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Abstract 19 

The interaction between root exudates and soil microbes has been hypothesised as the 20 

primary mechanism for the biodegradation of organic pollutants in the rhizosphere. However, 21 

the mechanisms governing this loss process are not completely understood. This study aimed 22 

to investigate the effect of two important compounds within root exudates (citric and malic 23 

acid) on 14C-phenanthrene desorption and bioaccessibility in soil. Overall results showed that 24 

the presence of both citric and malic acid (> 100 mmol l-1) enhanced the desorption of 14C-25 

phenanthrene; this appeared to be concentration dependant. Increases in extractability were 26 

not reflected in a higher bioaccessibility. Despite enhancing the desorption of 14C-27 

phenanthrene in soil, there is no direct evidence indicating that citric or malic acid have the 28 

ability to promote the biodegradation of 14C-phenanthrene from soil. Results from this study 29 

provide a novel understanding of the role that substrates, typically found within the 30 

rhizosphere due to root exudation, play in the bioaccessibility and biodegradation of 31 

hydrocarbons in contaminated soil. 32 

 33 
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1 Introduction 36 

The rhizosphere is defined as the soil in closest proximity to plant roots and has been 37 

hypothesised to enhance the biodegradation of organic contaminants such as aliphatic and 38 

aromatic hydrocarbons through different mechanisms (Anderson et al., 1993; Pilon-Smits, 39 

2005). These include the promotion of (1) larger microbial populations (Anderson et al., 40 

1993) and shifts on their community composition (Joner et al., 2002), (2) source of 41 

biologically important substrates including nutrients and readily available sources of carbon 42 

(Reilley et al., 1996; Dakora & Phillips, 2002; Martin et al., 2014; Sivaram et al., 2019), and 43 

(3) increasing the bioavailability of the contaminants due to root exudates, decay and 44 

turnover (Siciliano & Germida, 1998; Martin et al., 2014; Sivaram et al., 2019). The amount 45 

and type of substances released by roots is highly dependent on a series of factors including 46 

plant species and age, as well as particular soil and environmental conditions (Jones, 1998; 47 

Shukla et al., 2011; Agnello et al., 2014; Martin et al., 2014). However, a number of low 48 

molecular weight compounds, such as amino acids, sugars and organic acids, have been 49 

identified as common constituents of root exudates (Jones et al., 2003; van Hees et al., 2005). 50 

Organic acids, including citric, malic and oxalic are reported to be the most abundant (Jones 51 

& Brassington, 1998; Ling et al., 2015); therefore, it is reasonable to consider the role that 52 

these acids might play in influencing the extractability and the bioavailability of different 53 

contaminants and how this might influence their biodegradation. 54 

The use of root exudates for the dissipation of organic contaminants in soil has been reported 55 

(Miya & Firestone, 2001; Yoshitomi & Shann, 2001; Joner et al., 2002). These investigations 56 

have used simulated rhizosphere conditions by the introduction of artificial or natural root 57 

exudates in order to approach the subject in a more controlled manner (Miya & Firestone, 58 

2001; Joner et al., 2002). From these studies, research has been developed to consider the 59 
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effect of these substances on the shifts of the microbial populations and/or communities 60 

(Joner et al., 2002; Shukla et al., 2011), overall dissipation of contaminants (Joner et al., 61 

2002), and their effect on soil physical and chemical properties (Shukla et al., 2011). Authors 62 

such as Sun et al. (2013), Martin et al. (2014) and Gao et al. (2015) have pointed out that 63 

although efforts have been directed towards investigating the effect of root exudates on the 64 

biodegradation of hydrocarbons in contaminated soil, information regarding the role of single 65 

compounds from this solution is scarce. Within these few studies, it has been reported that 66 

organic acids commonly found in root exudates can promote the desorption of phenanthrene 67 

from soil (Gao et al., 2010b, 2015b; Ling et al., 2015).  68 

It has been observed that changes in the extractability of polycyclic aromatic hydrocarbons 69 

(PAHs) might act as a predictor of the microbial degradability of different species of PAHs. 70 

Specifically, the rates of desorption of some PAHs have successfully been used as predictors 71 

of their biodegradation (Cornelissen et al., 1998a). As fractions of hydrocarbons are 72 

transferred from soil to solution through the desorption process; these can also become more 73 

bioaccessible and susceptible to be metabolised by the soil microbial community (Semple et 74 

al., 2003, 2007, 2013). Therefore, the possibility of enhancing the desorption of PAHs by 75 

using organic acids to promote or enhance biodegradation in soil has been identified as a 76 

promising strategy, but remains poorly explored (Martin et al., 2014). In addition, the extent 77 

into which these organic acids affect the biodegradation of the desorbed hydrocarbon has not 78 

been considered. Therefore, the aim of this study was to investigate the effect of two low 79 

molecular weight organic acids (LOAs) commonly found within root exudates in the 80 

extractability and bioaccessibility of 14C-phenanthrene contaminated soil. Phenanthrene was 81 

selected as a model PAH given its widespread distribution, biodegradability and persistent 82 

properties in soil. For this, mineralisation, hydroxypropyl-β-cyclodextrin (HPCD) 83 

extractability and desorption kinetics of 14C-phenanthrene were assessed in the presence of 84 
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organic acids at a range of concentrations. Results from this experiment provide a novel 85 

perspective of the effect of organic acids on the fate of 14C-phenanthrene soil by investigating 86 

(1) the desorbing capacity of citric and malic acid and (2) the extent by which these can 87 

promote a higher bioavailability and mineralisation. 88 

2 Methodology 89 

2.1 Soil preparation and spiking 90 

An uncontaminated clay loam soil (top 20 cm, 2.7 % organic matter) was collected from 91 

Myerscough Agricultural College, Preston, U.K. Partially air-dried soil (24 h) was passed 92 

through a 2 mm sieve and stored in the dark at 4 ± 1 ºC until needed. Main soil physical and 93 

chemical characteristics have been described by Towell et al. (2011). Sieved soil was 94 

rehydrated (50% water holding capacity (whc)) and spiked following the procedure proposed 95 

by Doick et al. (2003). In short, this approach consists on the application of the standards to a 96 

fraction of the total amount of soil (inoculum) followed by gradual mixing and incorporation 97 

of the remaining soil with a stainless steel spoon. Standards used for spiking contained 12/14C 98 

phenanthrene dissolved in acetone to deliver a final concentration of 100 mg kg-1 (dw) 99 

phenanthrene with an associated 14C-activity of 83 Bq g-1 (dw). Spiked soil was placed in 100 

sealed sterilized amber jars and incubated in the dark at 21 ± 1 ºC in a controlled environment 101 

room for up to 15 weeks. Determination of the total 14C-phenanthrene associated activity in 102 

the soil was assessed at every time point by sample oxidation following the methodology 103 

described by Rhodes et al. (2012). 104 

 105 
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2.2 Influence of organic acids on the mineralisation of 14C-phenanthrene  106 

Mycobacterium gilvum has been previously shown to degrade a range of hydrocarbons, 107 

including PAHs such as naphthalene, fluorine, phenanthrene, anthracene, fluoranthene and 108 

pyrene and as sole or primary source of carbon (Xiong et al., 2017; Posada-Baquero et al., 109 

