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 25 
 26 
Abstract 27 

The delivery of drugs is a topic of intense research activity in both academia and industry 28 

with potential for positive economic, health, and societal impacts. The selection of the 29 

appropriate formulation (carrier and drug) with optimal delivery is a challenge investigated 30 

by researchers in academia and industry, in which millions of dollars are invested annually. 31 

Experiments involving different carriers and determination of their capacity for drug 32 

loading is very time consuming, and therefore expensive; consequently, approaches that 33 

employ computational/theoretical chemistry to speed have the potential to make hugely 34 

beneficial economic, environmental and health impacts through savings in costs associated 35 

with chemicals (and their safe disposal) and time. Here we report the use of computational 36 

tools (data mining of available literature, principal component analysis, hierarchical 37 

clustering analysis, partial least squares regression, autocovariance calculations, molecular 38 

dynamic simulations and molecular docking) to successfully predict drug loading into 39 

model drug delivery systems (gelatin nanospheres). We believe that this methodology has 40 

the potential to lead to significant change in drug formulation studies across the world. 41 

 42 
Keywords: drug delivery; computational pharmaceutics; machine learning; molecular 43 

dynamics simulations; docking; formulations; nanoparticles; gelatin. 44 
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 52 

1. Introduction 53 

The global market for drug-delivery systems is a multibillion-dollar industry, demand 54 

for which is growing in both developed and emerging economies (in part, driven by aging 55 

societies and rapid urbanization) 1-9. Drug-delivery systems deliver drugs at rates controlled 56 

by specific features of the systems, particularly their chemical composition (e.g., 57 

inorganic/organic components, molecular weights of their constituents, crosslinking density 58 

of polymers, etc.) 10-12. 59 

The selection of the appropriate system (carrier and drug) to obtain optimal delivery is a 60 

challenge investigated by researchers in academia and industry, in which millions of dollars 61 

are invested annually 13. Experiments involving different carriers and determination of their 62 

capacity for drug loading is very time consuming, and therefore expensive. Consequently, 63 

approaches that exploit multivariate statistical methods, molecular simulations, docking 64 

methods, and mining the data in the literature 14-19, have the potential to make hugely 65 

beneficial economic, environmental and health impacts through savings in costs associated 66 

with chemicals (and their safe disposal) and time. 67 

Computational/theoretical chemists/biochemists, biomedical/chemical engineers and 68 

pharmacists have developed a variety of methodologies that can be applied to understand 69 

drug formulations. Principal component analysis (PCA) and hierarchical clustering analysis 70 

(HCA) are considered exploratory data analysis and unsupervised machine learning 71 

methods, where these techniques extract patterns from the independent factors (x-variables) 72 

only and irrelevant to the y-outcomes. Partial least squares (PLS) is a supervised pattern 73 

recognition method correlating the inputs with outputs and subsequently leads to the 74 

generation of a model 20. This data mining approach (through a retrospective analysis) 75 

combined with computer-aided analysis and simulation extracts knowledge from complex 76 

variables and responses obtained from historical records. The significant advantage of this 77 
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approach is the possibility of uncovering interactions and linear relationships that might not 78 

be easily detectable with conventional experimental designs 21. Although not yet fully 79 

explored in drug formulation/delivery, multivariate statistical methods such as PCA and 80 

agglomerative HCA were previously used to develop drug delivery formulations. For 81 

example, PCA was utilized to generate a quantitative composition-permeability relationship 82 

for microemulsion formulations used to deliver testosterone transdermally, with a linear 83 

relationship between the lower-dimensionality data generated from the main principal 84 

component and the permeability coefficients of the different formulations 22. PCA and HCA 85 

were used to extract stable SMEDDS (Self Microemulsifying Drug Delivery Systems) and 86 

SNEDDS (Self Nanoemulsifying Drug Delivery Systems) formulations of Lovastatin and 87 

Glibenclamide, respectively 23,24; and PCA and PLS analysis were used to assess the 88 

qualitative and quantitative effects of different variables such as lipid/surfactant type and 89 

their concentrations on parameters related to storage stability 25. Furthermore, PLS was 90 

successfully employed to predict the sizes and polydispersity index (PDI) for lipid 91 

nanocapsules based on the quantitative mixture composition 26.  92 

Here we extend these exciting studies by combining PCA, HCA and PLS with molecular 93 

dynamics and docking analysis 27 to give valuable insight into drug loading in a polymer 94 

matrix. As a model polymer matrix we use protein-based nanoparticulate drug delivery 95 

systems (i.e. nanospheres composed of collagen-derived gelatin). Gelatin is an abundant and 96 

inexpensive protein 28, which is amphiphilic in nature due to its amino acid contents (ca. 12% 97 

anionic glutamic and aspartic acid; ca. 13% cationic lysine and arginine amino acids, and ca. 98 

