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Abstract

Epidemics often occur rapidly, with new cases being observed daily. Due to the

frequently severe social and economic consequences of an outbreak, this is an area of

research that benefits greatly from online inference. This motivates research into the

construction of fast, adaptive methods for performing real-time statistical analysis of

epidemic data.

The aim of this thesis is to develop sequential Monte Carlo (SMC) methods for infec-

tious disease outbreaks. These methods utilize the observed removal times of individuals,

obtained throughout the outbreak. The SMC algorithm adaptively generates samples

from the evolving posterior distribution, allowing for the real-time estimation of the

parameters underpinning the outbreak. This is achieved by transforming the samples

when new data arrives, so that they represent samples from the posterior distribution

which incorporates all of the data.

To assess the performance of the SMC algorithm we additionally develop a novel

Markov chain Monte Carlo (MCMC) algorithm, utilising adaptive proposal schemes to

improve its mixing. We test the SMC and MCMC algorithms on various simulated

outbreaks, finding that the two methods produce comparable results in terms of param-

eter estimation and disease dynamics. However, due to the parallel nature of the SMC

algorithm it is computationally much faster.

The SMC and MCMC algorithms are applied to the 2001 UK Foot-and-Mouth out-

break: notable for its rapid spread and requirement of control measures to contain the

outbreak. This presents an ideal candidate for real-time analysis. We find good agree-

ment between the two methods, with the SMC algorithm again much quicker than the

MCMC algorithm. Additionally, the performed inference matches well with previous

work conducted on this data set.

Overall, we find that the SMC algorithm developed is suitable for the real-time

analysis of an epidemic and is highly competitive with the current gold-standard of

MCMC methods, whilst being computationally much quicker.
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Chapter 1

Introduction

For many years statisticians have played a pivotal role in furthering the understanding

of infectious disease outbreaks (see, for example, Bartlett (1949), Bailey and Thomas

(1971), Becker (1979), Gibson (1997), Jewell et al. (2009), Deardon et al. (2010) and

Stockdale et al. (2017)). The aim has always remained the same: to gain an understand-

ing of the properties which allowed an epidemic to occur, and thus produce strategies

for preventing future severe outbreaks.

Epidemics can be an incredibly destructive occurrence: causing the loss of harvests,

livestock and often lives. In recent years we have seen many instances of such conse-

quences; from the heavy financial burden of the UK Foot-and-Mouth epidemic, estimated

at costing over £3 billion to the public sector and over £5 billion to the private sector

(UK National Audit Office (2002)), to the devastating loss of life in the recent Ebola

outbreak, an estimated 28,616 cases resulting in 11,310 deaths (WHO (2016)). By mod-

elling epidemics we can gain vital insight, that is key to understanding and limiting the

severity of future outbreaks of infectious diseases.

With the rapid advancement in technology we have gained the ability to collect

vast amounts of information about an outbreak. Increasingly this data is extremely

rich and often obtained instantaneously, throughout the course of an epidemic. With

such data readily available, epidemic modelling has gained the capability to move from

retrospective analysis, to real-time analysis. Swiftly obtaining information about the

characteristics of an epidemic can then help to inform on control measures that can then

be put in place during an active outbreak.

Drawing upon two strands of research, simulation methods and epidemic modelling,
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we aim to illustrate a novel way of utilising advances in computing power to construct a

method of inferring the underlying parameters of an infectious disease outbreak, in real

time.

1.1 Thesis Structure

This thesis is concerned with the construction of a sequential method of analysing epi-

demic data in real time. We will describe the formulation of a generic algorithm, for use

in conjunction with epidemic data, and then apply it to both simulated and real data

sets.

Chapter 1: Introduction

In this chapter we introduce the Bayesian paradigm and the concept of simulation meth-

ods. We then proceed to discuss simple simulation techniques such as inverse, rejection

and importance sampling as well as more complex methods such as Markov chain Monte

Carlo (MCMC) and sequential Monte Carlo (SMC). We aim to provide an overview of

these methods and describe when each is most appropriate to use.

Chapter 2: Epidemic Modelling

In this chapter we introduce epidemic modelling. We begin by describing the key choices

we must consider prior to analysing outbreak data. This is then followed by a brief

overview of the historical and present work performed within this field. We also consider

a selection of epidemic models in detail, specifically: the deterministic model, the Reed-

Frost chain binomial model and the general stochastic epidemic model.

Chapter 3: Developing Sequential Monte Carlo Methods for Epidemic Data

This chapter is where we construct the sequential Monte Carlo algorithm that forms the

focus of this thesis. We begin by outlining the discrete-time stochastic epidemic model

we will use throughout, before forming the posterior distribution which will be the focus

of our analysis. Once constructed we use the methods discussed in Chapters 1 and 2 to

construct a novel MCMC algorithm, with an emphasis on ensuring we obtain an optimal

acceptance rate. We then proceed to developing the SMC algorithm, with an in-depth

discussion of each of its steps.

2



Chapter 4: A Comprehensive Simulation Study

In this chapter we conduct an in-depth study of the performance of the SMC algorithm

on multiple simulated outbreaks. We illustrate the application of the SMC algorithm

and compare it to the current ‘gold-standard’ of MCMC methods. This is with the aim

of better understanding the performance and behaviour of the SMC algorithm we have

developed.

Chapter 5: UK Foot-and-Mouth Disease Outbreak (2001)

In this chapter we apply the MCMC and SMC algorithms of Chapter 3 to the 2001 UK

Foot-and-Mouth outbreak. We begin by reviewing the previous methods used to analyse

this outbreak, as well as describing their key findings. Using this we then outline the

assumptions we make when working with this data set and then discuss, in detail, the

results we obtain. We compare the output generated using the SMC algorithm to both

the results produced by the MCMC, as well as the work previously conducted on the

Foot-and-Mouth data set.

Chapter 6: Conclusions

Finally, in this chapter we summarise the overall conclusions of the work in this thesis

and propose future extensions to the SMC methods developed.

1.2 Bayesian Framework

1.2.1 Motivation

Within statistics we are often presented with situations in which we are required to

make inference about an unknown set of parameters. Without any formal observations

we may make an initial prediction about their form, for example using relevant previous

research. If we then receive data, which is dependent on these parameters, it would be

wasteful to fully discard our previous conclusions; instead we can update them using

this new information. We therefore have made a prior estimate of the parameters and

then updated our estimates post-observation. This is the underlying motivation behind

the Bayesian framework.
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1.2.2 The Posterior Distribution

Formally, let θ denote the unknown parameters of interest and x the observed data. We

wish to find the conditional distribution of θ given x, defined by π(θ |x) and referred to

as the posterior distribution. We assign to θ a prior distribution, defined as π(θ), which

is chosen to represent our current knowledge about θ and which we choose prior to the

collection of the data. We will discuss the form of the prior distribution in Section 1.2.3.

Once a prior distribution has been chosen we can use Bayes’ theorem to construct

the posterior distribution:

π(θ |x) =
π(θ, x)

π(x)
=

π(x |θ)π(θ)

π(x)
∝ L(θ ;x)π(θ), (1.2.1)

where L(θ ;x) is the likelihood and treated as a function of θ. In the denominator we

have π(x): this is the normalising constant and will often not have a tractable form.

This intractability is a major impediment to Bayesian inference. However, as this is

independent of θ, we will often be able to avoid its calculation altogether, for example

using MCMC methods (see Section 1.4).

1.2.3 The Prior Distribution

Clearly the choice of prior distribution will have an impact on the form of the posterior

distribution. If we do not know much about the parameters then we may choose an un-

informative prior (also called non-informative or diffuse prior), this form of prior only

provides general information about the nature of θ. For example, if we allocate equal

weight to all values θ could take then this would be an uninformative prior distribution.

This form of prior maximises the information about θ provided by the data, x. Con-

versely we could choose an informative prior. This form of prior can arise if we have

some definite knowledge about the form θ will take, for example from previous research.

One well-used group of prior distributions are conjugate priors. These are chosen

such that the posterior and prior are from the same class of distributions. This has the

advantage that the posterior distribution has a closed form, which can ease the compu-

tational burden during analysis. This class of prior distributions will be of particular

importance when discussing Gibbs sampling in Section 1.4.3.
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Example: Conjugate Prior

Suppose that we have x = (x1, . . . , xn): n independent and identically distributed

observations from a Poisson(θ) distribution. Then the likelihood is of the form

L(θ ;x) ∝ θ

n∑
j=1

xj
e−θn. (1.2.2)

If we select Gamma(α, β) as the prior distribution for θ then the posterior distri-

bution is

π(θ |x) ∝

θ n∑
j=1

xj
e−θn

 (
θα−1 e−βθ

)
(1.2.3)

and therefore,

π(θ |x) ∼ Gamma

 n∑
j=1

xj + α, n+ β

 . (1.2.4)

We see that both the posterior and prior belong to the Gamma class of distribu-

tions.

Overall it will often be that the data, and therefore the likelihood, dominates the

posterior distribution and thus the prior distribution will be less influential. Therefore,

although π(θ) must be chosen with care, it will not be the focus of our discussions, and

throughout we will primarily use uninformative priors. Once the posterior distribution

has been determined we can analyse it as we would any other distribution.

1.3 Introduction to Simple Simulation Methods

Suppose that we have constructed the posterior distribution and find that it has a

complex, often high-dimensional, form. How can we obtain useful information about

such a distribution? The underlying idea behind simulation methods is well described

by Halton (1970):

“representing the solution of a problem as a parameter of a hypothetical population,

and using a random sequence of numbers to construct a sample of the population, from

which statistical estimates of the parameter can be obtained”.
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Thus, if we have a method of sampling from some population then we can utilize these

samples to estimate various statistical quantities about the distribution of interest. There

exist many algorithms for computing such samples from a given distribution; we will

discuss some of those most commonly used in the subsequent sections. However, first we

illustrate in the next section how to use such samples to generate quantities of interest.

The set-up we shall use to discuss the methods will remain the same throughout: we

are interested in a random variable, Θ, with probability density function, π(θ). However,

we should note that the methods we will describe can be extended to more complex,

high-dimensional, problems.

1.3.1 Perfect Monte Carlo Sampling

Frequently, we will be concerned with evaluating integrals of the form

Eπ[h(Θ)] =

∫
π(θ)h(θ) dθ. (1.3.1)

However, direct calculation of (1.3.1) will often be impossible. Alternatively, if we have

independent and identically distributed (i.i.d.) samples θ(1), . . . , θ(n) ∼ π, then we can

estimate (1.3.1) as

Êπ[h(Θ)] =
1

n

n∑
j=1

h
(
θ(j)
)
. (1.3.2)

By the Strong Law of Large Numbers (SLLN ) if Eπ[h(θ(i))] = Eπ[h(Θ)] <∞ then

lim
n→∞

Êπ[h(Θ)] = Eπ[h(Θ)]. (1.3.3)

This method requires i.i.d. samples from the distribution of interest. Unfortunately,

many distributions are not easy to sample from, therefore producing estimates such as

(1.3.2) is not straightforward. This provides the motivation for the remainder of this

chapter where we discuss various methods for simulating samples from a distribution of

interest. These can then be utilised to estimate quantities such as (1.3.1).

In the following sections we will discuss three well-studied simulation methods. We

begin by considering one of the simplest simulation methods, inversion sampling, in

Section 1.3.2. This method is incredibly simple to use, however, it can only be applied
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in a limited number of situations. Following this we shall discuss the more flexible

rejection sampling in Section 1.3.3, this uses an intermediate distribution to facilitate

generating samples from the target distribution. Finally in Section 1.3.4 we discuss

importance sampling, this shares many characteristics with rejection sampling in that

we use an intermediate distribution to generate samples from the target distribution,

although now we do not ‘reject’ any of the samples.

1.3.2 Inversion Sampling

The first method we consider is inversion sampling, one of the most intuitive methods of

generating samples from a target distribution. We begin by generating pseudo-random

samples, typically using a computer, from a uniform, U(0, 1), distribution. The idea

underpinning the inversion method is to then apply a transformation to such realisations,

in order to generate samples from the distribution we desire.

We denote the cumulative distribution function (cdf) of the target distribution by

F (θ) = P (Θ ≤ θ). As suggested by its name, this simulation method requires the inverse

of the cdf, denoted F−1; however, this does not necessarily exist in a closed form. Instead

we will define the generalised inverse as F−(φ) = inf{θ : F (θ) ≥ φ}, when F is strictly

increasing and continuous we have F−1(φ) = F−(φ). Once the generalised inverse has

been found we can use Theorem 1 to generate n samples from the distribution of interest,

as displayed formally in Algorithm 1.

Theorem 1 (The Inversion Theorem).

Let F be a cdf and F− be its generalised inverse. If Φ ∼ U(0, 1) then F−(Φ) has cdf F .

Proof. We start by observing that, as F− is an increasing function, for all θ

F−(Φ) ≤ θ ⇐⇒ Φ ≤ F (θ).

Thus, for Φ ∼ U(0, 1),

P (F−(Φ) ≤ θ) = P (Φ ≤ F (θ)) = F (θ).
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Algorithm 1: Inversion Sampling

1. for j = 1, . . . , n

(i). Sample φ(j) ∼ U(0, 1).

(ii). Let θ(j) = F−(φ(j)).

Assuming we can find F−, this method is highly efficient and very straightforward to

implement. However, in practice, there are few distributions for which F− has a closed

form, especially for higher dimensional problems. Devroye (1986) contains examples of

when this method can be used, as well as an extension to using numerical solutions if

an explicit form of the inverse cannot be found.

1.3.3 Rejection Sampling

The next simulation method we consider is rejection sampling, introduced by von Neu-

mann (1951). The idea of rejection sampling (also referred to as the Accept-Reject

method) is to first sample from an intermediate distribution, called the proposal dis-

tribution, and then accept or reject these samples as from the distribution we desire,

according to some probability. This method aims to accept those samples which are

most likely to have come from the target distribution.

We are interested in a target distribution with density π. Suppose that we have

access to a second density, g, such that ∀θ ∈ Ω, π(θ) ≤ Mg(θ), for some M > 1, where

Ω is the support of π. This condition ensures that Mg(θ) fully envelopes the target

distribution. To generate samples from π rejection sampling uses Algorithm 2.
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Algorithm 2: Rejection Sampling

1. Suppose we desire a sample of size n, then let j = 0.

2. while j < n

(i). Generate a proposal sample, θ∗ ∼ g.

(ii). Calculate the acceptance probability,

α =
π(θ∗)

Mg(θ∗)
.

(iii). Generate u ∼ U(0, 1).

(iv). if u ≤ α then

(a) Set j = j + 1.

(b) Accept θ(j) = θ∗.

We can easily see why using Algorithm 2 produces i.i.d. samples from the correct

distribution. Let X be a subset of Ω and Θ∗ ∼ g then,

P (Θ∗ is accepted) =

∫
π(θ)

Mg(θ)
g(θ) dθ =

1

M
, (1.3.4)

P (Θ∗ ∈ X and is accepted) =

∫
X

π(θ)

Mg(θ)
g(θ) dθ =

1

M

∫
X
π(θ) dθ. (1.3.5)

Therefore we find,

P (Θ∗ ∈ X | Θ∗ accepted) =
P (Θ∗ ∈ X and is accepted)

P (Θ∗ is accepted)
=

∫
X
π(θ) dθ. (1.3.6)

This states that the density of the accepted samples is the same as the target density, as

required. Therefore the rejection sampling algorithm successfully uses samples generated

from g to produce samples from π. To illustrate the intuition behind the rejection

sampling algorithm we shall apply it to a simple example.
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Example: Rejection Sampling

Suppose that we want to generate samples from a mixture of Beta distributions,

with density function

f(x) =
3

10

(
x10−1 (1− x)20−1

B(10, 20)

)
+

7

10

(
x20−1 (1− x)10−1

B(20, 10)

)
,

using a Beta(3, 2) as the proposal distribution, with density

g(x) =
x3−1 (1− x)2−1

B(3, 2)
.

Here B(a, b) denotes the beta function. We display the two distributions in Figure

1.1. To find the value of M we will use the optimize function in R. We find

M = 1.83 and show in Figure 1.2 that this value of M ensures that we satisfy the

required condition and that this choice is optimal.
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We continue generating samples until we have accepted 500 samples from the

target distribution, the results of which can be seen in Figure 1.3. As we can see

in Figure 1.4 these are from the correct distribution.
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Rejection sampling proves to be an effective simulation method as it only requires

knowledge of the target density up to a constant of proportionality. However, it is by

no means a perfect method: often finding an appropriate proposal distribution is not

straightforward. We require the proposal distribution to have thicker tails than the

target distribution in order for π/g to be bounded. For example, we could not use a

Normal proposal to generate samples from a Cauchy-type distribution, although the

reverse would work. Additionally, as the dimension of the distribution increases, it can

become difficult to choose a proposal distribution that produces a usable acceptance

rate. Rejection sampling is covered in detail in Robert and Casella (2005, Section 2.3),

where it is called the Accept-Reject method.

1.3.4 Importance Sampling

The next simulation method we consider is importance sampling. This shares many

characteristics with rejection sampling, however, instead of rejecting samples we will

attach a weight to them.

We once again have a target distribution with density π(θ) and also assume that we

have access to a proposal distribution with density g(θ), from which we can sample. The

motivation underlying importance sampling is the observation that

P (Θ ∈ X ) =

∫
X
π(θ) dθ =

∫
X
g(θ)

π(θ)

g(θ)
dθ =

∫
X
g(θ)w(θ) dθ, (1.3.7)

for all measurable X , where w(θ) := π(θ)
g(θ) is referred to as the importance weight and g

is often referred to as the importance distribution. This naturally leads to the following

relationship

Eπ[h(Θ)] =

∫
h(θ)π(θ) dθ =

∫
h(θ)w(θ)g(θ) dθ = Eg[h(Θ)w(Θ)]. (1.3.8)

If we can generate samples θ(1), . . . , θ(n) ∼ g then, under some mild assumptions

(Geweke (1989)), we can use the Strong Law of Large Numbers to find

1

n

n∑
j=1

h
(
θ(j)
)
w
(
θ(j)
) a.s.−−−→

n→∞
Eg[h(Θ)w(Θ)] = Eπ[h(Θ)]. (1.3.9)
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As such we can estimate Eπ[h(Θ)] using

Êπ[h(Θ)] =
1

n

n∑
j=1

h
(
θ(j)
)
w
(
θ(j)
)
. (1.3.10)

We can easily see that this will be an unbiased estimator of Eπ[h(Θ)].

The weights, w
(
θ(1)
)
, . . . , w

(
θ(n)

)
, may not necessarily add up to n, therefore often

of use is the self-normalised estimator,

Ẽπ[h(Θ)] =
1∑n

i=1w
(
θ(i)
) n∑
j=1

h
(
θ(j)
)
w
(
θ(j)
)
. (1.3.11)

Ẽπ[h(Θ)] will also converge to Eπ[h(Θ)] although it is now a biased estimator, however,

it can result in a smaller mean square error than the unbiased estimator (Liu (2008,

Chapter 2)). Additionally, the biased estimator is useful for when we only know the

target distribution up to proportionality. To see this we assume that the target distri-

bution is known only up to a constant of proportionality, such that π(θ) = cπ̄(θ), for

some constant c. Then we can see that, in order to be computed, the self-normalised

estimator does not require knowledge of c:

Ẽπ[h(Θ)] =

∑n
j=1 h

(
θ(j)
)
w
(
θ(j)
)∑n

i=1w
(
θ(i)
)

=

∑n
j=1 h

(
θ(j)
)π(θ(j))
g(θ(j))∑n

i=1

π(θ(i))
g(θ(i))

=

∑n
j=1 h

(
θ(j)
) cπ̄(θ(j))
g(θ(j))∑n

i=1

cπ̄(θ(i))
g(θ(i))

=

∑n
j=1 h

(
θ(j)
) π̄(θ(j))
g(θ(j))∑n

i=1

π̄(θ(i))
g(θ(i))

. (1.3.12)

We can use a similar argument to show that we only need to know the proposal

distribution, g, up to a multiplicative constant. Altogether, we note that for the biased

estimator we only need to know the importance weight, π(θ)
g(θ) , up to a multiplicative

constant. We illustrate using importance sampling in Algorithm 3.
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Algorithm 3: Importance Sampling

1. for j = 1, . . . , n

(i). Sample θ(j) ∼ g.

(ii). Calculate w
(
θ(j)
)

=
π(θ(j))
g(θ(j))

.

2. Estimate Eπ[h(Θ)] as either

Êπ[h(Θ)] =
1

n

n∑
j=1

h
(
θ(j)
)
w
(
θ(j)
)

(1.3.13)

or

Ẽπ[h(Θ)] =
1∑n

i=1w
(
θ(i)
) n∑
j=1

h
(
θ(j)
)
w
(
θ(j)
)
. (1.3.14)

Underpinning importance sampling is the concept of properly weighted samples from

Liu and Chen (1998) and Doucet et al. (2001, pages 227–228). A set of samples and

their corresponding weights, denoted by

{(
θ(j), w

(
θ(j)
))

: j = 1, . . . , n
}
, (1.3.15)

is called properly weighted with respect to the target distribution, π, if for any square

integrable function, h(·),

E
[
h
(
θ(j)
)
w
(
θ(j)
)]

= cEπ[h(Θ)] (1.3.16)

where c is a normalising constant. If we directly sampled from π then

{(
θ(j), 1

)
: j = 1, . . . , n

}
(1.3.17)

would be a properly weighted sample.

This idea is why we can use importance sampling to estimate the desired integrals.

Additionally, using this idea, we can translate importance sampling to a method for

generating samples from the target distribution by sampling from
{
θ(1), . . . , θ(n)

}
with

13



probability proportional to their weights. This will then produce samples, each with

equal weighting, from the distribution we desire (Smith and Gelfand, 1992). For further

details regarding importance sampling we refer the reader to Doucet et al. (2001, Chapter

1) and Robert and Casella (2005, Section 3.3).

1.3.5 Conclusions

In this section we have discussed three simulation methods. Although relatively simple,

these methods have been applied to many real-world problems. If we consider the field

we will be interested in, epidemic modelling, Clancy and O’Neill (2007) used rejection

sampling to study outbreaks of influenza. This method is particular useful as the final

samples are exact, avoiding the convergence issues encountered with other simulation

methods (see Section 1.4 where we introduce MCMC methods). Importance sampling

has also been applied within this field, for example Marion et al. (2003) used importance

sampling within the context of plant epidemiology.

Although simple, these methods are highly intuitive and (usually) straightforward to

implement, resulting in their usage still to this day.

1.4 Markov Chain Monte Carlo Methods

“In view of all that we have said in the foregoing sections, the many obstacles we

appear to have surmounted, what casts the pall over our victory celebration? It

is the curse of dimensionality, a malediction that has plagued the scientist from

earliest days.”

– Bellman (1961)

The simulation methods we have considered thus far each have their own strengths

and weaknesses (summarised later in Section 1.5). One important drawback to all of the

methods described is that they become increasingly difficult to implement as the dimen-

sion of the distribution we are interested in increases. Called the curse of dimensionality

(Bellman (1961)) it renders these methods fairly inflexible and lacking in the generality

we will often require. It is this weakness that will be the main advantage of the next

subset of simulation methods we shall discuss: Markov chain Monte Carlo (MCMC). In
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this section, as we are now interested in higher dimensional problems, we shall consider

target distributions of the form π(θ), where θ = (θ1, . . . , θd) for d ≥ 1.

MCMC methods were first developed by Metropolis et al. (1953), before being later

generalised by Hastings (1970). However, it was not until Gelfand and Smith (1990)

first highlighted the wide range of problems MCMC methods could be used in that their

popularity as a statistical tool began to grow. A substantial amount of research has

been conducted into the advancement of MCMC methods; we recommend Robert and

Casella (2011) and Brooks et al. (2011) for a review of their development.

The aim of this section is to provide an overview of some of the properties and

techniques used when considering MCMC methods. We will begin by providing the mo-

tivation behind MCMC methods in Section 1.4.1 before describing the detailed balance

condition in Section 1.4.2, which we use to check that the MCMC is generating sam-

ples from the required distribution. In Section 1.4.3 we construct the Gibbs sampler, a

special form of MCMC algorithm which makes use of the marginal distributions of each

parameter. In Section 1.4.4 we extend this idea: utilising a more generic set of distri-

butions to facilitate sampling from the target distribution, with the Metropolis-Hastings

algorithm. This includes discussion of the form of MCMC we will use throughout,

random-walk Metropolis, in Section 1.4.4.2, with further discussion of optimising this in

Sections 1.4.4.3–1.4.4.4. This optimisation is primarily achieved using adaptive MCMC

schemes, which adaptively choose an efficient proposal distribution. We then discuss

hybrid MCMC algorithms, which combine the ideas of Metropolis-Hastings and Gibbs

samplers, in Section 1.4.5.

Frequently the data we will be working with will only be partially observed, often re-

sulting in an intractable likelihood. In Section 1.4.6 we discuss utilising MCMC methods

in conjunction with data augmentation and hierarchical models, to overcome the issue

of missing data. An extension to this is discussed in Section 1.4.6.1, where we describe

constructing efficient MCMC methods using non-centering methods. In Section 1.4.7 we

discuss another extension to MCMC methods which can propose jumps between spaces

of differing dimensions, termed reversible-jump MCMC (RJ-MCMC).
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1.4.1 The Key Idea

Recall that we have a distribution of interest, π; the underlying idea of MCMC methods

is to generate a Markov chain, {θn : n ≥ 0}, which admits a stationary distribution of π.

We can then use the values of this converged Markov chain as samples from π. We will

be interested in the form of the transition kernel, K(θ, A) = P (θn+1 ∈ A |θn = θ), for

this chain. We should note that throughout we shall discuss these methods in relation

to densities, however the ideas also relate to more general measures.

Formally, suppose that π exists on a space Ω ⊆ Rd and we can find a π-invariant

transition kernel which admits a density K, i.e.