2019). In addition, this strain has also been isolated from chronically contaminated 110 

environments such as soil from a former coking plant (Xiong et al., 2017), indicating its 111 

ability to adapt to these type of conditions, utilising hydrocarbons as their primary source of 112 

carbon under nutrient limiting conditions, which are typically observed on highly 113 

contaminated sites. To assess this, the mineralisation of 14C-phenanthrene was measured 114 

using the methodology developed and tested by Reid et al. (2001) and Semple et al. (2006). 115 

Soil (10 g dw) aged over 14 and 50 days was placed into 250 ml modified Schott bottles 116 

fitted with a 1 M NaOH 14CO2 trap (n = 3). These ageing times were selected based on that 117 

reported by Kelsey et al. (1997), where 14C-phenanthrene mineralisation was significantly 118 

reduced within the first few weeks and then remained stable for 50 days. To assess the effect 119 

of organic acids towards the mineralisation process, citric, malic, oxalic and succinic acids 120 

were selected as representative LOAs often observed in the rhizosphere (van Hees et al., 121 

2005). Solutions containing individual LOAs within its naturally appearing range in the 122 

rhizosphere soil solution (0.1 and 0.5 mmol l-1) (van Hees et al., 2005) were used. These were 123 

incorporated into the minimal basal salts (MBS) medium and used for the mineralisation 124 

assay. For the mineralisation assays, soil was mixed with the MBS containing the organic 125 

acids (25 ml) and 5 ml of a bacterial inoculum of M. gilvum (105 cells ml-1) to achieve a final 126 

3:1 liquid:soil ratio. Bottles were then placed onto an orbital shaker at 100 rpm in a controlled 127 

environment room at 21 ± 1 ºC in the dark. 14CO2 evolution was assessed by periodically (up 128 

to every 24 h) replacing the trap, mixing with 5 ml liquid scintillation cocktail and assessed 129 

by liquid scintillation counting (LSC) (10 min - Canberra Packard Tri-Carb 2300, U.K.). 130 
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 131 

2.3 Influence of organic acids on the extractability of 14C-phenanthrene  132 

2.3.1 Preliminary tests 133 

A series of preliminary tests were carried in order to optimize the general experimental 134 

parameters and design of the extraction assays. Solutions of deionised water containing citric, 135 

malic, oxalic and succinic acids solutions of individual organic acids were prepared at 0.1 and 136 

0.5 mmol l-1. Desorption kinetics of 14C-phenanthrene with these solutions (n = 3) were 137 

assessed from spiked soil following the methodology described below. 138 

The temporal effect of organic acids on the bioaccessibility of 14C-phenanthrene was also 139 

assessed (n = 3). Soil was saturated with malic acid solution (100 % whc) at two 140 

concentrations (0.5 and 500 mmol l-1) and incubated in a controlled environment room 21 ± 1 141 

ºC for 1, 3, 6, 8 or 24 h. Each experimental unit was also fitted with a 1 M NaOH 14CO2 trap 142 

for the assessment of any possible dissipation of 14C-phenanthrene by microbial respiration 143 

during the incubation time. Soil was extracted with 50 mM HPCD solutions after each 144 

incubation time following the methodology described below. 14CO2 traps were assessed by 145 

adding 5 ml of liquid scintillation cocktail and assessed by LSC as previously described. 146 

Citric, malic, oxalic and succinic acids did not impact significantly on the desorption of 14C-147 

phenanthrene from the soil (Table SI-1) when compared against the control (p > 0.05). 148 

Despite of this, soil extracted with citric and malic acid at 0.5 mmol l-1 were the only two 149 

treatments presenting higher rapidly desorbing fractions (Frap), with (44.16 %) and (49.76 %) 150 

respectively, than the control (40.94 %). Based on this, these two organic acids were selected 151 

for further investigation at a wider range of concentrations (0.5, 100, 250, 500 and 1000 152 

mmol l-1) in order to assess the full potential of these compounds to impact the desorption of 153 
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14C-phenanthrene in soil. Selected concentrations ranged from naturally appearing LOAs 154 

concentrations (van Hees et al., 2005) up to maximum tested concentrations within 155 

experiments with similar aims (Gao et al., 2015a; Ling et al., 2015). 156 

 157 

2.3.2 HPCD extraction of 14C-phenanthrene from soil 158 

Changes in the bioaccessibility of 14C-phenanthrene were measured by HPCD extractions 159 

from soil aged over 1 and 15 weeks. At each time point, 1.25 g soil (dw) were placed into 160 

Teflon centrifuge tubes (n = 5); soil was saturated (100 % whc) with citric and malic acid 161 

solution (0.5, 100, 250, 500 and 1000 mmol l-1). Sealed tubes where incubated in a controlled 162 

environment room (21 ± 1 ºC) for 8 h. Then, 25 ml of 50 mM HPCD solution was added. 163 

Tubes were placed onto an orbital shaker (100 rpm) for 22 h at 21 ±1 ºC. Afterwards, samples 164 

were centrifuged (3000 x g for 1 h) and 5 ml of the supernatant was placed in a glass 165 

scintillation vial and mixed with 15 ml liquid scintillation cocktail. Samples were assessed 166 

through LSC as described previously. Remaining 14C-associated activity in the soil was 167 

assessed by sample oxidation (Rhodes et al., 2012). 168 

 169 

2.3.3 Desorption of 14C-phenanthrene by organic acids 170 

Tests were performed following a randomized design (n = 5) and blind sampling. Desorption 171 

kinetics were assessed after 1 and 15 weeks soil-contaminant contact time; at each time point, 172 

4 g soil (dw) was placed into Teflon centrifuge tubes and mixed with 25 ml of organic acid 173 

solution at a given concentration (0.5, 100, 250, 500 and 1000 mmol l-1). Tubes were placed 174 

onto an orbital shaker (100 rpm) in a controlled environment room at 21 ±1 ºC. Soil samples 175 

were sequentially extracted after 1, 4, 6, 12, 24, 45, 90, 180 and 360 h by centrifuging at 3000 176 
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x g for 1 h. Aliquots (5 ml) were mixed with 15 ml liquid scintillation cocktail in a glass 177 

scintillation vial and assessed by LSC. Residual activity in the soil after the last extraction 178 

was assessed by sample oxidation as described by Rhodes et al. (2012). 179 

Desorption of 14C-phenanthrene was examined by two- (Equation 1) and three-compartment 180 

(Equation 2) first-order kinetics (Cornelissen et al., 1998b; Rhodes et al., 2010): 181 

Equation 1: 182 

St / S0 = [Frap • exp (-krap • t)] + [Fslow • exp (-kslow • t)] 183 

Equation 2: 184 

St / S0 = [Frap • exp (-krap • t)] + [Fslow • exp (-kslow • t)] + [Fvery slow • exp (-kvery slow • t)] 185 

where St represents the amount of 14C-phenanthrene sorbed to the soil at the desorption time t 186 

(h) and S0 is the initial total amount of 14C-phenanthrene at the beginning of the assay (time 187 

0). Frap, Fslow and Fvery slow (%) are the rapid, slow and very slow desorbing fractions and krap, 188 

kslow and kvery slow (h-1) are the rate constants for the rapid, slow and very slow desorption, 189 

respectively. The model assumes that kvery slow ≤ kslow ≤ krap (Rhodes et al., 2010; Clegg et al., 190 

