
 

Remote Sens. 2019, 11, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing 

Type of the Paper (Article, Review, Communication, etc.) 1 

Two-Phase Object-Based Deep Learning for Multi-2 

temporal SAR image change Detection 3 

Xinzheng Zhang1,2,*, Guo Liu1, Ce Zhang3,4*, Peter M Atkinson3, Xiaoheng Tan1,2, Xin Jian1,2, 4 
Xichuan Zhou1, Yongming Li1 5 

1 College of Microelectronics and Communication Engineering, Chongqing University, Chongqing, China;  6 

2 Chongqing Key Laboratory of Space Information Network and Intelligent Information Fusion, Chongqing, 7 
China; 8 

3 Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom; 9 

4 UK Centre for Ecology & Hydrology, Library Avenue, Lancaster LA1 4AP, United Kingdom; 10 

 11 

* Correspondence e-mail: zhangxinzheng@cqu.edu.cn; c.zhang9@lancaster.ac.uk 12 

Received: date; Accepted: date; Published: date 13 

Abstract: Change detection is one of the fundamental applications of synthetic aperture radar (SAR) 14 
images. However, speckle noise presented in SAR images has a negative effect on change detection, 15 
leading to frequent false alarms in the mapping products. In this research, a novel two-phase object-16 
based deep learning approach is proposed for multi-temporal SAR image change detection. 17 
Compared with traditional methods, the proposed approach brings two main innovations. One is 18 
to classify all pixels into three categories rather than two categories: unchanged pixels, changed 19 
pixels caused by strong speckle (false changes), and changed pixels formed by real terrain variation 20 
(real changes). The other is to group neighboring pixels into superpixel objects such as to exploit 21 
local spatial context. Two phases are designed in the methodology: 1) Generate objects based on the 22 
simple linear iterative clustering (SLIC) algorithm, and discriminate these objects into changed and 23 
unchanged classes using fuzzy c-means (FCM) clustering and a deep PCANet. The prediction of 24 
this Phase is the set of changed and unchanged superpixels. 2) Deep learning on the pixel sets over 25 
the changed superpixels only, obtained in the first phase, to discriminate real changes from false 26 
changes. SLIC is employed again to achieve new superpixels in the second phase. Low rank and 27 
sparse decomposition are applied to these new superpixels to suppress speckle noise significantly. 28 
A further clustering step is applied to these new superpixels via FCM. A new PCANet is then trained 29 
to classify two kinds of changed superpixels to achieve the final change maps. Numerical 30 
experiments demonstrate that, compared with benchmark methods, the proposed approach can 31 
distinguish real changes from false changes effectively with significantly reduced false alarm rates, 32 
and achieve up to 99.71% change detection accuracy using multi-temporal SAR imagery.  33 

Keywords: Synthetic Aperture Radar (SAR); Change Detection; Deep Learning; Superpixel. 34 

 35 

1. Introduction 36 

With its cloud penetrating capability, synthetic aperture radar (SAR) images have drawn a large 37 
amount of attention, for example, in environmental surveillance, urban planning and military 38 
applications over the past decades. Using SAR images for change detection often involves two images 39 
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acquired over the same area at different times, utilising the information in the differences between 40 
them.  41 

Depending on the availability of a difference image (DI), change detection approaches can be 42 
divided into two categories. One is post-classification comparison which is undertaken to identify 43 
changed and unchanged regions directly from two images that were classified independently before 44 
the analysis. In this approach, the change detection result is not influenced by radiation normalization 45 
and geometric correction. However, the accuracy of the change detection relies on the quality of the 46 
classification results, with errors propagating to the outcome. The other approach is post-comparison 47 
analysis, in which change detection is achieved by generating a DI from two multi-temporal images, 48 
and obtaining the final change map from it. The classification errors in this case do not accumulate, 49 
but the way that the DI is generted may influence the validity of the change detection results [1].  50 

From a machine learning perspective, change detection can also be categorized into supervised 51 
and unsupervised approaches, depending on whether labeled data are used or not [2-3]. For 52 
supervised methods, features extracted from labeled data are fed into a subsequent classifier. This 53 
strategy requires a significant number of ground reference data to train the algorithm, and the 54 
labelling process can be extremely labor-intensive and time-consuming [4]. In [5], a context-sensitive 55 
similarity measure is presented based on supervised classification to amplify the dissimilarity 56 
between changed and unchanged pixels. Unsupervised methods for change detection can be viewed 57 
as a clustering approach which divides the data into changed and unchanged classes [6-7]. In [8], the 58 
DI is cast into an eigenvector space and k-means clustering is used to partition the space into two 59 
clusters. In [9], a modified Markov Random Field (MRF) energy function is employed to update 60 
iteratively the membership association of fuzzy c-means (FCM), to cluster the DI into two classes. In 61 
[10] a novel method based on spatial fuzzy clustering was used to add spatial information to enhance 62 
change detection performance. 63 

Recently, deep learning has gained widespread attention in the field of computer vision and 64 
pattern recognition, and demonstrated state-of-the-art prediction accuracy in various challenging 65 
tasks, such as target detection, image classification, etc.. The major benefit of deep learning is that it 66 
can extract abstract and high-level representations that are hard to hand-code through feature 67 
engineering [11,12]. Besides, deep networks are often pre-trained using a large-scale dataset (e.g. 68 
ImageNet), and fine-tuned to other domains including remote sensing. Convolutional neural 69 
networks (CNNs) are considered as the pioneer of deep learning methods which mimic the receptive 70 
fields of the human brain neural cortex, with less redundancy and complexity through the weight-71 
sharing architecture [12,13]. Some well-developed CNN models, such as AlexNet [12], VGG [14] and 72 
ResNet [15], have been adopted quickly in the remote sensing community to solve real-world 73 
challenges (e.g., land cover and land use classification).  74 

Given the advantages of deep learning, some pioneering methods have been proposed for multi-75 
temporal SAR image change detection. In [1], a stack of restricted Boltzmann machine (RBM) 76 
networks was used to learn efficiently the relationship between two multi-temporal SAR images for 77 
change detection. A dual-channel CNN structure was used to extract features of two SAR images for 78 
change detection [16]. [17] presents a local restricted CNN for SAR image change detection, which is 79 
formed by imposing a spatial constraint on the output layer of the CNN, such as to learn from several 80 
layered difference images. In [18], a stacked contractive autoencoder (sCAE) using a contractive 81 
penalty was proposed to promote local invariance and robustness, such that robust features can be 82 
extracted from superpixels of SAR images for change detection. In [19], a deep learning-based 83 
weakly supervised framework was developed for urban change detection using multi-temporal 84 
polarimetric SAR data. In [20], a transferred multi-level fusion network (MLFN) was trained using 85 
a large dataset and fine-tuned to extract features from SAR image patches for sea ice change detection. 86 
PCANet is an alternative deep learning model suitable for SAR image change detection [22,23,24]. In 87 
PCANet, the cascaded PCA filters and binary quantization (hashing) are used as a data-adapting 88 
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convolution filter bank in each stage and in the nonlinearity layer [21]. During the PCANet training 89 
process, there is no requirement for regularized parameters and numerical optimization solvers, 90 
which promotes the efficiency and accuracy of the network. In [22], PCANet was shown to be 91 
accurate, with great potential for SAR image change detection. In [23], context-aware saliency 92 
detection was employed to obtain training samples for PCANet in SAR image change detection, 93 
which reduces the number of training samples required while maintaining the reliability of the 94 
training sample sets, leading to less training time and computational efficiency. In [24], a 95 
morphologically supervised PCANet was designed to overcome the class imbalance problem in SAR 96 
image change detection (changed pixels are far less common than unchanged pixels).  97 