∫
A

∫
Ω
π(θ∗)K(θ∗,θ) dθ∗ dθ =

∫
A
π(θ) dθ (1.4.1)

for all sets A. We say K is preserving the distribution of π. Therefore, if θs ∼ π then

θt ∼ π for all t > s. The question is, do we ever have an s such that θs ∼ π? We do

not cover here the conditions under which the Markov chain converges to its stationary

distribution, nor the rate of convergence. We instead refer the reader to Tierney (1994)

if they wish to consider the theory underpinning the methods we describe.

Due to its construction we may often begin the chain far from the stationary distri-

bution, however, as n increases the chain will get arbitrarily close to it. Therefore we

discard the first b iterations as a burn-in period, after which point we begin keeping the

samples. Not all MCMC algorithms require a burn-in period (see, Brooks et al. (2011,

pages 19-20)), but we shall use one throughout. The choice of b will depend on the

problem we are working with: unfortunately MCMC methods are notoriously slow to

converge, and therefore often a significant burn-in is necessary. We will return to this

idea later.

1.4.2 Detailed Balance Condition

Determining the stationary distribution of a Markov chain is simplified by the detailed

balance condition. We begin by assuming that we have a Markov chain with transition

kernel, K. The Markov chain is called reversible if there exists some function, f , such

that

K(θ∗,θ)f(θ∗) = K(θ,θ∗)f(θ), (1.4.2)
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for all θ and θ∗. This is called the detailed balance condition. From this condition we

can see that f will be the stationary distribution of this Markov chain:

∫
Ω
K(θ∗,θ)f(θ∗) dθ∗ =

∫
Ω
K(θ,θ∗)f(θ) dθ∗ = f(θ)

∫
Ω
K(θ,θ∗) dθ∗ = f(θ), (1.4.3)

as, by construction, the transition kernel integrates over θ∗ to 1. The detailed balance

condition is a simple way of checking the stationary distribution of a Markov chain.

1.4.3 Gibbs Sampler

We require a method of constructing Markov chains with the desired stationary distri-

bution, π = π(θ) = π(θ1, . . . , θd). One possibility is the Gibbs sampler (as described

by Geman and Geman (1984)), which successively samples from the conditional distri-

butions of the parameters. This is formalised in Algorithm 4 where we describe the

(systematic scan or deterministic scan) Gibbs sampler. Under mild regularity condi-

tions the Gibbs sampler will converge to the desired target distribution, see Roberts and

Smith (1994).

Algorithm 4: The (Systematic-Scan) Gibbs Sampler

1. Start the chain at θ(0) =
(
θ

(0)
1 , . . . , θ

(0)
d

)
.

2. for j = 1, 2, . . . , (n+ b)

Sample θ
(j)
1 from π

(
θ1 | θ(j−1)

2 , . . . , θ
(j−1)
d

)
.

Sample θ
(j)
2 from π

(
θ2 | θ(j)

1 , θ
(j−1)
3 , . . . , θ

(j−1)
d

)
.

...
...

Sample θ
(j)
d from π

(
θd | θ

(j)
1 , θ

(j)
2 , . . . , θ

(j)
d−1

)
.

3. Discard samples θ(0), . . .θ(b) and use the remaining n samples.

As mentioned previously in Section 1.2.3 this method is often used in conjunction

with conjugate priors, as these ensure the posterior distribution takes a known and

tractable form. This is the main restriction of the Gibbs sampler: often the conditionals
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will not take a ‘nice’ form from which we can easily sample.

Finally, we note that we have described the systematic scan Gibbs sampler, how-

ever, other forms exist. For example the random scan Gibbs sampler which updates a

component at random, in each iteration.

1.4.3.1 Collapsed Gibbs Sampler

An extension of the Gibbs sampler is described in Liu (1994), who illustrate a method of

reducing the space over which the MCMC algorithm must search. For example, suppose

that we have three parameters of interest, θ = (θ1, θ2, θ3), and that we are able to

integrate out parameter θ3. We can begin by generating samples for θ1 and θ2 using

a standard Gibbs MCMC applied to π(θ1, θ2). Once these samples have been collected

we can then use them to draw θ3 directly from π(θ3|θ1, θ2). Liu (1994) noted this has

two benefits: firstly, it can reduce the computational cost of the MCMC algorithm by

sampling θ3 directly; secondly, it can reduce the autocorrelation between the samples.

Collapsing is important within epidemic modelling, where there is considerable need for

efficient MCMC algorithms, see, for example, Xiang and Neal (2014).

1.4.4 Metropolis-Hastings Algorithm

To generate a Markov chain with the required stationary distribution we have introduced

the Gibbs sampler, this is a special case of the more general Metropolis-Hastings algo-

rithm (Brooks et al. (2011, Section 1.12)), where the probability of accepting a proposed

sample is 1. The Metropolis-Hastings (MH) method shares many characteristics with

the rejection sampling algorithm described previously in Section 1.3.3. Specifically, we

once again use an intermediate distribution to propose values and accept or reject these

based on how probable they are.

Firstly, assume that we again wish to sample from the distribution, π(θ). For this

method we define a proposal distribution, g(θ,θ∗), from which we generate a candidate

sample, denoted θ∗, given the previous value, θ. We then either accept or reject this new

value as being from the required distribution. This method is displayed in Algorithm

5; under mild conditions (Hastings (1970)) this will construct a Markov chain that

converges to the distribution we desire.
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Algorithm 5: Metropolis-Hastings Algorithm

1. Start the chain at θ = θ(0).

2. for j = 1, . . . , (n+ b)

(i). Generate a candidate sample, θ∗ ∼ g(θ(j−1), ·).

(ii). Calculate the acceptance probability,

α(θ(j−1), θ∗) = min

{
1,

π(θ∗) g(θ∗, θ(j−1))

π(θ(j−1)) g(θ(j−1), θ∗)

}
.

(iii). Generate u ∼ U(0, 1).

(iv). if u ≤ α(θ(j−1), θ∗) then

Set θ(j) = θ∗.

(v). else

Set θ(j) = θ(j−1).

3. Discard samples θ(0), . . .θ(b) and use the remaining n samples.

1.4.4.1 Convergence of the Metropolis-Hastings Algorithm

To prove that constructing a Markov chain in this way does produce samples from the

target distribution we require the detailed balance condition described in Section 1.4.2.

If we can prove that the Metropolis-Hastings algorithm satisfies detailed balance with

f = π(θ) then, upon convergence, it will generate samples from the required distribution.

We are interested in proving that the transition kernel, K, satisfies the condition

K(θ,θ∗)π(θ) = K(θ∗,θ)π(θ∗). Using the MH algorithm we see that

K(θ,θ∗) = δθ(θ∗)

(
1−

∫
α(θ,θ′)g(θ,θ′) dθ′

)
+ α(θ,θ∗)g(θ,θ∗), (1.4.4)

where δθ is the Dirac delta function with a mass of one at θ. To show that the Metropolis-

Hastings transition kernel satisfies the detailed balance condition we consider two cases.
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Firstly if θ 6= θ∗, then

K(θ, θ∗)π(θ) = α(θ, θ∗) g(θ, θ∗)π(θ)

= min

{
1,
π(θ∗) g(θ∗,θ)

π(θ) g(θ, θ∗)

}
π(θ) g(θ, θ∗)

= min {π(θ) g(θ, θ∗), π(θ∗) g(θ∗,θ)}

= min

{
π(θ) g(θ, θ∗)

π(θ∗) g(θ∗,θ)
, 1

}
π(θ∗) g(θ∗,θ)

= α(θ∗,θ) g(θ∗,θ)π(θ∗)

= K(θ∗,θ)π(θ∗). (1.4.5)

Thus we see detailed balance has been satisfied. In the case where θ = θ∗ it is trivial

to show that the detailed balance condition has been met. Therefore, under some mild

conditions on the proposal distribution (Tierney (1994)), we find that, once converged,

the Metropolis-Hastings algorithm will generate samples from the target distribution

(see Tierney (1994) and Robert and Casella (2005)).

We can note that the Markov chain will suffer from a high correlation between

samples. One way to reduce this is to thin the output so that only every kth value is

kept. Thinning is predominantly justified for computational reasons, such as memory or

time constraints, therefore in many cases it will not be required.

An important property of the Metropolis-Hastings algorithm is the acceptance rate

we achieve. This is the proportion of proposed samples which are accepted (we may also

refer to this as a percentage). If this value is very high then we are possibly proposing

steps which are too small, therefore we will converge slowly to the target distribution.

In contrast, if the acceptance rate is very low then we are likely proposing jumps that

are too large and thus rarely move about the space. Balancing these two properties is

key to the success of the Metropolis-Hastings algorithm.

1.4.4.2 Random-Walk Metropolis

The Metropolis-Hastings algorithm’s popularity is in part due to the relative freedom

we have when choosing the proposal distribution. A widely used choice is to center the
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proposals on the current value, we call this subset of algorithms the (symmetric) random-

walk Metropolis (RWM) (Tierney (1994)). If we are in iteration j of the MCMC, with

current value θ(j), then the RWM algorithm generates a new sample using a proposal of

the form

θ∗ = θ(j) + ε, (1.4.6)

where in each iteration ε is from some (symmetric) distribution, which is independent

of θ(j).

A common choice, which we shall use throughout, is to choose a Gaussian proposal,

such that

θ∗ = θ(j) + N(0,Md), (1.4.7)

which we refer to as the Gaussian RWM. The choice of matrix, Md, will determine

the acceptance rate we achieve, as well as how well we explore the sample space. The

selection of a matrix that balances these two aims is often a non-trivial task. We shall

discuss the optimal choice for Md in Section 1.4.4.3 and describe how to achieve this in

Section 1.4.4.4.

1.4.4.3 Optimal Acceptance Rate

Before we can answer the question of how to generate an optimal Gaussian RWM algo-

rithm we need to define what we mean by the term optimal. We will be interested in

what the optimal acceptance rate is: we expect this is the value that balances the rate

of convergence with the rate at which we explore the sample space. It seems reasonable

to expect that some optimal value for this exists. In this section we provide only the

key results, with little explanation or background. This is a pragmatic approach as the

topic of optimal MCMC algorithms could fill many books. We would encourage those

who wish to gain a greater understanding of this topic, to consult the papers which we

reference. Additionally we suggest Sherlock (2006) or Brooks et al. (2011, Chapter 4)

as an in-depth and clear explanation of the key results.

Some of the first major optimality results for Metropolis-Hastings algorithms can be

found in Roberts et al. (1997) and Roberts and Rosenthal (2001), where it is shown that,

under certain conditions, as the dimension of state space tends to infinity, the optimal

acceptance rate is 0.234. The optimality here refers to the efficiency of the MCMC
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chain. In general, as our focus is not on optimizing MCMC algorithms, we will not be

too concerned with the acceptance rate our MCMC achieves, as long as it is not too

high or too low. This is based on the work in Roberts and Rosenthal (2001) which found

that “for RWM on smooth densities, any acceptance rate between 0.1 and 0.4 ought to

perform close to optimal.”. Although this is found under specific conditions, such as

taking the dimension to infinity (d → ∞), we shall use it as a good ‘rule-of-thumb’.

For example, Roberts and Rosenthal (2001) found that even with just five dimensions

(d = 5) the optimal acceptance rate is close enough to 0.234 to make little difference in

practice.

1.4.4.4 Adaptive MCMC

Now that we have an optimality criterion we can return to the question of how exactly we

obtain this acceptance rate. Fortunately, there has been significant work performed in

the optimizing of MCMC algorithms. In general for high-dimensional target distributions

a good choice of proposal distribution is N(θ, (2.38)2Σ/d) (see Roberts and Rosenthal

(2001, 2009)), where θ is the current position of the chain and Σ is the covariance matrix

of the target distribution. The factor (2.38)2/d ensures the chain produces the optimal

acceptance rate, 0.234, as determined by Roberts and Rosenthal (2001).

Often we will not know Σ, therefore another reasonable proposal distribution would

be N(θ, (2.38)2Σ̂/d), where Σ̂ is some estimation of the true covariance matrix. How-

ever, often we will have little information about the form of the underlying distribution

of the parameters, therefore the estimation of the covariance matrix may be poor. One

option is to use an adaptive scheme that aims to learn about the form of the distribution

as we run the MCMC.

The first major advancement in easily applicable adaptive MCMC algorithms was

described by Haario et al. (2001). Here they defined an adaptive algorithm based on the

random-walk Metropolis centred on the current state, with covariance matrix determined

using all previous states visited so far, denoted Σj in iteration j. This takes the form of

the proposal

gj(θ, ·) =


N(θ, Σ0) if j ≤ t0

N(θ, sd Σj) + N(θ, sd ε Id) if j > t0

, (1.4.8)
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where Σ0 is an initial guess at the covariance matrix, Id is the d-dimensional identity

matrix, ε > 0 is a constant that can be chosen to be very small and sd is a scaling

parameter dependent on the dimension, d. Using the results mentioned previously in

Roberts et al. (1997) the choice of sd = (2.4)2/d is found to be optimal. Some work is

required to prove that this adaptive scheme satisfies the convergence conditions required

of MCMC algorithms; for the interested reader we refer them to Haario et al. (2001). A

variant on this algorithm is displayed in Roberts and Rosenthal (2009) which uses the

proposal distribution

gj(θ, ·) =


N(θ, (0.1)2Id/d) if j ≤ 2d

(1− β)N(θ, sdΣj) + βN(θ, (0.1)2Id/d) if j > 2d

, (1.4.9)

where sd = (2.34)2/d and β is a small (positive) constant.

Throughout we will use the ideas of these algorithms to adaptively tune our MCMC

algorithms. However, we will avoid the need to prove the algorithms suitability by only

using these adaptive schemes between iterations (b1, b2) where b2 < b i.e. this all occurs

within the burn-in period (up to iteration b). Thus we will use the adaptive scheme,

gj(θ, ·) =



N(θ, Σ0) if j ≤ b1

(1− β)N(θ, sdΣj) + βN(θ,Mj) if b1 < j ≤ b2

(1− β)N(θ, sdΣb2) + βN(θ,Mb2) if j > b2

(1.4.10)

whereMj is a matrix, dependent on the dimension of the problem and sd is as previously

stated. Throughout we will choose Mj = AVj , where Vj is a diagonal matrix containing

the empirical variances of each parameter, estimated using the values sampled up to

iteration j, and A is a constant. Additionally, matching Roberts and Rosenthal (2009),

we set β = 0.05.

1.4.5 Hybrid MCMC

The Metropolis-Hastings algorithm has the advantage over the Gibbs sampler that we do

not require any knowledge of the conditional distributions of the parameters. However,

it does require the selection of a proposal distribution and a poor choice can result in
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a chain that converges slowly, or does not explore the entire sample space. A hybrid of

both Metropolis-Hastings and Gibbs samplers is an alternative choice, this method is

sometimes called a Metropolis-within-Gibbs algorithm or component-wise MCMC.

One of the simplest ways to construct this form of algorithm is to update each

parameter individually; often referred to as a single-site update (Brooks et al. (2011)).

However, this can be slow if we have parameters that are highly correlated with each

other. Similarly we could instead update the parameters in ‘blocks’. For example, if we

have parameters of interest, θ, which can be split into k, not necessarily equally sized,

blocks e.g. θ = (φ1, . . . ,φk), then we can update each of the k blocks separately within

each iteration. This can be useful for ensuring the MCMC mixes well and fully explores

the sample space.

Throughout we will be using a hybrid model, which uses a mix of different chains,

choosing proposal steps that are best suited to our problem.

1.4.6 Hierarchical Models and Data Augmentation

The posterior distribution will inform us about the nature of the parameters we are

interested in. Commonly one would generate samples from the posterior distribution

and then produce summary statistics or density estimates to learn about the parameters

of interest. However, to accomplish this many algorithms rely on the likelihood being

analytically and numerically tractable. In many situations this will not be the case, one

example we will be looking at is the case of hierarchical models.

The hierarchical models we will be considering will involve three components: an

observed process, X, dependent on an unobserved process, Y , dependent on a set of

underlying parameters, θ. Under this construction we have independence between X

and θ, dependent on Y (X ⊥⊥ θ | Y ). This is often called the centered parametrisation

(Papaspiliopoulos (2003), Neal and Roberts (2005)). We are thus now interested in

learning about the posterior distribution of the parameters given the observed data,

denoted by π(θ |x).

Due to the missing information (Y ) the likelihood may not take a form which we can

easily evaluate. As such, we will often employ the technique of data augmentation. This

method is regularly used within missing value problems and is described in the context

of calculating the posterior distribution by Tanner and Wong (1987) as “augmenting
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the observed data so as to make it more easy to analyze”. The motivation behind data

augmentation is the observation that if we have an the observed realisation ofX, denoted

by x, and denote the realisation of the unobserved process by y, then

π(θ |x) =

∫
Y
π(θ |y, x)π(y |x) dy, (1.4.11)

where Y is the space on which the unobserved process lies. If for the unknown process

we can generate samples from π(y |x) then the average of π(θ |y, x) over all of these

samples will be approximately π(θ |x) (see, Tanner and Wong (1987)). Thus if we have

a likelihood that is intractable due to missing information we can additionally sample

over this information, making analysis feasible.

For most algorithms sampling the augmented (missing) data, y, can be difficult,

especially as this is likely to increase the dimension of the distribution we are considering.

This is not a problem for MCMC methods, which work well in conjunction with data

augmentation. For example, if we now consider the posterior distribution which includes

the augmented data, π(θ, y |x), an MCMC algorithm can alternate between the steps:

(i). Update θ |y, x,

(ii). Update y |θ, x.

For obvious reasons this is often referred to as the two-component Gibbs sampler. We

will explore this method as applied to epidemic modelling in later chapters.

1.4.6.1 Non-Centering

One problem with the centered parameterisation we have used to described the hierar-

chical model is that, due to the high a priori dependency between the parameters and

the missing data, the MCMC can achieve poor mixing. Non-centering is a method of

re-parametrisation that can greatly improve the mixing within MCMC algorithms. It is

shown to be especially effective within the framework of epidemic models, which can suf-

fer from a high dependency between the parameters and the missing data. This method

aims to break this dependency by introducing a new variable. Using non-centering meth-

ods in conjunction with MCMC algorithms was popularised by Papaspiliopoulos (2003)

and, as they can be used in a wide range of situations, they have gained in popularity

since.
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We continue to consider the hierarchical model θ → Y→ X and denote the centered

parametrisation as (θ, Y). In many cases Y and θ will be highly dependent and thus the

standard, centered, parametrisation will result in poor convergence of the MCMC. The

non-centered method reparameterise the problem by finding a function h such that Y =

h(θ, Ỹ), where θ and Ỹ are a priori independent. The non-centered parametrisation is

then defined as (θ, Ỹ). This breaks the a priori dependence between the parameters and

the missing data, thereby hopefully hastening the exploration of the sample space. We

note that we may not always be able to define a function h which allows us to break this

dependency. Examples of using non-centering methods are described in Papaspiliopoulos

(2003), additionally, application of these methods to epidemic modelling can be found

in Neal and Roberts (2005), O’Neill (2009) and Jewell et al. (2009).

Which parametrisation to use will depend on the relationship between the missing

data and the parameters. Within MCMC algorithms non-centering is generally preferred

if there is a strong dependence between the model parameters and the missing data

being analysed (Papaspiliopoulos (2003), Neal and Roberts (2005)). However, if we

have informative data then the dependency seen in the centered parameterisation can

break down and we may not benefit from this technique (Papaspiliopoulos et al., 2007),

in this situation a centered parameterisation is preferred. A bridge between the two

models is the proposed partially non-centered algorithm from Papaspiliopoulos (2003,

Chapter 7), which we will not discuss further: Neal and Roberts (2005) provide examples

of its application within an epidemic setting.

1.4.7 Reversible-Jump MCMC

So far the MCMC algorithms we have considered can only perform moves from spaces of

equal dimension. However, often we shall face scenarios where we require proposals from

a space with different dimensions to our current state, for example if we have missing

data whose dimension is unknown (see, for example, Gibson and Renshaw (1998)). An

extension to the Metropolis-Hastings methods we have discussed was proposed by Green

(1995) who constructed a generic framework for generating a Markov chain which can

switch between parameter subspaces of variable dimension, whilst satisfying the detailed

balance condition. This is known as the reversible-jump MCMC (RJ-MCMC). We will

only be discussing the principal ideas behind this method, for details of why it satisfies
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the detailed balance condition we refer the reader to the original paper by Green (1995),

Robert and Casella (2005, Section 11.2) or Brooks et al. (2011, Chapter 3).

The condition developed by Green (1995) to ensure the Markov chain is reversible

is to introduce the idea of dimension matching. Suppose that we have two models we

are interested in: model 1, denoted by M1, with parameters φ(1) ∈ Rd1 and model 2,

M2, with parameters φ(2) ∈ Rd2 . We are interested in constructing a Markov chain that

can jump between the subspaces on which the different models lie. To ensure detailed

balance is met Green proposed the idea of constructing a bijection between the two

spaces, this requires extending the spaces on which φ(1) and φ(2) lie. We achieve this by

generating v(1) ∼ g1(·) and v(2) ∼ g2(·), such that there exists functions Y (1) and Y (2)

satisfying

Y (1)(φ(1), v(1)) = (φ(2), v(2)) and Y (2)(φ(2), v(2)) = (φ(1), v(1)). (1.4.12)

These two functions form a bijection between the two subspaces. The dimension match-

ing requirement we have mentioned simply states that if |v(1)| = m1 and |v(2)| = m2

then d1 +m1 = d2 +m2. Thus we have constructed a mapping from Rd1+m1 → Rd2+m2 .

With this set-up Green proposed the acceptance probability for moving fromM1 →M2

as

min

{
1,
π(φ(2))P (M2 −→ M1) g2(v(2))

π(φ(1))P (M1 −→ M2) g1(v(1))

∣∣∣∣∣∂Y (1)(φ(1), v(1))

∂(φ(1), v(1))

∣∣∣∣∣
}
, (1.4.13)

where

J =

∣∣∣∣∣∂Y (1)(φ(1), v(1))

∂(φ(1), v(1))

∣∣∣∣∣ (1.4.14)

is the determinant of the Jacobian for the transformation from model M1 to M2 and

P (Mi −→ Mj) is the probability of proposing a move from model i to model j.

Often we shall deal with the simplified form such that m2 = 0, in this case the

acceptance probability reduces to

min

{
1,

π(φ(2))P (M2 −→ M1)

π(φ(1))P (M1 −→ M2) g1(v(1))

∣∣∣∣∣ ∂(φ(2))

∂(φ(1), v(1))

∣∣∣∣∣
}
. (1.4.15)

Finally, for moving fromM2 →M1 we simply invert the fractions within the acceptance

probability.

With the acceptance probability defined in this way the reversible-jump mechanism
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satisfies the detailed balance condition and thus it can be used to sample from the target

distribution. We shall discuss applying RJ-MCMC in later sections, where we find the

dimension matching condition is easily satisfied.

1.4.8 Conclusions

In this section we have introduced Markov chain Monte Carlo methods. They are a

highly flexible group of algorithms, that can be applied in a wide range of situations.

They work well in conjunction with missing data problems and can be applied when

the dimension of the distribution may be unknown. Due to their ability to be used

even in difficult problems they have become the gold-standard of Bayesian inference.

This has subsequently lead to a considerable amount of research into their theoretical

properties, as well as in improving their efficiency (for example, Tierney (1994), Roberts

and Rosenthal (2001) and Brooks et al. (2011, Chapter 2)).

MCMC methods are not without their flaws, it can be a non-trivial task selecting an

appropriate proposal distribution that fully explores the sample space, whilst converging

within a reasonable amount of time. This proposal additionally needs to ensure that the

chain does not get ‘stuck’ in a particular region, this is of particular importance when

working with multi-modal distributions.

We have only touched upon this group of methods and we refer the reader to Robert

and Casella (2005) or Brooks et al. (2011) for an in-depth review of MCMC algorithms.

We will further discuss applying MCMC methods to infectious disease problems later in

Chapters 3–5. These methods are well used within epidemic modelling which can suffer

from large amounts of missing data, the dimension of which is also often unknown.
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1.5 Comparison of Simulation Methods

Now that we have discussed a few different simulation methods we provide a summary

of their key properties.

Advantages Disadvantages

Inversion Sampling

� Highly efficient.

� Produces i.i.d samples.

� Requires the inverse cdf.

� Increasingly difficult to implement in

higher dimensions.

Rejection Sampling

� Efficient if a good proposal is chosen.

� Produces i.i.d samples.

� Only requires knowledge of the target

distribution up to proportionality.

� Inefficient if a poor proposal is chosen.

� Increasingly difficult to implement in

higher dimensions.

� Requires calculation of the scaling fac-

tor.

Importance Sampling

� Highly efficient.

� Produces i.i.d samples.

� Only requires knowledge of the target

distribution up to proportionality.

� Samples can be recycled for other target

distributions.

� Can perform poorly if an inappropriate

proposal is used.

� Increasingly difficult to implement in

higher dimensions.

Markov Chain Monte Carlo

� Works well in high dimension problems.

� Highly flexible and works well in con-

junction with data augmentation.

� Only requires knowledge of the target

distribution up to proportionality.

� Does not produce i.i.d. samples.

� The Markov chain can be slow to con-

verge to the target distribution.

Overall the appropriate choice of simulation method will be highly dependent on

the problem we are dealing with. For applications to epidemic modelling we are often

working with complex, high-dimensional distributions with large amounts of missing
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data and as such MCMC methods are the current gold-standard for analysis (see, for

example, Gibson and Renshaw (1998), O’Neill and Roberts (1999), Jewell et al. (2009),

Deardon et al. (2010), Xiang and Neal (2014) etc.). The use of MCMC methods in the

epidemic setting will be discussed further in later chapters.

However, a weakness of all the method discussed thus far is that if we received

new data each method would require re-running in order to generate samples from the

updated posterior distribution. This is highly inefficient and provides the motivation for

the final class of simulation methods we shall discuss in detail: sequential Monte Carlo

methods.

1.6 Sequential Monte Carlo Methods

In previous sections we have discussed how the advancement of computational power

allowed for the emergence of MCMC methods as the gold standard of Bayesian analysis.

