reliable images in most cases, which may be a useful for novice users or for 178

fast assessment of data (e.g. in the field). It is important to note that all inversion parameters 179

available to R2 and cR2 can be accessed and modified under the “Inversion settings” tab. For 180

instance, the user can change the regularization type, whether the inversion converts data to 181

logarithmic values, data error estimates, smoothing anisotropy and the maximum number of 182

iterations. Help is provided for each parameter, with further details available in the R2 and cR2 183

manuals (http://www.es.lancs.ac.uk/people/amb/Freeware/Freeware.htm). Furthermore, under 184

advanced settings the user has the option to do batch inversions in parallel on multicore 185

machines. 186

Figure 3: General layout of the standalone graphical user interface with (1) different tabs for each

processing step, (2) Options for type of survey and inverse/forward modeling , (3) Data import and IP

check, (4) pseudo-section plot of the imported data.

 187

10

2.3 Data quality control 188

ResIPy is capable of rigorous data cleaning and quality control, this can either be done 189

automatically or with user control. Both approaches take into account whether reciprocal 190

measurements are present in the dataset or not. In the GUI, data quality control options are 191

available under the “Pre-processing” tab. 192

2.3.1 Automatic data cleaning/filtering 193

The first step of data cleaning in ResIPy is the basicFilter() method, which removes the 194

following measurements: (1) infinity or NaN values, (2) duplicates, (3) invalid measurements 195

(e.g. quadrupoles were current electrodes are also potential electrodes – A or B at same 196

position as M or N). If there are reciprocal measurements in the input file, ResIPy automatically 197

calls reciprocal() and calculates reciprocal errors. The number of measurements with a 198

relative reciprocal error above 20% are also notified to the user (using the API), but are not 199

discarded by default. The above mentioned methods are also called when a dataset is manually 200

added using addData() (e.g. when a reciprocal dataset is added separately). 201

2.3.2 User-controlled quality control methods 202

In addition to automatic data cleaning step, ResIPy has several user-controlled quality control 203

methods implemented in the code API as well as the GUI. These methods are divided into two 204

categories: (1) data cleaning/filtering and (2) data error analysis. 205

11

2.3.2.1 Data cleaning 206

User-controlled data cleaning/filtering is carried out in multiple separable steps. All the 207

processing is available in the GUI under “Pre-processing” tab. If reciprocal measurements are 208

present, the following methods can be used to clean up dataset: (1) filterRecip(percent), 209

where ‘percent’ is a desired percentage value to remove measurements with high error (2) 210

removeUnpaired() to remove quadrupoles that do not have a reciprocal pair. In the GUI, these 211

methods can be found in “Reciprocal Filtering” tab under “Pre-processing” tab. The error 212

probability distribution histogram is also provided to help visualization of dataset quality (Figure 213

4c). Additionally, the user can select and remove unwanted measurements (regardless of 214

reciprocity) by using manualFiltering() method (also available in the GUI under 215

“Manual/Reciprocal Filtering” tab in “Pre-processing”). This interactive method allows the user to 216

manually pick and remove data points within the GUI. Furthermore, the user can eliminate all 217

measurements carried out by a specific electrode (Figure 4a and b). 218

Further user-controlled data cleaning/filtering is limited to filtering datasets with 219

chargeability/phase values (“Phase Filtering” tab in “Pre-processing”). Quality control is 220

particularly important for IP applications given the smaller signal to noise ratio, compared to DC 221

resistivity problems (Slater and Lesmes, 2002; Zarif et al., 2017). 222

12

Figure 4: Interactive manual filtering. (a) Pseudo section with selected unwanted data points (crossed

out in red), (b) Pseudo section with removed data points (user must hit “Apply” button to remove the

crossed out data points). And (c) probability distribution of the reciprocal error with parametric and non

parametric fit (Kernel Density Estimate = KDE).

 223

To give the user full control of the IP data cleaning/filtering, different methods are implemented 224

in the code. In the GUI, the user can apply the available filtering methods and see the results in 225

an interactive Raw versus Filtered graph (Figure 5). All the phase angle filters can be used 226

separately and are reversible at this stage. In the GUI, the user can select the “Reset all phase 227

filters” button to reset back to the state after manual/reciprocal filtering. 228

13

Figure 5: Interactive phase angle (φ) filtering diagrams. (left) Raw measurements (no filters). (right)

Filtered dataset (including both automatic and user-controlled filtering). Each measurement is

represented by a colored pixel where the y coordinate is position number of the first current electrode (A)

and x coordinate is position number of first potential electrode (M) for a 4 electrode (A-B/current pair, M-

N/potential pair) quadrupole (Flores Orozco et al., 2013). White pixels represent no measurement at that

location.

2.3.2.2 Data error analysis 229

In addition to the data cleaning, ResIPy is capable of data error modeling for DC resistivity 230

and/or IP data. Data error analysis tabs in the GUI (“Resistance Error Model” and “Phase Error 231

Model”) are only available when there are reciprocal measurements within the input dataset(s). 232

Resistance error model: 233

Observed errors are based on individual measurement reciprocal errors according to: 234

������ � ������	
 � ����
����	
�. (1)

To calculate an error model (linear or power-law), ResIPy uses multi-bin analysis (for more 235

details of the method, see Koestel et al. (2008) and Mwakanyamale et al. (2012)) where errors 236

(equation 1) are binned into 20 bins of equal count and sorted based on average resistance 237

error Ravg [Ω], given by 238

14

�	�� �
���������������������

�
 .

