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Abstract 28 

Tropical forests hold 30% of Earth’s terrestrial carbon and at least 60% of its terrestrial 29 

biodiversity, but forest loss and degradation are jeopardizing these ecosystems. Although the 30 

regrowth of secondary forests has the potential to offset some of the losses of carbon and 31 

biodiversity, it remains unclear if secondary regeneration will be affected by climate changes such 32 

as higher temperatures and more frequent extreme droughts. We used a dataset of 10 repeated 33 

forest inventories spanning two decades (1999-2017) to investigate carbon and tree species 34 

recovery and how climate and landscape context influence carbon dynamics in an older secondary 35 

forest located in one of the oldest post-Columbian agricultural frontiers in the Brazilian Amazon. 36 

Carbon accumulation averaged 1.08 Mg ha-1 yr-1, while species richness was effectively constant 37 

over the studied period. Moreover, we provide evidence that secondary forests are vulnerable to 38 

drought stress: carbon balance and growth rates were lower in drier periods. This contrasts with 39 

drought responses in primary forests, where changes in carbon dynamics are driven by increased 40 

stem mortality. These results highlight an important climate change-vegetation feedback, whereby 41 

the increasing dry-season lengths being observed across parts of Amazonia may reduce the 42 

effectiveness of secondary forests in sequestering carbon and mitigating climate change. In 43 

addition, the current rate of forest regrowth in this region was low compared with previous pan-44 

tropical and Amazonian assessments – our secondary forests reached just 41.1% of the average 45 

carbon and 56% of the tree diversity in the nearest primary forests — suggesting that these areas 46 
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are unlikely to return to their original levels on politically meaningful timescales. 47 
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 50 

Introduction 51 

Secondary forests regenerating after land clearance represent > 50% of all tropical forests 52 

(Chazdon et al. 2009), and there is hope that they can cost-effectively mitigate climate change and 53 

biodiversity loss (Chazdon 2014, Lewis et al. 2019) – two of the defining crises of the 54 

Anthropocene (Malhi et al. 2014). For example, secondary forest carbon uptake is estimated to be 55 

11 times higher than that of Neotropical primary forests (Poorter et al. 2016), providing an 56 

estimated global carbon sink of 130 Pg between 2016 and 2100 (Houghton and Nassikas 2018). 57 

Secondary forests can also provide important biodiversity co-benefits in landscapes otherwise 58 

devoid of primary forests or with high levels of deforestation (Vieira and Gardner 2012, Lennox 59 

et al. 2018, Matos et al. 2019). However, to realize their potential to mitigate climate change and 60 

biodiversity loss, tropical secondary forests must be able to recover under novel climatic 61 

conditions. 62 

Global climate change is affecting the humid tropics through higher temperatures and 63 

levels of atmospheric CO2 (Malhi et al. 2014), increases in dry-season length (Fu et al. 2013) and 64 

the frequency and intensity of climate extremes (Brando et al. 2019). These climate changes may 65 

be exacerbated by declines in precipitation and increases in temperature linked to regional 66 

deforestation (Spracklen et al. 2018, Baker and Spracklen 2019). Three types of evidence suggest 67 

tropical secondary forests will be sensitive to these changes. First, primary forest estimates show 68 

a decrease in the carbon sink during extreme droughts (Brienen et al. 2015). Second, large-scale 69 
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studies of secondary forests indicate a strong effect of climate on the recovery rates of carbon and 70 

biodiversity (Anderson-Teixeira et al. 2013, Poorter et al. 2016, Rozendaal et al. 2019). Third, 71 

longitudinal studies have revealed how droughts modulate recovery speed, increase mortality and 72 

reduce recruitment and growth (Chazdon et al. 2005, Maza-Villalobos et al. 2013, Martínez-73 

Ramos et al. 2018), due to the negative effects on the water balance and photosynthetic rates of 74 

trees, especially in the earlier stages of succession (Bretfeld et al. 2018). 75 

While these studies provide a useful knowledge base, there are some important limitations. 76 

First, secondary forests are likely to be even more sensitive than primary forests to changes in 77 

precipitation (Uriarte et al. 2016) because pioneer species are more vulnerable to embolism 78 