Although the above-mentioned deep learning methods exhibit excellent performance in SAR 98 
image change detection, there are still some shortcomings. First of all, all the above methods are 99 
actually binary classification algorithms, which separate pixels of the changed class (CC) from pixels 100 
of the unchanged class (UC). In reality, variation in the pixel values caused by strong speckle noise 101 
may lead to allocation to the changed class, potentially producing a large number of false alarms. 102 
Here, strong speckle noise refers to those speckle which have amplitude values similar to the terrain 103 
pixel amplitude values or even larger. Thus, strong speckle noise can bring significant false alarms to 104 
change detection. However, for SAR image change detection, the strong or weak speckle is relative 105 
to the amplitudes of terrain pixels. Due to the complexity of the terrain background, some objects 106 
have smaller pixel amplitude values in the SAR image, and some objects have larger pixel amplitude 107 
values in the SAR image. So it is difficult to use a general certain value or standard to measure 108 
"strong" degree in SAR image change detection. Therefore, in this research, only the term "strong 109 
speckle" is introduced qualitatively. There are actually two kinds of changed pixels: one is produced 110 
by real terrain object changes (i.e. real changed class, RCC), and the other caused by strong speckle 111 
noise (i.e. false changed class, FCC). For example, if there was a building in a location in the first 112 
temporal SAR image, but it was no longer available in the second temporal SAR image. This situation 113 
belongs to RCC. The FCC means that there is no change in terrain, but the change is caused by the 114 
speckle noise. For example, the original speckle noise is weak in the first temporal SAR image, but 115 
the later speckle noise of the same location is very strong in the second temporal SAR image. This 116 
kind of strong speckle noise variation is often regarded by the change detection algorithm as a real 117 
terrain change leading to false alarms. Therefore, this kind of change belongs to the FCC. Even if deep 118 
learning models have powerful classification capabilities, there will still be several false alarms due 119 
to strong speckle noise. Secondly, in current deep learning-based SAR image change detection, high 120 
quality training samples are required to train the networks. Those training samples are commonly 121 
taken as rectangular patches centering around the pixels that are of interest. However, this operation 122 
often introduces artefacts on the border of these rectangular patches, which produces uncertainty in 123 
the classification maps. For example, unchanged pixels and changed pixels could potentially exist in 124 
one image patch simultaneously. Heterogeneous pixels can also be found in one rectangular patch, 125 
which will increase the difficulty of distinguishing between CC and UC classes.  126 

In this research, a new framework of two-phase object-based deep learning (TPOBDL) is 127 
proposed for SAR image change detection. Object-based deep learning has been shown to be suitable 128 
for remote sensing applications [25]. Thus, in TPOBDL, change detection is implemented in an object-129 
based rather than pixel-wise fashion. Superpixel generation is applied to SAR images to acquire 130 
image objects (also called superpixels in computer science, and here) using a simple linear iterative 131 
clustering (SLIC) algorithm [26]. In fact, all processing steps in TPOBDL are based on image 132 
superpixels. Since a superpixel is a local set of homogeneous pixels, superpixels can reflect the local 133 
spatial context [27,28,29]. Therefore, this approach can overcome the problems caused by operations 134 
involving rectangular patches, such as introducing artefacts and uncertainty in the classification. The 135 
proposed approach involves two phases to differentiate RCC and FCC objects in an automated 136 
approach. Our two-phase deep learning strategy is, thus: Phase 1 deep learning to classify the objects 137 
of CC and those of UC, and Phase 2 deep learning to classify objects of CC into RCC and FCC objects. 138 
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This two-phase framework reduces the classification difficulty faced by deep learning models at each 139 
phase, and is conducive to increasing the overall accuracy of change detection.   140 

Our major contributions are as follows: 141 

1) Change detection through an object-based rather than pixel-wise approach. Superpixel 142 
generation is applied to SAR images to obtain objects via SLIC, such that the local spatial context 143 
is captured.  144 

2) A two-phase approach is designed for multi-temporal SAR image change detection. Deep 145 
learning methods are developed to identify objects of FCC and RCC by combining low rank and 146 
sparse decomposition (LRSD) with reduced false alarms. 147 

The remainder of this paper is organized as follows. In Section 2, the proposed approach is 148 
described in detail. Section 3 presents the experimental datasets and results. Discussion on the 149 
experiment results and the proposed approach are shown in Section 4. Finally, conclusions are drawn 150 
in Section 5. 151 

2. Methodology 152 

2.1. Problem Statement and Overview of the Proposed Method 153 

Consider two SAR images taken from the same location, but at different times 1I  and 2I , both 154 
of size NM  . Change detection is required to generate a binary change map labeling changed 155 
pixels and unchanged pixels between 1I  and 2I . Figure 1 shows the scheme of TPOBDL, which 156 
consists mainly of two phases of deep learning, described in detail as follows. 157 

 158 
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Figure 1. The scheme of the proposed approach. 159 

2.2. First Phase Deep Learning 160 

2.2.1. Superpixel Generation of Multi-Temporal SAR Images 161 

In existing deep learning-based SAR image change detection methods, the patches for the 162 
training and testing of deep neural networks are generated mainly in the shape of rectangles, which 163 
is convenient [24]. However, the operation of taking rectangular patches has significant 164 
disadvantages for SAR image change detection. Firstly, when the current pixel is near the boundary 165 
between changed and unchanged regions, the patch generated will contain both changed and 166 
unchanged pixels, which may introduce uncertainty to the deep neural network and impair the 167 
learning process [25]. Secondly, rectangular patch generation ignores the local spatial context, which 168 
is conducive to the change detection. Instead of taking a rectangular patch, in this paper, patches 169 
come from superpixels, where all pixels are homogeneous. This reduces the likelihood that 170 
heterogeneous pixels, or even changed and unchanged pixels appear in one patch simultaneously. 171 
Patches that are superpixels, compared with traditional rectangular patches, provide more valid 172 
information to the deep learning model. In fact, deep learning based on superpixels is an object-based 173 
approach, which have more advantages. 174 

In this research, we use SLIC to apply superpixel generation to two multitemporal SAR images 175 

1I  and 2I . SLIC is chosen for its simplicity, flexibility in compactness, memory efficiency and high 176 

accuracy, as applied to SAR image processing [30,31]. First, superpixels of 1I  are obtained by SLIC. 177 