(2)

 239

Phase error model: 240

Observed errors are based on phase angle discrepancies between normal and reciprocal 241

measurements (s(ϕ) [mrad]) 242

�� ! � � ����	
 � ���
����	
� (3)

and are plotted versus individual normal measurement resistances (Rnormal [Ω]). Phase error 243

models (power-law and parabolic) are calculated using multi-bin analysis (Mwakanyamale et al., 244

2012; Flores Orozco et al., 2012); where phase angle discrepancies have been binned into 20 245

equal count bins and sorted based on Rnormal [Ω]. The final error model fit formula is written on 246

top of the graph with the coefficient of determination (R2) (Figure 6). For more details about all 247

the methods used in this section, see Table 1. 248

Figure 6: Multi-bin error models. (a) Resistance error model (linear), (b) Phase angle error model

15

(parabola). Other options are also available to choose within the GUI.

 249

2.4 Meshing 250

In ResIPy, two types of 2D finite element meshes can be used: structured quadrilateral (see 251

section 2.4.1) or unstructured triangular (see section 2.4.2). Regardless of elemental shape, the 252

mesh elements tend to be finer near the electrodes and get coarser at greater distances from 253

the electrodes. This is to address the need for greater discretization in areas of high potential 254

gradient. The mesh is composed of a finer mesh defined by the electrode locations which is 255

encompassed in a coarser mesh with a larger lateral and depth extent (for semi-infinite 256

boundary problems). This is because the mesh boundaries are non-flux (Neumann). In a normal 257

field setting, current from the electrodes will propagate beyond the survey bounds; R2 and cR2 258

model electrical current flow for the entire mesh assigned to the problem. Hence, in order to 259

reliably model current flow, the mesh boundaries need to be sufficiently far away from the 260

electrode positions. Note there are exceptions where such infinite boundaries are not 261

appropriate (e.g. a non-infinite boundary would exist if conducting electrical surveys near cliff 262

faces, or in laboratory tank experiments). For those specific cases a customized mesh can be 263

imported in to the ResIPy workflow. 264

The lateral extent of the fine mesh region is dependent on the X (horizontal) coordinates of 265

electrodes (which are represented as nodes in the mesh). The fine mesh region extends to the 266

following depth estimated using 267

"�
� �
�#��$
%

. (4)

 268

16

Where Zmin is the lowest elevation of electrodes in the surface or borehole array, and Xmax is the 269

distance between the longest quadrupole in the survey. Note that this is not a depth of 270

investigation, for example as computed by the method of Oldenburg and Li (1999), but rather a 271

conservative estimate of it to facilitate meshing. 272

2.4.1 Quadrilateral mesh 273

ResIPy defines a quadrilateral mesh as an array of X and Z coordinates (i.e. a structured grid), 274

and an array of elevation values with the same length as the X array. The mesh is composed of 275

a fine region defined by the survey geometry with a coarser surrounding region (because of the 276

infinite boundaries). Only the finer mesh region is displayed in the GUI. The number of nodes 277

between the electrodes can be adjusted in the GUI (Figure 8). In the API, the mesh growth 278

factors in the Z direction can be adjusted with zf and zgf attributes for the fine and the coarse 279

region respectively. In the X direction, a growth factor for the coarse region can also be set in 280

the API (xgf). In the case of buried electrodes (e.g. cross-borehole surveys), the X and Z 281

coordinates of the electrodes are inserted into the quadrilateral mesh after the main mesh 282

generation scheme. 283

2.4.2 Triangular mesh 284

Triangular meshes allow application to more complicated geometry (e.g. topography and 285

geometrical features within the region of study). In ResIPy, the trian_mesh() function 286

generates the mesh by calling Gmsh.exe to perform the meshing process. The trian_mesh() 287

function provides an input file for gmsh (.geo) and parses the output (.msh). 288

Similar to the quadrilateral mesh, it is possible to control the mesh refinement by specifying a 289

characteristic length associated with each electrode node. Smaller characteristic lengths will 290

17

result in a finer mesh. Similar to the quadrilateral mesh, the user can specify a growth factor that 291

controls the increase in element size with depth. With both quadrilateral and triangular meshes it 292

is advisable to avoid fine elements in areas with low sensitivity, as they will not add anything to 293

the interpretation of the inverted model but will increase computation time. These two 294

parameters can be set in the GUI using slider or in the API using the and cl_factor attributes 295

of the R2.createMesh() method. 296

Both quadrilateral and triangular mesh options are available in ResIPy to encompass the 297

capabilities of the R2/cR2 codes. A quadrilateral mesh is generated faster than a triangular 298

mesh in ResIPy and output from a structured mesh (e.g. the array of resistivities following 299

inversion) can be easier to work with (e.g. to extract vertical or horizontal resistivity profiles). 300

However, triangular meshes are more versatile, can account for complex topography and are 301

computationally more efficient. Consequently, triangular meshing is recommended in ResIPy. 302

2.4.2.1 Whole space problems 303

In some cases, it might be appropriate to assume the electrodes are buried at such an 304

extensive depth that current flow does not interact with the surface or any other boundaries. In 305

such cases, ResIPy offers a scheme whereby electrode coordinates are inserted into a fine 306

triangular mesh region with a larger surrounding region (Figure 7). 307

18

Figure 7: Example of a pair of borehole arrays in a whole space problem. Note that the view is cropped

and that the real mesh extends much further away from in all directions. Also note that the mesh shown

in coarsely discretized for illustration purposes.