(Markesteijn et al. 2011). Second, the large-scale studies that have inferred temporal trends from 79 

spatial data (i.e. the chronosequence approach) are complicated by factors such as species turnover 80 

and natural variation between samples (Johnson and Miyanishi 2008, Norden et al. 2015, França 81 

et al. 2016) and idiosyncratic determinants of recovery (Chazdon et al. 2007, Arroyo-Rodríguez et 82 

al. 2017). Third, most longitudinal studies focus on short-term assessments restricted to a single 83 

drought event (Chazdon et al. 2005, Maza-Villalobos et al. 2013, Bretfeld et al. 2018, Martínez-84 

Ramos et al. 2018), which cannot detect responses to longer-term increases in temperature or post-85 

drought growth compensation (Berenguer et al. 2018). Furthermore, the few longer-term studies 86 

relating secondary forest carbon dynamics to climate focus on tropical dry forests (e.g., Álvarez-87 

Yépiz et al. 2018, Martínez-Ramos et al. 2018), meaning there is a lack of research in humid 88 

tropical regions where species may be even more sensitive to drought (Esquivel-Muelbert et al. 89 

2019). 90 

Initiatives such as the Bonn Challenge highlight two additional knowledge gaps linked to 91 

management. It seems likely that the increase in landscape-scale restoration will also increase 92 
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secondary forest permanence, moving beyond the current situation where secondary forests are 93 

often cleared again within 5-20 years (Aguiar et al. 2016, Reid et al. 2018). Although our current 94 

understanding of younger forests is good (Poorter et al. 2015, 2016, 2019, Martínez-Ramos et al. 95 

2018, Villa et al. 2018, Rozendaal et al. 2019), and the non-linear response of forest recovery over 96 

time is well established (Poorter et al. 2016, Ferreira et al. 2018, Lennox et al. 2018, Requena 97 

Suarez et al. 2019, Rozendaal et al. 2019), there is far too much variation in the relationship to use 98 

young forests to accurately predict recovery rates in older forests. Moreover, the relative recovery 99 

rates of carbon and biodiversity are unclear. While some regional assessments report a tight 100 

coupling at all stages of succession (Lennox et al. 2018), continent-scale assessments suggest a 101 

much faster recovery of biodiversity: plots recovered 80% of tree species richness 20 years after 102 

abandonment (Rozendaal et al. 2019) and only 27% of the carbon stock (Poorter et al. 2016). As 103 

recovery of both carbon and biodiversity are mediated by factors such as stand age and landscape 104 

and local conditions (Jakovac et al. 2015, Magnago et al. 2017, Villa et al. 2018, Ferreira et al. 105 

2018, Lennox et al. 2018, Matos et al. 2019), it is not clear how these rates compare in heavily 106 

deforested landscapes. 107 

Here, we address these knowledge gaps by investigating secondary forest recovery in the 108 

Bragantina region, the oldest deforestation frontier in the Brazilian Amazon (Almeida et al. 2010). 109 

We undertook 10 repeated censuses of 3 ha of older secondary forests (~60 years) over 18 years 110 

and addressed four questions: 1) What are the recovery rates of carbon stocks and tree species 111 

richness, and what is the relationship between these measures? 2) Does variation in seasonal 112 

temperature, water stress and landscape context influence carbon dynamics? 3) How does carbon 113 

recovery in the Bragantina region compare to estimates from other tropical regions? 4) What is the 114 

timeframe for carbon to return to typical primary forest levels? 115 
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 116 

Methods 117 

Study area and landscape context 118 

Our study focused on the eastern-Amazonian municipality of Bragança (Appendix S1: Fig. 119 

S1). This municipality has lost 90.2% of its native forests and mangrove areas. Secondary forest 120 

covers 28.8% of the landscape, accounting for 67.5% of the total forest cover (including mangrove 121 

areas) (Appendix S1: Fig. S1). Primary and secondary forests (established post-1985) are situated 122 

in small, isolated, and selectively logged fragments (~30 to 60 hectares; MapBiomas 2019). 123 

We established three study-plot classes. In 1999, we began inventories in 12 secondary 124 

forest plots (50 x 50 m = 0.25 ha; Appendix S1: Fig. S1, Table S1; hereafter, “long-term plots”). 125 