Then the superpixel pattern from 1I  is copied to 2I , as shown in Fig 2. Pattern copying ensures 178 

that the corresponding two superpixels of 1I  and 2I  
represent the same local region. 179 

The Super-pixel 
Segmentation of I1

The Super-pixel Segmentation 
Pattern of I1

The Super-pixel 
Segmentation of I2

Use the 
Pattern 

on I2

1I 1I 2I

2I

180 
    Figure 2. Illustration of copying superpixel pattern from 1I  to 2I . 181 

The principles of SLIC are briefly described as follows. Firstly, the number of superpixels is set 182 
as v , which means 1I  is portioned into v  pixel-blocks at the beginning. The center of each pixel-183 

block is called a seed. The distance (step length) between two seeds is defined as vNM  . 184 
To avoid seeds falling on the contour boundary with a larger gradient, the seeds are redefined where 185 
the gradient is the smallest in the neighborhood. Then searching in the neighborhood of each seed, 186 
the distance between a pixel in the neighborhood and the seed, including distance in feature (colour) 187 
space cd  and in geographical space sd , is gained by  188 

     222
ijijijc bbaalld   (1)

   22
ijijs yyxxd   (2)
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where cd  means feature (color) distance ,   is the maximum color distance in the SLIC algorithm. 189 

Because color distances can vary significantly from image to image, the parameter  can be fixed to 190 
a constant. Based on the experiments in this research, we determined the value of this parameter to 191 
be 10. sd  means spatial distance, and D  is the distance metric. il , ia  and ib  represent the three 192 

color values of the seed in the CIELAB color space Tl a b  respectively , and ix , iy  represents the 193 

coordinate of the seed. jl , ja , jb , jx  and jy  are corresponding parameters of the pixel in the 194 

neighborhood. In this manner, a pixel will be searched many times with different seeds. The seed 195 
with the smallest D  is taken as the clustering center of this pixel. Then the seeds are updated. 196 
According to observations in our experiments, we found that the SLIC algorithm converges within 197 
10 iterations on the SAR images. 198 

Superpixels possess a range of geometries and sizes (i.e., numbers of pixels). In contrast, the 199 
inputs of the deep neural network are required to be uniform rectangles with the same numbers of 200 
pixels. Thus, the superpixels need to be reshaped into rectangles before being fed into the network. 201 
Assume that the input patches are of size kk  . Then, each reshaped superpixel should also have 202 

2k  pixels. If a superpixel contains p  pixels, there are two ways to reshape the superpixel. One is 203 
2kp  . For this case, assume that a superpixel represented as m

in,S  (where m  represents the 204 

phase it is in, in this stage 1m , n  represents the image it comes from, 2,1n , i  is an index of 205 

the superpixels, vi ,,2,1  ) is reshaped to a vector m
in,V having 2k  pixels. The first p  pixels of 206 

m
in,V  is filled by pixels of m

in,S , and the other pk 2
 pixels are chosen randomly from m

in,S . The 207 

other one is 2kp  . For this case, we reshape the superpixel m
in,S  into 1q  vectors 

m
in 1,,V ，208 

m
in 2,,V ，…，

m
qin ,,V , each of which has 2k  pixels, and an extra vector with 2- qkp  pixels. This extra 209 

vector is filled with a vector a
qibV )1(,,   of 𝑘ଶ  pixels under the condition 2kp  . For a unified 210 

description, m
inV ,  of case 2kp   is redefined as m

inV 1,, . 211 

2.2.2. Superpixel DI Generation and FCM 212 

The reshaped superpixel vectors 1
,,1 hiV

 
and 1

,,2 hiV
 
 ( 1,,,2,1  qqh  ) from 1

,1 iS  and 1
,2 iS  213 

of 1I  and 2I  are fed into the superpixel DI (SPDI) operator 1
,,2

1
,,1

1
, - hihihi VVF  . All 1

,hiF  form 214 

a SPDI.
 
The reason for generating the superpixel difference map is to help the FCM algorithm to 215 

cluster satsifactorily in the next step. Then all the 1
,hiF  are clustered into three classes by FCM: 216 

changed class (CC) 1
c , unchanged class (UC) 1

u  and intermediate class 1
m . Details of FCM can 217 

be found in [32]. 1
,hiF  belonging to 1

c  or 1
u  means that superpixel 1

,1 iS  and 1
,2 iS  218 

corresponding to 1
,,1 hiV  and 1

,,2 hiV  have a high probability to be changed or unchanged, 219 

respectively. The pair of superpixels 1
,1 iS  and 1

,2 iS  with the case 𝑝 ≤ 𝑘ଶ can easily be inferred to 220 

be one of three classes, because each pair of them only has one set of 1
,,1 hiV

 
and 1

,,2 hiV  which forms 221 

one 1
,hiF . However, for superpixels 1

,1 jS  and 1
,2 jS  with 𝑝 > 𝑘ଶ, each pair has 𝑞 + 1 sets of 1

,,1 hiV
 

222 

and 1
,,2 hiV , which leads to 𝑞 + 1 1

,hiF . Thus, a voting mechanism is employed to determine their 223 
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classes. Specifically, for the 𝑞 + 1 1
,hiF , those clustered into 1

c  are weighted by 1, those clustered 224 

into 1
u  are weighted by 0 and those clustered into 1

m  are weighted by 0.5. Then, all 𝑞 + 1 225 

weights are summed to be  , and the class of superpixel pair 1
,1 jS  and 1

,2 jS  with 𝑝 > 𝑘ଶ  is 226 

determined as follows: 227 

class of superpixel pair 1
,1 jS  and 1

,2 jS













5.0)1(,

5.0)1(8.0,

8.0)1(,

1

1

1

q

q

q

u

m

c





          (4)
 228 

These specific thresholds in (4) are selected according to the voting mechanism. If / ( 1) 0.5q   , 229 

it means that UC are the majority in q + 1 1
,i hF , so the corresponding superpixel pair are identified as 230 

UC. If 0.8 / ( 1) 0.5q    , it indicates that the intermediate class has the majority and there are 231 
a few changed class, so the corresponding superpixel pair is judged as the intermediate class. If 232 

/ ( 1) 0.8q   , it indicates that CC is the majority, so the corresponding superpixel pair is judged 233 
as CC.  234 

The 1
,, hibV  determined as CC and UC are reshaped to patches, which will be fed into the deep 235 

learning model as training samples. Those 1
,, hibV  belonging to the intermediate class will be classified 236 

to CC or UC by the trained deep neural network. 237 

2.2.3 Training PCANet1 238 

As a type of deep learning model, PCANet is easy to train and can be adapted to other tasks. For 239 
SAR image change detection, PCANet has been shown to learn non-linear relations from multi-240 
temporal SAR images, which is an advantage compared to other deep neural networks [22]. It has 241 
already been employed in SAR image change detection [22,23,24]. Considering these superiorities of 242 
PCANet in SAR image change detection tasks, we use PCANet here to further classify those 243 
superpixel pairs identified to the intermediate class in the previous phase. Since PCANet is used in 244 
the second phase, the network in the first phase is called PCANet1.  245 