11% hydrophobic leucine, isoleucine, methionine and valine) 29, and gelatin-based matrices 99 

can in principle be used to deliver both small molecules and macromolecules 30-36. In this 100 

study we focus on a selection of low molecular weight drugs used in the clinic as depicted in 101 

Figure 1. 102 

 103 
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 104 

 105 

Figure 1. The chemical structures of the substances studied herein: A) Acyclovir, 106 

B) Cryptolepine, C) Amphotericin B, D) Doxorubicin, E) 5-Fluorouracil (5FU), F) 107 

Isoniazid, G) Resveratrol, H) Paclitaxel, I) Indomethacin and J) Curcumin. 108 

 109 

2. Materials and Methods  110 

2.1. Data set 111 

The data set contained 4 input variables (descriptors) and one output response (mass of 112 

drug loaded per 100 mg gelatin nanospheres determined experimentally) for different drugs. 113 

Data mining was performed through different databases such as: Pubmed and Web of 114 

Science® to obtain the output response for ten drugs: Acyclovir 37, Amphotericin B 38, 115 

Cryptolepine 39, Doxorubicin 40, 5 Fluorouracil (5FU) 41, Isoniazid 42, Resveratrol 43, 116 

curcumin 44, paclitaxel 45 and indomethacin 46. 117 



 6 of 24 

 

 118 

2.2. Calculation of molecular descriptors 119 

The drugs were analyzed using Bioclipse® version 2.6 (Bioclipse project, Uppsala 120 

University, Sweden) [39]. The four descriptors chosen were constitutional (molecular 121 

weight), electronic (number of hydrogen bond donors and number of hydrogen bond 122 

acceptors) and physico-chemical (xLog P). 123 

 124 

2.3. Hierarchical clustering analysis (HCA). 125 

The molecular descriptors generated using Bioclipse® version 2.6 were subjected to 126 

Hierarchical Clustering Analysis using JMP® 7.0 (SAS, Cary, NC, USA). Ward’s minimum 127 

variance method was adopted to join the clusters and generate a dendrogram. Ward’s method 128 

is considered an agglomerative hierarchical technique where the merging in the dendrogram 129 

starts at the final clusters (leaves) and merging occurs stepwise until it reaches the trunk. 130 

Ward's minimum variance criterion minimizes the total within-cluster variance. At each step, 131 

the pair of clusters possessing minimum between-cluster distance is merged (i.e. the pair of 132 

clusters that leads to the minimum increase in the total within-cluster variance after merging 133 

is selected) 47 . 134 

 135 

2.4. Principal component analysis (PCA). 136 

PCA was used to extract patterns using an exploratory data analysis method that deals 137 

with the variances in sample observations. PCA was performed using JMP® 7.0. Four 138 

principal components were calculated by taking a linear combination of an eigenvector of the 139 

correlation matrix built up from standardized original variables. The dimensionality of the 140 

data was reduced by extracting two main principal components possessing the two highest 141 

Eigen values and plotting the data with respect to these two new orthogonal axes. 142 

 143 
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2.5. Partial least squares analysis (PLS) for model generation and validation of the model. 144 

PLS was used to study correlations between the molecular descriptors and the output 145 

response. PLS was performed using JMP® 7.0 using 4 latent vectors. The PLS generated 146 

model was validated by checking the differences between the mean actual and predicted 147 

response values using t-test statistical analysis at P < 0.05 using GraphPad Prism® v.5.0 148 

(GraphPad software Inc., San Diego, CA, USA) and by performing a k-fold (5-folds) 149 

cross-validation (leave-two-out) to check the predictability of the model and its ability to 150 

navigate the experimental space. The value of Q2 (Predicted R-squared) was calculated as 151 

follows: 152 

Q2 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝐼𝐼𝐼𝐼𝐼𝐼

  153 

Where PRESS represents the predicted residual error sum of squares while ISS stands for the 154 

total initial sum of squares. Moreover, a predicted versus actual correlation was obtained. 155 