These plots were separated by a mean distance of 265 m (range 70-590 m). In 2017, we established 126 

an additional four secondary forest plots (250 x 10 m = 0.25 ha; hereafter, “extra plots”) in different 127 

fragments of the Bragança municipality. In 2017, we also established three plots in primary forests 128 

(250 x 10 m 0.25 ha; Appendix S1: Fig. S1; hereafter “primary forest plots”). 129 

Both long-term and extra secondary forest plots were abandoned after successive cycles of 130 

slash-and-burn agriculture (for manioc, maize, and rice cultivation). There was no record of 131 

wildfires after agricultural abandonment at our plots. Given that undisturbed primary forests are 132 

extremely rare in the region, to select primary forest plots we conducted interviews with local 133 

people to identify sites that retain the structural characteristics of Amazonian old-growth forests; 134 

nonetheless, it is likely that selective logging and edge effects have already altered our primary 135 

forest plots. All plots were located in terra-firme areas. The predominant soils across all plots are 136 

oxisols with low fertility and 15-35% clay in the superficial layers (Da Silva Castro et al. 2013). 137 

Plots were flat, and average elevation was 35 m (range: 30-66 m). 138 
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 139 

Age of secondary forests 140 

We used two approaches to evaluate secondary forest age. The long-term plots are older 141 

than the existing satellite record and were provisionally aged by interviews conducted by the 142 

researchers who established them in 1999. The estimated age in 2017 was c. 48-58 years old. 143 

Unfortunately, Landsat 1 images from the region (1974) were also too cloudy to support these 144 

interviews. We therefore estimated ages by back casting the non-linear growth trajectories 145 

(Question 4). For the extra plots recovering post 1985, we used the MapBiomas 3.1 dataset to 146 

estimate their ages (details in Appendix S1; MapBiomas 2019). 147 

 148 

Tree censuses 149 

The long-term secondary forest plots were established with a full tree census in 1999, with 150 

repeated surveys taking place annually between 2000-2004 then subsequently in 2006, 2011, 2014 151 

and 2017, while a full tree census was undertaken in the extra and primary forest plots when they 152 

were established in 2017. In all plots, we measured all trees ≥ 10 cm diameter at breast height 153 

(DBH). In the last census, we also estimated tree height by visual assessment. Plant identification 154 

was conducted in the field and when necessary botanical samples were collected for comparisons 155 

from the Herbário IAN (Embrapa Amazônia Oriental) collection. Tree census data are available at 156 

ForestPlots.net (Lopez-Gonzalez et al. 2011). 157 

 158 

Estimation of carbon stocks and tree species richness 159 

We used three approaches to estimate the above-ground biomass (AGB) of individual 160 

stems. First, we calculated AGB using the allometric equation: 𝐴𝐺𝐵 =  0.637 ×  (ρ𝐷2𝐻)0.976 161 
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where 𝜌 represents tree wood density (g cm-3), 𝐷 represents stem DBH (cm) and 𝐻 represents stem 162 

height (Chave et al. 2014). Stem wood densities were taken from the Global Wood Density 163 

Database (Chave et al. 2009). We subset the data to entries for South America and used the mean 164 

wood density across entries at the lowest available taxonomic level (e.g. where no data was 165 

available for a species, we used the genus average). 166 

To estimate the height of stems for censuses prior to 2017, we used non-linear least-squares 167 

to determine height-DBH relationships at each study plot. Using the 2017 height and DBH values 168 

as training data, we assumed a functional relationship described by the Michaelis-Menten model: 169 

𝐻 =  
𝑎 ×𝐷

𝑏×𝐷
, where 𝑎 and 𝑏 are estimated from the training data. Second, due to potential errors in 170 

the tree height sample caused by our visual assessment approach, we applied correction functions 171 

to the 2017 stem heights then determined pre-2017 tree heights as described above. The height-172 

correction functions were derived from large primary and second secondary forest tree samples (c. 173 