 308

2.4.3 Region definition 309

For generating a forward model for survey design, or for inverse modeling of a survey with 310

known subsurface boundaries, ResIPy allows the user to define different regions within the 311

mesh. These regions can be assigned a specific resistivity and phase angle values. Regions 312

can be selected in the GUI using an interactive plot picker and table system (Figure 8). In some 313

cases, the user may wish to prevent regularization in the inversion across certain boundaries, 314

for example if there is a known geological boundary. To do this the user can specify that these 315

regions are different zones. In this paper, we make a clear distinction between the term ‘region’ 316

which is a spatial group of elements, and the term ‘zone’ which is a special case of a region 317

where the regularization is suppressed along its boundaries. The example in section 3.3 318

19

considers a river with a fixed river resistivity, and the example in section 3.5 considers how to 319

generate and invert synthetic data using the forward modeling capabilities. 320

Figure 8: The interface allows for both quadrilateral (1) and triangular (2) mesh generation. The

interactive mesh display allows to draw regions of different shapes (3) and specify their properties using

the panel on the right panel(4).

 321

3 Applications 322

The following examples demonstrate the capabilities of ResIPy. Each of the examples aims to 323

expose particular aspects of ResIPy relevant for the case study. For each example the steps to 324

reproduce the results in the GUI along with the lines of code in the API that does the same are 325

provided. This aims to make the link between the GUI and the Python API more obvious. 326

20

Further examples are available in the GitLab repository 327

(https://gitlab.com/hkex/pyr2/tree/master/examples). 328

3.1 Survey design 329

Knowing the measurement response for a given model is a powerful tool to assess method 330

limitations. This is particularly useful when trying to optimize the survey design for an intended 331

target, or for determining if detecting a parameter of interest is realistic or not. Forward modeling 332

can be done in the ResIPy API using the R2.forward() method, or in the GUI by selecting 333

“Forward” check box in the main importing tab. ResIPy offers four types of sequences: dipole-334

dipole, Wenner, Schlumberger, multiple-gradient. The user has also the possibility to import and 335

generate their own custom sequence. Note that R2/cR2 are capable of modeling any 336

quadrupole sequence or combination of sequences. 337

The sensitivity of the array to a certain target will depend on quadrupole configuration; hence, 338

for survey design this is an important consideration. For example, Wenner arrays tend to favor 339

sensitivity to horizontal features rather than vertical ones (Binley, 2015). Additionally, the 340

electrode spacing of the survey will dictate the ability of the array to resolve a given target, as 341

the array spacing controls spatial resolution and depth of investigation. Arrays with smaller 342

electrode spacing have a shallower depth of investigation than larger arrays but have higher 343

spatial resolution. Therefore, in the case of surveys with a known target but unknown location, 344

arrays with different electrode spacing and quadrupole configurations can be trialed through 345

forward modeling to find a setup that is best suited to the problem. 346

The following example compares the sensitivity of a Dipole-Dipole and a Wenner sequence to 347

resolve a shallow target. The target, a rectangular feature buried at 1 m depth with dimensions 348

of 3 m by 1 m (Figure 9a), can be defined in the “Mesh tab” using the interactive plot or using 349

21

the API method R2.addRegion(). The resistivity of the target is set to 10 Ohm.m whilst the 350

background resistivity is set to 100 Ohm.m. The sequence is chosen in the “Forward Model” tab 351

or using the k.createSequence() method from the API. Given a starting model (Figure 9Figure 352

10a) and a sequence, the forward model can be run. The measurements produced are 353

displayed as a pseudo-section (Figure 9Figure 10b and c). In this case 5% noise is added to the 354

measurements to simulate a more realistic scenario. The synthetic data are then inverted to see 355

how much information can be recovered from them (Figure 9Figure 10d and e). Figure 9 shows 356

that a dipole-dipole array is better suited to this kind of problem compared to a Wenner array. In 357

Figure 9d (Wenner array), a low resistivity region can be observed but its location is 358

widespread. Figure 9e (dipole-dipole array) more closely resembles the input resistivity model, 359

and the low resistivity region is better collocated with the placement of the target. 360

 361

k = R2(typ='R2')
k.setElec(np.c_[np.linspace(0, 24, 24), np.zeros((24, 2))])
k.createMesh(typ='quad')

target = np.array([[7,-2.2],[12,-2.2],[12,-5],[7,-5]])
k.addRegion(target, 10, -3) # target definition

k.createSequence(params=[('wenner_alpha',1),

 ('wenner_alpha',2),
 ('wenner_alpha',3),
 ('wenner_alpha',4),

 ('wenner_alpha',5),
 ('wenner_alpha',6),
 ('wenner_alpha',7),

 ('wenner_alpha',8),

 ('wenner_alpha',9),
 ('wenner_alpha',10)])

k.forward(iplot=True, noise=0.05) # add 5 % noise
k.invert(iplot=True)

k.showResults(index=0, attr='Resistivity(Ohm-m)', sens=False)
k.showResults(index=1, attr='Resistivity(Ohm-m)', sens=False)

now for the dipole dipole
k.createSequence([('dpdp1', 1, 8)])
k.forward(iplot=True, noise=0.05)

k.invert(iplot=True)