 156 

2.6. Molecular dynamics simulations (MDS) of the gelatin matrix. 157 

Molecular dynamics simulations (MDS) were carried-out using the GROMACS 48 v. 158 

4.6.5 freeware (http://www.gromacs.org/). To prepare the gelatin system, 48 peptide 159 

molecules were constructed, with 18 amino acids in each molecule. The primary sequence of 160 

the peptides was AGPRGQ(Hyp)GPAGPDGQ(Hyp)GP. Six hypothetical probe molecules 161 

(with calculated molecular weight of 767.13) were added at random positions to the system. 162 

The force field parameters were obtained from CgenFF 49 (https://cgenff.paramchem.org/). 163 

The system was energy minimized by the steepest descent method. Molecular dynamics was 164 

subsequently carried-out, with a time step of 2 fs, full periodic boundary conditions, and a 165 

cut-off distance of 1.2 nm for Van der Waal’s and electrostatic interactions 50. PME was 166 

chosen to handle long-range electrostatic interactions. All bonds were constrained by the 167 

LINCS algorithm. The MDS were carried-out for 3 ns, at 373K and 1 bar using a v-rescale 168 

thermostat and a Berendsen barostat respectively 51. 169 
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 170 

2.7. Drug docking in simulated gelatin nanospheres. 171 

The chemical structures of the studied drugs were drawn using ChemDraw® Ultra 172 

version 10 (Cambridgesoft, Waltham, MA, USA). The corresponding ‘.mol2’ files needed 173 

for docking experiments were obtained using Chem3D® Ultra version 10 (Cambridgesoft, 174 

Waltham, MA, USA) after energy minimization using the MM2 force field of the same 175 

program. Docking analysis was generated by Argus Lab version 4.0.1. (Mark Thompson and 176 

Planaria Software LLC, Seattle, WA, USA). The hypothetical probe molecules were utilized 177 

to construct corresponding binding sites on the carrier (gelatin-probe), the AScore was 178 

utilized for calculating the scoring function. The size of the display box in the x, y and z 179 

dimensions were 15 x 15 x15 Å as these dimensions were suitable to the size of the docked 180 

molecules and ensured a central position for them inside the gelatin matrix. Additionally, the 181 

genetic algorithm was used as the docking engine with 150 maximum poses. The type of 182 

calculation and ligand (as chosen using the software options) were Dock and Flexible, 183 

respectively; and the binding energies (ΔG, kcal/mole) reflecting the docking efficiencies 184 

were calculated. 185 

 186 

3. Results 187 

Table 1 reports the molecular descriptors (number of hydrogen bond donors, number of 188 

hydrogen bond acceptors, xLogP and molecular weight) for the investigated drugs. The 189 

dendrogram classifying these drugs according to HCA using Ward’s minimum variance 190 

method (an agglomerative type of analysis) is displayed in Figure 2. Isoniazid and 5FU were 191 

clustered together according to their 4 descriptors, Resveratrol and Cryptolepine clustered 192 

together, whereas Doxorubicin, Acyclovir and Amphotericin B constituted separate clusters. 193 

Importantly, the loading pattern followed this classification (see Table 1) where 5FU and 194 

Isoniazid scored the highest loading masses followed by Acyclovir which is closest to the 195 
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aforementioned drugs in the dendrogram. Cryptolepine and Reseveratrol were very close, 196 

with Doxorubicin near to them. Amphotericin B had the lowest mass loaded into the 197 

nanospheres which was clear from its separate branch (furthest distance) in the dendrogram. 198 

Table 1. The descriptors of the drugs, amounts of loaded drug, and the obtained 199 

binding energies from docking of the drugs on a simulated gelatin matrix. 200 

Drug xLogP 

No. 

H-bond 

donors 

No. 

H-bond 

acceptors 

Molecular 

Weight 

(g/mol) 

Actual 

Amount of 

Drug 

Loaded 

(mg/100mg 

gelatin) 

Lamarckian 

Genetic 

Algorithm 

ΔG 

(kcal/mole) 