2014), and that the addition of the desorbing fractions equals 100 % (Clegg et al., 2014). The 191 

values of Frap, Fslow, Fvery slow, krap, kslow and kvery slow were obtained by exponential curve 192 

fitting using Excel Solver add-in, using a non-linear least squares method. 193 

 194 

2.4 Statistical analysis 195 

Statistical analyses were carried using the SPSS 21 (95 % confidence interval). Normality of 196 

the data was verified by Shapiro-Wilk tests, transformations were applied in cases where a 197 
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normal distribution was not observed. Analyses of the differences across time were carried by 198 

Student’s t-test and Wilcoxon test for normal and not normally distributed data respectively. 199 

Differences between the treatments at each time point were analysed using One-Way 200 

ANOVA (Tukey) or Kruskal-Wallis test for normal and not-normal distributed data 201 

respectively. Graphical representations of the results were done with the software Sigma Plot 202 

2000. 203 

3 Results 204 

3.1 Short-term impact of organic acids on the mineralisation of 14C-phenanthrene in soil  205 

The impact of citric, malic, oxalic and succinic acids within a naturally occurring range of 206 

concentrations was tested on the mineralisation of 14C-phenanthrene. Organic acids were only 207 

observed to produce significant differences on the mineralisation of 14C-phenanthrene after 208 

14 days soil-PAH contact time, while remaining unaffected after 50 days of soil-PAH contact 209 

time. The data showed that after a short soil-PAH contact time (14 d), the presence of citric 210 

acid (0.1 mmol l-1) resulted in a significantly faster rate of mineralisation (29.52 % d-1) than 211 

the control (20.99 % d-1) (F = 2.795, p = 0.016) (Table 1). At this same time point, although 212 

not significant (p = 0.077), the lag phase of the control soil was longer (18.28 h) than in soil 213 

incubated with organic acids (4.11 – 5.42 h). 214 

 215 

3.2 Preliminary tests for the selection of organic acids and soil-organic acid contact time 216 

for the assessment of 14C-phenanthre bioaccessibility in soil 217 

As significant differences were not observed within the different organic acids used in the 218 

preliminary assay looking at their impact in 14C-phenanthrene desorption kinetics; malic acid 219 
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was selected as a representative organic acid for the optimisation of the methodology for the 220 

assessment of bioaccessibility. Results from the test looking at the temporal impact of malic 221 

acid in HPCD-extractable 14C-phenanthrene fraction showed that soil-organic acid contact 222 

time did not have a significant effect on the bioaccessible fraction of this hydrocarbon (p > 223 

0.05). However, data showed that the largest extractable proportion of 14C-phenanthrene was 224 

obtained after 8 h of soil-organic acid incubation (control soil, 8.15 %), compared to the 225 

lowest value presented after 48 hours (control soil, 1.10 %). Therefore, 8 h soil-organic acid 226 

incubation was considered to be the most suitable contact time and consequently selected for 227 

further investigation. Furthermore, mineralisation from the HPCD extractable experimental 228 

units within the incubation time was observed to be negligible. 229 

 230 

3.3 Bioaccessibility of 14C-phenanthrene in soil 231 

Changes on the bioaccessibility of 14C-phenanthrene in soil was assessed by HPCD 232 

extractions and were observed to be significantly different over time (Table 2, t = 66.682, p < 233 

0.001). After one week of soil-PAH contact time; saturation of soil with organic acids (100 % 234 

whc, 8 h) did not have significant effects on the bioaccessibility of 14C-phenanthrene (F = 235 

1.981, p = 0.059). In the case of soil incubated for 15 weeks, the addition of 500 mmol l-1 236 

citric acid significantly enhanced the bioaccessible fraction of 14C-phenanthrene (14.92 %) 237 

compared to the control (6.72 %) (F = 4.513, p = 0.003). 238 

 239 

3.4 Desorption of 14C-phenanthrene with organic acids 240 

The amount of 14C-phenanthrene that was desorbed from soil was significantly affected by 241 

the presence of organic acids (p < 0.001) (Table 3). Citric acid at the highest concentration 242 
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(1000 mmol l-1) consistently produced a significantly higher desorption than any other 243 

treatment after 1 week (39.27 %) and 15 weeks (47.86 %) soil-PAH contact time (p < 0.001). 244 

Furthermore, this was the only treatment capable of enhancing the desorption of 14C-245 

phenanthrene after 1 week soil-PAH contact time. The presence of citric acid (0.5 - 250 246 

mmol l-1) and malic acid (0.5 - 500 mmol l-1) significantly reduced the total desorbable 247 

fraction of 14C-phenanthrene soil after one-week soil-PAH contact time (p < 0.001). In 248 

contrast, only the lowest concentrations (0.5 mmol l-1) of citric acid (13.04 %) and malic acid 249 

(12.51 %) produced significantly lower levels of desorption of 14C-phenanthrene than the 250 

control (18.96 %) after 15 weeks soil-PAH contact time. This was in contrast to the 251 

desorption behaviour observed at concentrations above 100 mmol l-1 citric acid and 250 252 

mmol l-1 malic acid, where desorbed 14C-phenanthrene was significantly higher (p < 0.001). 253 

 254 

3.4.1 Impact of organic acids on 14C-phenanthrene desorption kinetics 255 

Desorbing fractions (Frap and Fslow; Frap, Fslow and Fvery slow) and rate constants (krap and kslow; 256 

krap, kslow and kvery slow) from the two- and three-compartment model fitting, respectively, are 257 

presented on Tables 4 and 5. Squared deviations data showed a better fit by the three-258 

compartment one (Table SI-3, p < 0.001); therefore, further analysis was focused on the 259 

values estimated by this desorption model. Desorbing fractions (%) and rate constants (h-1) 260 

obtained by the three-compartment model (Figures SI 4-9) showed significant differences for 261 

all cases (p < 0.001). After one-week soil-PAH contact time, significantly higher fractions of 262 

14C-phenanthrene were rapidly desorbed by 1000 mmol l-1 citric (19.22 %) and malic acid 263 

(20.20%) than in the control soil (12.08 %). In contrast, lower concentrations of malic acid 264 

(100 and 250 mmol l-1) and citric acid (100 mmol l-1) significantly reduced the rapidly 265 

desorbing fractions. Rapidly desorbing rate constants were not affected by the majority of the 266 
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treatments with the exception of the effect produced by citric acid at 100 mmol l-1. Slowly 267 

desorbing fractions were significantly reduced by all treatments apart from citric acid (1000 268 

mmol l-1), which was found to be similar to the control. Furthermore, rate constants of this 269 

fraction (kslow) were significantly enhanced in most of the treatments (except 0.5 and 1000 270 

mmol l-1 citric acid), with a longest slowly desorbing phase produced in the present of malic 271 

acid (0.139 – 0.146 h-1) when compared against the control (0.013 h-1). Very slowly 272 

desorbing fractions accounted for the largest phase in all of the treatments. Moreover, organic 273 

acids significantly increased this fraction in all treatments (except 1000 mmol l-1 citric acid), 274 

ranging from 77.1 to 88.09 % against the 72.12 % when dH2O was used as extractant. Very 275 

slowly desorbing rate constants were also significantly higher in the presence of citric (≥ 500 276 

mmol l-1) and malic acid at all tested concentrations. 277 

After 15 weeks incubation, high concentrations of citric (500 – 1000 mmol l-1) and malic 278 