22

k.showResults(index=1, attr='Resistivity(Ohm-m)', sens=False)

 362

23

Figure 9: Forward modeling in ResIPy. (a) The original resistivity model for which measurements are

computed. (b) and (d) the pseudo and inverted section of apparent resistivities for a Wenner array

respectively, (c) and (e) the pseudo and inverted section for a Dipole-Dipole array. The red dashed line

in (d) and (e) shows the true position of the target.

 363

This example uses synthetically generated data to optimize the design of the survey. Once this 364

step is done, the survey is carried out and field/lab measurements are collected. The following 365

examples demonstrate how those measurements are processed with ResIPy. 366

3.2 2D resistivity with topography 367

Castle Hill in Lancaster (UK) is the site of a first century Roman fort (Wood, 2017). At the site 368

there are no remains of the Roman fort walls above the ground but targeted archaeological 369

investigations have found traces of the walls foundations. The aim here is to map the extent of 370

walls around the site using several ERT cross transects. Only one of those transects is used 371

here. In this example, the steep topography of the hill strongly impacts the inversion results, i.e. 372

if topography is not included in the mesh, the inversion outputs unrealistic results containing 373

artifacts. The results are displayed in Figure 10 where the high resistivity anomaly on the top of 374

the slope corresponds to the walls foundations. All transects together help to define the 375

positions of the walls and hence the extent of the Roman fort. 376

GUI: 377

1. Importing data: exact electrode locations can be added in the “Electrodes (XYZ/Topo)” 378

tab 379

2. (optional) choose mesh type: we use triangular mesh 380

3. Inversion 381

24

Figure 10: Inverted section of one of the ERT transects crossing over the wall. A zone of higher

resistivity approximately 3.5 m along the transect agrees well with other excavations nearby, and

probably represents the remains of wall foundations.

The same can be achieved using the API: 382

k = R2() # initiate an R2 instance

k.createSurvey('syscalFileTopo.csv', ftype='Syscal') # import data
k.importElec('elecTopo.csv') # importing the electrodes positions
k.fitErrorPwl() # fit a power law
k.err = 'True' # tells the inversion to use the error model we've fitted
(done automatically in the GUI) this will set a_wgt and b_wgt at 0
k.createMesh(typ='trian') # create quadrilateral mesh

k.invert() # run the inversion

k.showResults() # show the inverted section

 383

3.3 2D IP 384

Recently, it has been shown that IP is a capable tool for monitoring soil strengthening involving 385

calcite precipitation in both lab and field scale (Saneiyan et al., 2019, 2018). Here we use data 386

reported by Saneiyan et al. (2019) to show how the IP filtering options available in ResIPy can 387

enhance inversion quality. To illustrate the processing capabilities of ResIPy we first invert a 388

dataset where the raw IP measurements are used directly without data filtering. Second, we 389

show how data filtering can enhance the final inversion. Note that for IP problems the inverse 390

model can be displayed as an image of resistivity magnitude and phase angle, or as an image 391

25

of real conductivity and imaginary conductivity. The resistivity magnitude and phase angles are 392

parameters directly derived from the measured impedances. The real and imaginary 393

conductivity are derived from the magnitude and the phase angle. The advantage of imaginary 394

conductivity over phase angle is that it provides an unbiased estimate of the polarization of the 395

medium. 396

3.3.1 Inversion without data cleaning 397

Similar to the previous section, we can approach the problem with either using GUI or straight 398

from API: 399

GUI: 400

1. Importing data: code automatically detect “IP” values, if a known file type is chosen (e.g. 401

Syscal) 402

2. (Optional) choose mesh type: we use triangular mesh 403

3. Inversion. 404

 API: 405

k = R2(typ='cR2') # initiate an R2 instance (considering there is IP data
in the input data)
k.createSurvey('IP_MICP_ALL.csv', ftype='Syscal') # import data

k.createMesh(typ='trian') # create triangular mesh

k.invert() # run the inversion (and write cR2.in and protocol.dat
automatically)

k.showResults(attr='Phase(mrad)') # show the inverted section

 406

For this case, without data cleaning, the inversion of the phase angle did not converge within 10 407

iterations (observed by consistent unrealistic and very high RMS misfit values per iteration) and 408

26

the inversion results did not show meaningful subsurface structures. In order to apply data 409

quality control, we then follow the steps reported in Saneiyan et al. (2019). 410