First, the 1
, ,b i hV  of CC and UC are used as samples to train PCANet1. 1

1, ,i hV  and 1
2, ,i hV  are 246 

reshaped and combined to form the patches ,i hR  to be fed into the network (Fig. 3). If 1I  is 247 

segmented into v  superpixels and the i -th superpixel is reorganized as i  vectors. Then the 248 

number of ,i hR  of size 2k k  is 
1

=
v

ii



  . 249 

 250 
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Figure 3. Patch generation in stage 1. 251 

The structure of PCANet1 is shown in Fig. 4, consisting of two PCA filters convolution layers, a 252 
Hashing and histogram generation layer. After patch generation, all ,i hR  have their means 253 

removed, are vectorized and combined as a matrix Y .  254 

1 21,1 1, 2,1 2, ,1 ,, , , , , , , , ,
vv v        Y y y y y y y                     (5) 255 

where ,i hy  denotes mean-removed and vectorized ,i hR . 256 

 257 

Figure 4. the structure of PCANet. 258 

Next, we choose 1L  principal eigenvectors of TYY  (T denotes the matrix transposition) as the 259 

PCA filters 1
lW  of the first layer, that is 260 

  2 21 T 2 2
1mat ( ) , 1,2, ,k k

l ql l L   W YY                   (6) 261 

where T( )ql YY  means l  th principal eigenvector and mat( )x  can map a vector 
44kx  262 

into a matrix 
2 22 2k kW . So, the output of the first layer is  263 

1
, ,
l
i h i h l R R W                                    (7) 264 

where the   operator means 2-D convolution. ,
l
i hR  forms the input of the second layer. 265 

In the second layer, all ,
l
i hR  have their means removed and are vectorized to be ,

l
i hz , which is 266 

combined to be a matrix 
1 21,1 1, 2,1 2, ,1 ,, , , , , , , , ,

v

l l l l l l l
v v        Z z z z z z z . Then, all lZ are 267 

combined as: 268 

11 2, , L   Z Z Z Z                                  (8) 269 

The following step is similar to that for the first layer. We choose 2L  principal eigenvectors of 270 
TZZ  as the PCA filters 2

lW  of the first layer, that is: 271 

  2 22 T 2 2
2mat ( ) , 1,2, ,k k

p ql p L   W ZZ                 （9） 272 

And then the outputs of the second convolution layer are: 273 
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, 2
, ,
l p l
i h i h p R R W                                (10) 274 

After these two convolution layers, every ,i hR  has 1 2L L  outputs. Each output is binarized by 275 

the Heaviside step function (one for positive input and zero otherwise) to obtain an integer value of 276 

each pixel of ,
l
i hR  , which is in the range 20 2 1L  ， . Thus, we gain an integer-value image ,

l
i hT  277 

2
1 2

, ,
1

= 2 ( )
L

l p l
i h i h p

p

H



T R W                          （11） 278 

Further,   ,
l
i hT  is transformed into a histogram hist ൬ ,

l
i hT ൰. Then the feature of input ,i hR  is 279 

defined by PCANet as:  280 

     11 2
, , , ,hist hist hist L
i h i h i h i h    ， ， ，T T T                  (12) 281 

The features obtained as above are fed into a support vector machine (SVM) to train a model 282 
which can classify superpixels of intermediate class to CC or UC. It is worth noting that there are 283 
almost no CC objects in the final UC at the end of the first phase. The reason is as follows. If FCM 284 
clusters all superpixel vectors into two categories, namely UC and CC, then UC parts may contain 285 
CC objects probably. To avoid this problem, in the first phase, the clustering results are three 286 
categories, UC, CC, and intermediate class. In this way, the obtained UC and CC are of highly 287 
probability. It means that there are almost no CC objects in UC, and there are almost no UC objects 288 
in CC. For those CC objects that are easily assigned to UC in only two categories clustering, they are 289 
assigned to intermediate class in three categories clustering. Therefore, those samples with high 290 
uncertainty are assigned to the intermediate class. Later, we use the high probability UC and CC 291 
objects to train PCANet1, and use the trained PCANet1 to accurately classify objects of the 292 
intermediate class. Because PCANet1 can extract the deep features of UC and CC, it can classify 293 
objects belonging to intermediate class to UC or CC well. In summary, we combine FCM and PCANet 294 
to ensure that there are almost no CC Objects in UC, thereby ensuring extremely low missing 295 
detection. However,  it is worth noting that the CC of the first phase includes not only the changed 296 
pixels caused by real terrain variation, but also changed pixels caused by strong speckle noise.  297 

2.3. Second Phase Deep Learning 298 

As stated above, when SAR images are contaminated by strong speckle noise, the CC of the first 299 
phase contains two categories of change. One is false change caused by speckle noise called FCC, the 300 
other is caused by real terrain variation called RCC. Thus, in the second phase, we aim to separate 301 
FCC and RCC, between which the intra-class interval is so small that they are difficult to distinguish. 302 
However, the hypostatic difference between the two categories is such that the change caused by 303 
strong speckle noise has strong randomness. If the influence of the random noise can be greatly 304 
weakened, discrimination between the RCC and FCC can be increased. Therefore, in the second deep 305 
learning phase, we adopt different methods to the first phase. One key step in the second phase is 306 
speckle noise suppression based on low rank and sparse decomposition. Details are as follows. 307 

2.3.1. Superpixel Generation on the Updated SAR Images 308 

In the second phase, we firstly use mask processing on the original SAR images 1I  and 2I  to 309 
set the pixels classified as UC in the first phase to zero, thus, easing the burden on the classifier in 310 
this phase. Then SLIC is conducted on these two masked images to generate new superpixel objects 311 
denoted by 2

,b iS . The superpixel generation in the phase has two differences from that in the first 312 

phase. Firstly, the superpixel generation of this phase is based on the masked images, so the spatial 313 
context of the pixels has altered significantly leading to different superpixel patterns. Secondly, when 314 
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applying SLIC in this phase, we set the number of pixels of each superpixel to be less than that in the 315 
first phase because there are many discontinuous areas caused by the mask operation compared to 316 
the generation in the first phase. Then we reshape the superpixel objects 2

,b iS  into vectors 2
, ,b i hV  317 

using a strategy similar to that in the first phase. 318 

2.3.2. Low Rank and Sparse Decomposition 319 

The principle of using LRSD is that the pair of noisy superpixels from the same unchanged area 320 
of  1I  and 2I , have an inherent large correlation with a low rank characteristic. Therefore, to 321 

discriminate RCC and FCC，we propose an idea based on LRSD to suppress speckle noise and 322 
restore the superpixel objects. The LRSD model establishes the effective expression of observed data 323 
with noise [33, 34]. Low rank regularization constraints and sparse regularization constraints can 324 
separate noise effectively from observed data and recover data. By optimizing the LRSD model, 325 
speckle noise can be separated and observed objects restored, which may greatly increase the 326 
discrimination between RCC and FCC. 327 