This class of algorithms enables samples to be generated from distributions that previ-

ously would have been difficult, if not impossible, to work with. However, recently there

have been advancements in data collection techniques, resulting in richer and larger data

sets being collected with increasing efficiency. Although flexible, MCMC methods are

required to restart each time we wish to incorporate new data; combined with an often

slow rate of convergence this can be problematic for on-line (real-time) inference. This

opens up the need for faster methods of analysing dynamically changing distributions.

Sequential Monte Carlo (SMC) algorithms are a group of methods for sequentially

producing samples from an evolving set of distributions. They are a highly flexible set

of algorithms that can be used on a wide range of problems, in many fields of science

(see Doucet et al. (2001, Part 4) for a collection of applications). In this section we

shall discuss a simple sequential Monte Carlo algorithm, along with some of the key

extensions that have been proposed over the years. In the interest of time we shall omit

many elements and only provide a broad overview of the methods. For the interested

reader a summary of SMC algorithms can be found in Liu and Chen (1998), Doucet

et al. (2000), Cappé et al. (2007), Doucet and Johansen (2011) and Wang et al. (2017),

whilst a comprehensive collection of the advancements in SMC methods can be found in

Doucet et al. (2001). It should be noted that due to their connection to methods used in
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in fluid mechanics the term particle filter is often used interchangeable with sequential

Monte Carlo. We shall only use the latter term; however, a remnant of this connection

is that we will often refer to the samples generated as particles.

SMC methods are a broad class of simulation methods, we shall discuss only a small

subset of them in in the following sections. We begin in Section 1.6.1 by constructing

an extension to the importance sampling method discussed in Section 1.3.4, with a

discussion of using this method in conjunction with parallel computing in Section 1.6.1.1.

Extensions to this basic algorithm are provided in Section 1.6.2, which incorporates

a resampling step, and Section 1.6.3, which incorporates a movement step. Firstly,

however, we define the set-up in which we discuss this collection of methods.

1.6.0.1 Set-Up

We will be considering the case where the posterior distribution is of the form described

in Section 1.4.6, π(θ, y |x), as it closely matches the form the target distribution will

take when we consider epidemic models in Chapter 3. Additionally, as we are now

interested in posterior distributions as a function of time, we use a subscript to indicate

the data we have access to. Therefore we are now interested in a sequence of probability

distributions, {π(θ, y0:t |x0:t) : t = 1, 2, . . . }, where θ denotes the parameters the

evolving system is dependent on, y0:t is the unobserved process and x0:t is the observed

process. If the information at time t is denoted by xt then we define the data observed

up to time t as x0:t = (x0, . . . ,xt), and we define y0:t similarly.

We are interested in evaluating πt = π(θ, y0:t |x0:t), at each time step. Using the

standard MCMC methods described in Section 1.4 we can evaluate this distribution at

each time step, however, for each t we would have to effectively ‘restart’ the MCMC

algorithm, discarding all of the samples generated for the previous time steps. Similarly,

to use importance sampling we would need to recompute the weights each time we receive

new data. Within systems that are evolving slowly we would expect πt+1 to be similar

to πt, as such this appears to be an inefficient method of gaining information about the

distribution we are interested in. Sequential Monte Carlo methods aim to utilise the

samples generated from πt, to aid in generating samples from πt+1.
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1.6.1 Sequential Importance Sampling

We begin with sequential importance sampling, a natural extension to the methods

discussed in Section 1.3.4. At time t we are interested in generating n samples from

π(θ, y0:t |x0:t), we can easily achieve this using importance sampling with proposal dis-

tribution of the form, g(θ, y0:t |x0:t). Thus we can generate a properly weighted sample,

{(
θ(j), y

(j)
0:t , w

(j)
t

)
: j = 1, . . . , n

}
, w

(j)
t = w

(
θ(j), y

(j)
0:t

)
=
π
(
θ(j), y

(j)
0:t |x0:t

)
g
(
θ(j), y

(j)
0:t |x0:t

) . (1.6.1)

Note that each particle, j, contains the proposed parameter values, θ(j), and a sample

for the unobserved data, y
(j)
0:t .

Next, suppose at time t + 1 we observe new data, xt+1, and are therefore now

interested in the ‘up-to-date’ posterior distribution, π(θ, y0:t+1 |x0:t+1). We can write

this new distribution as

π(θ,y0:t+1 |x0:t+1) = π(yt+1 |θ,y0:t, x0:t+1)π(θ, y0:t |x0:t+1)

= π(yt+1 |θ, y0:t, x0:t+1)π(θ, y0:t |x0:t). (1.6.2)

Therefore rather than restarting we can generate

y
(j)
t+1 ∼ g

(
· |θ(j), y

(j)
0:t , x0:t+1

)
and let y

(j)
0:t+1 =

(
y

(j)
0:t , y

(j)
t+1

)
, (1.6.3)

for each particle j = 1, . . . , n, where g is some proposal distribution. We will refer to

this as the ‘augmentation’ step of the algorithm. Then the (unnormalised) weight of

particle j, at time t+ 1, is

w
(j)
t+1 =

π
(
θ(j), y

(j)
0:t+1 |x0:t+1

)
g
(
θ(j), y

(j)
0:t+1 |x0:t+1

) = w
(j)
t ×

π
(
y

(j)
t+1 |θ

(j), y
(j)
0:t , x0:t+1

)
g
(
y

(j)
t+1 |θ

(j), y
(j)
0:t , x0:t+1

) . (1.6.4)

We can repeatedly apply this idea to sequentially analyse the distributions, as we obtain

new data. This is formalised in Algorithm 6 and illustrated in Figure 1.5. At the end of

each iteration we will have a properly weighted sample from the desired distribution.
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Algorithm 6: Sequential Importance Sampling

1. At t = 0 generate n samples from π(θ, y0 |x0), with w
(j)
0 = 1

n for j = 1, . . . , n.

2. for t = 1, 2, . . .

(i). for j = 1, . . . , n

(a). Generate y
(j)
t ∼ g

(
· |θ(j), y

(j)
0:t−1, x0:t

)
.

(b). Set y
(j)
0:t =

(
y

(j)
0:t−1, y

(j)
t

)
.

(c). Calculate

W
(j)
t =

π
(
y

(j)
t |θ(j), y

(j)
0:t−1, x0:t

)
g
(
y

(j)
t |θ(j), y

(j)
0:t−1, x0:t

) .
(d). Let w

(j)
t = W

(j)
t w

(j)
t−1.

Initialise

Augment

Weight

t = t+ 1

Figure 1.5: An illustration of the sequential importance sampling algorithm. The orange

circles represent the (initial) particles and the blue circles represent the new information

sampled during the augmentation step. The size of the particles represents the relative

contribution of each particle, dependent on their weight. We can see that there is no

interaction between the different particles.

We have described simple sequential importance sampling algorithm. Greater detail,

and specific applications, can be found in Doucet et al. (2001). To prove the convergence

of sequential Monte Carlo methods to the target distribution involves topics beyond the

scope of this work. For those interested, we refer the reader to Doucet et al. (2001,

Chapter 2) which handles the theoretical side of sequential Monte Carlo methods, with

their required convergence results.
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1.6.1.1 Parallel Computations

A key advantage of sequential methods is that the majority of the computations are

performed on each particle independently. This means that we can partially run the

algorithm in parallel. We describe a calculation or algorithm as embarrassingly parallel

if it can be easily separated into independent, parallel tasks with no communication

required between the tasks. As we can observed in Figure 1.5, each iteration of this

algorithm is embarrassingly parallel as the particles require no communication with

each other.

Let T
(j)
Augment denote the time it takes to augment particle j and T

(j)
Weight the time it

takes to calculate the weight of particle j. Then, the total time for a single iteration of

the sequential importance sampling algorithm performed in serial is

n∑
j=1

(
T

(j)
Augment + T

(j)
Weight

)
. (1.6.5)

If instead we perform the weight and the augmentation step fully in parallel then the

time to run is

max
j=1,...,n

(
T

(j)
Augment + T

(j)
Weight

)
or max

j=1,...,n

(
T

(j)
Augment

)
+ max
j=1,...,n

(
T

(j)
Weight

)
, (1.6.6)

dependent on if we perform the steps together or return the output between the aug-

mentation and weighting steps. We can therefore see that by running in parallel we can

significantly improve the efficiency of the algorithm.

The number of parallel jobs we can run will be depend on the resources we have

access to. Additionally, care needs to be taken if the cost of splitting the jobs up is

greater than the speed increase gained. In the examples we consider, however, this will

be negligible when compared to the reduction in computation time.

There are many other methods of utilizing parallelization to improve computation

time when using simulation methods. For example, Jewell et al. (2009) utilized shared

memory architectures when evaluating the summations within their likelihood. This

division of labour can be successful in increasing the speed of inference, as evaluation of

the likelihood is often the most time intensive step. This is further discussed in Chapter

2.
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1.6.1.2 Particle Degeneracy

The continual re-weighting without the introduction of any new particles means that

this method will fail for some t ≥ 0. Once normalised, eventually we will be left with

a single unique particle holding all of the weight, with the other n − 1 particles having

little contribution. This is highly inefficient and we will spend a significant amount of

time augmenting particles that have a close-to-zero weight and thus will contribute very

little to our final estimates. We will refer to this as particle degeneracy. It is due to this

degeneracy that many extensions to the sequential importance sampling algorithm have

been proposed, we shall discuss some of these in the following sections.

One simple solution is to begin the sequential algorithm when we have already ob-

served some of the data (rather than at t = 0), as proposed in Liu and Chen (1995).

This can reduce the number of particles needed as we have access to a greater number of

‘good particles’ (large weight). However this can only reduce the problem, not eliminate

it altogether.

1.6.2 Sequential Importance Resampling

The addition of a resampling step to the standard sequential importance sampling algo-

rithm was proposed by Gordon et al. (1993) as a method of eliminating any particles that

are contributing little due to their small weight. Since then it has been incorporated

into most sequential Monte Carlo algorithms, see for example, Liu and Chen (1995),

Berzuini et al. (1997) and Li et al. (2015).

This additional step resamples the particles with probability proportional to their

weights. This is said to ‘rejuvenate’ the particles and allow for superior inference in

later time steps. Once resampling has been performed all of the particles will have an

equal weight. The addition of a resampling step is formally defined in Algorithm 7, with

illustration in Figure 1.6.
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Algorithm 7: Sequential Importance Resampling

1. At t = 0 generate n samples from π(θ, y0 |x0), with w
(j)
0 = 1

n for j = 1, . . . , n.

2. for t = 1, 2, . . .

(i). for j = 1, . . . , n

(a). Generate y
(j)
t ∼ g

(
· |θ(j), y

(j)
0:t−1, x0:t

)
.

(b). Set y
(j)
0:t =

(
y

(j)
0:t−1, y

(j)
t

)
.

(c). Calculate

W
(j)
t =

π
(
y

(j)
t |θ(j), y

(j)
0:t−1, x0:t

)
g
(
y

(j)
t |θ(j), y

(j)
0:t−1, x0:t

) .

(d). Let w
(j)
t = W

(j)
t w

(j)
t−1.

(ii). Resample n particles from those in
{(
θ(j),y

(j)
0:t

)
: j = 1, 2, . . . , n

}
with

probability proportional to their weight.

(iii). for j = 1, . . . , n

(a). Set w
(j)
t = 1

n .

Initialise

Augment

Weight

Resample

t = t+ 1

Figure 1.6: An illustration of the sequential importance resampling algorithm.

If the weight of each particle does not depend on the newly sampled part (augmenta-

tion step) then it is possible to perform resampling before the augmentation. This allows

for a greater diversity in the particles as duplications within the resampling step will
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generate a different value in the augmentation step. In general it is better to perform

resampling prior to any other steps which do not affect the weight (Doucet and Johansen

(2011)).

1.6.2.1 The Problem with Resampling

Resampling has both its advantages and disadvantages (Liu and Chen (1995)), one

advantage is that we do not waste computational power on particles that will contribute

very little to our final estimates. One disadvantage is that we will reduce the number

of unique particles, as those with a small weight are unlikely to be resampled. We can

illustrate this using a simple example.

Example: Resampling

Suppose that we resample with equal probability at each step

A B C D E F

A C F B B C

F F A B A A

A B A A A F

A A A A A A

Initial Samples

Resample #1

Resample #2

Resample #3

Resample #4

As we can see it has not taken long for us to be left with each particle sharing a

common ancestor. This is clearly problematic, illustrating why resampling should

be performed with caution.

1.6.2.2 Resampling Threshold

As we have seen, resampling has both benefits and drawbacks. As such it would be

useful to have a criterion as to when we should resample and when we should not.

One common choice is to measure the effective sample size (see, for example Kong

et al. (1994), Liu and Chen (1995), Doucet et al. (2000) and Doucet and Johansen
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(2011)). This cannot be directly computed but can be estimated as

ÊSS =
1∑n

j=1(w̃(j))2
, (1.6.7)

where w̃ represents the normalised weights. We can interpret the effective sample size as

the number of perfect samples from the target distribution that are equivalent to the n

weighted samples we have generated, where equivalence is in terms of estimator variance.

Therefore, a small effective sample size suggests resampling would be a good idea as we

are wasting too many resources on particles with a small weight. We can therefore set

some threshold, ESSth, which if ESS is below then we resample the particles in that

iteration.

1.6.2.3 Methods of Resampling

To resample the particles the most commonly used method is to resample the n particles

with probability proportional to their weight, sometimes referred to as simple random

sampling (see, for example, Liu and Chen (1998)). An alternative to simple random

sampling is residual sampling (Liu and Chen (1998), Doucet and Johansen (2011), Li

et al. (2015)), this can be inserted in place of the simple random sampling method.

Suppose that we have calculated the weight of each particle, w(j) for j = 1, . . . , n.

To use residual resampling we begin by rescaling the weights so that they add up to n,

ŵ(j) =
nw(j)∑n
j=1w

(j)
. (1.6.8)

We keep nj = bŵ(j)c copies of particle j where bxc = max{y ∈ Z | y ≤ x} is the floor

function. We then define n̂ =
∑n

j=1 nj . For the remaining n−n̂ particles we sample them

using simple random sampling with the probability of sampling particle j proportional

to ŵ(j) − nj . This method of sampling the particles will have a lower variance than

simple random sampling and can, therefore, be a more stable choice.

Many other resampling methods exist, a collection of which are thoroughly described

in Li et al. (2015). Throughout we shall use simple random sampling; however, we

reiterate that many alternatives exist, which are not considered in this thesis.
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1.6.3 Sequential Importance Resampling and Move

The next extension we consider is the addition of a movement step to the sequential

importance resampling algorithm. As mentioned previously the number of unique parti-

cles will decrease as t increases. This degeneracy is the main disadvantage of sequential

Monte Carlo methods. One solution, as proposed in Berzuini et al. (1997) and extended

in Gilks and Berzuini (2001), is to utilize MCMC methods to perform a final movement

step.

After resampling we take each particle and perturb it. Therefore, even if we have

duplications of particles in the resampling step, we will, at the end of each iteration,

have a set of diverse particles. Suppose that we denote by Kt(·|θ,y0:t,x0:t) an invariant

Markov transition kernel for the target distribution at time t. If we perturb a sample

from πt using such a kernel then it will remain a sample from πt (see, Section 1.4). This

final step is formalised in Algorithm 8 and illustrated in Figure 1.7.

The additional movement step can be performed using any choice of an appropriate

kernel. We can even move the particles multiple times, for example performing m steps

of an MCMC algorithm, with the appropriate invariant distribution, on each of the

particles independently. As the original particles are from the correct distribution we do

not require any burn-in period for the MCMC.

Initialise

Augment

Weight

Resample

Move

t = t+ 1

Figure 1.7: An illustration of the sequential importance resampling and move algorithm.
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Algorithm 8: Sequential Importance Resampling and Move

1. At t = 0 generate n samples from π(θ, y0 |x0), with w
(j)
0 = 1

n for j = 1, . . . , n.

2. for t = 1, 2, . . .

(i). for j = 1, . . . , n

(a). Generate y
(j)
t ∼ g

(
· |θ(j), y

(j)
0:t−1, x0:t

)
.

(b). Set y
(j)
0:t =

(
y

(j)
0:t−1, y

(j)
t

)
.

(c). Calculate

W
(j)
t =

π
(
y

(j)
t |θ(j), y

(j)
0:t−1, x0:t

)
g
(
y

(j)
t |θ(j), y

(j)
0:t−1, x0:t

) .

(d). Let w
(j)
t = W

(j)
t w

(j)
t−1.

(ii). Resample n particles from those in
{(
θ(j), y

(j)
0:t

)
: j = 1, 2, . . . , n

}
with

probability proportional to their weight.

(iii). for j = 1, . . . , n

(a). Set w
(j)
t = 1

n .

(b). Generate (θ̃(j), ỹ
(j)
0:t ) ∼ Kt(· |θ(j), y

(j)
0:t , x0:t).

(c). Set
(
θ(j), y

(j)
0:t ) = (θ̃(j), ỹ

(j)
0:t

)
.

1.6.4 Conclusions

We have briefly discussed a selection of sequential Monte Carlo methods, focusing on

those which adapt the ideas of importance sampling. There are many more extensions

to these algorithms, although the key idea remains the same: to repeatedly update our

previous analysis to incorporate the new data, avoiding the need to fully restart our

analysis from the beginning. The SMC algorithm we will produce in Chapter 3 will be

tailored towards use with epidemic data; however, the underlying principals will remain

the same as those discussed in this section.

SMC methods have become a popular tool for working with epidemic data. For

40



example, King et al. (2016) provide an extensive R package, pomp, containing variants

of SMC methods, and illustrate the application of these methods in conjunction with

epidemic data. Similarly, the work of Birrell et al. (2016) considers adapting the sequen-

tial importance reampling and move algorithm for use with epidemic data. This work is

particularly interesting as, following the work by Liu and Chen (1995), they make use of

the effective sample size to decide if and when to resample. Our application is inherently

different to these approaches as we will be focussing on the scenario in which we have

large amounts of unknown data and wish to model epidemics at an individual level (see,

Section 2.6.3).

1.7 Likelihood-Free Simulation Methods

We conclude this chapter with a brief discussion of a final family of simulation techniques,

which do not require computation of the likelihood to generate samples from the desired

distribution.

1.7.1 Exact and Approximate Bayesian Computation

The final two methods we shall consider are Exact Bayesian Computation (EBC) and

Approximate Bayesian Computation (ABC). These methods avoid computation of the

likelihood, which for many distributions can only be computed via data augmentation.

We will provide a brief description of these methods, and the interested reader is recom-

mended to consider McKinley et al. (2009), Neal (2012) and Kypraios et al. (2017).

Exact Bayesian Computation (EBC) refers to the fact that we are sampling from the

‘exact’ target distribution whereas Approximate Bayesian Computation (ABC) samples

from approximately the target distribution. EBC and ABC methods generate values for

the parameters directly from the prior and then simulate data using these parameters and

the specified model. Those sampled parameters are then accepted if they are sufficiently

close to the true data. For EBC we require that the simulated and real data agree exactly.

For ABC we only require that the distance between some chosen function (for example,

Q(·)) evaluated using the simulated (x∗) and real (x) data is below some predefined

tolerance (for example, ε). We illustrate the EBC and ABC algorithms in Algorithm 9

and 10 respectively, where we can see that the only difference between the two methods
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is in the acceptance condition.

Algorithm 9: Exact Bayesian Computation (EBC)

1. Suppose we desire a sample of size n, then let j = 0.

2. while j < n

(i). Generate θ∗ from π(θ).

(ii). Sample x∗ from the model defined, using θ∗.

(iii). if x = x∗ then

(a) Set j = j + 1.

(b) Accept θ(j) = θ∗.

Algorithm 10: Approximate Bayesian Computation (ABC)

1. Suppose we desire a sample of size n, then let j = 0.

2. while j < n

(i). Generate θ∗ from π(θ).

(ii). Sample x∗ from the model defined, using θ∗.

(iii). if d(Q(x), Q(x∗)) ≤ ε then

(a) Set j = j + 1.

(b) Accept θ(j) = θ∗

In practice, ABC is often preferred as EBC can result in very low acceptance rates.

The acceptance rate will be affected by the tolerance we allow for: too much and our

samples will not represent the true posterior distribution, too little and we will have a

low acceptance rate. It is these two properties which must be balanced. Additionally if

the prior and posterior distributions are significantly different then these methods can

perform poorly.

A further extension to this idea is the ABC-MCMC algorithm, which offers a solution

in the situation where the prior and posterior distributions are noticeably different.

This method combines the ABC algorithm with the MCMC methods we have discussed
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previously. Another hybrid model incorporates the ABC simulation method within a

SMC algorithm. Rather than sampling from a sequence of posterior distributions as

in the sequential Monte Carlo method, we instead sample from a sequence of ABC

posteriors using a decreasing tolerance. Both of these extensions are discussed within

Kypraios et al. (2017) where ABC methods are applied to epidemic data.

Within this chapter we have discussed a collection of simulation methods. We began

with discussion of simple simulation techniques such as inverse, rejection and importance

sampling. We then discussed in detail MCMC methods and the variants on sequential

Monte Carlo algorithms. Finally we concluded with a discussion of EBC and ABC

algorithms. In the next chapter we begin the discussion of utilizing these techniques

within the context of epidemic modelling.
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Chapter 2

Epidemic Modelling

“The real purpose of epidemic theory is not to develop interesting and elegant

mathematics, though this may be a delightful incidental byproduct, but is to facil-

itate the practical prevention or control of actual outbreaks of serious contagious

disease.”

– Bailey (1967)

Within the previous chapter we illustrated a selection of simulation methods. These

techniques are incredibly powerful and can be applied to problems within many fields

of research. In this chapter we introduce the specific application we are interested in:

infectious disease outbreaks.

Just as Chapter 1 provided an overview of simulation methods, in this chapter we will

illustrate the difficulties we will face when attempting to model an event as complicated

as an epidemic. We will discuss both present and historic contributions to the field of

epidemic modelling, with the overarching aim of better understanding the analysis of

infectious disease data.

2.1 Motivation

2.1.1 Why Model Infectious Disease Outbreaks?

Gaining a greater understanding of infectious disease outbreaks is vital to discovering

methods of reducing their impact on society. Through epidemic modelling we hope to

understand the conditions that cause an outbreak to arise and spread and thus prevent

any future epidemics. For example, we may be interested in determining:
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� Once infectious, how likely is an individual to transmit the disease to those they

have contact with? For example, when modelling the 2001 UK Foot-and-Mouth

outbreak, Jewell et al. (2009) used a transmission probability which was a function

of the size and composition of the both the infectious and the susceptible farms.

� How does the underlying social structure of the population affect the spread of the

disease? For example, Gibson (1997) considered the spread of citrus tristeza virus

in an orchard where the location of individual trees occured in a lattice structure.

� Once within a host, how does a disease develop? For example, how long is the

time between exposure to the disease and the individual becoming infectious. In-

ference of this period has been incorporated in many infectious disease analyses,

for example Groendyke et al. (2011).

� What level of vaccination, if any, is effective in ensuring the outbreak does not

propagate? For example, Britton and Becker (2000) investigate the level of vacci-

nation required to stop an epidemic occurring within a community of households,

as applied to an influenza outbreak.

� Are the control measures effective in stemming the outbreak? For example, Neal

and Roberts (2004) investigated the impact of closing schools during a measles

outbreak.

Answering questions such as these is vital to understanding and preventing severe out-

breaks.

With a well-formed model we can infer the values of parameters which, by construc-

tion, will directly relate to key elements of the outbreak. For example, we could deduce

the length of a diseases infectious period, or determine the social structures key in al-

lowing the disease to spread. For this reason the accurate construction of such models

is an active area of research.

2.1.2 The Difficulties in Modelling Infectious Disease Outbreaks

Application of standard statistical methods to the epidemic setting is not straightfor-

ward. One reason this field of research has remained highly active (see, Section 2.3.1)
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is the unique nature of infectious disease outbreaks and the models required to study

them.

Firstly, and perhaps most importantly, outbreaks cannot be repeatedly studied un-

der controlled settings. As such to model an epidemic we will often rely on partially

observed data from a concluded epidemic. Even rich data-sets will usually only contain

information about when individuals exhibit specific symptoms, with information such as

an individuals exposure time being treated as unknown. Additionally, each epidemic will

have its own unique environmental, social and biological factors relating to its spread,

which we aim to model. However, this limited data and lack of a ‘baseline’ with which

to compare against means that determining the key characteristics of an outbreak can

be problematic.

Also of difficulty is knowing which factors to incorporate: ideally we wish to capture

the key aspects of an outbreak, whilst maintaining a model that can be worked with.

Additionally, due to limited data, we might be restricted in what we can model. This

can occur when conducting analysis on concluded outbreaks, as objectives may arise

after the data has been collected.

Finally, of note is the inherent randomness in infectious disease outbreaks. From the

movement of individuals to the development of the disease once it enters a host, the

models we build must account for a lack of determinism in almost every aspect of an

infectious disease outbreak.

2.2 Key Terms

When discussing epidemic modelling there are many definitions to keep track of. To aid

in our subsequent discussion we summarise the more commonly used terms here, which

the reader can reference throughout.

Individual Status

Each individual within the population, at any time, will be in one of x states, with the

number of possible states dependent on the model we are using.

Susceptible A healthy individual who has the potential to be infected.

Exposed An individual who has been infected but is not yet able to transmit
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the disease to others, this is sometimes also referred to as the latent

state.

Infectious An individual who has been exposed to the disease and can infect

those who are susceptible.

Notified An individual who is known to be infectious but is yet to be re-

moved from the population and thus can still infect others.

Removed An individual who has been infected but who is no longer infec-

tious. This individual cannot be reinfected.

Data Type

Final size (data) (Data which contains information on) the number of individuals

who ever become infected.

Complete Data in which we have knowledge of each individuals state, at all

times, cf. partially observed data.

Partially observed Data in which we only witness part of the epidemic; for example

only observing which individuals are infected but not who infected

them, or observing when individuals are removed but not when

they are infected, cf. complete data.