Acyclovir -1.650 3 8 225.21 8.74 -3.94 

Amphotericin 

B 
2.068 12 18 923.49 1.16 144.4 

Cryptolepine 2.180 0 2 233.30 2.00 -3.81 

Doxorubicin -1.900 6 9 543.52 2.10 58.29 

5-Fluorouracil -0.760 2 4 130.00 25.07 -4.19 

Isoniazid -0.683 3 4 137.14 22.00 -4.16 

Resveratrol 2.050 3 3 228.24 1.96 -3.74 

Curcumin 1.95 2 6 368.13 3.50 -2.59 

Paclitaxel 6.15 4 14 853.33 0.52 173.5 

Indomethacin 3.78 1 4 338.14 1.91 -1.99 

 201 
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 202 

Figure 2. Hierarchical Clustering Analysis (HCA) of the investigated drugs with 203 

respect to 4 constitutional, electronic and physico-chemical descriptors: number of 204 

hydrogen bond donors, number of hydrogen bond acceptors, xLogP and molecular 205 

weight. 206 

 207 

A score plot of the drugs with respect to their descriptors after projecting the data into 208 

two main principal components is displayed in Figure 3, where principal component 1 and 209 

principal component 2 reflect 69.72% and 26.95 % of the data variation, respectively 210 

(corresponding to 96.68 % of total variance, Figure 3, top right panel) and 5FU and Isoniazid 211 

are clustered together with Acyclovir having the nearest score, and Amphotericin B the 212 

furthest score. Figure 4 depicts the loading plots of the two main principal components. It is 213 

obvious that principal component 1 is mainly composed of the descriptors; the molecular 214 

weight, the number of the H-bond donors and the number of the number of H-bond acceptors 215 

while principal component 2 mainly depends on the remaining descriptor; xLogP. These 216 

results confirm the presentation of the 4 investigated variables in the two generated principal 217 

components. 218 
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 219 

 220 

Figure 3. Principal Component Analysis (PCA) score plot of the investigated drugs 221 

with respect to 4 constitutional, electronic and physico-chemical descriptors: 222 

number of hydrogen bond donors, number of hydrogen bond acceptors, xLogP and 223 

molecular weight, displaying only two main combined components. The upper 224 

panel depicts the scree plot revealing the percentage variation of each extracted 225 

component (combined from the four descriptors). 226 
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 227 

Figure 4. Principal Component Analysis (PCA) loading plot of the two main principal 228 

components. 229 

 230 

The relationship between the obtained combined x-scores (combining the contribution 231 

from the 4 x-variables viz. descriptors) and y-scores is displayed in Figure 5, and the scree 232 

plot (Figure 5, bottom right) depicts the contribution of each individual latent factor to the 233 

combined x-scores with the first two factors accounting for 96.64% of the obtained scores. 234 

 235 

 236 
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Figure 5. Partial Least Squares Regression Analysis (PLS) of the investigated drugs 237 

with 4 constitutional, electronic and physico-chemical descriptors: number of 238 

hydrogen bond donors, number of hydrogen bond acceptors, xLogP and molecular 239 

weight as the x-factors and the mass of loaded drug per 100 mg gelatin nanoparticles 240 

as the y-factor. The lower panel depicts the contribution of each latent x-factor 241 

(combined factor) to the x-scores representing the combined x-dimension. 242 

 243 

It is noteworthy that the generated x- and y- scores represent the distances of the points 244 

in space of all the dimensions to the main vector summarizing the final dimension (in the 245 

current case there is a principal component or vector for the x-dimension comprising all the 246 

descriptors, and another for the y-dimension representing the loaded mass). Therefore, the 247 

aforementioned scores can be negative numbers. Consequently, a generated model was 248 

developed where: 249 

Y (mass of drug loaded per 100 mg of gelatin nanoparticles) = 13.175 + 0.115 × 

xLogP + 0.001 × number of hydrogen bond donors + 2.346 × number of 

hydrogen acceptors – 0.059 × molecular weight. 

(1) 

The values and the signs of the coefficients of the x-factors in the equation were 250 

indicative of the importance of increasing the number H- bond acceptors in the drugs 251 

chemical structure in the presence of a balanced xlogP and low molecular weight to increase 252 

the loading of the drug. The model was validated by performing a t-test statistical analysis 253 

between the actual experimental results for drug loading and the predicted drug loading using 254 

the model where no significant difference was obtained between the means at P < 0.05. The 255 

calculated Q2 or the predicted r-squared after 5-folds cross-validation scored a value of 0.721 256 

(a highly acceptable value) 52. Figure 6 further demonstrates the predicted versus actual 257 

relationship where it is observed that most of the points are scattered around the 45⁰ line. 258 