(500 mmol l-1) acid were found to significantly enhance the rapidly desorbing fraction of 14C-279 

phenanthrene, representing up to 25.12 % compared to the control (13.11 %). Moreover, low 280 

concentrations of both organic acids (0.5 mmol l-1) had the opposite effect, significantly 281 

reducing the fraction of 14C-phenanthrene desorbed to 3.38 and 5.50 % respectively. 282 

Similarly, rapidly desorbing rate constants were also significantly larger when soil was 283 

extracted with citric (0.5 – 1000 mmol l-1) and malic acid (1000 mmol l-1). Slowly desorbing 284 

fractions (Fslow) were significantly reduced by all tested concentrations of citric acid and 0.5, 285 

100 and 1000 mmol l-1 malic acid, while the corresponding desorption rate constants 286 

displayed the opposite behaviour. Fractions desorbed in the very slow phase were 287 

significantly increased by all treatments (except 500 mmol l-1malic acid) going from 3.23 % 288 

in the control up to 92.50% when soil was treated with 0.5 mmol l-1malic acid. Very slowly 289 

desorbing rate constants were similar to the control with the exception of 100 mmol l-1malic 290 

acid where significantly higher values were observed (p < 0.001). 291 
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4 Discussion 292 

4.1 Effect of organic acids in the bioaccessibility of 14C-phenanthrene in soil 293 

The bioaccessibility of PAHs can be quantified using different biological and chemical 294 

approaches. For the purposes of this study, the mineralisation and extraction of 14C-295 

phenanthrene by M. gilvum and HPCD were used, respectively. As a whole, these two 296 

methods are considered acceptable methodologies to assess not only the fraction of the 297 

hydrocarbon that is freely available to microorganisms, but also encompasses the fraction of 298 

the contaminant that may become bioavailable, and therefore removed from the soil (Semple 299 

et al., 2004). The general absence of effects by organic acids on the mineralisation of 14C-300 

phenanthrene reported in this study has also been observed by Cébron et al. (2011) and 301 

Louvel et al. (2011), both of whom worked with root exudates containing mixtures of organic 302 

acids. Despite this trend, both authors were able to observe an initial acceleration of the 303 

mineralisation process (Cébron et al., 2011; Louvel et al., 2011), as was the case of citric acid 304 

(100 mmol l-1) in this present study. Cébron et al. (2011) further discussed that this general 305 

absence of effects might be the consequence of enhanced sorption of phenanthrene to SOM 306 

and other soil inorganic fractions such as mineral clays caused by the organic acids, and that 307 

ultimately reflected in a reduction in the availability of phenanthrene for microbial 308 

degradation. Given the chemical characteristics of citric acid, other authors suggest that this 309 

LOA is capable of forming more stable complexes with different compounds in soil (An et 310 

al., 2011; Ling et al., 2015). 311 

Similar trends were also observed when the bioaccessibility of 14C-phenanthrene was 312 

measured through its HPCD extractability. Bioaccessibility was only significantly higher in 313 

one of the treatments (500 mmol l-1 citric and malic acid after 15 weeks soil-PAH contact 314 

time). These findings contrast with that reported by other authors where PAH availability can 315 
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be significantly promoted by different LOAs assessed through n-butanol extractions (Ling et 316 

al., 2009; Sun et al., 2012, 2013; Kong et al., 2013; Gao et al., 2015b). Disagreement 317 

between these two trends is suggested to be due to differences in the methodologies used for 318 

this purpose, where n-butanol extracted PAH is not only the bioaccessible fraction of the 319 

hydrocarbon, but also a portion of the non-bioaccessible PAH residues, as pointed by Ling et 320 

al. (2009). Although n-butanol has been proposed to act as a predictor for the bioavailability 321 

of PAHs in soil (Kelsey et al., 1997; Liste & Alexander, 2002), this extractant has also been 322 

observed to exhibit greater extraction efficiencies when compared against HPCD 323 

extractability (Swindell & Reid, 2006). This has become important when comparing these 324 

two methods to  the mineralisation of phenanthrene in soil (Reid et al., 2000; Rhodes et al., 325 

2010), where close linear 1:1 relationships have been observed for the case of HPCD 326 

extracted PAH. Furthermore, n-butanol has also been demonstrated to act as a more 327 

exhaustive extractant than HPCD (Reid et al., 2000; Swindell & Reid, 2006), even extracting 328 

similar quantities of PAHs than DCM, which is often use to determine total concentrations of 329 

contaminants in soil (Reid et al., 2000). 330 

The impact that organic acids from the rhizosphere might have towards the biodegradation of 331 

PAHs remains a poorly explored area; however, this is one of the presumed mechanisms by 332 

which plant-enhanced bioremediation is thought to occur (Pilon-Smits, 2005). Changes in the 333 

physico-chemcial conditions in soil, such as pH, may play an important role in the microbial 334 

degradation of PAHs (Kästner et al., 1998). Specifically, the acidic ranges of pH that the 335 

presence of high concentrations of organic acids will produce, associated to the SOM-bound 336 

PAHs that have been discussed, may be responsible to limit the microbial activity. This may 337 

explain why, despite the fact that larger amounts of 14C-phenanthrene can be extracted with 338 

high concentrations of organic acids, the PAHs are not being biodegraded by soil bacteria and 339 

metabolised to CO2. 340 



16 

4.2 Impact of LOAs on the desorption of 14C-phenanthrene in soil 341 

The total desorbable fraction of 14C-phenanthrene did not decrease as a function of time over 342 

the course of the incubation when soil was extracted with organic acids (≥ 100 mmol l-1). 343 

Despite the general acknowledgement of the negative correlation between the extractability 344 

of organic contaminants and contact time (Hatzinger & Alexander, 1995; Semple et al., 345 

2003), this behaviour was only observed in the control and the lowest tested concentration of 346 

organic acids after 15 weeks of soil-PAH contact time. This trend suggests that high amounts 347 

of organic acids could potentially restrict the reduction of bioaccessibility of 14C-348 

phenanthrene, therefore limiting the ageing process. Although not observed before, this 349 

behaviour could be the reflection of a dual effect of organic acids on phenanthrene sorption 350 

reported by Ouvrard et al. (2006) who described the impact of LOAs as a combined process 351 

characterised by an initial short term enhanced sorption of phenanthrene by SOM, followed 352 

by an increased mass transfer of the hydrocarbon due to the destabilisation of this soil 353 

fraction. Similarly, data from the present study showed a general reduction of the extractable 354 

14C-phenanthrene after a short period of ageing while organic acids were consistently 355 

observed to promote a larger desorption after 15 weeks of soil-PAH contact time when 356 

compared against the control. This increase in the extractability of PAHs by LOAs has also 357 

been reported by other authors (Ling et al., 2009, 2015; Gao et al., 2010a; b, 2015b; Kong et 358 

al., 2013), but rarely considered the impact of soil-PAH ageing included in the present study. 359 