At first, we apply a logarithmic operation on each vector of superpixel objects to convert 328 
multiplicative speckle noise to additive noise. Then, each vector can be formulated as follows. 329 

2 2 2
, , , , , ,b i h b i h b i h V u e                                   (13) 330 

Where 2
, ,b i hu  indicates the  pixels of observed objects  ideally without any speckle noise, and 2

, ,b i he  331 

indicates additive speckle noise. All vectors 2
1, ,i hV  and 2

2, ,i hV  are arranged in pairs to construct a 332 

matrix
1 1

2 2 2 2 2 2 2 2
1,1,1 2,1,1 1,1, 2,1, 1, ,1 2, ,1 1,1, 2,1,= , , , , , , , , , ,

v vq q v v q q
  Φ V V V V V V V V    , as shown in Fig. 5. Thus, 333 

we can obtain the matrix version of equation (13) as equation (14). 334 

= Φ U E                                    （14） 335 

Where, 
1 1

2 2 2 2 2 2 2 2
1,1,1 2,1,1 1,1, 2,1, 1, ,1 2, ,1 1,1, 2,1,= , , , , , , , , , ,

v vq q v v q q
  U u u u u u u u u   , 336 

1 1

2 2 2 2 2 2 2 2
1,1,1 2,1,1 1,1, 2,1, 1, ,1 2, ,1 1,1, 2,1,= , , , , , , , , , ,

v vq q v v q q
  E e e e e e e e e   . 337 

 338 
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Figure 5. Construction of matrix Φ . 339 

According to the principle of low rank representation, in order to estimate a low rank matrix U  340 
and a spare matrix E  from a noise-contaminated observed Φ , we formulate an optimization 341 
problem as follows. 342 

 
2,1 2,1

min (1 ) , subject to = +  

  

U,E
U U E Φ U E         （15） 343 

Where ‖⋅‖∗ indicates the nuclear norm, ‖⋅‖ଶ,ଵ indicates the 𝑙ଵ norm of a vector formed by the 𝑙ଶ 344 
norm of the column vector of the underlying matrix. ‖⋅‖∗ induces sparsity of the singular values of 345 
the matrix, and ‖⋅‖ଶ,ଵ induces sparsity of the elements of the matrix. 346 

The optimization problem can be solved by an augmented Lagrange algorithm. The augmented 347 
Lagrange formula of the problem (15) is as follows: 348 

2

2,1 2,1
( , , , ) (1 ) , - -

2 F
L

   


       U E X U U E X Φ U E Φ U E   (15) 349 

Where X  is the Lagrange multiplier. Given kX X  and k  , the key to solving the problem 350 

is to solve:  351 

,
min ( , , ; )k kL 
U E

U E X                             （16） 352 

the solution of which will emerge though iteration. First, fix kU U , and solve: 353 

1 arg min ( , , ; )k k k kL  
E

E U E X                          (17) 354 

Then, fix 1kE E ,  and solve: 355 

1 1arg min ( , , ; )k k k k kL  
U

U U E X                        (18) 356 

After LRSD, we utilize column vectors 2
1, ,i hu  and 2

2, ,i hu  of low rank matrix U  to restore 357 
2
, ,b i hV , abandoning the noise matrix E , as shown in Fig. 6. 358 

 359 

Figure 6. LRSD of the vectors from superpixel objects. 360 

2.3.3. SPDI Generation and FCM 361 
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In the second phase, the difference vector is obtained from the superpixel vectors restored by 362 

LRSD, and FCM clustering is also adopted. At this stage, 2 2 2
, 1, , 2, ,i h i h i h F u u  , forming a new SPDI, 363 

is taken as the input of FCM, to be clustered into three classes, FCC 2
fc , RCC 2

rc  and the 364 

intermediate class 2
mc . 365 

2.3.4. Training PCANet2 and Obtaining the Final Change Map 366 

As mentioned earlier, in the second phase, the FCM clusters the superpixel vectors into three 367 

categories, which are RCC 2
rc , FCC 2

fc  and the intermediate class 2
mc . RCC is the category of 368 

those superpixel vectors that have real changes with a high probability caused by terrain objects. FCC 369 

is the category of those superpixel vectors that have false changes with a high probability caused by 370 

strong speckle noise. Other superpixel vectors are with high uncertainty, which are difficult to be 371 

determined as RCC or FCC. Thus, those superpixel vectors with high uncertainty is named the 372 

intermediate class. This is the role of the intermediate classes. In fact, these superpixel vectors of the 373 

intermediate class belong to either RCC or FCC. However, FCM cannot identify the category of these 374 

superpixel vectors with higher uncertainty due to its limited clustering ability. Therefore, a deep 375 

learning classifier is needed to accurately identify whether these superpixel vectors of the 376 

intermediate class belong to  RCC or FCC. We design a new PCANet model to accomplish this 377 

precise identification task. To distinguish it from the first phase, we named this PCANet as PCANet2, 378 

the structure of which is the same as PCANet1.  379 

The model training of PCANet2 is to use FCC and RCC superpixel vectors obtained by FCM as 380 

training samples to train the SVM in PCANet2. The training process of PCANet2 is similar to 381 

PCANet1, except that the training samples of the two deep learning model are different. After model 382 

training, PCANet2 with the trained SVM can accurate identify superpixel vectors of intermediate 383 

classes to be RCC or FCC.  Also, since the size of the superpixels of this phase is smaller than that in 384 

the first phase, the patch size of PCANet2 is smaller than that of PCANet1 relatively. Once the 385 

network extracts the features of all the training samples, the extracted features are employed to train 386 

an SVM model. Further, those vectors belonging to  the intermediate class 2
mc are fed into the 387 

PCANet2 with the trained SVM to be classified to FCC or RCC. It is worth noting that the 388 

classification task of the PCANet2 is performed only once, without any iteration. In this way, we 389 

obtain the result of the second phase, which discriminates strong-noise-induced changes and real 390 

terrain changes. Finally, the real changed pixels of the SAR images are only the pixels of superpixel 391 

objects belonging to RCC 2
rc . By doing this, the final binary change detection result can be obtained. 392 

2.4. Computational Complexity 393 

The analysis of the computational complexity of the method proposed in this paper is as follows. 394 
In the first phase, the computational complexity of SLIC is ( )O MN , the FCM is ( )O MNk , the 395 

PCANet1 is 2 4
1 2( ( ) )O MNk L L MNk  , and the SVM is 2( )O MNk . In the second phase, due to 396 

the masking operation, the number of pixels actually participating in the operation is no longer 397 
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M N . For ease of description, it is assumed that the number of pixels actually participating in the 398 
operation can be arranged into a rectangle of size M N  . Then, the computational complexity of 399 
SLIC is ( )O MN  , the LRSD is 3( )O MN k k    , where k   is one dimension of a patch reshaped 400 
from a superpixel in the second phase. The computational complexity of FCM is ( )O MN k   , the 401 