500 individuals in both forest types) from the eastern Brazilian Amazon for which visual and laser-174 

based heights were estimated. These data suggest that visual assessments tend to underestimate 175 

stem height, especially stems < 15 m tall in secondary forests (Appendix S1: Fig. S2). Finally, we 176 

also estimated stem biomass using the following allometric equation that does not include a height 177 

parameter: 𝐴𝐺𝐵 = 𝑒𝑥𝑝 [−1.803 − 0.976𝐸 + 0.976 𝑙𝑛 (𝜌)  +  2.673 𝑙𝑛 (𝐷) − 0.299 𝑙𝑛 (𝐷)2], 178 

where 𝐸 is a measure of environmental stress, defined by cumulative water deficit and temperature 179 

and precipitation seasonality (Chave et al. 2014). 180 

Results across these approaches suggest that use of the uncorrected values of stem height 181 

values underestimates plot-level carbon by around 10-20%, so we do not report results from this 182 

approach. In the main text, we focus on results from the height-corrected estimation technique 183 

because including height is known to improve AGB estimates (Sullivan et al. 2018). However, the 184 
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height-corrected approach returned highly similar carbon estimates to those obtained using the 185 

allometric equation that does not include height (mean root square difference < 1.5 Mg C ha-1). 186 

The results for this latter approach can be found in Appendix S1: Fig. S6. We assumed that the 187 

carbon content of the individuals represents 50% of the AGB. Tree species richness (of individuals 188 

> 10 cm DBH) in each plot was assessed by rarefying richness to 100 individuals, the minimum 189 

abundance in the sampled plots. 190 

 191 

Climatological and landscape predictors of carbon dynamics 192 

Monthly precipitation and temperature for each census year were determined using data 193 

collected at a local meteorological station (INMET 2018; Appendix S1: Fig. S1). These data show 194 

that the study region has annual precipitation of 1,850 mm, with a rainy season from December to 195 

July (222 mm month-1) and a dry season from August to November (19.5 mm month-1). 196 

We calculated three climatological predictors of carbon dynamics: the Standardized 197 

Precipitation Evapotranspiration Index (SPEI; Vicente-Serrano et al. 2010), the Maximum 198 

Climatological Water Deficit (MCWD; Malhi et al. 2009), and the maximum dry season 199 

temperature (MDST). SPEI is a measure of water stress based on the difference between monthly 200 

precipitation and potential evapotranspiration expressed as a standardized index, with negative 201 

values representing drier periods over the timescale considered relative to median values for a 202 

long-term reference time-series. To account for medium-term water deficit, we estimated monthly 203 

SPEI values for a 12-month moving window from May to April. MCWD is the most negative 204 

accumulated value of the climatological water deficit (CWD) over each one-year period (between 205 

May and April; 1973-2017). CWD is defined as monthly precipitation, minus evapotranspiration, 206 

minus the CWD of the previous month (Malhi et al. 2009). MDST was measured as the highest 207 
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monthly temperature value during the dry season (i.e., between August and November). Finally, 208 

we used edge distance as our predictor of landscape context effects on carbon dynamics. For each 209 

secondary forest plot, edge distance was calculated as the distance from the plot centroid to the 210 

nearest forest edge using images from Google Earth 7.1.7.2600 (earth.google.com). 211 

 212 

Carbon anomalies 213 

We calculated the amount of carbon incorporated by growth (G) and recruitment (R), as 214 

well as that lost by mortality (M) for each census interval, thus obtaining periodic carbon balance 215 

(B = G + R - M). We used anomalies to subtract the expected natural carbon accumulation that 216 

occurs through time. Censuses occurred at varying intervals (1, 2, 3 and 5 years). Let 𝑖 ∈ 1, 2, …, 217 

9 be one of the intervals, let 𝑇−𝑖 be the total length of the time series minus the length of interval 218 

𝑖, let 𝐶−𝑖 be the change in carbon balance or one of its components over all intervals not including 219 

𝑖, let 𝑛𝑖 be the number of years in interval 𝑖, and let 𝑎𝑖 be the observed change 𝐶 in interval 𝑖. 220 

Therefore, the expected change in 𝐶 in interval 𝑖 is 𝐸(𝐶𝑖) =
𝑛𝑖×𝐶−𝑖

𝑇−𝑖
, and the anomaly is 𝑎𝑡 − 𝐸(𝐶𝑡). 221 

 222 

Statistical analysis 223 

We used Bayesian piecewise linear splines to estimate i) carbon recovery with time; ii) tree 224 

species richness recovery with time; and iii) the relationship between carbon and tree species 225 

richness recovery (Question 1). Bayesian model comparison with reversible jump Markov Chain 226 