Although not common, the reduction of 14C-phenanthrene desorption in the presence of 360 

organic acids observed after a short soil-PAH contact time in the present study has been 361 

reported before (Ouvrard et al., 2006; Zhu et al., 2009; Gao et al., 2015b). This initial 362 

behaviour has been associated with the capacity of small amounts of oxalate, citrate and 363 

malate to promote the sorption of anions to the soil (Jones & Brassington, 1998; Jones et al., 364 

2003). In a similar way, phenanthrene has been hypothesised to be also sorbed through the 365 
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development of new sorption sites by these sorbed organic acids (Ouvrard et al., 2006; Gao et 366 

al., 2015a). 367 

LOAs have been acknowledged to significantly influence the physical, chemical and 368 

biological properties of soil (Jones & Darrah, 1994; Jones, 1998). As such, the main 369 

mechanism behind the enhancement of the desorption of PAHs in soil impacted by organic 370 

acids has been proposed to be the solubilisation of soil organic matter (SOM) with a 371 

subsequent release SOM-associated hydrocarbons (Ouvrard et al., 2006; Agnello et al., 372 

2014). This explanation is supported by findings from different authors who have reported 373 

consistently higher amounts of dissolved organic matter and certain minerals when artificial 374 

root exudates (Gao et al., 2010a) and single LOAs (Ling et al., 2009, 2015; Gao et al., 2010b, 375 

2015a; Sun et al., 2012; Kong et al., 2013) were used to extract PAHs from contaminated 376 

soil. In a similar way, previously immobilised aromatic compounds have been observed to be 377 

released from soil to pore water after the introduction of organic acids solution (White et al., 378 

2003; Gao et al., 2015b; Keiluweit et al., 2015). 379 

4.2.1 Desorption kinetics 380 

14C-Phenanthrene desorption kinetics in the presence of the organic acids displayed a 3-381 

compartment desorption behaviour. Although desorption of organic contaminants has been 382 

widely observed to behave with an initial rapid desorption followed by a slower phase 383 

(Cornelissen et al., 1998b), this rapid/slow/very slow release from the soil has also been 384 

observed (Rhodes et al., 2010). Typically, studies investigating desorption kinetics are 385 

performed using extractants that are known (or suspected) to correlate with the biodegradable 386 

fraction of the contaminant in question (Cornelissen et al., 2001; Rhodes et al., 2010). 387 

However, this current research study was focused on the assessment of the desorbing 388 

potential that organic acids might be able to provide. Bearing this in mind, the proportion of 389 
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14C-phenanthrene desorbed at each of these phases should be considered as a measure of the 390 

behaviour of this PAH under the influence of organic acids rather than an indication of its 391 

bioaccessibility. 392 

The different fractions described by the desorption kinetics can be interpreted as the 393 

biodegradable (Frap), and less accessible Fslow and/or Fvery slow fractions of the organic 394 

contaminant (Cornelissen et al., 1998b; Rhodes et al., 2010). Results from this investigation 395 

showed that the majority of the treatments had a tendency to enhance the very slowly 396 

desorbing fraction (Fvery slow).These results could be interpreted as that the presence of organic 397 

acids might be able to mobilise a significant proportion of the readily bioaccessible fraction 398 

of 14C-phenanthrene (Frap) towards a less accessible form (Fslow and Fvery slow), therefore 399 

limiting the biological degradation of the contaminant or the rate at which this process takes 400 

place (Pignatello & Xing, 1996; Clegg et al., 2014). Moreover, similar behaviour has been 401 

observed to occur during the mineralisation of organic acids, where these compounds have 402 

been observed to induce shifts of 14CO2 production from a rapid to a slower phase (Oburger 403 

et al., 2009). 404 

5 Conclusions 405 

Organic acids found within the rhizosphere play an important role on the behaviour of 406 

phenanthrene in soil. It was found that the total extractable fraction of 14C-phenanthrene can 407 

be significantly enhanced by citric and malic acid. This effect is most likely to be observed at 408 

a longer soil-PAH contact time, where organic acids showed to restrict the ageing effect. 409 

Despite these enhancing effects, desorption kinetics indicated that the desorbed phenanthrene 410 

was readily available given the behaviour as slow and very slow desorbing fractions. These 411 

trends were confirmed when accessibility and mineralisation of 14C-phenanthrene where 412 

assessed. In this case, despite the enhancement of the total hydrocarbon extractable fractions 413 
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in the presence of citric and malic acid; there is no clear evidence suggesting that this 414 

condition can promote the microbial utilisation of 14C-phenanthrene. This study contributes to 415 

the understanding of the role of root exudation within the rhizosphere towards the 416 

bioaccessibility and biodegradation of hydrocarbons in contaminated soil. It is important to 417 

note that organic acids may be able to remobilise contaminants, which were considered to be 418 

non-bioaccessible. This may be important from a risk assessment perspective; however, the 419 

concentrations of remobilised PAHs may be low and not represent a risk to environmental or 420 

human health (Umeh et al., 2018). 421 
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Table 1. Mineralisation kinetics of 14C-phenanthrene from soil affected by organic acids after 
14 and 50 days ageing. Values of the lag phases (h), maximum rates (% d-1) and total extents 
(%) represent the mean ± standard error of the mean (n = 3). Different letters indicate 
significant differences between the treatments at each time point assessed by post hoc Tukey 
tests. 

    14 days ageing 

Treatment Concentration 
(mmol l-1) Lag phase* Fastest rate Total extent 

Control 0 18.288 ± 0.358 a20.991 ± 0.564 ab57.483 ± 0.617 
Citric acid 0.1 4.104 ± 0.417 b29.520 ± 2.316 ab65.325 ± 3.590 
  0.5 4.728 ± 0.382 ab25.519 ± 1.439 ab63.863 ± 2.559 
Malic acid 0.1 4.440 ± 0.347 ab27.114 ± 1.268 ab63.741 ± 1.430 
  0.5 4.320 ± 0.364 ab27.902 ± 1.050 b68.370 ± 0.101 
Oxalic acid 0.1 5.424 ± 0.564 ab22.562 ± 2.125 a54.085 ± 3.386 
  0.5 4.632 ± 0.397 ab26.093 ± 1.576 ab58.915 ± 1.694 
Succinic acid 0.1 4.656 ± 0.260 ab25.806 ± 0.664 ab63.543 ± 2.409 
  0.5 4.800 ± 0.445 ab25.270 ± 1.938 ab60.683 ± 3.183 
   50 days ageing 

Treatment Concentration 
(mmol l-1) Lag phase Fastest rate Total extent 

Control 0 a84.350 ± 2.400 a1.613 ± 0.257 a11.581 ± 1.321 
Citric acid 0.1 a81.128 ± 1.945 a1.607 ± 0.128 a11.419 ± 0.560 
  0.5 a48.488 ± 1.400 a1.651 ± 0.020 a11.688 ± 0.332 
Malic acid 0.1 a69.532 ± 2.020 a1.592 ± 0.108 a12.535 ± 0.474 
  0.5 a85.519 ± 2.319 a1.345 ± 0.089 a10.590 ± 0.667 
Oxalic acid 0.1 a69.922 ± 0.894 a1.553 ± 0.026 a12.387 ± 0.410 
  0.5 a72.237 ± 1.494 a1.670 ± 0.128 a12.959 ± 0.935 
Succinic acid 0.1 a78.770 ± 1.819 a1.661 ± 0.140 a11.093 ± 0.591 
  0.5 a56.177 ± 2.119 a1.959 ± 0.154 a13.641 ± 0.159 