Temporal Data which involves observing when individuals enter a certain

state.

Population Type

Closed A population which does not change, with the same individuals

remaining throughout the time period considered, cf. dynamic

population.

Dynamic A population which is allowed to grow or shrink in size: either

through births, deaths, immigration or emigration, cf. closed pop-

ulation.
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Heterogeneous A population of individuals who do not share the same character-

istics. This may relate to social factors, for example interacting

with those they live with more frequently, or biological, for exam-

ple particular individuals being highly susceptible to infection, cf.

homogeneous population.

Homogeneous A population of individuals who share the same characteristics.

This will relate to both social and biological factors, cf. heteroge-

neous population.

Population Structure

Household Each individual belongs to a single household, with different rates

of contact occurring within and between households.

Network The population has an underlying structure which can be repre-

sented by a graph. Individuals are defined as nodes with edges

between nodes representing contact between pairs of individuals.

Spatial The probability an individual is infected, or infects others, is de-

pendent on their location.

Model Type

Deterministic A model which states that, at any time point, the number of indi-

viduals in each state can be fully determined by knowing the initial

conditions and the parameter values of the model. Thus no prob-

abilistic element is incorporated within the model, cf. stochastic

model.

Stochastic A model which incorporates the inherent randomness of an infec-

tious disease outbreak, cf. deterministic model.

General Terminology

Endemic disease When the infection remains constant within a population, at some

base level.
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Infectious period The time during which an individual is infectious.

Mixing Individuals within a population interact with different groups of

people, at different rates. For example, an individual who interacts

with the global population and those they work with at different

rates will have two levels of mixing.

On-line inference Analysing data in real time, as they are obtained. This is per-

formed whilst the outbreak is still ongoing.

2.3 Choosing an Epidemic Model

In the following sections we will discuss the many advancements within epidemic mod-

elling, as well as the specifics of constructing such models. As stated by Daley and Gani

(2001, pages 15–16), we can loosely split the assumptions we will be required to make,

when describing an epidemic model, into three parts:

1. The assumptions about the individuals within the populations

For example, is the population closed or dynamic? Do we assume individuals are fully ho-

mogeneous (behave identically), fully heterogeneous (each individual behaves uniquely),

or somewhere in between?

2. The assumptions about the disease

These could relate to the mechanism of how the disease spreads. For example, most

of the models we discuss will assume that contact between individuals is equivalent to

infection. We also need to assume how the disease develops; for example, once recovered

are individuals granted full immunity, or can they be reinfected?

3. The mathematical assumptions of the model

These assumptions are usually the practical aspects of the model, such as do we model

in discrete or continuous time? Should we assume a stochastic or a deterministic model?

These are justified by considering what is most appropriate for the epidemic we are

considering.

The assumptions made will have a significant impact on any analysis conducted,
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however, often they will be determined by the capabilities of the algorithms currently

available and the quality of the data we have access to. This is illustrated in the next

section, where we review the progression of infectious disease modelling.

2.3.1 A Brief History of Modern Epidemic Modelling

In this section we will highlight a selection of the key moments in the evolution of

infectious disease modelling. Our aim is only to provide an overview and, as such, there

will be contributions overlooked or omitted. This is the nature of a field of research that

has a wealth of work attached to it. The primary focus of our work will be on using

data augmentation of temporal data in conjunction with simulation methods to conduct

inference on an ongoing epidemic, this will show in the bias of which papers we discuss.

Therefore, for a comprehensive overview, the reader is recommended to consider the

abundance of literature that exists, for example: Bailey (1975), Becker (1989), Daley

and Gani (2001), Andersson and Britton (2000) and Diekmann et al. (2012), amongst

others.

2.3.1.1 “A Contribution to the Mathematical Theory of Epidemics”

The beginnings of modern epidemiology is often attributed to the paper by Kermack

and McKendrick (1927). Contained within is what is considered by many to be the first

widely accepted illustration of a fully formed epidemic model. The major contribution

of this paper is the threshold result for a deterministic epidemic model, since termed

“Kermack and McKendrick’s threshold theorem”. This result determines the boundary

on which an epidemic will almost certainly occur and was one of the first of many

theoretical advancements within epidemic modelling.

2.3.1.2 Introducing Randomness

Some years later the next major progression came from Bartlett (1949) and Bailey

(1950) who popularised the use of stochastic models, analogous to the deterministic

model proposed by Kermack and McKendrick (1927). These models could now account

for some of the inherent randomness of an outbreak, providing a more realistic model of

an epidemic.

The connection between an epidemic in a large population and the probability of
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extinction within a branching process was quickly established. By approximating an

epidemic as a birth-death process, with births representing infectious contact, theoret-

ical progress can be made. The first rigorous illustration of utilising branching process

approximations was conducted by Whittle (1955), where this relationship was exploited

to determine what has since been referred to as “Whittle’s threshold theorem”. Whittle’s

work determined the analogous stochastic result to the deterministic threshold found by

Kermack and McKendrick (1927).

An alternative model was proposed by Lowell J. Reed and Wade Hampton Frost who

developed an (unpublished) stochastic model in their class lectures. The key idea behind

the named Reed-Frost model (see, Section 2.6.1) was to regard infections as occurring in

generations. Under certain conditions the number of infections in the next generation

followed a binomial distribution, dependent on the number of susceptible and infectious

individuals in the previous generation. As their work was unpublished we refer the reader

to Abbey (1952) which provides one of the first in-depth considerations of this model.

In the following years the advancement of stochastic models continued, for example

Bailey and Thomas (1971) considered stochastic models, utilising maximum likelihood

(ML) methods to estimate the rate of infection and removal, with an extension to the

use of inter-removal times (the time interval between observations). Highlighted within

this paper is what would be a recurrent issue within infectious disease modelling, chiefly

that computation of the maximum likelihood is very costly as infection times are rarely

observed. This issue was addressed in Becker (1979) which illustrated the use of martin-

gales (see, Becker (1989, Chapter 7.1)), bypassing many of the computational issues en-

countered when using ML methods. Becker applied this method to independent measles

outbreak within households, generating results which matched well with those found in

Bailey (1975, page 252) which used standard ML methods and a Reed-Frost model.

2.3.1.3 The Mathematical Modelling of Epidemics

In the following years much progress was made on the theoretical side of epidemic mod-

elling. For example, an interesting theoretical result was proved by Ball (1983a) who

(like the earlier work of Whittle (1955)) used the relationship between infections and

births in a population to show that, over a finite time interval, the general stochastic

epidemic (see Section 2.6.2) converges to a birth-death process as the population size
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tends to infinity.

Another group of epidemic models, whose theoretical properties were being increas-

ingly explored, were those which incorporated heterogeneities within the population. For

example, Ball (1985) stated the result that in both deterministic and stochastic settings

assumptions of a homogeneous susceptible population results in a worst-case scenario

analysis when compared to allowing varying susceptibility. Also concerned with the

theoretical properties of an epidemic, Ball (1986) obtained the distribution of the final

size of an epidemic, for any form of infectious period whose moment generating function

exists, extending the results to a heterogeneously mixing population.

The majority of research thus far focused on continuous-time models, these allow

events (infection, removal etc.) to occur at any point in time (e.g. t ∈ R+). These models

match how true events are likely to occur and can often produce more mathematically

tractable problems. However, there was still an interest in discrete-time models which

assume events occur at equally spaced time steps (e.g. t = 0, 1, . . .), matching with how

the data is often collected. For example, Longini Jr (1980) discussed an extension to the

Reed-Frost model for endemic disease, Malice and Lefevre (1985) discussed discrete-time

compartmental models and Rampey Jr et al. (1992) constructed a discrete-time model

using incidence data (recording the onset of symptoms), where each individual in the

community belongs to a household.

Research into the theoretical side of epidemic modelling has continued to expand,

however, this is not something considered in great detail here. Any interested readers

are encouraged to refer to Bailey (1975) for a description of the work up until 1975

and Daley and Gani (2001) which provides a comprehensive overview up to the end

of the 20th century. Additionally Becker (1989) considers the application of standard

statistical methods to infectious disease data.

2.3.1.4 Computational Advancements

In much of the work discussed, the use of ML estimators was still very time consuming.

Although the work of Becker (1979) via martingales offered a solution, they could only be

used in a limited number of situations. As such the majority of research thus far focused

on the mathematical modelling of epidemics, rather than any statistical analysis. How-

ever, with the advancement of computing power a solution to the likelihood problem was
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proposed at the end of the 20th century by Gibson and Renshaw (1998) and by O’Neill

and Roberts (1999). They raised the issue of partially observed data and both proposed

the use of reversible-jump Markov chain Monte Carlo algorithms (see, Green (1995)).

The methods proposed performed augmentation of the unknown infection times, allow-

ing for the computation of likelihoods that were previously intractable. For example, an

MCMC algorithm was successfully applied by Gibson (1997), who modelled the spread

of citrus tristeza virus in an orchard where each individual tree is represented as a vertex

in a rectangular lattice.

The use of MCMC methods allowed for a greater level of flexibility to be incorporated

when constructing an epidemic model. Previously intractable likelihood functions could

now be considered, and thus increasingly detailed inference could be made. O’Neill and

Roberts (1999) applied MCMC methods to final size and temporal data using both chain

binomial and general stochastic models. This method was then extended in O’Neill et al.

(2000), who considered household models. O’Neill and Becker (2001) focused on using

MCMC methods to determine parameters relating to the infectious periods of individu-

als, as well as allowing for random heterogeneity in the susceptibility of individuals. The

ability to infer such informative parameters, which are descriptive of key characteristics

of an outbreak, was an important and highly useful advancement.

During this period the topic of epidemic modelling was rapidly expanding, with

increasing amount of research and routes of modelling to consider. For a review paper

summarising this work see Becker and Britton (1999).

2.3.1.5 Random Graphs

With the popularisation of MCMC methods many alternative approaches to modelling

a population could be used. For example, Britton and O’Neill (2002) utilised MCMC

methods and temporal data to describe the population of individuals as existing on a

Bernoulli random graph. Thus, in addition to updating the parameters and infection

times, the pathway of infection also required updating. Their work was then extended

and generalised by Groendyke et al. (2011). Demiris and O’Neill (2005) considered

random graphs with two levels of mixing (local and global), using only final outcome

data. The augmented data then took the form of a random graph describing the potential

infectious contact individuals had. An alternative augmentation scheme was described
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in O’Neill (2009), where the number of contacts individuals had and whom they were

with was incorporated into the likelihood function. This provided a level of analysis that

prior to MCMC methods would have been impossible.

Considering structured populations has a certain level of appeal, as it matches how

we might expect a population to interact. The use of data augmentation and MCMC

methods mirrored the work performed on determining the theoretical properties of epi-

demics on such populations. Andersson (1998) considered a discrete-time model, where

the heterogeneously mixing population existed on a random graph. By using branching

approximations they determined (asymptotically) the final size of the outbreak. Another

example of a structured population is handled by Ball et al. (1997) who considered the

theoretical properties of a population partitioned into households, existing on a random

graph. Rather than using data augmentation Ball et al. (1997) made various assump-

tions, for example that the number of households is large, which allowed for various

theoretical properties of the outbreak to be determined. Similar work on a structured

population with two-levels of mixing was performed in Ball and Neal (2008), were the

number of neighbours each individual had (degree) was specified.

Thus, there have been two key strands to network modelling. Those that focus

on using simulation methods, predominantly MCMC methods, and those that focus

on determining the features of an outbreak, such as proportion of the population ulti-

mately infected in Ball and Neal (2008), typically by using limiting behaviour arguments.

Overall there has been a considerable amount of work conducted on infectious disease

outbreaks occurring on networks, a review of which can be found in Danon et al. (2011).

2.3.1.6 Model Selection and Efficient MCMC

Another advantage of MCMC methods is that they can be easily used to conduct model

selection, as demonstrated in Neal and Roberts (2004) and O’Neill and Marks (2005).

This can prove highly useful, for example in Neal and Roberts (2004) model selection

is used when deciding if classroom, household or spatial effects are important when

modelling the Hagelloch measles outbreak. Clancy and O’Neill (2007) also considered

the idea of model selection, using calculation of the Bayes factor to decide between

competing models. Their analysis is exact as they additionally illustrated how rejection

sampling can be a viable alternative to MCMC methods, which avoids their convergence

54



issues. Knock and O’Neill (2014) consider model selection, where the choice is between

a homogeneous population or a population with two levels of mixing. In this paper they

additionally compared the outputs using both MCMC and path sampling methods.

The use of MCMC methods opened up the possibilities for inference on infectious

disease models, however in many ways this created new problems. In particular, MCMC

algorithms involving the imputation of a significant amount of missing data can be

notoriously slow to converge, which is not ideal for inference that is required quickly.

Neal and Roberts (2005) considered improving the efficiency of their MCMC algorithm

using non-centering methods, with applications to both the general stochastic epidemic

and an epidemic occurring on a random graph. Non-centering methods and efficient

MCMC algorithms were additionally the focus of Jewell et al. (2009), who constructed

an algorithm capable of on-line inference, and O’Neill (2009), where they are utilised to

improve the mixing of an MCMC algorithm.

Once again the development of infectious disease modelling had made considerable

jumps and as such review papers such as Isham (2005), O’Neill (2010) and Britton (2010)

aimed to describe and capture the progress thus far.

2.3.1.7 Current Work

In more recent years increasingly complex models have been suggested, which aimed to

better describe the mechanism of an outbreak. Some work has focused on capturing the

behaviour of individuals in a population. For example, Deardon et al. (2010) constructed

a model for the 2001 UK Foot-and-Mouth disease outbreak, with the aim of modelling

each farm at an individual level. Other work has been concerned with the general social

structure of the population, for example Britton et al. (2011) constructed a model which

described three levels of mixing (e.g. household, school and global) and compared the

results obtained using final size data versus complete data.

Additionally, there has been increasing interest in accurately describing the mech-

anism of transmission. For example, O’Neill and Wen (2012) considered a stochastic

model with non-linear infectious pressure and Neal (2016) incorporated a time of day

effect, ensuring individuals could only infect members of a single group at a time e.g.

the whole community in the morning but only their household at night. Also of con-

sideration were the assumptions about how individuals are identified, for example Ball
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et al. (2011) incorporated contact tracing with some probability into their model, this

was then extended in Ball et al. (2015) which added delays to this tracing, as well as

incorporating a latent period.

New methods of simulation have also being applied, such as the description of an

efficient MCMC algorithm by Xiang and Neal (2014), which used parameter reduction

methods and adaptive tuning. Also interested in efficient MCMC algorithms, Neal and

Xiang (2017) used non-centering methods and collapsing (see, Section 1.4) to construct

an efficient MCMC. Additionally there are the methods proposed by McKinley et al.

(2009), which avoided calculation of the likelihood altogether. In a similar vein, Neal

(2012) also considered avoiding calculation of the likelihood, by constructing a variation

on the ABC algorithm that incorporated the ideas of non-centering to increase efficiency.

ABC methods as applied to epidemic data have additionally been reviewed in Kypraios

et al. (2017).

More recently, many of the extensions to infectious disease modelling have focused

on non-parametric methods, allowing for increasing flexibility. This is achieved using

Gaussian processes in Xu et al. (2016) and in Kypraios and O’Neill (2018).

2.3.1.8 Conclusions

As we can see the work on infectious disease modelling has been rapid and varied. In the

later years within our summary we have focused, in the view of time, on those relating

to simulation methods. However, there exists a wealth work into the theoretical side

of epidemic modelling, which we have only briefly highlighted here. Additionally there

exist many methods which focus on reconstructing the transmission tree of an outbreak

(‘who infected whom’) using genetic data in conjunction with the epidemiological data.

An example of this is implemented in the outbreaker package in R, as developed by

Jombart et al. (2014)). There has also been interesting work performed in the area

of malware modelling, which shares significant overlap with the advances in epidemic

modelling, see for example del Rey (2015) for a review of the work performed in this

field.

Finally, as we stated previously, there are many decisions we have to make when

modelling an infectious disease outbreak. These choices are often made for pragmatic

reasons, such as the capabilities of the available algorithms or the richness of the data,
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as well as for reasons specific to our aim; for example, choices about the spatial aspect

of an outbreak will be important if our aim is to determine the effectiveness of ring-

culling schemes (for example in the Foot-and-Mouth outbreak). Thus there has been

an increasing amount of work focused on the assessment of if an epidemic model is

appropriate. A review of this topic is provided in Gibson et al. (2018) who outline the

boundaries under which one should be critical of any epidemic model formed.

In the following sections we begin to explore the practical construction of an epidemic

model, with the aim of developing our own once we have decided which assumptions we

will make with respect to those discussed in this chapter.

2.4 Compartmental Framework

All of the epidemic models we shall be considering will have an underlying compartmental

framework. This means that we assume individuals within the population are, at any

one time, in one of x states. Each state has its own properties with individuals within

each compartment sharing some, or all, behaviour.

When individuals are assumed to be fully homogeneous within their compartment

we refer to this as a compartmental model. This subset of models is only concerned

with how many individuals are in each state at a given time, with the movement of

individuals between each state treated deterministically or stochastically. Much of the

work highlighted throughout this chapter will use an underlying compartmental model,

as it will often lead to greater tractability.

There are many possibilities for the choice of compartments; we discuss some of those

most commonly used next.

2.4.1 The SIR Model

The compartmental framework we will mostly be concerned with is the SIR model. This

is one of the most commonly examined epidemic models see, for example, Bailey and

Thomas (1971), Andersson and Britton (2000, Chapter 2), Streftaris and Gibson (2004),

Neal and Roberts (2005), Britton (2010) and Xiang and Neal (2014). This model assumes

that individuals within a population can be in one of three possible states: susceptible

(S), infectious (I) or removed (R). Individuals progress through the three states in the
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order shown in Figure 2.1.

Susceptible Infectious Removed

Figure 2.1: The SIR model, often referred to as the ‘general’ model.

Historically when describing epidemic models as general it is with reference to the

SIR compartmental model. A simpler version of this, with no removal stage and indi-

viduals remaining infectious until the conclusion of the epidemic, is often referred to as

a simple epidemic model (see, Figure 2.2). General and simple epidemic models can be

deterministic or stochastic, and in discrete or continuous time, all combinations of which

are discussed in detail in Daley and Gani (2001).

Susceptible Infectious

Figure 2.2: The SI model, often referred to as the ‘simple’ model.

2.4.2 The SEIR Model

We will primarily be focusing on an SIR epidemic throughout this chapter, however,

it is by no means the only possible choice. One common extension is an SEIR model

(see, Figure 2.3), which incorporates an exposure (E) period (also called latent) during

which time an individual has been infected but cannot yet infect others. Examples of

this model are discussed within Gibson and Renshaw (1998), Groendyke et al. (2011)

and Britton et al. (2011). An example of when this model can be used is in the recent

Ebola outbreak. The Ebola virus has a latent period of 2–21 days, between an individual

being infected and becoming infectious (WHO, 2018), suggesting the SEIR model is more

appropriate than the SIR model.

Susceptible Exposed Infectious Removed

Figure 2.3: The SEIR model.
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2.4.3 The SIS Model

Another frequently discussed model is the SIS model (see, Figure 2.4). This substitutes

the removal state in the SIR model for another susceptible state, thus once recovered an

individual can become infected again. This choice is most commonly used to model the

spread of sexually transmitted diseases, which will often not provide immunity once an

individual has recovered. This is the simplest model in which we can observe endemic

behaviour, as we have a constant supply of individuals who can be infected. Examples of

this model can be found in Weiss and Dishon (1971) and Andersson and Britton (2000,

Chapter 8.2).

Susceptible Infectious

Figure 2.4: The SIS model.

2.4.4 The SINR Model

The final model we consider is the SINR model displayed in Figure 2.5. This model

shares many similarities with the SIR model only with an additional notification (N)

period, during which we are aware of an individual’s infectiousness but they are yet

to be removed from the population. This is commonly used to describe agricultural

epidemics, which often have a delay between the notification that a farm is infected and

its removal (quarantining or culling). This model is explored within Jewell et al. (2009)

where it is applied to a simulated Avian Influenza outbreak and will be more thoroughly

examined in Section 3.6.

Susceptible Infectious Notified Removed

Figure 2.5: The SINR model.
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2.5 A Deterministic SIR Model

Historically, one of the first deterministic models was considered by Bernoulli (1700–

1782), who aimed to show that vaccination against smallpox reduces the rate of death.

Further details of this model can be found in Daley and Gani (2001) where a thorough

discussion of Bernoulli’s methods is conducted. In modern epidemiology when we speak

of deterministic models we refer to the derivation of differential equations which can

describe the infection process. Focusing on an SIR model, this relies on the assumption

that the number of susceptible, infectious and removed individuals are a function of

discrete time, or continuously differentiable functions of continuous time. This means

no randomness is incorporated when modelling an outbreak.

In the following section we shall provide a brief outline of a deterministic, continuous-

time, SIR epidemic model in a homogeneous population. Note that throughout we

refer to a population as ‘homogeneous’ if the people are homogeneous and they interact

homogeneously (uniform mixing). The construction we shall describe can be found in

greater detail in Bailey (1975, Chapter 6) and in Daley and Gani (2001, Chapter 2), as

well as in its original form in Kermack and McKendrick (1927).

For this model we assume that we have a closed, homogeneous population of size

Npop with individuals being in one of three states: susceptible, infectious or removed

(see, the SIR model in Section 2.4.1). A deterministic model allows for the construction

of differential equations which describe the rate of movement between each of the three

states. We denote the number of susceptible, infectious and removed individuals at time

t by S(t), I(t) and R(t) respectively and allow these to be non-integer. We then fully

define the deterministic SIR model with the following set of three differential equations:

dS(t)

dt
= −βS(t)I(t), (2.5.1)

dI(t)

dt
= βS(t)I(t)− ηI(t), (2.5.2)

dR(t)

dt
= ηI(t), (2.5.3)

and initial conditions

(S(0), I(0), R(0)) = (Npop − c, c, 0), (2.5.4)

60



where we have assumed the epidemic begins at time t = 0. Here β denotes the (pairwise)

infection rate, η is the removal rate and c denotes the number of initially infectious

individuals. Thus the rate at which individuals leave state S is equal to the rate at

which they enter state I, and the rate at which they leave state I is equal to the rate

at which they enter state R. The requirement of a closed population allows for the

construction of the equations displayed in (2.5.1) – (2.5.3).

Due to equations (2.5.1) – (2.5.3) we can determine the number of individuals, in

each of the three states, at any point in time. Additionally, as we have assumed the

population is closed, we know that at each time step, t, S(t) + I(t) + R(t) = Npop.

Consequently, we only require two of the three differential equations to fully determine

the model.

For an epidemic to grow, the number of infectious individuals has to be increasing,

therefore we require dI(t)/dt > 0 for t = 0. If we consider (2.5.2) we can see that this is

true when η/β < S(0). Therefore η/β = S(0) acts as a threshold for if an epidemic is

to occur, this is called Kermack and McKendrick’s threshold theorem. Its importance is

immediately clear as it states that, dependent on if S(0) is smaller or larger than η/β,

the outbreak will exhibit very different behaviour.

2.5.0.1 The Epidemic Curve

A key advantage of the deterministic model is that by solving (2.5.1) – (2.5.3) we can

determine how many individuals are in each state, at each time step. We begin by noting

that

dS(t)

dR(t)
= −S(t)

ρ
, where ρ =

η

β
is the relative removal rate. (2.5.5)

Solving (2.5.5) and using the initial conditions stated in (2.5.4) we find that

S(t) = S(0)e
−R(t)

ρ (2.5.6)

and therefore

I(t) = Npop −R(t)− S(t) = Npop −R(t)− S(0)e
−R(t)

ρ . (2.5.7)
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Substituting this solution back into (2.5.3) yields,

dR(t)

dt
= η

(
Npop −R(t)− S(0)e

−R(t)
ρ

)

= η

(
Npop −R(t)− S(0)

(
1− R(t)

ρ
+
R(t)2

2ρ2
+O

(
R(t)3

ρ3

)))

≈ η

(
Npop − S(0) +

(
S(0)

ρ
− 1

)
R(t)− S(0)

2ρ2
R(t)2

)
. (2.5.8)

Assuming that R(t)/ρ� 1, this approximation will remain appropriate.

Equation (2.5.8) can be solved using standard methods, we print the results as stated

in Bailey (1975, page 83) and equation (30) of Kermack and McKendrick (1927),

R(t) =
ρ2

S(0)

{
S(0)

ρ
− 1 + α tanh

(
1

2
αηt− φ

)}
, (2.5.9)

where, α =

{(
S(0)

ρ
− 1

)2

+
2S(0)I(0)

ρ2

} 1
2

(2.5.10)

φ = tanh−1

(
1

α

(
S(0)

ρ
− 1

))
. (2.5.11)

Knowing (2.5.9) we can then substitute this back into (2.5.6) and (2.5.7) to determine

the number of susceptible and infectious individuals respectively, at each time step.

Additionally, if we differentiate (2.5.9) with respect to t, we can conclude that

dR(t)

dt
=

ηα2ρ2

2S(0)
sech2

(
1

2
αηt− φ

)
. (2.5.12)

This is often referred to as the epidemic curve and it informs us as to the rate at which

the epidemic is progressing.

2.5.0.2 The Total Size of the Epidemic

Another quantity we are often interested in is how many individuals are infected during

the course of the outbreak. To determine the total size of the epidemic we consider the
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limit of R(t) in (2.5.9) as t→∞:

lim
t→∞

R(t) =
ρ2

S(0)

(
S(0)

ρ
− 1 + α

)
. (2.5.13)

Following Bailey (1975), if we assume that

2S(0)I(0)

ρ2
�
(
S(0)

ρ
− 1

)2

then α ≈
(
S(0)

ρ
− 1

)

and therefore

lim
t→∞

R(t) ≈ 2ρ

(
1− ρ

S(0)

)
=

2ρ

S(0)
(S(0)− ρ) . (2.5.14)

As we have already shown, for an epidemic to occur requires S(0) > ρ. Noting that

(due to the previous assumption) S(0) ≈ Npop, if we set S(0) = ρ+ x then, as shown by

Kermack and McKendrick (1927),

lim
t→∞

R(t) ≈ 2(Npop − x)

(
1− Npop − x

Npop

)
= 2x− 2x2

Npop
. (2.5.15)

Therefore, if an epidemic occurs (2.5.15) will be the magnitude of it.