Monte Carlo simulations (Lunn et al. 2009) was used to average multiple piecewise-linear models 227 

to produce smoothed curvilinear relationships (Thomson et al. 2010). The number and location of 228 

change-points were assigned hierarchical prior distributions that included zero changepoints as a 229 

possibility. In each simulation, the spline function was comprised of up to 𝑘 =  6 linear 230 
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coefficients (i.e., between zero and six) and 𝑘 − 1 corresponding changepoints. The resulting 231 

posterior distributions yielded model-averaged parameter estimates and 95% credible intervals that 232 

account for uncertainties about model structure. The model for long-term secondary forest 233 

recovery included plot-level random effects to account for expected similarities between plots. 234 

To explore whether variation in maximum dry season temperature, water stress (SPEI and 235 

MCWD) and landscape context (edge distance) influence tree growth, recruitment, mortality and 236 

carbon dynamics (Question 2), we used Bayesian variable selection with nonlinear covariate 237 

effects (Thomson et al. 2010). We used the lowest recorded value of MCWD in a given period as 238 

our measure of one-off drought severity (see also Esquivel-Muelbert et al. 2019). We used SPEI 239 

values (Vicente-Serrano et al. 2010) as a measure of the longer-term (here 12-month) water 240 

balance, which is known to be significant for tree growth (Greenwood et al. 2017). The relative 241 

importance of an explanatory variable was assessed by the posterior probability of a non-zero 242 

effect. We considered posterior probabilities > 0.75 to be indicative of a statistical association. 243 

We compared the average carbon accumulation rates of our secondary forest plots (both 244 

long-term and extra plots) to estimates of carbon accumulation from leading tropical and global 245 

assessments (Bonner et al. 2013, Poorter et al. 2016, Lennox et al. 2018, Requena Suarez et al. 246 

2019) and pan-Amazonian estimates in old-growth and logged primary forests (Brienen et al. 2015, 247 

Rutishauser et al. 2015) (Question 3). To investigate secondary forest recovery timeframes 248 

(Question 4), we fit monotonically increasing and marginally decreasing rational functions, based 249 

on third-order polynomials as the numerator and second-order polynomials as the denominator, to 250 

the median and lower and upper bounds of the 95% credible intervals for carbon levels in the long-251 

term plots (Fig. 1A). 252 

 253 



12 

 

Results 254 

Climate variation over the time-series (1972-2017) 255 

The maximum dry season temperature increased by 0.1 °C per decade across our time series 256 

(Appendix S1: Fig. S5). Water stress (MCWD and SPEI values) was highly variable, declined 257 

weakly, and was highest (lowest values of MCWD and SPEI) in strong El-Niño years. MCWD 258 

and SPEI were only weakly related (r = 0.44 across the 1973-2017 time series; r = 0.19 during 259 

census years – Appendix S1: Fig. S3). 260 

 261 

Carbon and tree species richness recovery 262 

The average carbon stock in 2017 was 141.7 (±16.3 SE), 58.3 (±2.7) and 4.27 (±1.19) Mg 263 

ha-1 in, respectively, the primary forest, long-term, and extra plots, whereas rarefied richness was 264 

60.05 (±4.07), 41.2 (±1.4) and 33.9 (±3.5) (Appendix S1: Table S1). In the long-term secondary 265 

forest plots, the recovery of carbon and rarefied richness showed different trajectories among 266 

census (Fig. 1A-B). The mean accumulation of carbon in our long-term plots was 1.08 Mg ha-1 yr-267 

1 between 1999 and 2017. Carbon and time were associated at the 0.07 level (i.e., 93% of the R2 268 

posterior mass was greater than zero). Rarefied richness displayed a much weaker relationship 269 

with time, being associated only at the 0.33 level and with a mean trend of 0.21 species yr -1. Carbon 270 

stock in the long-term secondary forest plots reached only 41.1% of the average primary forest 271 

level in 2017, while rarefied richness recovered to 56%. Above-ground carbon stocks and plant 272 

diversity were not related to each other over time (Fig. 1). 273 

 274 

Influence of climate and edge distance on carbon anomalies 275 

Carbon balance was positively related to SPEI in the long-term plots. These changes were 276 
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driven by variation in stem growth, with lower than average carbon accumulation in drier periods 277 