*Not normally distributed data analysed by Kruskal-Wallis non-parametric test (p = 0.077)  
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Table 2. HPCD extractable fraction of 14C-phenanthrene from soil after 1 and 15 weeks 
ageing following saturation with organic acids solution (100 % whc, 8 h). Values represent 
the mean ± standard error of the mean (n = 5). Different letters indicate significant 
differences between the treatments at each time point (Tukey) 

Treatment Concentration 
(mmol l-1) Bioaccessible14C-pheannthrene (%) 

    1 week* 15 weeks 

Control 0 a79.841 ± 0.717 ab6.721 ± 0.970 
Citric acid 0.5 a78.964 ± 2.070 a5.033 ± 0.955 
 100 a78.769 ± 1.346 ab6.492 ± 1.646 
 250 a79.239 ± 1.243 abc9.804 ± 1.033 
 500 a79.852 ± 0.633 c14.929 ± 0.582 
 1000 a76.745 ± 0.164 bc11.223 ± 1.524 
Malic acid 0.5 a81.138 ± 0.611 ab7.992 ± 0.690 
 100 a80.517 ± 0.366 abc8.938 ± 1.509 
 250 a78.540 ± 0.793 ab8.764 ± 2.035 
 500 a77.937 ± 0.579 abc10.726 ± 0.871 
  1000 a76.737 ± 1.003 ab8.594 ± 1.284 
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Table 3. Total 14C-phenanthrene desorbed from soil after 1 and 15 weeks ageing. Values 
represent the mean ± standard error of the mean (n = 5). Different letters indicate significant 
differences between the treatments at each time point (Tukey). 

Treatment Concentration 
(mmol l-1) Desorbed 14C-pheannthrene (%) 

    1 week 15 weeks 

Control 0 de27.980 ± 1.636 b18.958 ± 0.931 
Citric acid 0.5 ab20.755 ± 0.432 a13.038 ± 1.010 
 100 a17.221 ± 0.211 cd26.462 ± 0.431 
 250 ab19.709 ± 0.081 de31.264 ± 1.851 
 500 cd26.579 ± 0.795 f40.006 ± 0.655 
 1000 f39.274 ± 1.921 g47.856 ± 1.060 
Malic acid 0.5 ab20.068 ± 0.376 a12.507 ± 0.176 
 100 a16.552 ± 0.119 bc21.986 ± 1.363 
 250 ab18.820 ± 0.256 cd25.923 ± 0.983 
 500 bc22.558 ± 0.266 e32.955 ± 1.134 
  1000 e31.720 ± 1.249 ef36.184 ± 2.054 
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Table 4. Desorbing fractions (Frap and Fslow) and constant rates (krap and kslow) calculated by a two-compartment model. Values represent the 
mean ± standard error of the mean (n = 5). Different letters indicate significant differences between the treatments assessed by post hoc Tukey 
tests 

Treatment Concentration  
(mmol l-1) Frap (%) krap (h-1) Fslow (%) kslow (h-1) 

1 week ageing 
Control 0 cd16.571 ± 0.442 a0.128 ± 0.004 cd83.428 ± 0.442 c0.001 <0.001 
Citric acid 0.5 abc14.393 ± 0.381 ab0.142 ± 0.004 def85.606 ± 0.381 ab<0.001 <0.001 
 100 a12.313 ± 0.160 b0.145 ± 0.001 f87.687 ± 0.160 a<0.001 <0.001 
 250 abc14.423 ± 0.108 ab0.134 ± 0.001 def85.576 ± 0.108 a<0.001 <0.001 
 500 bcd19.090 ± 0.706 ab0.142 ± 0.006 c80.909 ± 0.706 b0.001 <0.001 
 1000 e28.381 ± 1.587 ab0.140 ± 0.005 a71.618 ± 1.587 d0.001 <0.001 
Malic acid 0.5 abc15.123 ± 0.104 b0.139 ± 0.002 def84.876 ± 0.104 a<0.001 <0.001 
 100 a11.901 ± 0.143 ab0.142 ± 0.002 f88.098 ± 0.143 a<0.001 <0.001 
 250 ab13.447 ± 0.119 ab0.146 ± 0.002 ef86.553 ± 0.119 a<0.001 <0.001 
 500 d16.122 ± 0.272 ab0.141 ± 0.003 cde83.877 ± 0.272 ab<0.001 <0.001 
 1000 f22.899 ± 0.936 ab0.140 ± 0.003 b77.100 ± 0.936 c0.001 <0.001 

15 weeks ageing 
Control 0 b14.683 ± 3.591 ab0.195 ± 0.009 f85.317 ± 3.591 a0.001 <0.001 
Citric acid 0.5 a6.789 ± 0.247 ab0.170 ± 0.012 g93.211 ± 0.247 a<0.001 <0.001 
 100 bc14.566 ± 0.436 bc0.217 ± 0.020 ef85.434 ± 0.436 b0.001 <0.001 
 250 b19.534 ± 0.493 b0.186 ± 0.014 bc80.466 ± 0.493 bc0.001 <0.001 
 500 f25.150 ± 0.876 bc0.213 ± 0.009 c74.850 ± 0.876 cd0.001 <0.001 
 1000 g30.907 ± 0.377 c0.262 ± 0.006 a69.093 ± 0.377 d0.002 <0.001 
Malic acid 0.5 a7.533 ± 0.333 bc0.206 ± 0.023 g92.467 ± 0.333 a<0.001 <0.001 
 100 bcd15.906 ± 0.770 a0.108 ± 0.021 def84.094 ± 0.770 a<0.001 <0.001 
 250 cde17.146 ± 0.621 ab0.156 ± 0.021 cde82.854 ± 0.621 ab0.001 <0.001 
 500 e20.412 ± 0.598 bc0.209 ± 0.007 a79.588 ± 0.598 bc0.001 <0.001 
  1000 f24.585 ± 1.845 ab0.156 ± 0.009 b75.415 ± 1.845 bc0.001 <0.001 
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Table 5. Desorbing fractions (Frap, Fslow and Fvery slow) and constant rates (krap, kslow and kvery slow) calculated by a three-compartment model. Values 
represent the mean ± standard error of the mean (n = 5). Different letters indicate significant differences between the treatments assessed by post 
hoc Tukey tests. 