PCANet2 is 2 4
1 2( ( ) )O M N k L L M N k       , and the SVM is 2( )O MN k   .Therefore, the total 402 

computational complexity of the proposed method is summed as 403 

2 2 2 2
1 2 1 2( ( ) ( ))O MNk M N k MNk L L k M N k L L k             . 404 

3. Experiments and Results 405 

To demonstrate the accuracy and effectiveness of the proposed approach, we compared 406 
TPOBDL with other state-of-the-art methods: principal component analysis and k-means clustering 407 
(PCAKM) [8], Gabor feature extraction and PCANet (GaborPCANet) [22], neighborhood-based ratio 408 
and extreme learning machine (NR_ELM) [35] and convolutional-wavelet neural network 409 

(CWNN)[36]. 410 

3.1. Datasets and Experimental Setup 411 

The pre-requisite steps for applying SAR images include geometric correction, radiation 412 

correction, and geocoding. Particularly, the multi-temporal SAR images should be registered before 413 

change detection. Our experimental datasets were registered by the commercial satellite data 414 

supplier at high geometric accuracy. 415 

We applied the proposed and benchmark methods to three real space-borne SAR datasets to 416 
evaluate the performance of TPOBDL. The three datasets used are co-registered and geometrically 417 
corrected SAR images acquired by the COSMO-Skymed satellite sensor, as shown in Fig. 7. The 418 
images in Fig. 7(a)(b)(c) were acquired on June 10, 2016 and those in Fig. 7(d)(e)(f) on April 26, 2017. 419 
The three areas are selected to represent different landscapes containing a river, a plain, mountain 420 
and buildings. They are all of size 400 × 400 pixels. It is obvious that the three SAR datasets suffer 421 
from speckle noise. Many studies have pointed out that speckle reduction algorithms result in the 422 
loss of spatial resolution and feature suppression [35]. This is because a typical speckle reduction 423 
algorithm, such as multi-looking processing, usually involves a moving average within a rectangular 424 
window. This will significantly reduce spatial details such as edges, textures, and even remove some 425 
point-like targets. However, these details are especially useful for change detection. Therefore, no 426 
speckle filters were applied to these three SAR datasets prior to our approach.The corresponding 427 
ground truth maps are shown in Fig. 7(g)(h)(i), which were obtained by manual annotation. In all 428 
ground truth maps, white represents pixels of the changed class, and black represents pixels of the 429 
unchanged class. 430 

           431 

            (a)                          (b)                           (c) 432 
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(g)                          (h)                           (i) 436 

Figure 7. SAR images including (a)-(f), were acquired by the COSMO-Skymed spaceborne SAR 437 
instrument at X-band, which has the spatial resolution of 3m. Each of (a)-(f) has the size of 400×400 438 
pixels, equivalent to a ground area of 1.2km×1.2km. (a)(d) are dataset C1 that contains river and 439 
mountains, and (g) is its ground truth. (b)(e) are dataset C2 that contains buildings, roads and 440 
mountains , and (h) is its ground truth. (c)(f) are dataset C3 that contains plain and buildings, and (i) 441 
is its ground truth.                  442 

How to evaluate the performance of SAR image change detection algorithms is a key issue. Here, 443 
we utilized several state-of-the-art evaluation metrics, including the false alarm probability fP , 444 

missing detection probability mP , percentage correct classification PCC , Kappa coefficient KC  445 

and GD OE  [1,22]. Assume that the actual numbers of pixels belonging to UC and CC are denoted 446 

by uN  and cN , respectively, in the ground reference data, then 447 

= 100%n
f

u

F
P

N
                                   (19) 448 

= 100%n
m

c

M
P

N
                                   (20) 449 

Where nF  denotes the number of unchanged pixels detected as changed, while nM  represents the 450 

number of changed pixels detected as unchanged.  451 

 
= 100%u c n n

u c

N N F M
PCC

N N

  



                         (21) 452 
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                            (22) 453 

where， 454 
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The definition of GD OE  is then as follows. 456 

 
/ = 100%u n

n n

N M
GD OE

F M





                           (24) 457 

3.2. Experiments 458 

We analyzed and evaluated the final results visually and quantitatively.  459 

The change detection results of multi-temporal SAR dataset C1 are shown in Fig. 8 and Table 1. 460 
As presented in Fig. 8, the change map of PCAKM contains many false alarms, scattered widely 461 
across the image with fP  reaching 39.23%. This is because PCAKM is unable to classify the false 462 

changes caused by strong speckle noise and real changes caused by terrain variation as shown in Fig. 463 
8 (a). However, different from PCAKM, the false alarms of GaborPCANet, NR_ELM and CWNN are 464 
centred in the river, as shown in Fig.8 (b)(c)(d). On one hand, PCAKM uses pixel values for change 465 
detection, which are affected by strong speckle noise. Thus, the fP  of PCAKM is very high. 466 

However, GaborPCANet and CWNN, two deep learning-based methods, can extract deep features 467 
and have a certain speckle noise suppression capability, so the fP is greatly reduced compared to 468 

PCAKM. Moreover, the extreme learning machine in NR_ELM can also effectively extract features 469 
and suppress speckle noise. Therefore, the performance of GaborPCANet, NR_ELM and CWNN is 470 
better than that of PCAKM. On the other hand, compared to the original two SAR images, we found 471 
that false alarms occur in the river region for the latter three methods. The river region in the two 472 
SAR images looks very dark, because the river backscatter of electromagnetic waves is relatively 473 
weak. Thus, under strong speckle noise, the signal-to-noise ratio (SNR) in the river region of the SAR 474 
image is very low. Therefore, in this case, the difference in values of pixels between the two images 475 
in the river region is relatively large, and pixels in the river region are easily classified as CC.  476 

It can be seen that the final change map obtained by the proposed approach TPOBDL is very 477 
close to the ground reference, as shown in Fig. 8 (f). Compared with the former methods, the fP  478 

obtained by TPOBDL is only 0.18% (see Table 1), which is a remarkable result. This is because the 479 
second phase of TPOBDL uses a special network to identify the pixels of FCC and those of RCC. In 480 
addition, compared to CWNN, our approach uses object-based deep learning removing those 481 
scattered false alarms effectively, which demonstrates the advantages of object-based deep learning. 482 
Therefore, TPOBDL can eliminate effectively the false alarms caused by strong speckle noise.  483 

As can be seen from Table 1, the quantitative analysis is consistent with the visual analysis. The 484 
performance of TPOBDL is better than for the benchmark algorithms in terms of PCC , fP , KC485 

and GD OE . It is worth noting that although the mP  of PCAKM, GaborPCANet and NR_ELM are 486 

smaller than that of TPOBDL, these three methods come at the cost of a much larger fP . The reason 487 

why the mP  of our method is larger than for the three benchmark methods, is that a few superpixel 488 
objects of RCC are mistakenly classified as FCC in the second deep learning phase. Therefore, we 489 
need to consider the value of the more convincing KC . TPOBDL has the highest value of KC490 
(97.84%), which means that the change detection accuracy of TPOBDL is the highest amongst all five 491 
methods. 492 
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(d)                            (e)                           (f) 496 