Proximity of the points to this line usually indicates the favorable similarity of the results. 259 
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Accordingly, the developed model can be exploited in predicting the loaded mass of any new 260 

physically loaded or entrapped investigated drug molecule in a gelatin matrix after projecting 261 

its structure to the aforementioned four descriptors (Table 1). 262 

 263 

Figure 6. Predicted versus actual drug loading in gelatin nanospheres. 264 

 265 

4. Discussion 266 

In the HCA utilized and studied method (Ward’s method), the distance between two 267 

clusters is the ANOVA sum of squares between the two clusters added up over all the 268 

variables. At each generation, the within-cluster sum of squares is minimized over all 269 

partitions obtainable by merging two clusters from the previous generation. The sums of 270 

squares are usually easily interpreted when they are divided by the total sum of squares to 271 

give the proportions of variance (squared semi-partial correlations). Ward's method works 272 

under the assumptions of spherical covariance matrices and the condition of equal sampling 273 

probabilities. Distances between clusters in Ward's method are calculated according to the 274 
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squared Euclidean distance. It is considered very useful in joining clusters with a small 275 

number of observations and it is very accurate though sensitive to outliers 53. 276 

PCA was used to confirm the hierarchical clustering analysis results. This type of 277 

multivariate analysis deals with the x-factors (descriptors) to reduce their dimensionality by 278 

projecting the data into new orthogonal axes that display the directions (vectors) of the 279 

highest variation. These results confirmed the HCA results and correlate the x-factors (drug 280 

descriptors) with the y-outputs (mass of drug loaded per 100 mg of gelatin) where clustered 281 

points (Especially in the same quadrants) represents high similarity between them regarding 282 

their projected descriptors 54. 283 

Accordingly, a supervised learning tool (PLS) was used to generate an accurate and 284 

sensitive model that would correlate the x-factors with the y-outputs quantitatively.  The 285 

techniques implemented in the PLS platform work by extracting successive linear 286 

combinations of the predictors, called factors (also called components or latent vectors), 287 

which optimally address the combined goals of explaining both response and predictor 288 

variation. In particular, the method of PLS balances the two objectives and maximizes their 289 

correlation 55. 290 

The obtained results can be explained by the fact that gelatin is a protein carrier with a 291 

relatively balanced hydrophilic/hydrophobic character displaying several hydrogen bond 292 

donor and acceptor groups with a repetitive sequence of amino acids 293 

-Ala-Gly-Pro-Arg-Gly-Glu-4Hyp-Gly-Pro- along its backbone 56. This structure can be 294 

transformed to some numerical values that are generated of each amino acid. Among which 295 

are the highly condensed variables “z-scale descriptors” 57 that are derived from a PCA 296 

analysis of several experimental and physicochemical properties of the 20 natural amino 297 

acids; z1, z2, and z3 and which represent the amino acids hydrophobicity, steric properties, 298 

and polarity, respectively. Additionally, they are useful in QSAR analysis of peptides where 299 

they have proven effective in predicting different physiological activities 58-60. Herein, we 300 
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used an extended scale (including 67 more artificial and derivatized amino acids) 61 due to the 301 

presence of 4-hydroxyproline in the gelatin structure. 302 

In this study, we expand the use of the first descriptor (z1) to predict the drug loading 303 

properties of nanoparticles. The first scale (z1) was chosen as it represents a lipophilicity 304 

scale that encompasses several variables (amino acid descriptors) such as: the thin layer 305 

chromatography (TLC) variables, log P, nonpolar surface area (Snp) and polar surface area 306 

(Spol) in combination with the number of proton accepting electrons in the side chain 307 

(HACCR) 62. In this scale, a large negative value of z1 corresponds to a lipophilic amino acid, 308 

while a large positive z1 value corresponds to a polar, hydrophilic amino acid. Therefore, the 309 

gelatin typical structure amino acids (-Ala-Gly-Pro-Arg-Gly-Glu-4Hyp-Gly-Pro-) can be 310 

represented by their z1 values as follows: (0.24), (2.05), (-1.66), (3.52), (2.05), (3.11), 311 

(-0.24), (2.05) and (-1.66). Furthermore, an overall topological description of the repetitive 312 

sequence was accounted for by encoding the z1 descriptors of each amino acid into one auto 313 

covariance variable [49] that was first introduced by Wold et al. 63. The auto covariance value 314 