3.3.2 Inversion with data cleaning and error analysis 411

The steps are similar to previous but here we include data quality control routines, filtering and 412

error analysis. 413

GUI: 414

1. Import data: IP_MICP_ALL.csv. 415

2. Reciprocal filtering: removing data points with > 5% reciprocal error 416

3. Phase filtering (“Phase Filtering” tab in “Pre-processing”): 417

a. Removing nested measurements (measurements where M or N are in between A 418

and B) 419

b. Phase range filtering: setting 0 < -ϕ < 20 420

4. Error modeling: 421

a. Resistance error model: power law 422

b. Phase error model: power law 423

5. (Optional) choose mesh type: we use triangular mesh 424

6. Inversion 425

API: 426

k = R2(typ='cR2') # initiate an R2 instance (considering there is IP data in

the input data)
k.createSurvey('IP_MICP_all.csv', ftype='Syscal') # import data
k.filterRecip(percent=5) # removing datapoints with > 5% reciprocal error
k.filterNested() # removing nested measurements

k.filterRangeIP(0,20) # setting phase shift range to 0 < -ϕ < 20
k.fitErrorPwl() # adding resistance power-law error model to data

k.fitErrorPwlIP() # adding phase power-law error model to data

27

k.err = 'True' # using error models (DC and IP) - automatically done in the
GUI when fitting the error model

k.createMesh(typ='trian') # create triangular mesh
k.param['a_wgt'] = 0 # "a_wgt" = 0 when there is individual resistance error
k.param['b_wgt'] = 0 # "b_wgt" = 0 when there is individual phase error

k.param['tolerance'] = 1.14 # based on data, field site and experience
k.param['min_error'] = 0.001 # based on data, field site and experience
k.invert() # run the inversion (and write cR2.in and protocol.dat

automatically)
k.showResults(attr='Magnitude(Ohm.m)') # show the inverted real conductivity
section

k.showResults(attr='Phase(mrad)') # show the inverted phase shift section

 427

This time the data was successfully inverted (resistivity RMS misfit = 1.47 and phase RMS misfit 428

= 1.11 in 3 iterations). Figure 11 shows the final inversion plots. 429

Figure 11: Inverted IP plots. (a) resistivity plot, (b) phase angle plot.

 430

28

According to Saneiyan et al. (2019), the phase angle anomaly below -3.5 m is the area 431

impacted by microbial induced carbonate precipitation (MICP) processes and ResIPy 432

successfully shows this in the inversion plots. Saneiyan et al. (2019) show that a consistent 433

increase in the phase angle below -3.5 m is observed during a 15-days experiment, confirming 434

the impacted area by MICP has been detected by the IP survey successfully. 435

3.4 River: blocky resistivity inversion 436

ERT has been used in a number of studies for characterizing riverbeds, lakebeds and canals 437

using waterborne and fixed arrays for both static and time-lapse investigations (e.g. Ball et al., 438

2006; Crook et al., 2008; Ward et al., 2013). In this example, we demonstrate how ResIPy 439

allows the user to create a blocky region corresponding to the river and therefore better resolve 440

the subsurface. In this case ResIPy allows the resistivity of elements of the mesh representing 441

the river water column to be fixed, and regularization at the boundary between the river and 442

surrounding region to be suppressed (i.e. using zones for regularization). The survey used here 443

was collected using a transect that spanned the chalk fed river Lambourn (UK) and part of an 444

adjacent riparian wetland. The inverted section is shown in Figure 12. 445

GUI: 446

1. Importing the data using the ‘Protocol’ file type 447

a. Inputting the topography file for the electrodes 448

b. Burying the substream electrodes 449

c. Adding additional topography points to define where the river intersects the river 450

bank 451

2. Meshing: triangular meshing is selected 452

29

a. Use the interactive plot to select a region corresponding to the river, define it as a 453

separate (and fixed) zone and assign it a starting resistivity of 25 Ohm.m (value 454

independently measured in the river) 455

3. Invert 456

API: 457

k = R2()
k.createSurvey('river-protocol.dat', ftype='Protocol')

following lines will add electrode position, surface points and specify

if electrodes are buried or not. Similar steps are done in the GUI in (a),
(b), (c)
x = np.genfromtxt('river-elec.csv', delimiter=',')

k.setElec(x[:,:2]) # electrode positions
surface = np.array([[0.7, 92.30],[10.3, 92.30]]) # additional surface point
for the river level

buried = x[:,2].astype(bool) # specify which electrodes are buried (in the

river here)
k.filterElec([21, 23, 22, 2, 3]) # filter out problematic electrodes 21 and

2
k.createMesh(typ='trian', buried=buried, surface=surface, cl=0.2,
cl_factor=10)

xy = k.elec[1:21,[0,2]] # adding river water level using 2 topo points
k.addRegion(xy, res0=25, blocky=True, fixed=True) # fixed river resistivity

to 25 Ohm.m

k.param['b_wgt'] = 0.05 # setting up higher noise level
k.invert()
k.showResults(sens=False, vmin=1.2, vmax=2.2, zlim=[88, 93])

 458

30

Figure 12: Inverted section showing (1) the river water corresponding to the fixed region surrounded by

red dashed lines, (2) the peat layer, more conductive and (3) the gravels beneath more resistive. The

block dashed line is an interpretation of the interface between the peat and the gravels.