Treatment Concentration 
(mmol l-1) Frap (%) krap (h-1) Fslow (%) kslow (h-1) Fvery slow (%) kvery slow (h-1) 

1 week ageing 

Control 0 de12.078 ± 0.418 ab0.210 ± 0.008 e15.801 ± 0.850 a0.013 ± 0.001 b72.122 ± 1.251 <a0.001 <0.001 
Citric acid 0.5 bcd10.164 ± 0.564 b0.226 ± 0.014 cd9.162 ± 0.224 ab0.021 ± 0.004 d80.674 ± 0.708 <ab0.001 <0.001 
 100 a7.099 ± 0.457 c0.319 ± 0.037 b7.136 ± 0.418 c0.042 ± 0.003 efg85.765 ± 0.224 <abc0.001 <0.001 
 250 b8.984 ± 0.423 b0.242 ± 0.013 bc7.992 ± 0.219 bc0.035 ± 0.003 de83.025 ± 0.254 <abc0.001 <0.001 
 500 cde11.822 ± 0.656 bc0.271 ± 0.029 d10.589 ± 0.536 c0.036 ± 0.004 c77.589 ± 0.563 <cde0.001 <0.001 
 1000 f19.220 ± 0.344 b0.234 ± 0.007 e16.563 ± 0.614 abc0.027 ± 0.005 a64.217 ± 0.657 <cde0.001 <0.001 
Malic acid 0.5 cde11.379 ± 0.524 a0.139 ± 0.002 a3.686 ± 0.473 d0.139 ± 0.002 ef84.935 ± 0.086 <de0.001 <0.001 
 100 bc9.614 ± 0.136 a0.142 ± 0.002 a2.288 ± 0.008 d0.142 ± 0.002 g88.098 ± 0.143 <cde0.001 <0.001 
 250 bcd11.074 ± 0.115 a0.146 ± 0.002 a2.373 ± 0.005 d0.146 ± 0.002 fg86.553 ± 0.119 <de0.001 <0.001 
 500 e13.632 ± 0.260 a0.141 ± 0.003 a2.491 ± 0.012 d0.141 ± 0.003 ef83.877 ± 0.272 <e0.001 <0.001 
 1000 f20.196 ± 0.914 a0.140 ± 0.003 a2.705 ± 0.022 d0.140 ± 0.003 c77.100 ± 0.936 <f0.001 <0.001 

15 weeks ageing 
Control 0 bcd13.115 ± 0.712 b0.172 ± 0.010 d83.646 ± 3.300 <a0.001 <0.001 a3.239 ± 3.234 <a0.001 <0.001 
Citric acid 0.5 a6.389 ± 0.180 bc0.180 ± 0.019 c14.050 ± 4.178 bc0.005 ± 0.001 b79.561 ± 4.036 <ab0.001 <0.001 
 100 bc12.466 ± 0.512 cd0.298 ± 0.023 c16.386 ± 0.491 cd0.010 ± 0.001 b71.149 ± 0.609 <b0.001 <0.001 
 250 bc11.753 ± 1.008 ef0.511 ± 0.053 c18.569 ± 1.781 de0.027 ± 0.007 b69.678 ± 2.345 <ab0.001 <0.001 
 500 ef17.595 ± 1.768 de0.521 ± 0.126 c19.782 ± 1.110 d0.020 ± 0.007 b62.623 ± 2.536 <ab0.001 <0.001 
 1000 g25.120 ± 1.153 de0.398 ± 0.046 c15.909 ± 2.951 de0.026 ± 0.005 b58.971 ± 2.787 ab0.001 <0.001 
Malic acid 0.5 a5.504 ± 0.526 bc0.190 ± 0.021 b1.994 ± 0.305 f0.190 ± 0.021 b92.502 ± 0.324 <a0.001 <0.001 
 100 cde14.762 ± 0.759 a0.090 ± 0.012 a1.057 ± 0.006 f0.090 ± 0.012 b84.181 ± 0.765 <a0.001 <0.001 
 250 def16.916 ± 0.492 b0.150 ± 0.010 d58.727 ± 1.719 a0.001 ± 0.000 b24.357 ± 1.776 <a0.001 <0.001 
 500 f20.465 ± 0.659 bc0.210 ± 0.007 d58.849 ± 1.998 ab0.001 <0.001 ab20.686 ± 1.732 a0.001 <0.001 
  1000 ab9.066 ± 0.771 f0.830 ± 0.032 c18.118 ± 1.007 ef0.061 ± 0.002 ef72.816 ± 1.353 a0.001 <0.001 
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Supplementary information 

Table SI 1. Desorption kinetics of 14C-phenanthrene from mildly aged soil (50 d). Values represent the mean ± standard error of the mean (n = 3). 
Different letters indicate significant differences between the treatments assessed by post hoc Tukey tests 

Two-compartment fitting 

Treatment Concentration 
(mmol l-1) Frap (%) krap (h-1) Fslow (%) kslow (h-1)     

Control 0 ab40.939 ± 3.861 a0.090 ± 0.019 ab59.061 ± 3.861 a0.001 < 0.001     

Citric acid 0.1 a25.905 ± 6.193 a0.133 ± 0.020 b74.095 ± 6.193 a0.001 < 0.001     

 0.5 ab44.164 ± 7.875 a0.119 ± 0.010 ab55.836 ± 7.875 a0.001 < 0.001     

Malic acid 0.1 a25.356 ± 3.052 a0.179 ± 0.007 b74.644 ± 3.052 a0.001 < 0.001     

 0.5 b49.763 ± 3.847 a0.110 ± 0.015 a50.237 ± 3.847 a0.001 < 0.001     

Oxalic acid 0.1 ab37.096 ± 5.009 a0.107 ± 0.017 ab62.904 ± 5.009 a0.001 < 0.001     

 0.5 ab34.857 ± 1.603 a0.151 ± 0.027 ab65.143 ± 1.603 a0.001 ± 0.001     

Succinic acid 0.1 ab30.451 ± 2.869 a0.115 ± 0.036 ab69.549 ± 2.869 a0.000 < 0.001     

 0.5 ab28.999 ± 1.983 a0.123 ± 0.007 ab71.001 ± 1.983 a0.001 < 0.001     

Three-compartment fitting 

Treatment Concentration 
(mmol l-1) Frap (%) krap (h-1) Fslow (%) kslow (h-1) Fvery slow (%) kvery slow (h-1) 

Control 0 ab36.112 ± 5.067 ab0.138 ± 0.023 a56.511 ± 2.855 ab0.003 < 0.001 a7.377 ± 2.458 a0.003 < 0.001 

Citric acid 0.1 a22.920 ± 6.498 ab0.168 ± 0.035 a51.399 ± 18.98 ab0.003 ± 0.001 a25.682 ± 13.80 a0.002 ± 0.001 
 0.5 b56.929 ± 9.031 a0.130 ± 0.083 a30.697 ± 10.45 ab0.007 ± 0.005 a12.374 ± 12.37 a0.001 ± 0.001 

Malic acid 0.1 a23.902 ± 2.529 ab0.289 ± 0.045 a61.384 ± 9.804 ab0.002 ± 0.001 a14.714 ± 8.010 a0.001 ± 0.001 
 0.5 ab43.770 ± 2.514 ab0.193 ± 0.035 a46.991 ± 8.865 ab0.005 ± 0.003 a9.240 ± 6.792 a0.002 ± 0.001 



Oxalic acid 0.1 ab31.645 ± 7.967 ab0.321 ± 0.179 a44.376 ± 9.240 ab0.007 ± 0.005 a23.979 ± 15.78 a0.001 < 0.001 
 0.5 ab29.134 ± 1.809 ab0.375 ± 0.082 a38.480 ± 9.898 ab0.007 ± 0.003 a32.386 ± 10.93 a0.001 ± 0.001 