Here we conclude our discussion of deterministic epidemic models, however, we have

only touched briefly upon a selection of the theoretical results. For a thorough review of

this form of model we refer the reader to Daley and Gani (2001, Chapter 2). Included are

discussions of deterministic epidemic models on non-homogeneous populations, as well

as an extension to carrier models, where individuals can be infectious without showing

any symptoms. These extensions illustrate the flexibility of deterministic models, which

although non-random can be highly informative. Although they will not be our focus,

deterministic models are an active area of research and Roberts et al. (2015) provides an

overview of the current key challenges faced when using deterministic models to study

the epidemiology of infectious diseases.

2.6 Stochastic Models

The work performed in constructing deterministic methods of modelling infectious dis-

ease outbreaks formed the basis for modern epidemic modelling. However, by their very

nature epidemics will have an inherent randomness in their spread and evolution. As
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such stochastic models became increasingly popular as a method of capturing this un-

derlying randomness. A discussion of stochastic models is conducted in Britton (2010),

where various models are explored and analysed. Additionally, Bailey (1975) and Daley

and Gani (2001, Chapters 3 and 4) provide an in-depth discussion of the theoretical

properties of continuous and discrete-time stochastic epidemics. Stochastic models are

also the focus of Becker (1989), which has an emphasis on household models and an

introduction to martingale methods.

2.6.1 The Reed-Frost Model

One of the first stochastic models to gain popularity was the Reed-Frost chain-binomial

model (see, for example, Abbey (1952), Bailey (1975, Chapter 14), Becker (1989, Chapter

2), Daley and Gani (2001, Chapter 4), or Andersson and Britton (2000)). This is a

discrete-time SIR model on a closed, homogeneous population. This model describes

outbreaks where the length of the latent period is much longer than the infectious period.

As such we assume a single time step is the length of the latent period and individuals’

infectious periods are concentrated at the instant of that time step. This means that

the infections will occur in generations.

2.6.1.1 The Epidemic Chain

We are interested in tracking the number of susceptible and infectious individuals at

each time step (generation), denoted by

St = Number of susceptibles at time t, It = Number of infectives at time t.

For the Reed-Frost model we denote the probability a susceptible individual avoids

infection from an infectious individual within a single time step by p. Therefore the

probability of witnessing a specific number of infectious individuals at time t+ 1, given
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the state of the system at time t, is

P (It+1 = it+1 |S0 = s0, I0 = i0, . . . , St = st, It = it)

= P (It+1 = it+1 |St = st, It = it)

=

(
st
it+1

)(
1− pit

)it+1
(
pit
)st−it+1

. (2.6.1)

We will often be interested in the epidemic chain defined by {i1, . . . , it, it+1 = 0},

with initial conditions s0 = n and i0 = m such that the total population is of size

Npop = m+ n. The probability of this realisation is

P (I1 = i1, . . . , It = it, It+1 = 0 |S0 = n, I0 = m)

=P (I1 = i1 | I0 = m, S0 = n) . . . P (It+1 = 0 | It = it, St = st)

=

(
n

i1

)
(1− pm)i1 (pm)n−i1 × · · · ×

(
st
0

)(
1− pit

)0 (
pit
)st

. (2.6.2)

We can then easily estimate the value of p using (2.6.2) and maximum likelihood methods

(see, Bailey (1975, Chapter 14.3), Becker (1989, Chapter 2)).

For each susceptible individual at time t, the probability that they avoid infection at

time t + 1 is a function of the number of infectious individuals at time t. If we denote

this function by h(It), then St+1 ∼ Binomial(St, h(It)), where for Reed-Frost model it

is assumed that h(It) = pIt . The total probability of observing this epidemic is thus the

product of a series of binomials, earning it the name of a chain-binomial model.

Although our focus is on the Reed-Frost model, another commonly discussed chain

binomial model is the Greenwood model (see, for example, Becker (1989, page 16)).

This model takes h(It) = p if It ≥ 1 and h(It) = 1 otherwise. Therefore the chance

of infection is the same when there is a single infective as to when there are multiple.

This model is suitable when the environment is ‘saturated’, thus the addition of more

infectious individuals does not increase the likelihood of infection. This could be valid,

for example, in the case of a well mixing household of individuals where it is unlikely

that two infectious members results in a higher likelihood of infection compared to a

single.
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2.6.1.2 Theoretical Properties

The Reed-Frost model is highly intuitive, leading to its widespread use when first intro-

ducing the concept of epidemic models. It additionally lends itself nicely to the deduction

of theoretical properties. For example, we can determine the distribution of the final

size using a set of recursive equations. Suppose we denote by Pm,n(x) the probability

that in a population with n initial susceptibles and m initial infectives will have x new

infections (not including the m initial infectives), then

Pm,n(x) =

(
n

x

)
p(n−x)(m+x)Pm,x(x), (2.6.3)

as shown in Bailey (1975, page 248). Additionally, similar to the deterministic model,

Ball (1983b) showed the existence of a threshold result, determined by considering the

limit as the population size tends to infinity.

Again more can be said about this form of model and we direct the interested reader

to Daley and Gani (2001, Chapter 4) which provides detailed coverage of discrete-time,

stochastic models, including the theoretical properties of the Reed-Frost model. Addi-

tionally Bailey (1975, Chapter 14) and Becker (1989, Chapter 2) contain a thorough

discussion of chain binomial models, including a discussion of more general transmission

probabilities.

2.6.2 A General Stochastic Epidemic in Continuous Time

The second stochastic model we consider is the general stochastic epidemic (GSE) model

in continuous time. This model has been extensively discussed: see, for example, Bailey

and Thomas (1971), Bailey (1975, Chapter 6.3), Ball (1983a), Daley and Gani (2001,

Chapter 3.3) or Diekmann et al. (2012). We emphasize that this is not to be confused

with the generalised stochastic epidemic which is also often referred to in the literature

as GSE (see, for example, Demiris and O’Neill (2006)). Additionally, perhaps mislead-

ingly, the more general ‘standard SIR model’ is discussed in Andersson and Britton

(2000, Chapter 2) and Britton (2010) where the infectious periods take some arbitrary

distribution. The general model is a special case of the generalised and the standard

model, which makes assumptions about the form of the infectious period and will be our

focus in the remainder of this chapter.
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The general stochastic epidemic (GSE) model is analogous to the deterministic model

discussed in Section 2.5 therefore, as with the deterministic model, this is an SIR model

on a homogeneous, closed population of size Npop. As before we denote the number of

susceptible, infectious and removed individuals at time t by S(t), I(t) and R(t) respec-

tively. We additionally assume that we have the same initial conditions:

(S(0), I(0), R(0)) = (Npop − c, c, 0). (2.6.4)

A key differences is that we now assume that each infectious individual has infectious

contact with each susceptible individual at points of an (independent) homogeneous

Poisson process with rate β. Additionally, once infected individuals have independent

and identically distributed infected periods.

For the GSE it is assumed that the infectious periods have an underlying exponential

distribution with mean 1/η. As a consequence, this process is memoryless and therefore

the epidemic process defined by (S(t), I(t)) is Markovian. Consequently the movement

between states can be described by a Markov chain:

(x, y) −→ (x− 1, y + 1) with transition rate βS(t)I(t),

(x, y) −→ (x, y − 1) with transition rate ηI(t)

where we refer to β as the (pairwise) infection rate and η as the removal rate. For this

process we have transition probabilities:

P
(
S(t+ δt)− S(t) = −1, I(t+ δt)− I(t) = 1 |Ht

)
= βS(t)I(t)δt+ o(δt),

P
(
S(t+ δt)− S(t) = 0, I(t+ δt)− I(t) = −1 |Ht

)
= ηI(t)δt+ o(δt),

P
(
S(t+ δt)− S(t) = 0, I(t+ δt)− I(t) = 0 |Ht

)
= 1− (βS(t)I(t) + ηI(t))δt+ o(δt)

(2.6.5)

where Ht denotes the history of the outbreak at time t.
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2.6.2.1 The Final Size

For the GSE we may be interested in determining the final size of the outbreak, this is

considerably more difficult than its deterministic counterpart. This is due to the final

size now having some underlying distribution. Using the assumption of an exponential

infectious period some progress can be made by solving a system of equations formed

using a recurrence relationship (see, Whittle (1955), Bailey (1975, Chapter 6)). A similar

system of equations for an arbitrary infectious period whose moment generating function

exists was described by Ball (1986). However, due to the final size distribution displaying

bimodal properties, numerical instabilities can arise. This issue was surmounted by

Demiris and O’Neill (2006) by using multiple precision arithmetic, which allows for

greater accuracy.

2.6.2.2 The Basic Reproduction Number

Another important quantity in epidemic modelling is the basic reproduction number,

denoted R0 (see, Diekmann and Heesterbeek (2000)). This value represents the expected

number of secondary infections an infectious individual has during their infectious period,

under the assumption they are in a (large) population of susceptibles.

In this model we have assumed an individual is infectious for an average length of 1/η,

with pairwise infection rate β. Therefore in the case of the GSE we have R0 = βNpop/η.

We can immediately see a similarity to the threshold for a deterministic epidemic, there-

fore R0 is generally seen as a threshold parameter for a stochastic epidemic. If R0 > 1

then each individual is, on average, infecting multiple individuals and thus the epidemic

is likely to grow. If R0 ≤ 1 then we expect to see the number of infectious individuals

decline. For this reason this quantity has remained of great importance within epidemic

literature (see, Heesterbeek (2002)).

2.6.2.3 The Likelihood

The final size distribution and the basic reproduction number are important quantities

within stochastic epidemic modelling. However, next we change direction and consider

the statistical analysis of such a model. We begin by considering the form of the like-

lihood function, which is key to making inference about the underlying parameters of

this outbreak.
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To construct the likelihood for this model we shall, for now, assume that the outbreak

is fully observed i.e. we know the infection and removal times of each individual (when

they enter state I and state R, respectively), and we also assume that the epidemic

has concluded. Taking the approach of Andersson and Britton (2000), we can think of

the infections and removals as a counting process, with ‘counts’ being the number of

each event that have occurred up until time t. This method is commonly used when

constructing a GSE (see, for example, Becker (1989, Chapter 6) and Andersson and

Britton (2000, Chapter 9)), although the methods can be generalised to other forms of

epidemic model.

The following method of constructing the likelihood has a close relationship to meth-

ods used within survival analysis. Intuitively, we can recast the problem as being con-

cerned with how long each individual ‘survives’ being infected and once infected how

long they ‘survive’ being removed. For texts relating to survival analysis and counting

processes we would refer the reader to Martinussen and Scheike (2007, Chapter 3) and

Aalen et al. (2008, Chapter 5).

We denote the start of the outbreak as τ , the time of the first infection, and the

conclusion of the outbreak as ν, the time of the final removal. We define ij to be the

time individual j becomes infective for j = 1, . . . , Npop, where ij =∞ if that individual

never enters state I. Similarly we will set rj as the time at which individual j becomes

removed, with rj =∞ if that individual never enters state R. These times are such that

τ = min
j=1,··· ,Npop

{
ij
}

and ν = max
j=1,··· ,Npop

{
rj
}
. (2.6.6)

We will then denote by i = (i1, . . . , iNpop) and r = (r1, . . . , rNpop) the set of infection

and removal times respectively and let θ = (β, η). To construct the likelihood, L =

L(θ; i, r), we divide the time over which the outbreak occurs into short increments of

length δt. Formally, we split the timespan of the outbreak into w time-steps:

(t0, t1], (t1, t2], · · · (tw−1, tw],

where

t0 = τ, t1 = t0 + δt, · · · , tw−1 = ν − δt, tw = ν,
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such that wδt = ν − τ . Within each interval we will either observe a single event, or no

event.

We split the likelihood into the contributions from the two (independent) processes

such that L = L1 L2 where L1 represents the infection process and L2 the removal

process. Focusing on the infection process, we begin by defining

∆S(t) = S(t+ δt) − S(t). (2.6.7)

Then we can write the likelihood of the infection process as

L1 =
w−1∏
i=0

(βS(ti)I(ti)δt)
|∆S(ti)| (1− βS(ti)I(ti)δt)

(1−|∆S(ti)|) . (2.6.8)

The first term relates to the probability of observing an infection event within that time

interval and the second term relates to the probability of observing no infections. For

small δt we can see that

1− βS(t)I(t)δt ≈ exp {−βS(t)I(t)δt} , (2.6.9)

therefore we can rewrite (2.6.8) as,

L1 =

w−1∏
i=0

(βS(ti)I(ti)δt)
|∆S(ti)| exp{−βS(ti)I(ti)δt}(1−|∆S(ti)|). (2.6.10)

Next we can note that, as infections are assumed to be instantaneous, if we let δt→ 0

then the event times can be replaced by the infection times. Therefore we can simplify

this expression by noting that for the first term, individuals will be infected immediately

prior to their infection time and for the second we require the probability of not observing

an infection event over the entire outbreak (as δt→ 0, w →∞). Thus,

L1 =

 ∏
τ<ij≤ν

βS
(
ij−
)
I
(
ij−
)
δt

(exp

{
−
∫ ν

τ
βS(t)I(t)dt

})
(2.6.11)

where we evaluate βS(t)I(t) immediately prior to infection (the left limit).

Finally we can divide through by the δt factor observed for each infection event,

as this is not dependent on the parameters. To avoid unnecessary confusion we now
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(re)define the contribution to the likelihood from the infection events to be

L1 =

 ∏
τ<ij≤ν

βS
(
ij−
)
I
(
ij−
)(exp

{
−
∫ ν

τ
βS(t)I(t)dt

})
. (2.6.12)

We could deduce L2 in a similar way, however, as we have the assumption of expo-

nentially distributed infectious periods we can easily note that

L2 =
∏

τ<rj≤ν

η exp
{
−η
(
rj − ij

)}
. (2.6.13)

Often L2 will be written in a form similar to L1 (e.g. O’Neill and Roberts (1999),

Kypraios (2007)), so we note that

L2 =
∏

τ<rj≤ν

η exp
{
−η
(
rj − ij

)}
∝

 ∏
τ<rj≤ν

ηI
(
rj−
)(exp

{
−
∫ ν

τ
ηI(t)dt

})
.

(2.6.14)

Altogether, if we combine the infection and removal processes we find

L =

 ∏
τ<ij≤ν

βS
(
ij−
)
I
(
ij−
)(exp

{
−
∫ ν

τ
βS(t)I(t)dt

}) ∏
τ<rj≤ν

η exp
{
−η
(
rj − ij

)} .

(2.6.15)

This method of constructing the likelihood can similarly be applied when inference

is conducted whilst an outbreak is still progressing.

2.6.2.4 Analysing the Likelihood

Once we have constructed the likelihood we can make inference about the parameters

we are interested in. Following O’Neill and Roberts (1999) we allocate β and η Gamma

prior distributions, Gamma(λβ, νβ) and Gamma(λη, νη), respectively. If we denote the

total number of infections and removal times observed throughout the outbreak by m

(including the initial infection) then, using the prior distributions in conjunction with
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the likelihood, we have the marginal distributions

π(β | η, i, r, τ) ∼ Gamma

(
(m− 1) + λβ, νβ +

∫ ν

τ
S(t)I(t)dt

)
, (2.6.16)

π(η |β, i, r, τ) ∼ Gamma

m+ λη, νη +
∑

τ<rj≤ν

rj − ij
 . (2.6.17)

With these distributions constructed we can obtain point estimates, such as the mean,

or form credible intervals to learn about the parameters of interest.

We may not always have fully observed data, in this case we can utilise data augmen-

tation and MCMC methods (see, Section 1.4.6) to sample from these distributions. If

we assume that r is observed and let θ = (β, η) then an MCMC could use the following

scheme to update the parameters:

Step 1. Update θ | i, r

Step 2. Update i |θ, r

Step 3. Return to Step 1.

Here standard Gibbs steps can be used to update the parameters (Step 1), whereas

Step 2 requires a slightly more complicated proposal. We do not detail the formation

of the MCMC as it will be similar to that which we construct and then use in Chapter

3. For further details on using MCMC algorithms in the context of a general stochastic

epidemic with partially observed data we refer the reader to O’Neill and Roberts (1999),

where the algorithm is constructed for an ongoing outbreak. Additionally, an extension

of similar methods to an SEIR outbreak is discussed in Gibson and Renshaw (1998).

2.6.3 Incorporating Heterogeneity

Stochastic models allow for the incorporation of many factors, thus there have been many

proposed extensions: a particularly relevant extension is to remove the assumption of a

homogeneous population. As of yet, for both the deterministic and stochastic models we

have discussed, we have assumed that we are working with a homogeneous population.

However, many extensions to both models exist. For example, Ball (1985) considered

heterogeneous extensions to both deterministic and stochastic models, where the focus
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was on individuals with different levels of susceptibility; additionally, heterogeneous

extensions are considered in detail in Becker (1989) and in Daley and Gani (2001).

2.6.3.1 Individual Level Models

Many heterogeneous population models focus on splitting the population into M groups,

with individuals acting homogeneously within these groups. However, due to advance-

ments in computational capabilities, models at an individual level, also referred to as

agent-based models, have become increasing possible to utilise. These models allow the

probability of events occurring to be dependent on the individual characteristics of those

involved.

This type of model opens up the possibility for more realistic inference; for example,

we could allow the probability of being infected to depend on an individuals proximity to

those infected (spatial model), or the length of an individual’s infectious period to be de-

pendent on their age. The disadvantage of such models is that they are computationally

very costly. However, due to the recent advances in computational capabilities—which

make it increasingly possible to utilize methods such as data augmentation and MCMC

algorithms—individual level models are becoming increasing popular.

Much of the work previously described is based on an individual-level model (ILM).

For example, Gibson (1997) used an ILM to model the spread of citrus tristeza virus

within an orchard, and the model of the Hagelloch measles epidemic by Neal and Roberts

(2004) was performed at an individual level.

This form of model has been particularly useful in analysing the 2001 UK Foot-and-

Mouth disease (FMD) outbreak, which we will later be interested in, where capturing

the characteristics of the farms is important in understanding the spread of the disease.

Jewell et al. (2009) and Deardon et al. (2010) analysed the FMD data set using an ILM,

where they incorporated the structure and location of the infectious and susceptible

farms into the transmission probability. This will be the focus of our work in later

chapters, in particular we will be interested in constructing a discrete-time spatial model

which is capable of incorporating the characteristics of the susceptible and infectious

individuals into their (pairwise) transmission probability.
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2.7 Deterministic versus Stochastic Models

We have illustrated in the models discussed that one key choice we must make when

analysing an outbreak is if a deterministic or a stochastic model should be used. As

described by Bailey (1950), deterministic models assume that

“for given numbers of susceptible and infectious individuals and given infection and

removal rates, a certain definite number of fresh cases would arise in a given time”.

Clearly deterministic models will not capture the inherent randomness of an out-

break. Britton (2010) noted that deterministic models are more interested in answering

questions such as “How many will get infected if the epidemic takes off?” In contrast,

stochastic models are more interested in “What is the probability of a major outbreak?”

The word ‘probability’ is the key here; deterministic models assume that if a certain con-

dition is satisfied then an epidemic will occur. In contrast, stochastic models maintain

that there is an inherent randomness in an outbreak that must be accounted for.

It is worth noting that deterministic models provide a reasonable approximation

to the stochastic model when we have a large population (see, Diekmann et al. (2012,

Chapter 3), Andersson and Britton (2000, Chapter 5)). These approximations can be

very useful, however they must be used cautiously (Isham (1991), Isham (2005)).

Which model is more appropriate will depend on the application we are interested in.

In many ways a deterministic model can be simpler and thus allow greater headway to

be made in the analysis of the outbreak; a realistic model is of little use if it is completely

intractable. However, a stochastic model can offer a more accurate description of the

outbreak, which acts closer to how we would expect an epidemic to behave. Additionally,

due to advancements in computational resources, simulations methods can be used on a

greater range of problems. As such, stochastic models of increasing complexity can be

analysed.

2.8 Discussion

In this chapter we have discussed a collection of epidemic models. Underpinning each

model is a set of assumptions which must be made to produce a tractable problem. These

assumptions are a result of questions such as, how to handle the problem of missing data
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and how to conduct inference in a reasonable amount of time. There are two key ways

of approaching problems such as these:

1. Mathematically Driven Inference

The first is to focus on the mathematical properties of the models used to make inference

about an outbreak. These methods are typically interested in the properties of the system

constructed, therefore stronger assumptions about the outbreak are often made. These

systems are generally further away from the truth, although they do allow for significant

progress to be made in determining the theoretical properties of such outbreaks.

2. Data Driven Inference

The second approach is to perform analysis motivated by the collection of data. This is

often the front line of statistical infectious disease analysis and that which is closest to

the inference we aim to make. This form of analysis often involves the construction of

the likelihood function and then utilising MCMC methods to make inference about the

underlying parameters. These methods are well suited for incorporating heterogeneities

and thus are generally tailored towards a specific outbreak.

The methods we will be developing are to be used in the real-time analysis of outbreak

data. As a result we will take a data driven approach, utilising computing power and

simulation methods to learn about the parameters of interest. We will be interested in

constructing an epidemic model and analysis that works at an individual level. Thus, the

general theoretical properties of the outbreak are not what we are interested in: rather,

we wish to make inference about parameters which we believe are driving the outbreak,

which will be specific to that epidemic.
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Chapter 3

Developing Sequential Monte

Carlo Methods for Epidemic Data

A large portion of the inference performed on epidemic data is conducted using Markov

chain Monte Carlo (MCMC) methods. This is due to the highly flexible nature of these

algorithms, as well as their ability to utilise data augmentation techniques to handle the

problem of missing data. However, infectious disease outbreaks will often occur rapidly,

with new information being obtained daily. With each new piece of data an MCMC

algorithm must restart to produce parameter estimates. As a field of research that

benefits greatly from on-line inference, MCMC methods do not appear to be the most

suitable choice. Intuitively, a sequential method of updating the parameter estimates

as new information is obtained would be better suited to the problem. This will act as

the motivation for developing sequential Monte Carlo (SMC) methods with applications

to epidemic data. The question that we will henceforth be focusing on is: how can we

update the samples produced from the posterior distribution at time t to incorporate

the new data collected at time t+ 1?

3.1 The Problem Statement

We have previously discussed in Chapter 2 the historic and current methods used within

epidemic modelling. We shall focus on utilising simulation methods to generate samples

from the posterior distribution of the parameters, given some observed data.

We are interested in posterior distributions of the form discussed in Section 1.6, i.e.
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a sequence of distributions that evolves with time, t. This form of distribution is a

function of an observed process, denoted by x0:t, and an unobserved process denoted

by yτ :t, where ‘0’ is the time of the first observed event and τ represents the time of

the first event in the unobserved process, such that τ ≤ 0. Therefore, at time t, we are

interested in constructing the posterior distribution

π(θ, yτ :t |x0:t) ∝ L(θ ; yτ :t, x0:t)π(θ). (3.1.1)

A method of learning about the posterior distribution in (3.1.1) is to generate samples

from it. This can be achieved by using the MCMC methods discussed previously in

Section 1.4 (which we adapt for the epidemic setting in Section 3.3). However, the

question we are concerned with is, can we use the samples generated for π(θ, yτ :t |x0:t)

to inform us about the form of π(θ, yτ :t+1 |x0:t+1)?

3.1.1 Chapter Breakdown

In this chapter we will discuss the construction of a sequential Monte Carlo algorithm

which utilises epidemic data.

Before we can adapt the SMC methods, we need to construct the posterior distri-

bution which we wish to analyse. Therefore in Section 3.2 we describe the framework

under which we will perform analysis. This section begins by describing the model as-

sumptions we make to describe the epidemic in Section 3.2.1. Once we have stated these

assumptions we can begin forming the posterior distribution, with discussion of the data

augmentation scheme we choose to use in Section 3.2.2. We then proceed to provide a

detailed description of the notation we use throughout in Section 3.2.3, this then allows

us to formally describe the likelihood function in Section 3.2.4, which forms the key part

of the posterior distributions we are interested in.

With the posterior distribution constructed we proceed to developing the simulation

techniques we will use to generate samples from it. We begin by developing an MCMC

algorithm in Section 3.3. Although our focus will be on the development of an SMC

algorithm we are still interested in the analogous MCMC. This is for two reasons: firstly,

we will assess the performance of the SMC by comparing it to the current gold-standard:

MCMC methods. Secondly, we will utilise the MCMC to perform the movement step
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within the SMC algorithm (see, Section 1.6.3).

In Section 3.4 we begin adapting the ideas of the SMC methods discussed in Chap-

ter 1 to be applied in the framework of the epidemic model we have described. The

application is not straightforward and as such in the following sections we describe each

stage of the SMC algorithm in detail, with a final summary of the algorithm constructed

shown in Section 3.4.9. Additionally, in Section 3.5, we discuss an extension to the con-

structed SMC algorithm, which further utilizes information about the infectious periods

of individuals to potentially improve inference.

Finally in Section 3.6 we describe an extension of the methods developed to an

agricultural epidemic, motivated by the desire to apply the methods to the 2001 UK

Foot-and-Mouth outbreak. The SMC methods developed can be readily applied to this

type of outbreak, thus in this section we primarily focus on the form of the likelihood

function.

3.2 A Discrete-Time Stochastic Epidemic Model

We described in Chapter 2 a collection of the current and historic work performed in

epidemic modelling. Keeping in mind these advancements, we begin by constructing the

posterior distribution which shall form the focus of our analysis. Our aim is to take the

next step in utilizing increasingly advanced computational capabilities to construct a

realistic epidemic model, on which we can apply simulation methods to learn about the

outbreak. As such we must also keep in mind the techniques we described in Chapter 1,

which we will hope to apply.