Figure 8. Results of experiments on C1; (a) PCAKM; (b) GaborPCANet; (c) NR_ELM; (d) CWNN; (e) 497 
TPOBDL; (f) ground truth. 498 

Table 1. Comparison of evaluation metrics amongst PCAKM, GaborPCANet, NR_ELM, CWNN and 499 
TPOBDL on dataset C1 using the false alarm probability ( fP ), missing detection probability ( mP ), 500 

percentage correct classification ( PCC ), Kappa coefficient ( KC ) and GD OE . 501 

Methods 
Results on C1(%) 

PCC  
fP  mP  GD OE  KC  

PCAKM[9] 60.99 39.24 1.78 0.07 58.87 

GaborPCANet[23] 64.67 35.46 4.88 0.08 59.36 

NR_ELM[33] 73.85 26.26 9.86 0.11 61.39 

CWNN[34] 85.22 14.69 29.18 0.19 65.67 

TPOBDL 99.71 0.18 15.10 9.97 97.84 

 502 

Fig. 9 and Table 2 present the final change detection results on dataset C2. In terms of visual 503 
comparison, PCAKM still includes many false alarms. The performance of GaborPCANet is better 504 
than that of PCAKM in terms of fP . However, there are several false alarms due to speckle noise. 505 

Moreover, for each of PCAKM, GaborPCANet or NR_ELM, there is an obvious long and narrow area 506 
with fewer false alarms in the upper right corner of the change map. Comparing the original two 507 
multi-temporal SAR images, we find that this long and narrow area has an area of relatively strong 508 
back-scattering (visually white), which means the amplitude value of these pixels is relatively large. 509 
This indicates that change detection in areas with strong scattering is less affected by speckle noise 510 
because of the high SNR. This situation is exactly the opposite of the high false alarm phenomenon 511 
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in the river region in the experiments on C1. As for CWNN, it is clear that the value of fP  due to 512 

speckle noise is smaller than for the three benchmarks. This benefit arises from the wavelet pooling 513 
layers in CWNN, which suppress speckle noise by losing high-frequency sub-bands while preserving 514 
low-frequency sub-bands to extract features. However, TPOBDL has less false alarms than CWNN, 515 
because the object-based methodology is adopted, which greatly reduces classification uncertainty 516 
induced by rectangular patches. As for TPOBDL, two-phase deep learning is not only effective for 517 
change detection in low SNR region, but also for change detection in high SNR regions. This is due 518 
to the influence of the LRSD, which greatly constrains the influence of speckle noise. Among the five 519 
methods, TPOBDL has the best performance in terms of PCC , fP ,  GD OE  and KC , reaching 520 

99.43%, 0.26%, 4.70% and 95.67%, respectively. 521 

              522 

(a)                           (b)                           (c) 523 

              524 

(d)                            (e)                           (f) 525 

Figure 9. Results of experiments on C2; (a) PCAKM; (b) PCANet; (c) NR_ELM;(d) CWNN; (e) 526 
TPOBDL; (f) ground truth. 527 

Table 2. Comparison of evaluation metrics amongst PCAKM, GaborPCANet, NR_ELM, CWNN and 528 
TPOBDL on dataset C2 using the false alarm probability ( fP ), missing detection probability ( mP ), 529 

percentage correct classification ( PCC ), Kappa coefficient ( KC ) and GD OE . 530 

Methods 
Results on C2(%) 

PCC  
fP  mP  GD OE  KC  

PCAKM[9] 55.65 45.24 1.81 0.07 58.13 

GaborPCANet[23] 79.64 20.66 6.19 0.14 63.22 

NR_ELM[33] 86.99 13.14 7.11 0.21 67.37 

CWNN[34] 95.24 4.59 12.41 0.56 78.49 

TPOBDL 99.43 0.26 15.02 4.70 95.67 
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The results of experiments on dataset C3 are exhibited in Fig. 10 and Table 3. The 531 
performance of PCAKM is again the least good. Compared with the first two datasets, there are 532 
no weak backscattering regions (like river, C1) or strong backscattering regions (like mountain, 533 
C2). However, the contrast in the whole scene of C3 is relatively low, which means that 534 
classification may be more challenging due to low discrimination. Thus, it can be seen from Table 535 
3 that the mP  of all methods is relatively high. Still, TPOBDL is superior to CWNN in terms of 536 

mP  under the circumstances, which is opposite to the experiments on C1 and C2. Among the 537 

five methods,  TPOBDL again produces the best result, with a PCC  of 98.42%, fP  of 1.18%, 538 

GD OE  of 1.59% and KC  of 89.32%. It is worth noting that in the experiments on C3, 539 

TPOBDL  again produces the best values of PCC , fP and KC , while also producing a similar 540 

mP  of 19.64% to other methods, at the same time. The experimental results illustrate the 541 

superiority of TPOBDL 542 

           543 

 (a)                          (b)                        (c) 544 

           545 

(d)                           (e)                          (f) 546 

Figure 10. Results of experiments on C3; (a) PCAKM; (b) PCANet; (c) NR_ELM; (d) CWNN; (e) 547 
TPOBDL; (f) ground truth. 548 

Table 3. Comparison of evaluation metrics amongst PCAKM, GaborPCANet, NR_ELM, CWNN and 549 
TPOBDL on dataset C3 using the false alarm probability ( fP ), missing detection probability ( mP ), 550 

percentage correct classification ( PCC ), Kappa coefficient ( KC ) and GD OE . 551 

Methods 
Results on C3(%) 

PCC  
fP  mP  GD OE  KC  

PCAKM[9] 62.23 38.29 14.39 0.07 58.50 

GaborPCANet[23] 84.61 15.32 18.92 0.16 64.84 
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NR_ELM[33] 89.54 9.98 31.90 0.21 67.56 

CWNN[34] 94.53 5.02 25.90 0.43 75.55 

TPOBDL 98.42 1.18 19.64 1.59 89.32 

 552 

4. Discussion 553 

4.1. Parameters Selection  554 

In the proposed approach, there exist four parameters to be discussed, which are the number of 555 
superpixels 1SP  and the patch size 1k  in the first phase, and the equivalents, 2SP  and 2k , in the 556 
second phase. These four parameters affect the ability to learn neighborhood information in the two-557 
phase object-based deep learning approach. As indicated in [21], when the patch size is set as 5 5  558 
, it leads to an optimal result. Hence, we fix 1=5k  at the beginning. As for 1SP  and 2SP , to reduce 559 

redundancy and increase superpixel generation efficiency, we assume 2)i iSP M N k （560 

 1,2i  , which means that the number of pixels in a superpixel and the number of pixels in a patch 561 

should be the same, as far as possible. So we fix 1=6400SP . Then, we conduct experiments on 2 =SP562 