Succinic acid 0.1 ab29.880 ± 2.748 a0.147 ± 0.058 a64.678 ± 5.535 a0.001 < 0.001 a5.443 ± 4.019 a0.001 ± 0.001 
 0.5 a19.530 ± 0.664 b0.577 ± 0.106 a24.270 ± 5.003 b0.016 ± 0.006 a56.200 ± 5.500 a< 0.001 < 0.001 

  



Table SI 2. Proportion of 14C-phenanthrene (1) extracted with 50 mM HPCD solution, 
(2) mineralisation rate (%, h-1) within the assessed contact time. Values represent the 
mean ± standard error of the mean (n = 3) 

Contact time (h) Treatment Extracted (%)1 Mineralised (%)2 

1 Control 7.269 ± 0.993 1.454 ± 0.199 
0.5 mmol l-1 5.777 ± 0.767 1.155 ± 0.153 
500 mmol l-1 7.854 ± 0.257 1.571 ± 0.051 

3 Control 6.062 ± 0.943 0.505 ± 0.236 
0.5 mmol l-1 6.101 ± 0.358 0.508 ± 0.089 
500 mmol l-1 7.268 ± 1.315 0.605 ± 0.329 

6 Control 5.843 ± 1.035 0.243 ± 0.259 
0.5 mmol l-1 6.264 ± 0.954 0.261 ± 0.238 
500 mmol l-1 5.528 ± 0.818 0.230 ± 0.205 

8 Control 8.146 ± 1.876 0.254 ± 0.469 
0.5 mmol l-1 5.978 ± 1.104 0.186 ± 0.276 
500 mmol l-1 8.495 ± 1.182 0.265 ± 0.296 

24 Control 5.250 ± 3.213 0.054 ± 0.803 
0.5 mmol l-1 3.805 ± 1.050 0.039 ± 0.263 
500 mmol l-1 6.282 ± 1.327 0.065 ± 0.332 

48 Control 1.102 ± 0.108 0.091 ± 0.432 
0.5 mmol l-1 0.929 ± 0.169 0.077 ± 0.676 
500 mmol l-1 1.257 ± 0.157 0.104 ± 0.628 

  



Table SI 3. Sums of squared deviations of desorbed 14C-phenanthrene fitted to a two- and 
three-compartment model. Values represent the mean ± standard error of the mean (n = 5) 

Treatment Concentration 
(mmol l-1) 

Sum of squared difference 
2 compartment fitting 

Sum of squared difference 
3-compartment fitting 

1 week ageing 
Control 0 9.05E-04 ± 1.0E-04 2.24E-04 ± 2.8E-05 
Citric acid 0.5 4.79E-04 ± 3.6E-05 2.53E-04 ± 7.8E-05 
 100 3.97E-04 ± 2.6E-05 1.39E-04 ± 1.3E-05 
 250 4.19E-04 ± 2.4E-05 1.28E-04 ± 1.1E-05 
 500 8.97E-04 ± 1.0E-04 2.73E-04 ± 5.1E-05 
 1000 2.40E-03 ± 2.8E-04 7.09E-04 ± 9.4E-05 
Malic acid 0.5 5.44E-04 ± 4.0E-05 5.44E-04 ± 4.0E-05 
 100 3.13E-04 ± 1.3E-05 3.13E-04 ± 1.3E-05 
 250 4.98E-04 ± 2.0E-05 4.98E-04 ± 2.0E-05 
 500 6.71E-04 ± 1.4E-05 6.71E-04 ± 1.4E-05 
 1000 1.49E-03 ± 1.7E-04 1.49E-03 ± 1.7E-04 

15 weeks ageing 
Control 0 4.50E-04 ± 6.0E-05 4.60E-04 ± 6.0E-05 
Citric acid 0.5 9.59E-05 ± 4.6E-05 6.00E-05 ± 4.0E-05 
 100 1.17E-03 ± 2.0E-04 2.20E-04 ± 9.3E-05 
 250 2.50E-03 ± 3.9E-04 1.48E-04 ± 5.0E-05 
 500 3.59E-03 ± 4.5E-04 9.20E-04 ± 1.9E-04 
 1000 2.99E-03 ± 7.8E-04 3.70E-04 ± 4.8E-05 
Malic acid 0.5 3.92E-04 ± 6.4E-05 4.20E-04 ± 6.6E-05 
 100 4.63E-04 ± 1.3E-04 4.63E-04 ± 1.3E-04 
 250 1.98E-03 ± 1.2E-04 1.28E-03 ± 4.1E-04 
 500 1.75E-03 ± 1.0E-04 1.58E-03 ± 2.3E-04 
  1000 3.70E-03 ± 4.7E-04 2.80E-04 ± 6.8E-05 

  



Concentration (mmol l-1)

0 0.5 100 250 500 1000

F r
ap

 (%
)

0

5

10

15

20

25

30

Concentration (mmol l-1)

0 0.5 100 250 500 1000

A B

 

Figure SI 4. Rapid desorbing fractions (Frap) of 14C-phenanthrene from soil aged for 1 (A) 

and 15 (B) weeks extracted with citric (●) and malic (○) acid. Values were obtained using a 

three-compartment model fitting. Error bars represent the standard error of the mean (n = 5).
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Figure SI 5. Rate constants of the rapid desorbing fractions (krap) of 14C-phenanthrene from 

soil aged for 1 (A) and 15 (B) weeks extracted with citric (●) and malic (○) acid. Values were 

obtained using a three-compartment model fitting. Error bars represent the standard error of 

the mean (n = 5).  
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Figure SI 6. Slow desorbing fractions (Fslow) of 14C-phenanthrene from soil aged for 1 (A) 

and 15 (B) weeks extracted with citric (●) and malic (○) acid. Values were obtained using a 

three-compartment model fitting. Error bars represent the standard error of the mean (n = 5).

Concentration (mmol l-1)

0 0.5 100 250 500 1000

k s
lo

w
 (h

-1
)

0.00

0.05

0.10

0.15

0.20

0.25

Concentration (mmol l-1)

0 0.5 100 250 500 1000

A B

 

Figure SI 7. Rate constants of the slow desorbing fractions (kslow) of 14C-phenanthrene from 

soil aged for 1 (A) and 15 (B) weeks extracted with citric (●) and malic (○) acid. Values were 

obtained using a three-compartment model fitting. Error bars represent the standard error of 

the mean (n = 5).  



Concentration (mmol l-1)

0 0.5 100 250 500 1000

F v
er

y 
sl

ow
 (%

)

0

20

40

60

80

100

A

Concentration (mmol l-1)

0 0.5 100 250 500 1000

B

 
Figure SI 8. Very slow desorbing fractions (Fvery slow) of 14C-phenanthrene from soil aged for 

1 (A) and 15 (B) weeks extracted with citric (●) and malic (○) acid. Values were obtained 

using a three-compartment model fitting. Error bars represent the standard error of the mean 

(n = 5).
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Figure SI 9. Rate constants of the very slow desorbing fractions (kvery slow) of 14C-

phenanthrene from soil aged for 1 (A) and 15 (B) weeks extracted with citric (●) and malic 

(○) acid. Values were obtained using a three-compartment model fitting. Error bars represent 

the standard error of the mean (n = 5). 
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