 459

3.5 Time-lapse monitoring of soil drying due to root 460

water uptake 461

ResIPy allows users to perform inversion of time-lapse resistivity and IP surveys as well as 462

batch surveys. These options need to be selected in the GUI before importing data. In both 463

cases (time-lapse or batch survey) the user must select a directory containing the datasets 464

rather than single data files (ResIPy automatically will ask for an import directory). Note that all 465

files are imported in alphabetical order. For difference inversion, all surveys are automatically 466

matched to keep only the quadrupoles common to all surveys. 467

A specific option to run the inversions in parallel is available in “Advanced” tab under “Inversion 468

Settings” tab. In this case multiple inversions will be run on different logical processors, which 469

will significantly speed up the total inversion process (if a multi core machine is used). Note that 470

this consumes more memory for large meshes. 471

The dataset used in this example is a series of ERT surveys made between March to May 2017 472

at a wheat field maintained by Rothamsted Research at Woburn, UK. The aim of this study is to 473

monitor the root water uptake of different wheat varieties for the purpose of selecting resilient 474

lines (Whalley et al., 2017). ERT arrays were installed under different wheat varieties and left in 475

place during the season. Regular ERT measurements were collected and converted to soil 476

moisture content to observe the depth of the soil moisture depletion due to root water uptake. In 477

this example, four ERT surveys of one variety are inverted using a time-lapse routine inversion 478

31

(difference inversion) that specially invert for change in resistivity (LaBrecque and Yang, 2001). 479

All changes in resistivity are expressed as percentage difference compared to the background 480

survey (15th March 2017). The inverted sections illuminate the drying pattern of the variety 481

throughout the growing season (Figure 13). 482

In the GUI: 483

1. Importing data (for time-lapse: checking the ‘Time-lapse’ survey check box) 484

2. Fitting a power-law error model (applied on all data points for all time steps, the same 485

global error model will then be used for computing error for each survey) 486

3. Create a triangular mesh 487

4. Inversion settings: in the advanced setting tab, we checked parallel inversion (i.e. 488

multiple instances of the executable are run at the same time to speed up the inversion). 489

5. Inversion 490

API: 491

 492

k = R2() # initiate an R2 instance

k.createTimeLapseSurvey('timeLapse/', ftype='Syscal') # import directory with
the data
k.fitErrorPwl() # fit a power-law
k.err = 'True' # tells the inversion to use the error model

k.createMesh(typ='trian', cl=0.5) # create a triangular mesh with a
characteristic length of 0.5

k.invert(parallel=True) # run the inversion (and write R2.in and protocol.dat
automatically), uses multiple cores if parallel is True
k.showResults(index=0) # show the first inverted section

k.showResults(index=1) # show the second inverted section
k.showResults(index=1, attr='difference(percent)') # show the differences

between the first and second survey

 493

32

Figure 13: Time-lapse inverted section showing the differences from the background (15th March 2017)

to (a) 3rd April and (b) 16th May 2017. There is an increasing resistivity in the subsurface, interpreted as

an increasing drying due to root water uptake by the wheat. The change in resistivity reveals the depth

of the drying which varies for different wheat varieties (Whalley et al., 2017).

4 Conclusion 494

ResIPy is a geophysical data analysis, modeling and inversion tool that simplifies the problem 495

and allows users to have full control over sophisticated modeling/inversion parameters in an 496

intuitive graphical user interface. ResIPy provides a platform for multi-disciplinary projects in 497

which reliable results are produced in an easy to follow nonlinear user interface. ResIPy allows 498

modeling and inversion of 2D and 3D resistivity and IP data, and is ideally suited for educational 499

purposes. While most available inversion codes/software are capable of basic data filtering, 500

ResIPy provides a thorough data cleaning routine. We have illustrated some of the key features 501

33

of ResIPy, showing, for example, how data filtering and error modeling can enhance data 502

inversion, especially for IP surveys. ResIPy has been successfully used in multiple field and 503

modeling situations using both the GUI and the API. 504

We believe this open source project will not only increase the usability of the mature R2/cR2 505

inversion/modeling codes, but also improve the accessibility of geophysics in interdisciplinary 506

projects while also providing a powerful open source tool for teaching purposes. 507

5 Acknowledgements 508

We would like to thank the members of Lancaster – Rutgers Hydrogeophysical Knowledge 509

Exchange group (HKEx) for their valuable feedback throughout this project. 510

6 Computer Code Availability 511

The data used in the examples and compiled standalone executables of the software are all 512

available on the GitLab repository: https://gitlab.com/hkex/pyr2. Documentation of the API along 513

with examples can be found at https://hkex.gitlab.io/pyr2. 514

7 Appendix 1 515

Below can be found a table summarising the main methods and functions available in ResIPy 516

API. The list of arguments (signature) of the methods/functions are not displayed for the sake of 517

simplicity but detailed help can be found in the documentation online 518

(https://hkex.gitlab.io/pyr2/api.html). 519

 520

34

Table 1: API methods in ResIPy 521

class methods/attributes what it does

R2 (R2.py) createSurvey()
Import single survey dataset from
file

 createTimeLapseSurvey()
Import time-lapse datasets from
directory

 createBatchSurvey()

Import batch datasets from

directory

 setElec() Set the electrodes

 importElec()
Import electrodes position from
file

 manualFiltering()

Manually select outliers point on

the pseudo-section

 filterDip() Filter dipole

 filterData()

Filter data (used in the outlier

removal)

 fitErrorPwl()

Fit a power law error model

resistivity (inherited from
Survey)

 fitErrorLin()