17800, 6400, 3200 and 2k = 3, 5, 7, 9 in pair-wise fashion, respectively. The experimental results are 563 
shown in Fig. 11-12.  564 

Observing from Fig. 11-12, we found that when 2 =SP 17800 and 2k = 3, the values of PCC565 

and KC  were the best. The experimental result is consistent with the principle of the proposed 566 
approach. As mentioned before, the spatial context of the pixels has altered significantly after 567 
masking in the second phase. And, there may be many discontinuous areas after masking. Hence, 568 
superpixel objects with a small number of pixels have the benefit of avoiding heterogeneous pixels 569 
inside the objects, which reduces classification uncertainty in PCANet2. This reveals that, in the 570 
second phase, the relatively small superpixels helps the PCANet2 to exploit more details, which cater 571 
to the purpose of distinguishing RCC and FCC. 572 
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 Figure 11. The influence of different parameters ( 2SP   and 2k ) on PCC . 574 
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Figure 12. The influence of different parameters ( 2SP   and 2k ) on KC . 576 

We then fixed the parameters of the second phase as 2 =SP 17800  and 2k = 3  to conduct 577 

experiments on 1=SP 17800,6400,3200 and 1k = 3,5,7,9 in a pair-wise fashion, respectively. The 578 

experimental results are presented in Fig. 13-14. 579 

As shown in Fig. 13-14, there are two pairs of 1SP  and 1k  that obtain a larger PCC and KC 580 

than other parameter values. One pair is 1SP = 6400 and 1k = 5, and the other pair is 1SP = 3200 581 

and 1k = 7. This means that superpixels with relatively large number of pixels are of benefit for 582 

classifying UC and CC in the first phase. After further observation, these two pairs of parameters 583 
adhere to 2)i iSP M N k （ , which indicates that theoretically the number of pixels in a 584 
superpixel should be similar to the number of pixels in a patch. Thus, the best parameter combination 585 
is 1SP = 3200,  1k = 7 for the first phase, and 2 =SP 17800, 2k = 3 for the second phase. 586 

SP  =32001 SP  =64001 SP  =178001

PCC(%
)

k  = 31

k  = 51

k  = 71

k  = 91

99.2

99.5

99.8

 587 

Figure 13. The influence of different parameters ( 1SP   and 1k ) on PCC. 588 
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Figure 14. The influence of different parameters ( 1SP   and 1k ) on KC. 590 

4.2. Comparison with Other Methods 591 

Firstly, we compare the proposed approach with four other methods. The experimental results 592 
of all methods are presented in Fig. 8-10 and Tables 1-3. TPOBDL outperforms other methods in all 593 
evaluation indicators, except for missing alarms rate. This is because by using superpixel objects and 594 
two phases of PCANet, TPOBDL is more robust to speckle noise, able to extract deep features and 595 
capable of learning the nonlinear relations from multi-temporal SAR images efficiently. The patches 596 
reshaped from superpixel objects with homogeneous pixels are beneficial to the deep feature 597 
extraction and PCANet training, which avoids uncertainty due to rectangular patches. 598 

The two deep learning phases in TPOBDL are important for acquiring the desired change 599 
detection performance. The first phase generally classifies pixels into two classes, CC and UC. 600 
However, there are actually two kinds of changes in CC. One is strong speckle noise-induced change, 601 
and the other is real terrain variation-induced change. In the second phase, the pixels belonging to 602 
UC are set to zero so that the PCANet2 can focus on identifying two indistinguishable changes. 603 
PCANet2 faces a more difficult classification tasks than PCANet1. Hence, we equip the second phase 604 
with LRSD to suppress noise and increase the ability to discriminate the two previously 605 
indistinguishable changes. Despite noise interference, multi-temporal SAR images of the same object 606 
should have a strong correlation. Based on this principle, we established the LRSD model. LRSD can 607 
not only suppress speckle noise, but also highlight the correlation between objects via the low rank 608 
constraint, as shown in Fig. 15. Through this, TPOBDL achieves the best performance amongst the 609 
five methods when facing strong speckle noise. It is worth noting that there is no speckle filtering in 610 
TPOBDL. 611 

         612 

   (a)                                            (b) 613 

Figure 15. (a) A selected object before LRSD; (b) The object after LRSD. 614 
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4.3 Modular Deep Learning Framework for change detection 615 

In the proposed approach, PCANet1 in the first phase completes the classification tasks of CC and 616 
UC, and PCANet2 in the second phase completes the classification tasks of RCC and FCC. In fact, 617 
other deep neural networks can also be used in the first stage, instead of PCANet. In the same way, 618 
it is not necessary to use the PCANet in the second phase. Therefore, the two phase deep learning 619 
framework proposed in this paper can be regarded as a modular structure. The structure does not 620 
actually limit what deep learning models are used. The key to this modular structure is hierarchical 621 
classification. Moreover, the advantage of this modular deep learning framework is that the deep 622 
neural network in each module can complete a specialized, and not particularly complicated task, so 623 
the difficulty of classification in each module is reduced. For example, in this research, if only one 624 
PCANet is used to complete the classification of UC, RCC and FCC simultaneously, it is easy to 625 
generate more misclassifications, which will lead to a larger number of false alarms or larger number 626 
of missing alarms. In addition, this modular deep learning-based change detection structure is 627 
particularly suitable for engineering implementation. 628 

4.4 Time- series SAR Images to Suppress Speckle Noise 629 

   In fact, we used LRSD to strip speckle noise at the beginning of the second phase, so as to 630 

differentiate between false change and real change. The LRSD cannot strip off the speckle noise 631 

completely. Thus, how to improve the speckle noise separation effect in the second phase without 632 

the loss of spatial details would be our future work. The multi-temporal speckle noise reduction can 633 

potentially be used, which may better preserve spatial details. With multi-temporal SAR image time 634 

series, change-detection-aware speckle noise reduction algorithm may be also applied in our future 635 

research. 636 

5. Conclusions 637 

In this research, a novel change detection algorithm with two-phase object-based deep learning 638 
approach for multi-temporal SAR images is presented. An object-based approach is used instead of 639 
a pixel-wise approach. The object-based change detection approach can effectively exploit the spatial 640 
context of neighborhood pixels, which is conducive to increasing the ability to identify UC and CC. 641 
Using superpixel objects, the pixels in each object are generally more homogeneous, which avoids 642 
the classification uncertainty caused by heterogeneous pixels and provides high-quality training 643 
samples for subsequent PCANets. In addition, this paper uses a two-phase deep learning framework 644 
to implement change detection on multi-temporal SAR images. The first phase of deep learning 645 
realizes the distinction between UC and CC. The second phase of deep learning realizes the 646 
distinction between RCC and FCC. The two-phase deep learning framework can tackle effectively 647 
the classification challenge faced by deep learning in each phase, and can effectively distinguish RCC 648 
and FCC, while maintaining a very low false alarm under strong speckle noise. The experimental 649 
results illustrate that the proposed approach can achieve high accuracy and validity. 650 
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