(Fig. 2). Although the maximum dry season temperature did not affect the overall carbon balance, 278 

it had countervailing effects on carbon growth and recruitment: growth was highest and 279 

recruitment lowest in the warmest years and vice versa. Carbon loss from mortality was not 280 

associated with any of the predictors (Fig 2), and edge distance and MCWD were not associated 281 

with any of the carbon anomalies (Appendix S1: Fig. S7). 282 

 283 

Comparison between carbon recovery rates 284 

The carbon recovery rate in the long-term plots was lower than most estimates of secondary 285 

forest recovery from the Amazon or across the tropics, and our younger extra plots had even lower 286 

recovery rates than the older long-term plots (Fig. 3). Recovery rates at our study plots were also 287 

below Amazon-wide estimates of primary forest recovery after selective logging and were only 288 

slightly higher than the average carbon uptake rate of tropical primary forests (Fig. 3). 289 

 290 

Extrapolating carbon recovery timeframes 291 

Our backwards extrapolation (to zero) gives approximate ages for the long-term secondary 292 

forests of 39 and 48 years in 2017 (Fig. 4), which is marginally lower but generally consistent with 293 

the ages reported during interviews (c. 48-58 years old in 2017). As a consequence of the low 294 

carbon recovery rates of the long-term plots, our extrapolation of future carbon levels — aimed at 295 

providing a rough estimate of a plausible recovery window under present-day conditions — 296 

suggests that it will take at least another century (c. 150 years since abandonment) until the site 297 

regains carbon levels similar to local primary forests (Fig. 4).  298 

 299 
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Discussion 300 

Influence of climate on carbon recovery in secondary forests 301 

Our results show for the first time that secondary forest carbon accumulation in the Amazon 302 

can be influenced by periods of water deficit. This suggests that the role of water availability in 303 

regulating carbon uptake observed in humid primary forests (e.g., Phillips et al. 2009, Anderson 304 

et al. 2018), dry primary (Mendivelso et al. 2014, Álvarez-Yépiz et al. 2018) and dry secondary 305 

forests (Maza-Villalobos et al. 2013, Martínez-Ramos et al. 2018) also extends to humid secondary 306 

forests. The generality of this finding is consistent with the strong link between the 307 

evapotranspiration index SPEI and spatial variation in carbon recovery in tropical forests 308 

(Schwalm et al. 2017). Indeed, secondary forests in the humid tropics may be even more sensitive 309 

than those in tropical dry regions given that the former show longer recovery times in the face of 310 

seasonal water availability (Poorter et al. 2019). Despite the similarity of the findings across forest 311 

types, our results also suggest that different mechanisms may underpin the sensitivity of the carbon 312 

balance to water deficit. Drought-mediated changes in primary forest carbon balance are driven by 313 

increased mortality (Phillips et al. 2009, Anderson et al. 2018), while the changes in the carbon 314 

balance observed in this study were primarily driven by reduced growth (Fig. 2). 315 

Although the maximum dry season temperature (MDST) had no influence on the carbon 316 

balance of the studied secondary forests, increasing MDST increased the growth of established 317 

stems while reducing recruitment. The mechanistic explanation for such contrasting results 318 

requires further investigation. However, it might indicate a differential temperature effect between 319 

stems size classes. For example, higher temperatures exacerbate the physiological consequences 320 

of acute water stress (Lloyd and Farquhar 2008, Markesteijn et al. 2011), and shallow-rooted 321 

smaller stems (<10cm DBH) may be more sensitive to drought effects than the medium-sized 322 
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stems (10-30 cm DBH) (Elias et al. 2018). The increase in growth also suggests that established 323 

stems that can cope with higher temperatures may also benefit from factors associated with hotter 324 

years, such as better light conditions (Bentos et al. 2017) or faster litter decomposition rates and 325 

nutrient cycling (Eichenberg et al. 2013). 326 

The positive relationship between temperature and growth in the assessed secondary forest 327 

contrasts with findings in tropical primary forests, where negative relationships (e.g. Feeley et al 328 

2007) and a lack of any relationship (e.g. Rowland et al. 2014) have been detected. This difference 329 

may be explained by the dominance in secondary forests of fast growing, heliophilic species 330 

(Vieira et al. 1994, Chazdon 2014), which tend to show relatively high optimum temperature points 331 