(AC) was calculated as follows: 𝐴𝐴𝐶𝐶𝑧𝑧.𝑙𝑙𝑙𝑙𝑙𝑙 =  ∑   
𝑉𝑉𝑧𝑧.𝑖𝑖 ×  𝑉𝑉𝑧𝑧,𝑖𝑖+𝑙𝑙𝑙𝑙𝑙𝑙

𝑁𝑁−𝑙𝑙𝑙𝑙𝑙𝑙
𝑁𝑁−𝑙𝑙𝑙𝑙𝑙𝑙
𝑖𝑖=1        (2) 315 

 

 

 

(2) 

where AC represents autocovariances of the same property (z-scale); i = 1, 2, 3,...; N is the 316 

number of amino acids; lag = 1, 2, 3, ... L (where L is the maximum lag which is the longest 317 

sequence used and V is the scale value). 318 

Therefore, the AC value for the gelatin typical structure sequence was calculated with 319 

lag 1 scoring a value approaching zero (0.028) indicating a balanced 320 

hydrophobicity/hydrophilicity structure. In light of the above, the high loading of 5FU and 321 

Isoniazid can be ascribed to their amphiphilic nature with LogP values approaching 0, and to 322 
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the presence of several hydrogen bond donors and acceptors groups relative to their low 323 

molecular weight that is favorable in both diffusion through and entrapment in a protein 324 

matrix like that of gelatin nanospheres. Since there was a recorded deviation between the 325 

actual and the predicted values regarding Isoniazid and 5FU (may be attributed to their small 326 

molecular weight that helps their non-stoichometric physical entrapment in the gelatin 327 

matrix, therefore, the results were further confirmed by molecular dynamics and docking 328 

experiments, where the drugs were docked on the gelatin matrix simulated structure. Figure 329 

7 shows the molecular simulation of the gelatin nanosphere matrix. Interestingly, the best 330 

binding energy values ΔG (- 4.19 and -4.16 kcal/mol) corresponded to the highest loaded 331 

drugs 5FU and Isoniazid, respectively, followed by Acyclovir (see Figure 8). In the same 332 

context, Amphotericin B scored a highly positive ΔG value which explains its low loading 333 

values. The confirmation of the docking results with their experimental counterparts can be 334 

attributed to the inclusive scoring function of the Arguslab® software. This scoring function 335 

is based on the XScore calculated according to the following equation 64: 336 

ΔGbind = ΔGvdw + ΔGhydrophobic + ΔGH-bond + ΔGH-bond (chg) + ΔGdeformation + ΔG0 (3) 

where ΔGbind is the total calculated binding energy, ΔGvdw is the binding energy due to Van 337 

der Waal’s forces, ΔGhydrophobic is the binding energy due to hydrophobic forces, ΔGH-bond is 338 

the binding energy due to H-bonding, ΔGH-bond (chg) is the binding energy due to H-bonding 339 

due to charged molecules, ΔGdeformation is the energy due to rotational bonds and atoms 340 

involved in torsions (rotors) that were frozen due to binding, and finally, ΔG0 represents the 341 

regression-obtained binding energy. As can be inferred, the equation terms encompass nearly 342 

all the possible interactions that can occur between the drug and its carrier that may lead to 343 

drug entrapment which explains the high correlation obtained between the real experimental 344 

values and the docking results.  345 

An exponential model was generated correlating the actual experimental molar masses of the 346 

loaded drugs and their corresponding docking binding energies. This model was highly 347 
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fitting with an obtained r-squared value of 0.95. This relationship can highly estimate the 348 

molar masses of physically loaded drugs through docking the investigated molecule on the 349 

simulated gelatin matrix. The only limitation of the model was the number of the 350 

experimental studies that are involved in it (10 studies) which we recommend to increase in 351 

further similar studies. 352 

 353 

 354 

Figure 7. Molecular dynamics simulation of the gelatin nanosphere matrix. 355 

 356 
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 357 

Figure 8. Drug loading versus the obtained binding energies plot of the investigated 358 

drugs after docking on a simulated gelatin matrix built up using molecular dynamics 359 

simulation displaying an exponential relationship. 360 

 361 

5. Conclusions 362 

The current study introduces new approaches of interpreting and predicting drugs 363 

loading on protein carriers, such as gelatin nanospheres. These approaches comprise 364 

multivariate statistical methods such as: hierarchical clustering analysis, principal 365 

component analysis, partial least squares regression, molecular dynamics and docking. 366 

Moreover, the utilization of the amino acids z-scales descriptors represents a new and 367 

important asset in interpreting drug loading in protein-based carriers. We believe that this 368 

methodology has the potential to lead to significant change in drug formulation studies across 369 

the world. 370 
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