3.2.1 Model Choices

Before we can construct the posterior distribution we need to define the underlying

epidemic model, which we shall use throughout the remaining chapters. This model

will be used in conjunction with the observed data to form the posterior distribution of

interest. We outline next the various choices we make in order to construct our model.

The Population

We assume that the outbreak occurs on a closed population, with the disease introduced

by a single individual. This individual will be inferred with the other unknowns and cor-
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responds to the individual with the earliest inferred infection time. We additionally will

be interested in constructing a model capable of conducting inference at an individual-

level. As such we currently make no further assumptions about the homogeneity of the

population.

Continuous or Discrete Time?

As we highlighted in Section 2.3.1, the majority of current research on infectious disease

modelling focuses on continuous-time models (see, for example, Gibson and Renshaw

(1998), Jewell et al. (2009) and Xiang and Neal (2014)). These models intuitively make

sense, as infections will spread on a continual-time basis. In contrast, an outbreak is

usually observed in single, equally spaced, time steps (e.g. once a day, once a week etc.),

and therefore the data we have access to will often be in discrete time (see, for example,

Neal and Roberts (2004), Deardon et al. (2010)). Therefore, discrete time models can

match the form of the data more realistically. However, a continuous model is often

more flexible, as it can represent the disease dynamics in a way that is not dependent

on the method of data collection associated with it.

We will choose to focus on discrete-time models throughout, which will fit the form

of the data more closely. This choice is mainly for pragmatic reasons, as SMC methods

are primarily used for the exploration of an evolving set of distributions in discrete time.

As such, we assume that infections are concentrated in the instance between time t and

time t + 1. Therefore an individual becomes infectious for the first time at time t + 1,

having been exposed to infectious individuals at time t.

Compartmental Framework

Throughout we will primarily use an SIR model as it forms a basic template, which

can be easily extended to more complex compartmental frameworks (see, Section 2.4).

Therefore we assume that individuals move between three possible states:

Susceptible −→ Infectious −→ Removed,

and once removed an individual cannot be infected again.
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The Data

We assume the data we have access to takes the form of the removal times of each

individual within a closed population. We assume that these times are recorded daily,

up until the time at which we begin analysis. As such we know when individuals enter

state R but not when they enter state I. This is reasonable as often we will only have

recordings of when individuals first show symptoms, which we will assume coincides with

an individual becoming removed (see, for example, Xiang and Neal (2014)).

Stochastic or Deterministic?

Following the discussion in Section 2.7, due to its ability to capture the randomness

observed within an epidemic, we choose to construct a stochastic epidemic model.

Transmission Process

When constructing our model we aim to keep it fairly general, as choices about the

behaviour of the population will be highly dependent on the outbreak we are considering.

As such, we reserve discussion of this for later sections. In general we assume that

each pair of individuals has contact with some probability, independent of all other

individuals, with contact between a susceptible and infectious individual resulting in

infection. Additionally we will allow the (pairwise) transmission probability to be a

function of the properties of both the infectious and the susceptible individual.

Removal Process

Similar to the transmission process, we keep the distribution of the infectious period in

a general form to allow for a flexible model. Therefore, we assume that the individuals’

infectious periods are independent and identically distributed according to some known

(discrete) distribution, often a function of unknown parameters.

3.2.1.1 Summary of the Key Model Assumptions

For clarity we collect the key assumptions we will make when constructing our epidemic

model:

� The epidemic occurs within a closed population.

� There is initially a single infectious individual.
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� The epidemic occurs in discrete time.

� This is an SIR-type outbreak.

� We observe when individuals become removed but not when they are infected.

� At each time step an infectious individual infects each susceptible individual with

some probability. This probability will usually be based on certain characteristics

of the susceptible and infectious individuals and will be independent of all other

infections.

� Once infected an individual’s infectious period is assumed to follow a known dis-

tribution. This will be a function of underlying, and often unknown, parameters.

3.2.2 The Posterior Distribution

With the assumptions of the model defined we can begin construction of the posterior

distribution, which will form the focus of our analysis. We begin by considering a

posterior distribution of the form

π(θ |x0:t) ∝ L(θ ; x0:t)π(θ), (3.2.1)

where θ = (θ1, . . . θd) contains the underlying parameters of the model, such that d ≥ 1

and x0:t is the observed data up to time t. Throughout we will assume that x0:t contains

the times individuals enter state R (removal times). We will also assume that we have

independent priors, such that,

π(θ̃) =
d∏

k=1

πθk

(
θ̃k

)
, (3.2.2)

where πθk(·) is the prior distribution of θk.

We desire a method for conducting inference whilst an outbreak is still ongoing: as

such, there will be individuals who are currently infectious, that we have not observed

being removed. We refer to these as the occult individuals, taken from the medical term:

“occult: (Medicine)(of a disease or process) not accompanied by readily discernible signs

or symptoms” (Oxford Dictionaries (2018)).
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Additionally we choose to refer to those individuals we have observed as being infectious

as the observed infectives, these are the individuals for whom we have an observed time

of removal.

3.2.2.1 Data Augmentation

To ensure the likelihood is tractable we choose to utilise the data augmentation methods

discussed previously in Section 1.4.6. We have a choice of which data augmentation

scheme we use. It is possible to generate the random graph on which individuals have

contact, as seen in Demiris and O’Neill (2005) and O’Neill (2009), however, the methods

discussed are not easily applied to large data sets. Additionally, these applications are

conducted post-outbreak: they are likely to struggle when the number of infectious

individuals is unknown. For this reason, assuming that we have access to the removal

times, we shall focus on augmenting the unknown infection times of each individual, as

well as who is infectious (see, for example, Jewell et al. (2009)). Additionally we will

infer the removal times of the occult individuals to ensure that we can easily construct

and evaluate the likelihood. This avoids the need to consider the cdfs of sojourn-time

distributions, at the cost of including an additional dimension.

In summary, we choose to infer the infection times of those individuals with an

observed removal time, as well as inferring the occult individuals and their infection

and removal times (or equivalently their infection times and infectious period). This

forms the unobserved information, yτ :t, where τ is the (to be inferred) time of the first

infection. The addition of this term will ensure the likelihood can be evaluated. This

will serve only to reduce the difficulty of the problem and will not affect the inference

made. As such we now return our attention to the posterior distribution

π(θ, yτ :t |x0:t) ∝ L(θ ; yτ :t, x0:t)π(θ). (3.2.3)
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3.2.3 Summary of Notation

To formally define the posterior distribution we choose to first set our notation from the

start, to allow for clarity of exposition throughout this chapter.

3.2.3.1 The States

As stated, throughout we will assume that we observe when individuals are removed,

but not when they are infected. We denote by mI
t the number of individuals who have

been infected at or before time t and define mR
t as the number of removals observed at

or before time t. Therefore, mI
t−1 ≤ mI

t , m
R
t−1 ≤ mR

t and mR
t ≤ mI

t , for all times t. We

denote by mS
t the number of individuals in the population who are susceptible at time t.

This is slightly different to the analogous terms for states I and R as for all time steps,

t, mS
t ≤ mS

t−1. We define the fixed size of the population by Npop, then at all times, t,

Npop = mI
t +mS

t . We note that the values for mS
t and mI

t are usually unknown, therefore

they will be implicitly included in the unknowns we are interested in determining. If we

denote the number of occult individuals at time t by ut then this acts as the unknown

part of mI
t , such that mI

t = ut +mR
t where mR

t is known for all t. As such it will often

be the value of ut that we are interested in inferring, as well as which individuals are the

occults.

To identify the individuals within the population we label each one by an index

number: 1, . . . , Npop. This index will only be used for identification and will not be

related to an individual’s status or covariates (e.g. location). Using these indexes we

can keep track of which individuals are in each state, at each time step. We denote by

St, It, and Rt the indexes of the individuals in state S, I, or R, respectively, at time t.

As such we have St ∪It ∪Rt = {1, . . . , Npop} and St ∩It = St ∩Rt = It ∩Rt = ∅, for all

t. In addition we may refer to the new observations at time t, denoted by Vt = Rt\Rt−1

with vt = |Vt|.

3.2.3.2 The Times

We define τ as the time of the first infection, its value is not observed and therefore it

will be inferred along with the parameters. Throughout we will take τ to be the earliest

inferred infection time, updated when we update the infection times. This is discussed

further in Section 3.3. We will be starting our analysis at time T ≥ τ , at which point the
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epidemic may have just have started, reached its peak or be completed. We additionally

will shift the data so that time t = 0 corresponds to the time of the first observed

removal. As such, the time at which we first analyse the data will be T time steps after

the first observed removal (τ ≤ 0 ≤ T ). Therefore, with respect to this notation, some

infection times will occur at negative time points.

The infection times of those individuals with an observed removal time will need to

be inferred, as will the infection and removal times of the occult individuals. This ensures

that the likelihood assumes a tractable form and will be discussed in greater detail in

the next sections. For an individual with index k we denote their time of infection by ik

and their removal time as rk. If k does not become infected during the outbreak then

we set ik = rk = ∞. As these values will change dependent on when we observe them

we define ikt and rkt as the infection and removal times of individual k at time t, such

that

ikt =


ik if ik ≤ t

∞ if ik > t

rkt =


rk if ik ≤ t

∞ if ik > t

. (3.2.4)

We highlight that, under this notation, it is possible for an individual to be removed

after time t, i.e. rkt > t. These two pieces of information, for each individual, then

form the data that we shall use to construct the posterior distribution of interest. We

additionally define data relating specifically to time t as,

it =
{
ikt : k ∈ It\It−1

}
and rt =

{
rkt : k ∈ Rt\Rt−1

}
, (3.2.5)

such that iτ :t = (iτ , . . . , it) and r0:t = (r0, . . . , rt).

We may often be interested in the infectious period of an individual: this is the time

between an individual’s infection and their removal. We denote the infectious period of

individual k in a similar way to the infection and removal times:

hk =


rk − ik if ik 6=∞

0 otherwise

hkt =


rkt − ikt if ik ≤ t

0 if ik > t

,

(3.2.6)

where we assume hk are independent and identically distributed realisations of H, an
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arbitrary non-negative distribution with probability mass function gH(·). We assume

that gH is a known function of unknown parameters i.e. the infectious periods belong to

some parametric family of distributions, but the exact parameter values are unknown.

Note that we only require two values from hk, ik and rk, to determine the third. Thus,

we may switch between working with the infection and removal times, and working with

the infectious period and either the infection times or the removal times.

We are often also interested in the infection and removal times of individuals in a

particular state. Thus we define

iIτ :t =
{
ikt : k ∈ It

}
, iRτ :t =

{
ikt : k ∈ Rt

}
,

rI0:t =
{
rkt : k ∈ It

}
, rR0:t =

{
rkt : k ∈ Rt

}
, (3.2.7)

such that we can instead define iτ :t =
{
iRτ :t, i

I
τ :t

}
and r0:t = rR0:t. We are therefore

splitting the infection and removal times into those belonging to individuals who are

removed at time t (‘R’), who we refer to as the observed infectives, and those who are

infectious at time t (‘I’), the occults.

Using the notation for the times and the augmentation scheme we have described,

we define the observed data to be

x0:t = r0:t = rR0:t (3.2.8)

and the unobserved data to be

yτ :t =
{
iτ :t, r

I
0:t

}
=
{
iRτ :t, i

I
τ :t, r

I
0:t

}
. (3.2.9)

Therefore the posterior distribution at time t is

π(θ, yτ :t |x0:t) = π(θ,
{
iRτ :t, i

I
τ :t, r

I
0:t

}
| rR0:t). (3.2.10)

We will switch between the alternative notations as appropriate.
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3.2.4 Constructing the Likelihood

We are now in a position to construct the likelihood function. We begin by noting

that knowledge of the infection and removal times is equivalent to knowledge of which

individuals are in each state, at each time step. As such to construct the likelihood,

L(θ; yτ :t, x0:t) = L(θ;
{
iRτ :t, i

I
τ :t, r

I
0:t

}
, rR0:t),

we will focus two processes:

(i) Transmission Process: individuals moving from state S to state I as a result of

infectious contact.

(ii) Removal Process: individuals moving from state I to state R due to their

infectious period ending.

This construction shares many similarities to the general stochastic epidemic model

considered in Section 2.6.2. Considering each part we note that for (i) we need to

consider the infections that occur each day, as well as those individuals that escape

infection. This is analogous to the continuous-time process which counts the infections

which occur and will be similar to the chain binomial model discussed in Section 2.6.1.

Part (ii) will contain the probability of witnessing each individual’s infectious period and

is analogous to the continuous-time removal process, as seen in Section 2.6.2.

We denote by Pt(` ; θ) the probability that individual ` avoids infection at time t

and therefore is still susceptible at time t+ 1. Then the likelihood is

L(θ; yτ :t, x0:t) =
t−1∏
s=τ

{ ∏
`∈Ss+1

Ps(` ; θ)
∏

`∈Ss\Ss+1

(
1− Ps(` ; θ)

)}
︸ ︷︷ ︸

(i) Transmission Process

∏
j /∈St

gH(hjt ; θ)

︸ ︷︷ ︸
(ii) Removal Process

.

(3.2.11)

To avoid infection an individual must avoid transmission of the disease from each infec-

tious individual, therefore

Pt(` ; θ) =
∏
j∈It

pt(`, j), (3.2.12)

where pt(`, j) is the probability that individual ` avoids transmission at time t from

individual j. Linked to this we may instead work with qt(`, j) = 1− pt(`, j) which is the
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probability that individual ` is infected by individual j, at time t. When pt(`, j) = p if

j ∈ It, we can see the similarity to the Reed-Frost model discussed previously in Chapter

2. Strictly pt(`, j) = pt(`, j ; θ), however, we will usually drop the explicit reference to θ

to avoid overly cumbersome notation.

In this section we shall keep gH and Pt in this general form, as their selection will

be highly problem specific. More detailed and tailored examples will be discussed in

Chapters 4 and 5.

As a side note, often we will find that calculation of the likelihood is computation-

ally very expensive, especially for larger populations. However, we can reduce the cost

somewhat by calculating the likelihood using a sequential procedure. This is discussed

in Appendix A.1.

3.3 The MCMC Algorithm

Recall that in Section 1.4 we discussed the construction of an MCMC algorithm for

sampling from a distribution of interest. In this section we consider a more tailored

algorithm, specifically with epidemic data in mind. As the precise form of the algorithm

will be specific to each outbreak, we shall only discuss a generic algorithm for now. We

will follow a similar updating scheme to those discussed in Gibson and Renshaw (1998),

O’Neill and Roberts (1999), Jewell et al. (2009), Xiang and Neal (2014) and Lee and

Neal (2018), all of which required the updating of unobserved infection time events.

It is not necessarily trivial to choose an appropriate proposal distribution, primarily

due to the posterior distribution being constructed whilst the outbreak is still occurring.

As a result we do not know how many individuals are currently infectious and thus must

infer this value, this requires the dimension of the parameter space to be able to shrink

and grow. Therefore, we shall use the ideas of the reversible-jump MCMC methods (see,

for example, Gibson and Renshaw (1998)) found in Section 1.4.7, a method used when

the dimension of the parameter space is unknown.

We are interested in producing samples for the unobserved data, yτ :t, as well as

samples for the parameters underpinning the outbreak, denoted by θ. To achieve this

we can use an MCMC algorithm with the following updating schema:
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Step 1: Update θ |yτ :t, x0:t

Step 2: Update yτ :t |θ, x0:t

Step 3: Return to Step 1.

We consider each of the steps individually in the following sections. Throughout we

will assume that we are in iteration j of the MCMC and wish to propose the values for

iteration j + 1. Thus, when discussing the proposal steps, we assume that we currently

have parameter values θ(j) and unobserved data y
(j)
τ :t. It should be noted that strictly

speaking the time of the initial infection, corresponding to the earliest inferred infection

time, is denoted τ = τ (j), as it too is inferred within the parameters. However, we drop

the notation in order to remain succinct. Additionally, throughout we indicate proposals

with a ‘∗’.

3.3.1 Step 1: Update θ

We begin by updating the underlying parameters of the epidemic model we have defined.

These will be problem specific but will frequently be divided between those relating to the

transmission of the infectious disease and those relating to the progression of the infection

within an individual. To update θ we can either update each parameter individually,

update the parameters in blocks or update all of the parameters at once. Additionally

if parameter θk ∈ θ has a marginal distribution that takes a known form then we can

use a Gibbs step to update it (see Section 1.4.3). The choice of updating scheme will

be problem dependent and as such we do not discuss this in full here, instead we refer

the interested reader to Section 1.4. Once updated we set θ(j+1) as the new parameter

values.

3.3.2 Step 2: Update yτ :t

In this section we shall focus on updating the unobserved data. The updating scheme

we will implement is unique, although it shares many similarities to those previously

used to infer the augmented data within a model of this form.

We choose to split the updating of yτ :t into two stages, as it contains two distinct

pieces of information. For individuals whose removal time we have observed we need only

infer their infection time, from this we can then infer their infectious period. For those
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individuals who are occults we must first determine who they are and then infer their

infection and removal times (or equivalently just one of these times and their infectious

period). This task involves changing the dimension of yτ :t itself and thus we restrict this

to a separate step. Therefore the MCMC scheme is:

Step 1: Update θ |yτ :t, x0:t

Step 2: Update yτ :t |θ, x0:t

(a) Update the data relating the observed infectives, those in state R at

time t, denoted by iRτ :t.

(b) Update the data relating to the unobserved infectives (the occults),

those in state I at time t, denoted by
{
iIτ :t, r

I
0:t

}
.

Step 3: Return to Step 1.

By separating the updating steps we will better explore the sample space we are

interested in and thus ensure the algorithm can quickly converge to the desired distribu-

tion. In summary, for the unobserved data, yτ :t =
{
iRτ :t, i

I
τ :t, r

I
0:t

}
, we choose to update

iRτ :t and
{
iIτ :t, r

I
0:t

}
separately. We shall discuss the updating of iRτ :t in Section 3.3.2.1

and the updating of
{
iIτ :t, r

I
0:t

}
in Section 3.3.2.2.

3.3.2.1 Step 2(a): Update the Observed Infectives

We begin by focusing on updating the infection times of those individuals we know to

have been infected during the outbreak, i.e. we have observed their removal time and

at time t they are in state R. There are mR
t of these individuals and we shall propose to

update a subset of them in each iteration.

To update the infection times of the removed individuals we choose to, in each

iteration, select a random sample F ⊆ Rt, of size |F | = µi ≤ mR
t , from the set of

individuals with an observed removal time, where µi is the tuning value for this proposal

step. Throughout we will have several tuning parameters which determine the acceptance

rate of the MCMC we construct; we will discuss the choice of these values in a later

section. We choose to update a fixed number of the observed infection times as we have

observed the value of mR
t . This is in contrast to the number of occult individuals, ut, as

we shall discuss in the next section.
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Once selected, we update the µi individuals in the following way:

� For ` ∈ F

(i) Generate a proposed infectious period, h`,∗t ∼ gH .

(ii) Denote the proposed infection time as i`,∗t = r`t − h
`,∗
t .

� For ` ∈ Rt\F

(i) Keep the infectious period and infection time the same, such that h`,∗t = h
`,(j)
t

and i`,∗t = i
`,(j)
t .

We shall denote the new set of proposed infection times for the removed individuals by

iR,∗τ :t =
{
ik,∗t : k ∈ Rt

}
, (3.3.1)

although this will contain some times that have not been changed.

This proposal will produce an acceptance probability of zero if it is not consistent

with the data—for example if it leads to individuals being infected when no individuals

are infectious. Otherwise, recalling the methods of Section 1.4.4, we have acceptance

probability

α = min

 1,
π
(
θ(j+1), iR,∗τ :t , i

I,(j)
τ :t , r

I,(j)
0:t | rR0:t

)
P
(
iR,∗τ :t −→ i

R,(j)
τ :t

)
π
(
θ(j+1), i

R,(j)
τ :t , i

I,(j)
τ :t , r

I,(j)
0:t | rR0:t

)
P
(
i
R,(j)
τ :t −→ iR,∗τ :t

)
 , (3.3.2)

where P (x1 −→ x2) is the probability of proposing a new sample, x2, given the current

value, x1. For this updating step we find

P
(
i
R,(j)
τ :t −→ iR,∗τ :t

)
=

(
mR
t

µi

)−1 ∏
`∈F

gH

(
h`,∗t ; θ(j+1)

)
, (3.3.3)

P
(
iR,∗τ :t −→ i

R,(j)
τ :t

)
=

(
mR
t

µi

)−1 ∏
`∈F

gH

(
h
`,(j)
t ; θ(j+1)

)
. (3.3.4)

If accepted we set i
R,(j+1)
τ :t = iR,∗τ :t , otherwise i

R,(j+1)
τ :t = i

R,(j)
τ :t . We note that by changing

the times we are implicitly updating the indexes in each state, Sf and If , for each f ≤ t,

that may change as a result. As such, we denote the updated sets as S(j+1)
f and I(j+1)

f ,

for each f ≤ t. Additionally, we note that, as we have not updated the occult individuals,

I(j+1)
t = I(j)

t and S(j+1)
t = S(j)

t , regardless of if we accept or reject this proposal.
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Throughout we take the time of the first infection, τ , to be the earliest imputed

infection time. Thus this is equivalent to applying a uniform prior to the time of initial

infection. Within the likelihood, the initially infectious individual does not contribute

to the infection process, as we have assumed that the outbreak began with a single,

assumed to be spontaneous, infection.

Following the discussion in Section 1.4.4.3, the value of the tuning parameter µi will

be chosen to achieve a reasonable acceptance rate between 0.25 ± 0.15. This will be

difficult to precisely achieve, so we take inspiration from the methods of Section 1.4.4.4

and adaptively tune the MCMC so that we achieve an acceptance rate within the desired

range. This will be further discussed in Section 3.3.6.

Overall this step of the MCMC algorithm is similar to the updating step used in

previous applications of MCMC methods to epidemic data. From their early use the up-

dating of infection times has been an essential component of the application of MCMC

methods to epidemic data, for example it is key to both Gibson and Renshaw (1998) and

O’Neill and Roberts (1999). However, both of these papers only allow the movement of

a single infection time at once and this new time is proposed uniformly at random. We

choose to extend this idea by allowing multiple new infections to be proposed at once

and either all accepted or all rejected. This could result in a low acceptance probability,

however, this is counteracted by the generation of the proposal times from the assumed

infectious period distribution. This updating step shares many similarities to the up-

dating scheme seen in Jewell et al. (2009), where the infection times are generated using

the underlying infectious period distribution and non-centering methods. Additionally,

a similar version of this updating step is used in Xiang and Neal (2014), Neal and Xiang

(2017) and Lee and Neal (2018). In these papers multiple infection times are updated

within a single iteration of the algorithm, with favourable results.

3.3.2.2 Step 2(b): Update the Unobserved Infectives

In this section we consider updating the occult individuals, who are infected but not

removed when we consider the outbreak. We note that the current occults are those

within It, and therefore they have inferred infection and removal times for each sample.

There are two ways to change the current information about the occult individuals: we

could change the infection and removal times for those already inferred to be currently
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infectious, or we could choose to add or remove individuals from the set of occults.

The updating of the occult individuals will share many similarities with the updating

of those who have been observed to be infectious. The key difference is that we require

the number of individuals to change, therefore we choose to update the unobserved

infectious individuals in two ways:

Step 2(b): Update the occult data, denoted by
{
iIτ :t, r

I
0:t

}
.

(i) Update the infection and removal times of those currently inferred

to be in state It.

(ii) Update which individuals are in It, this will require the addition or

deletion of some of the infection and removal times.

The first step does not require the dimension of the space to change and will closely

follow the updating of the observed individuals described in the previous section. The

second proposal step is more complicated, requiring the individuals proposed to be in-

fectious at time t to change. We will discuss both of these updating steps next.

Step 2b(i) Changing the Times

The first update we propose is to change the infection times of those currently estimated

to be occults. For each individual currently within state I(j)
t

(
= I(j+1)

t

)
we propose an

update to their infection time with probability 1/µo1 , where µo1 is the tuning factor for

this proposal step. The value of µo1 relates to the proportion of the occult times we

change, on average, in each iteration of the MCMC. We could instead choose to update

a fixed number, similar to the previous updating step, however, we found this to be more

appropriate due to the value of ut (and therefore the dimension of the augmented data)

changing.

As the occult individuals are infectious at time t we need to not only generate their

infectious period, but also where this lies with respect to time t. We therefore define the

proposal step as follows:
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1. For each ` ∈ I(j)
t

(a) Set h`,∗t = h
`,(j)
t , i`,∗t = i

`,(j)
t and r`,∗t = r

`,(j)
t .

(b) Generate x ∼ U(0, 1).

(c) If x ≤ 1
µo1

(i) Draw h`,∗t ∼ gH .

(ii) Draw how far through their infectious period the individual is, denoted

by a`,∗, from the set
{

0, . . . , (h`,∗t − 1)
}

.

(iii) Set i`,∗t = t− a`,∗ and r`,∗t = i`,∗t + h`,∗t .

2. Let iI,∗τ :t =
{
i`,∗t : ` ∈ I(j)

t

}
, rI,∗0:t =

{
r`,∗t : ` ∈ I(j)

t

}
.

We see that we only change the information relating to the individuals already inferred

to be occults.

For this proposal, if the new times are consistent, we have acceptance probability of

the form

α = min

 1,
π
(
θ(j+1), i

R,(j+1)
τ :t , iI,∗τ :t , r

I,∗
0:t | rR0:t

)
π
(
θ(j+1), i

R,(j+1)
τ :t , i

I,(j)
τ :t , r

I,(j)
0:t | rR0:t

) ∏
`∈I(j)t

gH

(
h
`,(j)
t ; θ(j+1)

)
h`,∗t

gH

(
h`,∗t ; θ(j+1)

)
h
`,(j)
t

 .

(3.3.5)

If accepted, we set

i
I,(j+1)
τ :t = iI,∗τ :t , r

I,(j+1)
0:t = rI,∗0:t .