(Slot et al. 2014). A more complete understanding of secondary forest temperature responses is 332 

crucial given their importance as a climate change mitigation technology.  333 

 334 

Carbon recovery 335 

Carbon accumulation rates in our long-term study plots (48-58 years old) were low 336 

compared to most other studies (Fig. 3), and only around twice that recorded in Amazonia’s 337 

primary forests. Although this rate of carbon accumulation is comparable to recent continental-338 

scale estimates of biomass recovery in older (20-80 years old) tropical secondary rainforests in the 339 

Americas (Requena Suarez et al. 2019; Fig. 3), this similarity masks one important difference: our 340 

long-term plots had a much lower lifetime recovery rate than the same continent-scale estimates 341 

(Fig. 4B). Combining the mean < 20- and 20-80-year-old accumulation rates of Requena Suarez 342 

et al. (2019) suggests that a typical American tropical secondary rainforest will accumulate the 343 

median carbon seen at our study site (Fig. 1) in just 20-21 years, less than half the site’s estimated 344 

age (Fig 4B). Moreover, even the lower bound of the Requena Suarez et al. (2019) 95% 345 
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accumulation rate confidence intervals suggests that American tropical secondary rainforests 346 

should attain our site’s median carbon in 28 years. 347 

The low lifetime recovery rate and equivalent rates of recovery over the last two decades 348 

can only be reconciled if forests in the Bragantina region have a very slow rate of early forest 349 

succession (Fig 4B). This is supported by the four younger extra secondary forest plots, which 350 

displayed even lower recovery rates than the long-term plots and are far below the predictions of 351 

Requena Suarez et al. (2019) for age-equivalent plots (Fig. 3). Furthermore, our backward 352 

extrapolation of growth tended to underestimate the secondary forest age when compared to 353 

interview data – if we assume the interview-based dates are correct, this would be consistent with 354 

slower than predicted growth rates when the forests were younger. 355 

Such slow early-successional recovery rates could reduce the effectiveness of climate 356 

mitigation strategies in regions that have a long history of human occupation, have lost most of 357 

the original forest cover, and have suffered the widespread defaunation of large-bodied vertebrates 358 

through hunting (Almeida et al. 2010, Moura et al. 2014). These factors reduce the dispersal and 359 

colonization of forest tree species (Hooper et al. 2005), reduce carbon stocks (Bello et al. 2015) 360 

and increase recovery times (Jakovac et al. 2015, Chazdon 2014, Villa et al. 2018). Moreover, it 361 

is important to note that these measures of carbon recovery were observed under the climatic and 362 

landscape conditions over the lifetimes of the secondary forest plots. Future recovery could be 363 

slower if the last forest remnants are lost, further decreasing forest connectivity (Aguiar et al. 2016, 364 

Reid et al. 2018, Matos et al. 2019), if the frequency of farm-fallow cycles increases (Jakovac et 365 

al. 2015, Villa et al. 2018), or if deforestation and climate change further increase water deficits 366 

(Fu et al. 2013, Spracklen et al. 2018). 367 

Interesting insights can be drawn from the two predictors – the Maximum Climatological 368 
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Water Deficit (MCWD) and edge distance – that had no discernible impact on carbon balance. 369 

First, MCWD is one of the most frequently used measures of water deficit in studies of tropical 370 

forests (e.g., Malhi et al. 2009, Anderson et al. 2018, Berenguer et al. 2018, Esquivel-Muelbert et 371 

al. 2017, 2019), but it appears that longer-term measures such as the 12-month SPEI index can 372 

reveal ecological processes that are not influenced by inter-period water deficit maximums. 373 

Second, edge effects have been detected in a wide range of contexts, including in secondary forests 374 

(e.g. Magnago et al. 2017); the lack of any effect in our study could be due to the limited range of 375 

distance-to-edge (62-266 m) or the possibility that all long-term study plots were under some form 376 

of edge influence in this highly deforested landscape. 377 

 378 

The recovery of biodiversity 379 

Although rarefied richness exhibited greater convergence to primary forest levels (56%) 380 

than carbon (41.1%), there was a near-zero increase in secondary forest rarefied richness between 381 