Fit a linear error model
resistivity (inherited from

Survey)

 fitErrorPwlIP()
Fit a power law error model IP
(inherited from Survey)

 fitErrorLinIP()
Fit a linear error model IP

(inherited from Survey)

 fitErrorParabolaIP()

Fit a hyperbola error model to IP

(inherited from Survey)

 createMesh()
Create a mesh (quadrilateral or
triangular)

 showMesh() Display the mesh

 addRegion()
Add a region of specific
resistivity to the mesh

 createModel() Interactive region definition

 createSequence()

Create sequence for forward

modeling

 importSequence()
Import sequence for forward
modeling

 forward() Run the forward model

35

 write2in()
Write the .in file with all
inversion settings

 write2protocol()

Write the protocol.dat file with

the measurements

 invert() Run the inversion

 showResults() Show the inverted section

Mesh

(meshTools.py) show()

Display the mesh with the default

attribute

 add_e_nodes() Add electrode node indexes to mesh

 summary()
Prints summary information about
the mesh.

 assign_zone() Assigns 2D zones to the mesh.

 computeElmDepth()
Calculate depth to datum for each
element

 write_vtk() Writes a .vtk file

 write_attr()
Writes a tabbed file with element
attributes

 paraview()

Show mesh in Paraview application

if available

Functions in

meshTools.py import_vtk()

Import a .vtk file and returns an

instance of Mesh

 quad_mesh()

Create a quadrilateral mesh

(called by R2)

 trian_mesh()
Create a triangular mesh (called
by R2)

 custom_mesh_import()
Import a .msh, .vtk, .dat mesh
format and return mesh instance.

 systemCheck()

Returns and prints information

about the user’s system; Operating
system, number of logical CPU
cores detected and memory

available.

 522

8 References 523

Ball, L.B., Kress, W.H., Steele, G.V., Cannia, J.C., Andersen, M.J., 2006. Determination of canal
leakage potential using continuous resistivity profiling techniques, Interstate and Tri-

36

State Canals, western Nebraska and eastern Wyoming, 2004 (USGS Numbered Series
No. 2006–5032), Scientific Investigations Report.

Befus, K.M., 2018. pyres : a Python wrapper for electrical resistivity modeling with R2. J.
Geophys. Eng. 15, 338–346. https://doi.org/10.1088/1742-2140/aa93ad

Benoit, S., Ghysels, G., Gommers, K., Hermans, T., Nguyen, F., Huysmans, M., 2018.
Characterization of spatially variable riverbed hydraulic conductivity using electrical
resistivity tomography and induced polarization. Hydrogeol. J.
https://doi.org/10.1007/s10040-018-1862-7

Binley, A., 2015. 11.08 - Tools and Techniques: Electrical Methods, in: Schubert, G. (Ed.),
Treatise on Geophysics (Second Edition). Elsevier, Oxford, pp. 233–259.
https://doi.org/10.1016/B978-0-444-53802-4.00192-5

Binley, A., Hubbard, S.S., Huisman, J.A., Revil, A., Robinson, D.A., Singha, K., Slater, L.D.,
2015. The emergence of hydrogeophysics for improved understanding of subsurface
processes over multiple scales: The Emergence of Hydrogeophysics. Water Resour.
Res. 51, 3837–3866. https://doi.org/10.1002/2015WR017016

Binley, A., Kemna, A., 2005. DC resistivity and induced polarization methods, in:
Hydrogeophysics. Springer, pp. 129–156.

Boyd, J., Blanchy, G., Saneiyan, S., Binley, A., 2019. 3D geoelectrical problems with ResIPy, an
open-source graphical user interface for geoeletrical data processing. FastTIMES 24.

Cockett, R., Kang, S., Heagy, L.J., Pidlisecky, A., Oldenburg, D.W., 2015. SimPEG: An open
source framework for simulation and gradient based parameter estimation in
geophysical applications. Comput. Geosci. 85, 142–154.
https://doi.org/10.1016/j.cageo.2015.09.015

Crook, N., Binley, A., Knight, R., Robinson, D.A., Zarnetske, J., Haggerty, R., 2008. Electrical
resistivity imaging of the architecture of substream sediments. Water Resour. Res. 44.
https://doi.org/10.1029/2008WR006968

Flores Orozco, A., Williams, K.H., Kemna, A., 2013. Time-lapse spectral induced polarization
imaging of stimulated uranium bioremediation. Surf. Geophys. 11, 531–544.
https://doi.org/10.3997/1873-0604.2013020

Geuzaine, C., Remacle, J.-F., 2009. Gmsh: A 3-D finite element mesh generator with built-in
pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331.
https://doi.org/10.1002/nme.2579

Hunter, J.D., 2007. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 9, 90–95.
https://doi.org/10.1109/MCSE.2007.55

Johnson, T.C., Hammond, G.E., Chen, X., 2017. PFLOTRAN-E4D: A parallel open source
PFLOTRAN module for simulating time-lapse electrical resistivity data. Comput. Geosci.
99, 72–80. https://doi.org/10.1016/j.cageo.2016.09.006

Karaoulis, M., Revil, A., Tsourlos, P., Werkema, D.D., Minsley, B.J., 2013. IP4DI: A software for
time-lapse 2D/3D DC-resistivity and induced polarization tomography. Comput. Geosci.
54, 164–170. https://doi.org/10.1016/j.cageo.2013.01.008

Koestel, J., Kemna, A., Javaux, M., Binley, A., Vereecken, H., 2008. Quantitative imaging of
solute transport in an unsaturated and undisturbed soil monolith with 3-D ERT and TDR.
Water Resour. Res. 44, n/a–n/a. https://doi.org/10.1029/2007WR006755

LaBrecque, D.J., Yang, X., 2001. Difference inversion of ERT data: A fast inversion method for
3-D in situ monitoring. J. Environ. Eng. Geophys. 6, 83–89.