If rejected, we set

i
I,(j+1)
τ :t = i

I,(j)
τ :t , r

I,(j+1)
0:t = r

I,(j)
0:t .

As previously, by changing the times we are implicitly changing the indexes in each

state, S(j+1)
f /I(j+1)

f , for each f ≤ t, where again due to this form of proposal we still

have I(j)
t = I(j+1)

t and S(j)
t = S(j+1)

t .

Similarly to µi, the value for the tuning parameter, µo1 , will be selected to achieve a

reasonable acceptance rate (again around 25%), this will be further discussed in Section

3.3.6.
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Step 2b(ii) Adding and Deleting Occults

For the second stage of updating the occult data we choose to change the number of

currently infectious individuals, either by increasing or decreasing the number of them.

We begin by drawing c from the set {−µo2 , . . . , −1, 1, . . . , µo2}, where similar to before

µo2 is a tuning parameter, the value of which will be discussed in Section 3.3.6. If

0 ≤ c ≤ m
S,(j)
t then we add c occults individuals, if 0 ≤ −c ≤ u

(j)
t then we remove −c

occult individuals.

� In the case of c > 0 we select uniformly at random c individuals from the set of

m
S,(j)
t susceptible individuals: denoted F ⊆ S(j)

t , such that |F | = c. These will

become the new occult individuals. Then for each ` ∈ F we generate new infection

and removal times using the same method as seen when changing the occults in

the previous updating step, part (b)(i).

� In the case of c < 0, we select at random a set F ⊆ I(j)
t , such that |F | = −c.

We then remove the individuals within F from the set of occults, setting them as

susceptible individuals.

We therefore have new proposed values, u∗t = u
(j)
t + c and mS,∗

t = m
S,(j)
t − c, and update

the times accordingly. If the proposal is consistent then the acceptance probability, α,

takes the form:

if c > 0:

min

1,
π
(
θ(j+1), i

R,(j+1)
τ :t , iI,∗τ :t , rI,∗0:t | rR0:t

)
π
(
θ(j+1), i

R,(j+1)
τ :t , i

I,(j+1)
τ :t , r

I,(j+1)
0:t | rR0:t

) (mS,(j)
t

c

)(
u∗t
c

)−1 ∏
`∈F

h∗`

gH

(
h∗` ;θ

(j+1)
)
,

(3.3.6)

if c < 0:

min

1, π
(
θ(j+1), i

R,(j+1)
τ :t , iI,∗τ :t , rI,∗0:t | rR0:t

)
π
(
θ(j+1), i

R,(j+1)
τ :t , i

I,(j+1)
τ :t , r

I,(j+1)
0:t | rR0:t

)(u(j)
t

c

)(
mS,∗
t

c

)−1∏
`∈F

gH

(
h

(j+1)
` ;θ(j+1)

)
h

(j+1)
`

.
(3.3.7)

Although the dimension is changing the Jacobian is just the identity matrix, thus this

simplifies to the Metropolis-Hastings acceptance probability (as shown in Section 3.3.5).
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As before we update Sf/If for f ≤ t to reflect the update, as well as updating i
I,(j+1)
τ :t

and r
I,(j+1)
τ :t , as required.

We perform both of these occult updating steps within a single iteration of the

MCMC algorithm, as it will allow the chain to effectively explore the sample space.

Although there are many other choices of updating scheme, this is the method we shall

use throughout. As in the previous steps, we will reserve discussion of µo2 to Section

3.3.6.

One of the key difficulties of using data-augmented MCMC is the updating of the

unobserved data, specifically the information relating to the occult individuals. Many

of the methods previously used when utilising MCMC methods in conjunction with

epidemic data have been applied when an outbreak has been completed, thus there

is complete information about who was infected. Our method is to be used whilst

an outbreak is still ongoing; therefore, as well as the infection times of the observed

individuals, we need to propose updates for the occults. The method we have proposed,

of splitting the occult step into two, is similar to that used by Jewell et al. (2009), who

treated the movement of times and the addition and deletion separately. However, our

method is unique in the further splitting the updating of the observed individuals and

the occults into two separate steps.

3.3.3 Summary of the MCMC Steps

In summary, the MCMC we have constructed uses the following updating scheme:

Step 1. Update θ |yτ :t, x0:t

Step 2. Update yτ :t |θ, x0:t

(a) Update the observed infectives data, denoted by iRτ :t.

(b) Update the unobserved infectives data, denoted by
{
iIτ :t, r

I
0:t

}
.

(i) Change the infection and removal times of the current occults.

(ii) Change who the occult individuals are.

Step 3. Return to Step 1.
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3.3.4 A Note on the Removal Times

We will briefly highlight a key point about the removal times relating to the occult

individuals, denoted rI0:t. We could instead choose to not infer these and instead work

with the conditional distribution. Put simply if at time t we have an occult individual

with infection time z and removal time w then, rather than working with P (H = w−z),

we could instead calculate P (H > t − z), where H is a random variable denoting the

infectious period.

This would avoid the need to infer the removal times, only requiring inference of

the infection times. However, due to the partially observed nature of our problem,

we have found in practice that when we do not infer the removal times the MCMC

algorithm can have severe convergence issues. Therefore, as MCMC methods work well

with data augmentation, we choose to additionally infer the removal times of the occult

individuals. This will not be the case with the SMC algorithm as this does not have the

same convergence issues that MCMC algorithms have.

3.3.5 Satisfying the Detailed Balance Condition

In Section 1.4.7 we described the dimension matching condition that ensured the de-

tailed balance condition is satisfied, when proposing steps which change the dimension

of the space we are considering. We briefly check here that the proposal step to add or

remove occult individuals satisfies this condition. We also illustrate why the acceptance

probability collapses down to the familiar Metropolis-Hastings formula.

Recall that we denote the unobserved data by yτ :t =
{
iRτ :t, i

I
τ :t, r

I
0:t

}
, therefore we

can define the size of yτ :t to be

∣∣yτ :t

∣∣ =
∣∣iRτ :t

∣∣ +
∣∣iIτ :t

∣∣ +
∣∣rI0:t

∣∣ = mR
t + ut + ut. (3.3.8)

This is as for those with an observed removal time we only need to infer their infection

time, however, for the occults we must infer both their infection and removal times.

We consider the move between dimensions which occurs when we add c > 0 individ-
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uals to the set of occults. We denote the two proposed models as

M1 : φ(1) = y
(1)
τ :t such that

∣∣y(1)
τ :t

∣∣ = mR
t + 2u

(1)
t ,

M2 : φ(2) = y
(2)
τ :t such that

∣∣y(2)
τ :t

∣∣ = mR
t + 2u

(2)
t = mR

t + 2u
(1)
t + 2c,

where each model has a specific configuration of individuals infected, such that moves

between the two models are possible using the proposal scheme described previously. We

define v
(1)

=
(
v

(1)
I , v

(1)
R

)
as the new times, infection and removal respectively, generated

using the proposal distribution required to move from M1 to M2. Therefore,

φ(2) =
(
φ(1), v(1)

)
=
(
φ(1), v

(1)
I , v

(1)
R

)
(3.3.9)

with
∣∣v(1)
I

∣∣ = c =
∣∣v(1)
R

∣∣. We can easily see that the dimension matching condition is

satisfied:

∣∣v(1)∣∣ +
∣∣φ(1)∣∣ = 2c + mR

t + 2u
(1)
t = mR

t + 2u
(2)
t =

∣∣v(2)∣∣ +
∣∣φ(2)∣∣, (3.3.10)

as v
(2)

= ∅. Additionally, we can define the bijection between the two subspaces as

Y (1)
(
φ

(1)
, v

(1)
)

= Y (1)
(
y

(1)
τ :t , v

(1)
)

= y
(2)
τ :t = φ(2) (3.3.11)

and therefore we can determine the Jacobian,

J =
∂Y (1)

(
φ

(1)
, v

(1)
)

∂
(
φ

(1)
, v

(1)
) =

∂
(
φ

(2)
)

∂
(
φ

(1)
, v

(1)
) =

1 0 0

0 1 0

0 0 1

 , (3.3.12)

with |J | = 1. The reverse move from M2 → M1 also has |J | = 1, thus the accep-

tance probability reduces down to the familiar form of a Metropolis-Hastings acceptance

probability, with the included probability of moving from one model to another.
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3.3.6 Acceptance Rate

We have discussed previously in Section 1.4.4.3 why it is desirable to have an acceptance

rate close to 25% when using a random-walk Metropolis updating step. This result has

been found to be highly robust to different forms of target distributions (see, Roberts

and Rosenthal (2001)). As such for the parameter updating step described in Section

3.3.1, this appears to be a sensible aim.

For the updating of the infection times the justification is less clear, however, Lee and

Neal (2018) found that this acceptance rate is close to optimal when updating infection

times. This paper considered the algorithm used in Xiang and Neal (2014), focusing on

a homogeneous SIR epidemic. Although our problem is slightly different from that in

this paper, we have found this acceptance rate produces satisfying results. As such we

aim to achieve it within each of the proposal steps in the MCMC algorithm described.

3.3.6.1 Adaptive Tuning

Now that we have decided what our ideal acceptance rate is, we need to provide a method

of achieving it. Unfortunately it can be difficult to immediately construct an algorithm

that produces such an acceptance rate, especially when we have very little data. For

these reasons we choose to adaptively tune the MCMC algorithm we have constructed.

Suppose that we run an MCMC with burn-in b; we choose to adaptively tune between

iterations b1 and b2, where 0 < b1 < b2 < b. This ensures that we will always satisfy the

conditions required for the MCMC to converge. We have previously discussed in Section

1.4.4.4 how to adaptively tune a random-walk Metropolis algorithm, which is the form

of the proposal we use to update the parameters. As such for the parameter proposal

step we refer the reader to Section 1.4.4.4 for a general method and Chapter 4 for the

specifics of an adaptive method, as applied to a simulated data set. In this section we

instead focus on selecting the tuning parameters relating to the updating of yτ :t.

Recall that yτ :t contains the unobserved infection times, as well as the removal times

of the occult individuals. As such we updated it with three steps: updating the observed

infectives, changing the occult individuals’ infection and removal times and changing the

number of occult individuals. Specifically we introduced three tuning parameters:
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� µi, the number of observed individuals we propose to update in each iteration (see,

Section 3.3.2.1).

�
1
µo1

, the probability we propose an update for each occult individual (see, Section

3.3.2.2).

� µo2 , the range for how many occults we propose to add/delete in each iteration

(see, Section 3.3.2.2).

The method we use to tune is fairly crude, however, it will achieve a reasonable

acceptance rate if performed over a sufficient number of iterations. For each of the

updating steps we define the acceptance rates as ARi, ARo1 and ARo2 , respectively. In

general, to ensure we are monitoring the change in acceptance rate, we only consider the

last x iterations when considering if the acceptance rate has drifted too low or too high.

Then in every kth iteration before b2, for k ∈ N, we adaptively tune by considering the

following conditions.

If ARi < l− and µi > 1 then let µi −→ µi − 1.

If ARi > l+ and µi < mR
t then let µi −→ µi + 1.

If ARo1 < l− and µo1 < U1 then let µo1 −→ µo1 + 1.

If ARo1 > l+ and µo1 > 1 then let µo1 −→ µo1 − 1.

If ARo2 < l− and µo2 > 1 then let µo2 −→ µo2 − 1.

If ARo2 > l+ and µo2 < U2 then let µo2 −→ µo2 + 1.

We set l− and l+ to be the acceptance rate we are aiming between. Throughout we will

choose l± = 0.25± 0.15, as we find in general that this choice performs well. The values

of U1 and U2 are not always required, but they can be selected if we wish to restrict

the size of the proposal jumps. Throughout, unless stated otherwise, we adaptively tune

every 100th iteration, based on acceptance rate over the last 100 iterations. This is in

contrast to the adaptive RWM, which recomputes the covariance matrix in each iteration

(within the tuning period), using all of the samples generated thus far.
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3.3.7 Conclusions

We have constructed a flexible MCMC algorithm, which will explore the posterior dis-

tribution produced by the epidemic data effectively. Using such an MCMC we can easily

generate n samples, denoted

{(
θ

(j)
, y

(j)
τ :t

)
: j = 1, . . . , n

}
=
{(
θ

(j)
,
{
i
R,(j)
τ :t , i

I,(j)
τ :t , r

I,(j)
0:t

})
: j = 1, . . . , n

}
,

(3.3.13)

from the posterior distribution at time t.

This MCMC algorithm has been constructed to be

� Flexible: we have aimed to define as little of the specifics of the epidemic as

possible to ensure that the MCMC can be applied to a wide range of outbreaks,

incorporating a variety of behaviour as desired.

� Efficient: we have constructed an MCMC algorithm which can effectively explore

the space on which the posterior distribution lies. In particular we have introduced

three steps to update the augmented data, which are applied in each iteration.

� Optimal: we have incorporated various measures to ensure we are achieving an

optimal acceptance rate. This is through utilising adaptive random walk methods

to efficiently update the parameters, as well as a method of adaptively selecting

the tuning parameters.

This MCMC algorithm will act as the current ‘gold-standard’ against which we shall

compare the performance of the SMC algorithm. In the next section we consider the

construction of the SMC algorithm that will use these samples and iteratively update

them as new information is obtained.

3.4 The SMC Algorithm

The particles generated using the MCMC algorithm (and the data obtained up to time t)

represent a sample from the posterior distribution at time t. However, we have assumed

that the epidemic is still in progress and therefore at time t+1 we will receive new data.

We could choose to repeatedly apply the constructed MCMC, from scratch, each time

we observed any new data. Alternatively, in this section we aim to take the particles
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generated at time t forward in time and use them to inform us about the posterior

distribution at time t+ 1.

We will achieve this by adapting the sequential Monte Carlo methods described in

Section 1.6 to epidemic data. We choose to use a similar structure to the sequential-

importance-resampling-and-move algorithm discussed in Section 1.6.3. This form of

algorithm has the following general structure:

Step 1. Generate n particles.

Step 2. Obtain the new data.

Step 3. Augment the particles.

Step 4. Calculate the weight of each particle.

Step 5. Resample the particles (optional).

Step 6. Move the particles (optional).

Step 7. Return to Step 2.

If the weight of a particle (step 4) is independent of the newly sampled part of the

particle (step 3) then we may choose to perform the weight and resampling steps before

the augmentation step. This will allow a greater amount of diversity to be incorporated

into the particles (Doucet and Johansen (2011)).

In this section we will discuss how to adapt the underlying ideas within the sequential

Monte Carlo algorithms such that they can be applied to infectious disease outbreak

data. We will find that many of the steps are not straightforward to apply and we must

make some concessions in order to use this method in conjunction with epidemic data.

3.4.1 Generating the Initial Particles

The first step in the SMC algorithm is to generate n initial particles, which we can then

reweight and resample as we acquire new data. We will sample the initial particles from

the posterior distribution at time T , πT = π(θ, yτ :T |x0:T ), where T ≥ τ . To generate

the initial samples we can utilize one of the simulation methods discussed previously

in Chapter 1. We choose to use MCMC methods (Section 1.4) to generate the initial

particles as they are proven to be highly flexible, with the ability to handle large amounts
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of augmented data well. Additionally, with not many infectives (small T ) we can apply

the MCMC algorithm relatively quickly. Although we will have less data, and therefore

greater uncertainty, there are also fewer infectious individuals. It is at the peak of the

outbreak, when there are many occult individuals, and at the end of the outbreak, with

a large amount of data, that the MCMC algorithm can take a significant amount of time

to converge. This is discussed later in Section 4.5 where we compare the time it takes

to apply the MCMC and SMC algorithms.

The choice of T will be problem-dependent; however, we will often use the idea of Liu

and Chen (1995) and generate the initial particles when we have obtained some data.

This should aid in reducing the particle degeneracy and is realistic, as usually we will

not begin analysis until we have received some reported cases.

The MCMC algorithm will follow that described in Section 3.3. Throughout we will

generate n = 1000 particles as this is more than sufficient for most problems, however,

in high dimensional problems we may require a larger n. Additionally, the number of

particles required will depend on the practical aspects of the particular research question.

For example, if we are only concerned with specific parameters we may require fewer

particles. Note: as we choose to use a finite number of samples we will often thin the

MCMC, thereby reducing the autocorrelation between the particles we take forward.

We denote the initial particles as

{(
θ

(j)
, y

(j)
τ :T

)
: j = 1, . . . , n

}
=
{(
θ

(j)
,
{
i
R,(j)
τ :T , i

I,(j)
τ :T , r

I,(j)
0:T

})
: j = 1, . . . , n

}
,

(3.4.1)

these represent samples from the posterior distribution at time T .

3.4.2 Incorporating the New Data

As mentioned previously we are interested in what happens on the next day, when we

receive new information in the form of new individuals being removed.

The question we are interested in is, can we use the n samples generated at time

T (represented in (3.4.1)) to inform us about the posterior distribution at time T + 1,

which incorporates all of the data we now have access to? We begin by considering

the relationship between the posterior distributions at time T and at time T + 1. We

discard the samples, rI0:T (the removal times of the occult individuals), as these were
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only generated to ensure the MCMC converged. We reserve full explanation as to why

we discard these samples to later sections, where it will become immediately clear.

Therefore, the unobserved data now only contains the infection times, yτ :T = iτ :T =

{iRτ :T , i
I
τ :T }, and, as before, we have observed those who have been removed at or before

time T , x0:T = r0:T = rR0:T .

We assume that at time T + 1 we observe some new data, rT+1, we therefore are

now interested in

π(θ, iτ :T+1, | r0:T+1) ( = π(θ, yτ :T+1 |x0:T+1) ), (3.4.2)

the posterior distribution at time T +1. Considering this distribution and the analogous

distribution at time T we have the following relationship

π(θ, iτ :T+1 | r0:T+1) =
π(rT+1, iT+1 | θ, iτ :T , r0:T ) π(θ, iτ :T | r0:T )

π(rT+1 | r0:T )
. (3.4.3)

We can note that the new infections and removals on day T + 1 are independent, given

{θ, iτ :T , r0:T }, and therefore

π(rT+1, iT+1 |θ, iτ :T , r0:T ) = π(rT+1 |θ, iτ :T , r0:T ) × π(iT+1 |θ, iτ :T , r0:T ). (3.4.4)

Thus, using (3.4.4) we can rewrite (3.4.3) as

π(θ, iτ :T+1 | r0:T+1) ∝ π(θ, iτ :T | r0:T ) (3.4.5a)

× π(rT+1 |θ, iτ :T , r0:T ) (3.4.5b)

× π(iT+1 |θ, iτ :T , r0:T ). (3.4.5c)

(3.4.5) shows that the posterior distribution at time T+1 can been deconstructed into the

posterior distribution at time T , (3.4.5a), multiplied by two additional terms ((3.4.5b)

and (3.4.5c)). Considering each term in (3.4.5) individually we can understand this

breakdown better:
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Equation 3.4.5a: π(θ, iτ :T | r0:T )

The posterior distribution at time T , from which we generated the original n

samples (see, Section 3.4.1).

Equation 3.4.5b: π(rT+1 |θ, iτ :T , r0:T )

This represents the chance that we witness this new data given our previous infer-

ence and will be the weighting of each particle (see, Section, 3.4.6).

Equation 3.4.5c: π(iT+1 |θ, iτ :T , r0:T )

This part of the equation involves the new infections that occur at time T+1, which

will be unobserved. However, for each particle, we can easily generate values from

this distribution, as illustrated in Section 3.4.7. This can then be added to the

samples previously generated at time T and acts as the ‘augmentation’ step of the

SMC algorithm (see Chapter 1).

In summary we can see that if we take our original samples, generated at time T , reweight

them and generate the new infections occurring at time T + 1 then we will have samples

from the posterior distribution at time T + 1. We can immediately see how this matches

the SMC methods discussed in Chapter 1.

As discussed previously if the weight and augmentation steps are independent, then

we can swap these steps around, allowing for greater diversity within the samples. We

observed in (3.4.4) that this is the case here. This is to be expected as the new infections

at time T + 1 will clearly be independent of those removed at time T + 1. As such we

will choose to generate the new infections after we have weighted and resampled the

particles (see Section 3.4.7). Thus the order of the steps we perform is now:

Step 1. Generate n particles.

Step 2. Obtain the new data.

Step 3. Calculate the weight of each particle.

Step 4. Resample the particles.

Step 5. Augment the particles.

Step 6. Move the particles.

Step 7. Return to Step 2.
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3.4.3 A Problem with the Weights

Returning to the SMC, as we have generated the initial particles the next step is to

calculate the weight of each, w
(j)
T+1 for j = 1, . . . , n, as defined in (3.4.5b):

w
(j)
T+1 = π

(
rT+1 |θ(j), i

(j)
τ :T , r0:T

)
. (3.4.6)

This will have contribution from those individuals whose infectious period has ended

and those whose infectious period is continuing:

π(rT+1 |θ, iτ :T , r0:T ) =
∏

`∈VT+1

P
(
H = (T + 1)− i`T | H > T − i`T

)
×

∏
`∈IT \VT+1

P
(
H > (T + 1)− i`T | H > T − i`T

)
,

(3.4.7)

where H is a random variable with probability mass function gH and VT+1 = RT+1\RT

are those newly infected at time T + 1.

If we consider the form of the weight more closely we can immediately observe a

problem. Consider a particle, j, sampled at time T . Within this particle we will have

inferred which individuals were infectious at time T , ensuring that this was consistent

with the currently observed data. At time T + 1 we will witness new individuals being

removed who were infectious at time T : this is the form of the new data that we wish

to incorporate. However, if particle j has not predicted that all those removed at time

T + 1 were infectious at time T then that particle will be inconsistent with the new

information. This is due to the key assumption of our model that individuals must

progress through the states in the order S→ I→ R. If an individual is removed without

having an infection time it would violate this key model assumption.

Formally, we have new data denoted by rT+1, this contains the indexes and removal

times of those newly removed at time T + 1. We are interested in evaluating (3.4.7),

the conditional probability of observing these removals given the infection times of those

infectious at time T (iIτ :T , contained within iτ :T ). However, if an individual whose time is

contained within rT+1 does not have a time within iIτ :T then this conditional probability

cannot be computed.
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In summary, (3.4.7) describes the probability that certain individuals are removed,

conditional on the data up to the previous time-step. If there are individuals whom

the particle never inferred to be infected then this particle will be given a weight of

zero. This is due to it being incompatible with the newly observed data and thus in the

resampling step it will be discarded. An example of this problem is described below.

Example Part I: a problem with the new data

Consider a population consisting of individuals {A,B,C,D,E, F,G,H, I, J}. Ad-

ditionally, assume that we have observed the outbreak up until time T , with

RT = {J}. As a result one possible (consistent) particle is j, with:

S(j)
T = {F,G,C,D} I(j)

T = {E,A,B,H, I} RT = {J} . (3.4.8)

However, suppose that at time T+1 we witnessRT+1 = {J,E, F,G} and therefore

the new observations are VT+1 = {E,F,G}. This is not consistent with the

previously defined particle as individuals F and G were inferred to be susceptible

at time T . Consequently this particle is inconsistent with the newly observed data

and would be rejected (zero probability of being resampled).

As the size of the population we are considering increases the chance of any particle

fully matching the newly observed data will shrink. This is especially true if we have

many new observations on each day. Therefore, using the current method, we would

suffer from mass particle degeneration as we would discard most of the samples in this

way. However, we do not expect any inference drawn from the inconsistent particles to

be poor, even if they do not perfectly match the new data. With this in mind we are

motivated to find an alternative method that does not suffer from a mass loss of unique

samples.

3.4.4 Producing Consistent Particles

One option, to avoid this particle degeneracy, is to adjust the samples so that they are

consistent with the newly observed data. If we can achieve this in such a way as to not

significantly alter the samples then this may be preferable to the mass loss of unique
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particles.

The procedure we adopt maintains the number of occults present at time T , in each

of the particles, as well as keeping the infection times generated within each particle the

same. In this way we aim to change each particle as little as possible. In this section we

will drop the superscript defining which sample we are working with, however, it should

be remembered that this adjustment will be performed on each particle independently.

Suppose that we have an individual, k, who is newly removed at time T + 1 but who

was not inferred to be infectious within our particle generated at time T . To amend

this particle so that it is consistent with this new information we choose at random an

individual, `, from the set of infectious individuals at time T who remain infectious at

time T + 1, i.e. they are not newly removed. We then let individual k take the place

of individual `. Therefore, if individual ` is inferred to be infected at time i`, then this

becomes the time at which k becomes infected and ` is now assumed to be susceptible

through to time T .

We repeat this process for each newly removed individual that is inconsistent, until

the particle is compatible with the new data. If we have multiple new observations which

are inconsistent, we adjust them in a random order. We can apply this adjustment as

long as vT+1 ≤ uT and we provide greater explanation of how individuals move between

the states in Appendix A.2.

We will apply this adjustment to each particle, independently, once completed we will

refer to the new samples as the adjusted particles and we will differentiate between the

original and the adjusted samples by placing a ‘~’ on the values and equations relating

to the adjusted samples.

As we have not changed the number of individuals in each of the three states (S, I or

R), we do not need to change the values of mS
t or mI

t , at any time point, t. We describe

an example of this process next, where we continue the example given in the previous

section.
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Example Part II: a possible adjustment

Recall that the newly observed individuals are VT+1 = {E,F,G}. Suppose that

we have a particle with

i
I,(j)
τ :T =

{
{v, w, x, y, z} : I(j)

T = {E,A,B,H, I}
}
, (3.4.9)

where, for example, individual E is inferred to have infection time iET = v. This

particle has correctly guessed E was infectious at time T and thus E has an inferred

infection time. However, individuals F and G have been, incorrectly, inferred as

susceptible at time T .

One possible way of adjusting this particle so that it is consistent with the new

data is

ĩ
I,(j)
τ :T =

{
{v, w, x, y, z} : Ĩ(j)

T = {E,A,G, F, I}
}
. (3.4.10)

We have therefore allocated the infection time originally attached to individual B

to individual G and the time attached to individual H to individual F . This is

illustrated in Figure 3.1.