1999 and 2017. Richness therefore responds differently to carbon recovery, as tree diversity 382 

appears to have increased quickly in the initial stages of succession (see also Lennox et al. 2018) 383 

before reaching a state of impeded or arrested succession (Arroyo-Rodríguez et al. 2017). This 384 

slowdown could be due to the absence of diverse seed inputs and the slow generation time of trees 385 

limiting the recruitment of older-growth species. It also suggests that the strong carbon-386 

biodiversity relationships observed in recovering forests elsewhere (Gilroy et al. 2014, Ferreira et 387 

al. 2018, Lennox et al. 2018) may not occur in older secondary forests or in highly deforested 388 

landscapes. Finally, it is also likely that we are overestimating the relative recovery of biodiversity: 389 

although we rarefied richness by 100 stems, which is two to five times higher than previous studies 390 

assessing biodiversity recovery (Rozendaal et al. 2019), the absolute difference between primary 391 
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and secondary forest would likely be much greater if we considered larger plots that capture more 392 

of the high beta diversity of primary forest (e.g., Solar et al. 2015). 393 

 394 

Conclusion 395 

The capacity of regenerating tropical secondary forests to sequester carbon and provide 396 

habitat for tropical species has profound implications for global climate change and biodiversity 397 

conservation. Our study is among the first to utilize data collected over two decades through 398 

periodic resampling and finds that the ability of secondary forests to mitigate climate change and 399 

limit biodiversity loss are likely to be negatively affected by increases in the rate of tropical 400 

deforestation and ongoing climate change. Understanding the generality and future climate 401 

sensitivity of these responses will require further investment in long term studies in human 402 

modified tropical forests. 403 
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 571 

Figure Legends 572 

Figure 1: The recovery of secondary forests in Bragança. Carbon (A) and rarefied species richness 573 

(B) and the relationship between carbon and rarefied richness (C) between 1999 and 2017 in the 574 

twelve long-term study plots. Points show results at each census. Points and lines are color-coded 575 
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by plot. The black line shows the median trend. The grey band shows the 95% credible interval. 576 

Figure 2: Climate and secondary forest carbon dynamics. The marginal effect of the standardized 577 

precipitation-evapotranspiration index (SPEI; A, C, E, G) and the maximum dry season 578 

temperature (Max temperature; B, D, F, H) on carbon balance (A-B), growth (C-D), mortality (E-579 

F) and recruitment (G-H) in the twelve long-term secondary forest study plots. Lines show the 580 

median relationship. Bands show the 95% credible interval. A statistical association was assumed 581 

for posterior probabilities of a non-zero effect (Pr(>0)) > 0.75. 582 

Figure 3: Estimates of carbon accumulation rates from previous studies compared to those from 583 

the twelve long-term and four extra secondary forest study plots. Bars show median values (or the 584 

mean where the median was unavailable). Error bars show 95% confidence/credible intervals. The 585 

Poorter et al. (2016) tropical secondary forest estimate uses only Neotropical plots. For the 586 

Requena Suarez et al. (2016) study, we used their estimates from tropical rainforests in the 587 

Americas. The Rutishauser et al. (2015) and Brienen et al. (2015) studies are from the Amazon. 588 

Figure 4. (A) Extrapolation of past and future carbon levels for the 12 long-term study plots. The 589 

white line shows median carbon; the grey band shows a possible range. These estimates were 590 

derived by fitting rational functions to the median and 95% credible lower and upper bounds of 591 

carbon recovery shown in Fig. 1A. The inset shows the data. Points shows carbon levels at each 592 

census. Points and lines are color coded by plot. The black dashed line shows mean primary forest 593 

carbon. (B) Comparison of carbon recovery trajectories from the present study and Requena 594 

Suarez et al. (2019). For this comparison, we used the Requena Suarez et al. (2019) 95% 595 

confidence interval carbon accumulation rates for <20- and >20-year-old tropical American 596 

secondary rainforests. For the present study, we assumed the 12 long-term study plots were 50 597 
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years old, meaning that the first census occurred (in 1999) at age 32 (shown by the vertical dashed 598 

line). Carbon recovery rates post this age were taken from the 95% credible lower and upper 599 

bounds (Fig. 1A). Rates prior to this age were extrapolated linearly from the 32-year-old 95% 600 

credible lower and upper bound values. 601 