McLachlan, P.J., Chambers, J.E., Uhlemann, S.S., Binley, A., 2017. Geophysical
characterisation of the groundwater–surface water interface. Adv. Water Resour. 109,
302–319. https://doi.org/10.1016/j.advwatres.2017.09.016

Mewes, B., Hilbich, C., Delaloye, R., Hauck, C., 2017. Resolution capacity of geophysical
monitoring regarding permafrost degradation induced by hydrological processes. The
Cryosphere 11, 2957–2974. https://doi.org/10.5194/tc-11-2957-2017

37

Mwakanyamale, K., Slater, L., Binley, A., Ntarlagiannis, D., 2012. Lithologic imaging using
complex conductivity: Lessons learned from the Hanford 300 Area. GEOPHYSICS 77,
E397–E409. https://doi.org/10.1190/geo2011-0407.1

Nath, S.K., Shahid, S., Dewangan, P., 2000. SEISRES—a visual C++ program for the
sequential inversion of seismic refraction and geoelectric data. Comput. Geosci. 26,
177–200.

Ntarlagiannis, D., Robinson, J., Soupios, P., Slater, L., 2016. Field-scale electrical geophysics
over an olive oil mill waste deposition site: Evaluating the information content of
resistivity versus induced polarization (IP) images for delineating the spatial extent of
organic contamination 135, 418–426. https://doi.org/10.1016/j.jappgeo.2016.01.017

Oldenburg, D.W., Li, Y., 1999. Estimating depth of investigation in dc resistivity and IP surveys.
Geophysics 64, 403–416.

Orozco, A.F., Kemna, A., Zimmermann, E., 2012. Data error quantification in spectral induced
polarization imaging 77, E227–E237. https://doi.org/10.1190/geo2010-0194.1

Pidlisecky, A., Knight, R., 2008. FW2_5D: A MATLAB 2.5-D electrical resistivity modeling code.
Comput. Geosci. 34, 1645–1654.

Rücker, C., Günther, T., Wagner, F.M., 2017. pyGIMLi: An open-source library for modelling
and inversion in geophysics. Comput. Geosci.
https://doi.org/10.1016/j.cageo.2017.07.011

Saneiyan, S., Ntarlagiannis, D., Ohan, J., Lee, J., Colwell, F., Burns, S., 2019. Induced
polarization as a monitoring tool for in-situ microbial induced carbonate precipitation
(MICP) processes. Ecol. Eng. 127, 36–47. https://doi.org/10.1016/j.ecoleng.2018.11.010

Saneiyan, S., Ntarlagiannis, D., Werkema, D.D., Ustra, A., 2018. Geophysical methods for
monitoring soil stabilization processes. J. Appl. Geophys. 148, 234–244.
https://doi.org/10.1016/j.jappgeo.2017.12.008

Schlumberger, C., 1920. Etude sur la prospection electrique du sous-sol. Gauthier-Villars.
Slater, L.D., Lesmes, D., 2002. IP interpretation in environmental investigations. GEOPHYSICS

67, 77–88. https://doi.org/10.1190/1.1451353
Uhlemann, S., Wilkinson, P.B., Maurer, H., Wagner, F.M., Johnson, T.C., Chambers, J.E., 2018.

Optimized survey design for Electrical Resistivity Tomography: combined optimization of
measurement configuration and electrode placement 36.

Vanella, D., Cassiani, G., Busato, L., Boaga, J., Barbagallo, S., Binley, A., Consoli, S., 2018.
Use of small scale electrical resistivity tomography to identify soil-root interactions during
deficit irrigation. J. Hydrol. 556, 310–324. https://doi.org/10.1016/j.jhydrol.2017.11.025

Ward, A.S., Gooseff, M.N., Singha, K., 2013. How Does Subsurface Characterization Affect
Simulations of Hyporheic Exchange? Groundwater 51, 14–28.
https://doi.org/10.1111/j.1745-6584.2012.00911.x

Whalley, W.R., Binley, A., Watts, C.W., Shanahan, P., Dodd, I.C., Ober, E.S., Ashton, R.W.,
Webster, C.P., White, R.P., Hawkesford, M.J., 2017. Methods to estimate changes in
soil water for phenotyping root activity in the field. Plant Soil 415, 407–422.
https://doi.org/10.1007/s11104-016-3161-1

Wood, J., 2017. Roman Lancaster: The Archaeology of Castle Hill. Br. Archaeol. 38–45.
Zarif, F., Kessouri, P., Slater, L., 2017. Recommendations for Field-Scale Induced Polarization

(IP) Data Acquisition and Interpretation. J. Environ. Eng. Geophys. 16.
 524

 525

 526

38

 527

 528

 529