F G

C D

ST

E

A

B

H I

IT

New observations
at time T + 1.

F GE

C D

B

H

S̃T

F G

EI

A

ĨT

Figure 3.1: An illustration of the adjustment process applied to each particle, the circles

and squares indicate different individuals. The left-hand side shows the original labelling

of the particle and the right-hand side shows a possible amendment, which ensures that

the particle is consistent with the new removals observed.

We apply this adjustment process to each of the n particles to obtain a set of samples

that are fully consistent with the new information. There will be some loss incurred in

this alteration as the particles we now have will only be approximations of samples from

the true posterior distribution at time T . However, we propose that this slight loss in the

accuracy of the particles will be less detrimental than the large loss that would otherwise
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be incurred in the resampling step. We denote the adjusted unobserved data as

ỹτ :T = ĩτ :T =
{
ĩIτ :T , i

R
τ :T

}
(3.4.11)

and we define the set of adjusted particles by

{(
θ

(j)
, ĩ

(j)
τ :T

)
: j = 1, . . . , n

}
. (3.4.12)

3.4.4.1 The Number of Possible Adjustments

Under the method of readjustment we have described, there are multiple ways to ma-

nipulate a particle so that it is consistent with the newly observed data. The question

we are interested in is, how many possibilities are there? Understanding the number of

possible adjustments is important for determining the impact such a transformation will

have on the samples we have generated.

We begin by considering the example presented previously as motivation. Note that

we define the number of orderings of x objects from y as the x-permutations of y, denoted

by yPx = y!
(y−x)! .

Example Part III: all of the possible adjustments

Suppose that we have newly observed individuals VT+1 = {E,F,G} and have

sampled particle j with

i
I,(j)
τ :T =

{
{v, w, x, y, z} : I(j)

T = {E,A,B,H, I}
}
, (3.4.13)

therefore we have incorrectly guessed the status of c =
∣∣∣VT+1\I(j)

T

∣∣∣ = 2 indi-

viduals. When adjusting we keep E constant, as this has been correctly guessed,

we then have a choice of which individuals to swap for F and G. Thus we could

correct this as

1. ĩ
I,(j)
τ :T =

{
{v, w, x, y, z} : Ĩ(j)

T = {E,F ,G,H, I}
}

2. ĩ
I,(j)
τ :T =

{
{v, w, x, y, z} : Ĩ(j)

T = {E,F ,B,G, I}
}

3. ĩ
I,(j)
τ :T =

{
{v, w, x, y, z} : Ĩ(j)

T = {E,F ,B,H,G}
}
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4. ĩ
I,(j)
τ :T =

{
{v, w, x, y, z} : Ĩ(j)

T = {E,G, F ,H, I}
}

5. ĩ
I,(j)
τ :T =

{
{v, w, x, y, z} : Ĩ(j)

T = {E,A, F ,G, I}
}

6. ĩ
I,(j)
τ :T =

{
{v, w, x, y, z} : Ĩ(j)

T = {E,A, F ,H,G}
}

7.
...

We can see that there will be 4P2 = 4!
2! = 12 ways we can transform i

I,(j)
τ :T so that

it is consistent with the new observations.

In general, suppose that the particle we are interested in has incorrectly guessed the

status of c individuals, where 0 ≤ c ≤ vT+1 with vT+1 the number of new observations

at time T + 1. Then the number of possible amendments will be

uT−(vT+1−c)Pc =
(uT − (vT+1 − c))!

(uT − vT+1)!
, (3.4.14)

where uT and c = c
(
iIτ :T ;VT+1

)
will depend on the specific particle.

This is as there are
(
uT−(vT+1−c)

c

)
possible ways of selecting c individuals from those

inferred to be infectious who were not removed, who can take the place of those c

individuals we did not correctly guess. However, as each index is attached to a time the

order matters and thus the number of possibilities is

(
uT − (vT+1 − c)

c

)
c! =

(uT − (vT+1 − c))!
(uT − vT+1)!

. (3.4.15)

As we select the adjustment uniformly at random, the probability of adjusting a

sample, iτ :T , to adjusted sample, ĩτ :T , will be

P
(
iτ :T −→ ĩτ :T

)
=

(uT − vT+1)!

(uT − (vT+1 − c))!
. (3.4.16)

We can see in (3.4.14) that for each particle the number of alterations only depends on

how many occult individuals are within that particle and how many of newly removed

are not within the particle’s set of occults. This is as the greater agreement the particle

has with the truth, the less adjustment we need to apply to it. Additionally we expect

there to be a greater number of possible adjustments if we have a greater number of
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occult individuals.

3.4.5 The Adjusted Posterior Distribution

We have adjusted the particles we sampled at time T so that they are consistent with the

new data observed at time T + 1. This appeared a necessary solution to the problem of

particle degeneration. However, the cost of this is that the samples no longer represent

samples from the true posterior distribution at time T . In this section we are interested

in the distribution the adjusted samples come from.

Suppose that we have an adjusted sample,
(
θ, ĩτ :T

)
, taken from the ‘adjusted dis-

tribution’, π̃T = π̃
(
θ, ĩτ :T | r0:T+1

)
. We expect this distribution will be similar to the

original distribution, πT , due to the nature of our adjustment, which aimed to limit the

difference between the adjusted and true samples. To learn about the form of π̃T we

must consider the updating regime we have implemented. We can first note that π̃T will

satisfy

π̃
(
θ, ĩτ :T | r0:T+1

)
=
∑
a

P
(
a −→ ĩτ :T

)
π
(
θ, a | r0:T

)
, (3.4.17)

where the summation is applied over all possible a which can be adjusted to ĩτ :T

(P
(
a −→ ĩτ :T

)
6= 0).

Equation (3.4.17) may appear as though it will be computationally intensive to cal-

culate, however, as we found in the previous section, where we defined the adjustment

regime, there are significant restrictions on which samples could have been adjusted to

ĩτ :T . For a to be adjusted to ĩτ :T it must satisfy the following:

� It must be the same size, such that |a| = |̃iτ :T |, i.e. the same value of uT .

� It must contain the same infection times (not necessarily attached to the same

individuals).

� The infection times and indexes of those individuals infectious at time T and time

T + 1 must match, the adjustment only relates to those removed at time T + 1.

� The infection times relating to those in state R at time T match, this is as the

adjustment scheme only relates to iIτ :T .

If we denote the set of occult indexes within a by IaT then c = |VT+1\IaT | is the

number of indexes the two sets differ by, as by construction ĨT+1 ⊆ VT+1 (assuming
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uT ≥ vT+1). These differences must only lie within those newly removed at time T + 1.

Therefore the maximum for c is vT+1. Additionally a cannot differ by more than mS
T

of the occult indexes due to the limited pool of susceptibles we could swap, however, in

general vT+1 is much smaller than mS
T .

We set zT+1 = min
{
vT+1, m

S
T

}
, then we can write (3.4.17) as

π̃
(
θ, ĩτ :T | r0:T+1

)
=

zT+1∑
c=0

∑
ac

P
(
ac −→ ĩτ :T

)
π(θ, ac | r0:T ), (3.4.18)

where ac differs from ĩτ :T by c indexes and P
(
ac −→ ĩτ :T

)
6= 0. To calculate P

(
ac −→

ĩτ :T

)
we can refer to (3.4.16), where we found

P
(
ac −→ ĩτ :T

)
=

(uT − vT+1)!

(uT − (vT+1 − c))!
. (3.4.19)

This is the reciprocal of the total number of possible adjustments we could make to this

sample, as each occurs with equal probability. Returning to the adjusted distribution

we now find

π̃
(
θ, ĩτ :T | r0:T+1

)
=

zT+1∑
c=0

∑
ac

(uT − vT+1)!

(uT − (vT+1 − c))!
π(θ, ac | r0:T ). (3.4.20)

It is difficult to evaluate (3.4.20) without a considerable computation cost. Therefore,

in order to make progress, we consider calculations in the special case of a homogeneous

population. This leads to a simpler form of (3.4.20),

π̃
(
θ, ĩτ :T | r0:T+1

)
= π

(
θ, ĩτ :T | r0:T

) zT+1∑
c=0

∑
ac

(uT − vT+1)!

(uT − (vT+1 − c))!
. (3.4.21)

Additionally, as vT+1 is fixed and we require the value of uT to remain the same, we can

rewrite (3.4.21) as

π̃
(
θ, ĩτ :T | r0:T+1

)
= π

(
θ, ĩτ :T | r0:T

) zT+1∑
c=0

(uT − vT+1)!

(uT − (vT+1 − c))!
×Nc, (3.4.22)

where Nc is the number of sets, ac, that differ from ĩτ :T in c indexes. To calculate Nc

we return to the example we have considered throughout this adjustment process.
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Example Part IV: the possible, original, particles

Recall that we have a population of individuals, {A,B,C,D,E, F,G,H, I, J}, with

RT = {J} and RT+1 = {J,E, F,G} such that VT+1 = {E,F,G} are the new

observations. Suppose that we have adjusted sample:

ĩ
I,(j)
τ :T =

{
{v, w, x, y, z} : Ĩ(j)

T = {E,F,G,H, I}
}
.

This implies that S̃(j)
T = {A,B,C,D}. We are interested in how many versions of

iIτ :T exist, that could have been adjusted to ĩ
I,(j)
τ :T ?

We broke-down the summation in (3.4.21) into those particles which incorrectly

guessed the status of c individuals. Suppose that we consider c = 2 and assume

that we correctly guessed E as being infectious at time T . Additionally suppose

that individuals {A,B} are those that were switched, then there are the following

possibilities:

� i
I,(j)
τ :t =

{
{v, w, x, y, z} : I(j)

T = {E,A,B,H, I}
}

� i
I,(j)
τ :t =

{
{v, w, x, y, z} : I(j)

T = {E,B,A,H, I}
}
.

However, we could have replaced {A,B} for any of those in S̃(j)
T . For example, as

{C,D} ∈ S̃(j)
T we could also have

� i
I,(j)
τ :t =

{
{v, w, x, y, z} : I(j)

T = {E,C,D,H, I}
}

� i
I,(j)
τ :t =

{
{v, w, x, y, z} : I(j)

T = {E,D,C,H, I}
}
.

Overall there are m
S,(j)
T Pc =

m
S,(j)
T !

(m
S,(j)
T −c)!

permutations of individuals who could have

been inferred to be in state I and then adjusted to be in state S.

Additionally we could have any combination of the (vT+1 − c) individuals from

VT+1 correctly guessed. For example we could also have

� i
I,(j)
τ :t =

{
{v, w, x, y, z} : I(j)

T = {A,F ,B,H, I}
}
.

Therefore, there will be
(
vT+1
c

)
possibilities for which infectious individuals we

incorrectly guessed to be susceptible.

Using this example as motivation, we can deduce a general form of Nc from (3.4.22).
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For c = 0, . . . , zT+1,

Nc =

(
vT+1

c

)
×

mS
T !

(mS
T − c)!

(3.4.23)

where mS
T will depend on the sample. We can then substitute the value of Nc into

(3.4.22), such that

π̃
(
θ, ĩτ :T | r0:T+1

)
= π

(
θ, ĩτ :T | r0:T

)zT+1∑
c=0

(uT − vT+1)!

(uT − (vT+1 − c))!

(
vT+1

c

)
mS
T !

(mS
T − c)!

. (3.4.24)

3.4.5.1 Further Simplification of the Adjusted Distribution

Although (3.4.24) shows the adjusted posterior in a simpler form, it can be further

simplified by expanding the terms inside the summation. We see from the calculations

so far that the adjusted distribution takes the form

π̃
(
θ, ĩτ :T | r0:T+1

)
= π

(
θ, ĩτ :T | r0:T

) zT+1∑
c=0

{(
uT − (vT+1 − c)

c

)−1(vT+1

c

)(
mS
T

c

)}
︸ ︷︷ ︸

W

.

(3.4.25)

The next step is to try and simplify the summation in (3.4.25). We begin by writing the

summation term, W , in terms of factorials:

W =

zT+1∑
c=0

(uT − vT+1)!c!

(uT − vT+1 + c)!
× vT+1!

c!(vT+1 − c)!
×

mS
T !

c!(mS
T − c)!

. (3.4.26)

Next we can expand the summation and cancel out some terms before finally rewriting

the summation in a simpler form:

W = 1︸︷︷︸
c= 0

+
vT+1m

S
T

1!(uT − vT+1 + 1)︸ ︷︷ ︸
c= 1

+
vT+1(vT+1 − 1)mS

T (mS
T − 1)

2!(uT − vT+1 + 1)(uT − vT+1 + 2)︸ ︷︷ ︸
c= 2

+ · · ·

= 1︸︷︷︸
c= 0

+
(−vT+1)(−mS

T )

1!(uT − vT+1 + 1)︸ ︷︷ ︸
c= 1

+
(−vT+1)(−vT+1 + 1)(−mS

T )(−mS
T + 1)

2!(uT − vT+1 + 1)(uT − vT+1 + 2)︸ ︷︷ ︸
c= 2

+ · · ·

=

zT+1∑
c=0

(−vT+1)c(−mS
T )c

c!(uT − vT+1 + 1)c
, (3.4.27)

where (x)k is the rising factorial, such that (x)k = x(x + 1) · · · (x + k − 1) for k ∈ N0

with (x)0 = 1, this is often referred to as the Pochhammer symbol. We can note that
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W could be extended to a summation over infinity, although all terms after zT+1 will

be zero. This can be clearly seen in (3.4.25) where c > zT+1 would result in one of the

coefficients being zero.

Although this form is more compact it is not immediately any easier to work with.

First we need to define a special class of functions called the hypergeometric functions

(Bailey (1964, Chapter 1)). In particular we shall be focusing on Gauss’ hypergeometric

function which takes the form

2F1(x, y, z; a) = 1 +
xy

1!z
a +

x(x+ 1)y(y + 1)

2!z(z + 1)
a2 + · · ·

=
∞∑
n=0

(x)n (y)n a
n

(z)n n!
, (3.4.28)

where it is assumed that z is positive. This summation converges for all |a| < 1 and for

|a| = 1 if R(z − x − y) > 0. Under special conditions the hypergeometric function can

take on a simpler form, the form we will be most interested in is when a = 1.

Theorem 2 (Gauss’ Hypergeometric Theorem).

Let Γ(n) denote the gamma function, then

2F1(x, y, z; 1) =
Γ(z)Γ(z − x− y)

Γ(z − x)Γ(z − y)
if R(z − x− y) > 0. (3.4.29)

Proof. See Bailey (1964, Chapter 1).

The form of (3.4.27) looks similar to the form of hypergeometric functions in (3.4.28)

suggesting that we can re-write this in terms of Gauss’ hypergeometric function. Suppose

we consider

x = −vT+1, y = −mS
T , z = uT − vT+1 + 1, a = 1, (3.4.30)

then we can write

W =

zT+1∑
c=0

(−vT+1)c(−mS
T )c

c!(uT − vT+1 + 1)c

= 2F1

(
− vT+1, −mS

T , uT − vT+1 + 1; 1
)
. (3.4.31)
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Substituting (3.4.31) into (3.4.25) we find that the adjusted posterior distribution can

be written as

π̃
(
θ, ĩτ :T | r0:T+1

)
= π

(
θ, ĩτ :T | r0:T

)
× 2F1

(
−vT+1, −mS

T , uT −vT+1 +1; 1
)
. (3.4.32)

So far we have only applied a definition, we still wish to further simplify this form

to hopefully better understand the distribution from which the adjusted particles comes

from. The next step therefore is to check we satisfy the conditions required for Gauss’

Hypergeometric Theorem:

R(z − x− y) = uT − vT+1 + 1 + vT+1 + mS
T

= uT + 1 + mS
T > 0. (3.4.33)

Therefore we can use Theorem 2 to simplify the summation in terms of Gamma functions:

W = 2F1

(
− vT+1, −mS

T , uT − vT+1 + 1; 1
)

=
Γ(uT − vT+1 + 1) Γ(uT + 1 +mS

T )

Γ(uT + 1) Γ(uT − vT+1 + 1 +mS
T )
.

(3.4.34)

We can then use the fact that for n ∈ N, Γ(n) = (n− 1)! such that

W =
(uT − vT+1)! (uT +mS

T )!

uT ! (uT − vT+1 +mS
T )!

=
(uT − vT+1)! (uT +mS

T )! vT+1!

uT ! (uT − vT+1 +mS
T )! vT+1!

=

(
uT
vT+1

)−1(uT +mS
T

vT+1

)

=

(
uT
vT+1

)−1(Npop −mR
T

vT+1

)

=

(
uT
vT+1

)−1

f
(
Npop, m

R
T , vT+1

)
(3.4.35)

where f is an arbitrary function, not dependent on the particle we are considering.
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Altogether we can simplify the adjusted distribution as

π̃
(
θ, ĩτ :T+1 | r0:T

)
= π

(
θ, ĩτ :T | r0:T

)
×
(
uT
vT+1

)−1

f
(
Npop, m

R
T , vT+1

)
. (3.4.36)

Therefore we can relate the original and the adjusted posterior distributions as

π
(
θ, ĩτ :T | r0:T

)
∝ π̃

(
θ, ĩτ :T | r0:T+1

)( uT
vT+1

)
. (3.4.37)

This is a direct result of Npop, m
R
T and vT+1 being fixed for all particles and therefore

we are only concerned with the factor of the weight relating to uT . Consequently this

means that if we have a homogeneous population then the posterior distribution, (3.4.5),

breaks down as

π
(
θ, ĩτ :T+1 | r0:T+1

)
∝ π̃

(
θ, ĩτ :T | r0:T+1

)
×π
(
rT+1 |θ, ĩτ :T , r0:T

)( uT
vT+1

)
×π
(
iT+1 |θ, ĩτ :T , r0:T

)
. (3.4.38)

In conclusion we have found that for a homogeneous population the adjustment

process can be fully accounted for by reweighting of the particles. In general we will

not be working with a homogeneous population and thus this assumption will not hold.

However, we expect that the weight calculated will form a reasonable approximation to

the true weight.

3.4.6 Particle Weight and Resampling

Returning to our algorithm we now have n particles which have been adjusted to be

consistent with the new data. Therefore the next step is to calculate their weight. These

weights will then be used to resample the particles.

Considering (3.4.38) the unnormalised weight of particle j is now

w̃
(j)
T+1 ≈ π

(
rT+1 |θ(j), ĩ

(j)
τ :T , r0:T

)
︸ ︷︷ ︸

w
(j)
T+1

×
(
uT

(j)

vT+1

)
, (3.4.39)

where w
(j)
T+1 is the same as the weight previously defined. Therefore, as previously, for
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particle j, w
(j)
T+1 is the probability of the removals we have witnessed occurring, whilst

the other occult individuals remain infectious:

w
(j)
T+1 =

∏
`∈VT+1

P
(
H = (T + 1)− ĩ`,(j)T | H > T − ĩ`,(j)T

)
×

∏
`∈Ĩ(j)T \VT+1

P
(
H > (T + 1)− ĩ`,(j)T | H > T − ĩ`,(j)T

) (3.4.40)

where H ∼ gH and Ĩ(j)
T and ĩ

`,(j)
T depend on the particle, j.

Once the weight, (3.4.39), has been calculated for each particle we can perform a

simple random sample to select n particles (see, Section 1.6.2.3). Once completed we

will have n particles, each with weight 1/n. We remove the ~ notation henceforth.

3.4.7 Particle Augmentation

The next step in the algorithm is to augment the resampled particles with the new

information sampled at time T + 1, this relates to (3.4.5c) and also the last term in

(3.4.38). Considering the breakdown of the posterior distribution, this new information

will be sampled from

π(iT+1 |θ, iτ :T , r0:T ). (3.4.41)

We are therefore updating the infection times to include individuals newly infected at

time T + 1. We generate the new infections in the following way:

1. For each particle, j = 1, . . . , n

(a) For each susceptible at time T , ` ∈ S(j)
T

(i) Generate X`, a Bernoulli random variable such that

X` ∼ Bernoulli
(

1− PT (` ; θ(j))
)
,

where PT (` ; θ(j)) is the probability individual ` avoids becoming infec-

tious at time T + 1.

� If X` = 1 then ` is newly infected at time T + 1.

� If X` = 0 then ` remains susceptible at time T + 1.
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Those individuals that are newly infected become part of the set of occult individuals

within particle j, with infection time T + 1. We therefore have updated the unobserved

data such that yτ :T+1 = iτ :T+1 =
{
iRτ :T+1, i

I
τ :T+1

}
, where the infection times of those

newly removed will now be contained in iRτ :T+1. Once this step has been completed

we will have n samples from approximately the posterior distribution at time T + 1,

π(θ, iτ :T+1 | r0:T+1).

3.4.8 Moving the Particles

We could choose to finish this iteration of the SMC algorithm here, as we will already

have an (approximate) sample from the posterior distribution at time T + 1. However,

as mentioned previously, there will still be particle degeneracy in this algorithm. Addi-

tionally, the readjustment will have introduced errors which will be compounded as we

apply the algorithm over multiple times steps. This is a result of the structure of the

SMC algorithm and if we intended to run it over a shorter period of time this would not

be of major concern. However, often our aim will be to sequentially update the samples

over the course of many days, as the outbreak is developing. Therefore, these issues may

significantly affect the accuracy of the estimates at later time steps.

We aim to counteract these problems by running a short MCMC algorithm on each

particle. This has two advantages: firstly, it will allow the particles to move and thus

increase their diversity. Secondly, when resampling the particles we used an approxima-

tion of the true particle weight. As a result we expect the particles to be close to, but

not precisely from, the true posterior distribution. Therefore a short MCMC will allow

any movement away from the truth, as a result of the adjustment step, to be counter-

acted. This shares many similarities to the movement step described in Section 1.6.3, as

proposed by Berzuini et al. (1997).

We will use the same MCMC algorithm defined previously in Section 3.3, which

was also used to initialise the SMC (Section 3.4.1), and we refer the reader to these

sections for further detail. We perform np iterations of the MCMC algorithm on each

particle, independently. After running np iterations we take the final samples in each

of the n chains to be the new set of particles. Although we are including an MCMC

step the advantage over the full MCMC algorithm is that for each particle the MCMC

is applied independently. Consequently this step can be trivially parallelized to decrease
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the computational intensity of the algorithm.

3.4.8.1 The Removal Times

Recall that previously, to run the MCMC, we required inference of the removal times of

the occult individuals, represented by rI0:t. At the start of applying the SMC we discarded

these values for each particle. This is as ensuring the newly observed removals were

consistent with the inferred removal times would have introduced additional complexity.

As a result, prior to applying the MCMC, we need to generate these times.

Sampling the removal times is straightforward as they only depend on the infection

times for each occult individual, which are contained within each particle. We therefore

generate the new removal times (and consequently the infectious periods) in the following

way:

1. For each particle, j = 1, . . . , n

(a) For each current infective, ` ∈ I(j)
T+1

(i) Generate h
`,(j)
T+1 using the conditional probability

f
`,(j)
H (x ; T + 1) = P

(
H = x |H > T + 1− i`,(j)T+1

)
, (3.4.42)

where H is a random variable with probability mass function gH .

(ii) Set r
`,(j)
T+1 = i

`,(j)
T+1 + h

`,(j)
T+1.

(b) Set r
I,(j)
0:T+1 =

{
r
k,(j)
T+1 : k ∈ I(j)

T+1

}
and y

(j)
τ :T+1 =

{
i
R,(j)
τ :T+1, i

I,(j)
τ :T+1, r

I,(j)
0:T+1

}
.

We have used a conditional distribution as we know these individuals are not removed

at time T + 1. This ensures that the occult individuals have removal times that are

consistent with the new data. Once this step has been performed we can run the MCMC

algorithm on each particle.

3.4.8.2 Tuning the MCMC

We will not adaptively tune the MCMC within the movement step, however, we will

adapt the tuning parameters once per SMC iteration, prior to applying the MCMC, to

ensure that we maintain a reasonable acceptance rate.

120



We tune using similar ideas to those discussed in Section 1.4.4.4 and those we de-

scribed when constructing the MCMC algorithm in Section 3.3. To update the param-

eters we will often use a RWM proposal step, utilising an estimation of the covariance

matrix of the parameters, as discussed in Section 1.4.4.4. When running the full MCMC

algorithm we obtain this matrix by repeatedly calculating the covariance matrix of the

samples for a pre-defined number of iterations, at the start of the chain. For the SMC

method we already expect the samples after the augmentation step to be close to a true

representation from the posterior distribution, therefore we choose to instead calculate

the covariance matrix from the current particles. This will ensure that as our distribu-

tion changes the proposal changes accordingly. We then apply the full MCMC movement

step, on each particle, using this covariance matrix.

We next consider the tuning parameters used within the updating steps relating to

the augmented data, as described in Section 3.3.2. These will also need to change as the

posterior distribution we are interested in evolves. To choose the tuning values we use the

fact that the posterior distribution between two times steps will not change dramatically.

Therefore we monitor the acceptance rates of the MCMC applied within the SMC, if this

drops too low or high then we can change the tuning parameter accordingly, as discussed

in Section 3.3.6. This adaptation is performed in an identical manner to the adaptive

method used within the full MCMC algorithm previously defined and ensures that we

maintain the desired acceptance rate. Again, this adaptation is performed before we

apply the movement step.

3.4.9 Summary of the SMC Steps

Once all of the steps described have been completed we will have produced samples from

(approximately) the posterior distribution at time T + 1. This algorithm can then be

repeated for as many time steps forward as we desire. In summary the steps of the SMC

algorithm are:

1. Generate n particles (see, Section 3.4.1).

� Using an MCMC algorithm, generate particles from the posterior distribution.

2. Acquire the new data (see, Section 3.4.2).

� At the next time step obtain the new data, which we aim to incorporate.
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3. Adjust each particle (additional step, see Section 3.4.4).

� Adjust each of the particles sampled, so that they are consistent with the

newly observed data.

4. Calculate the weight of each particle (see, Sections 3.4.5 and 3.4.6).

� For each particle calculate its weight, such that the particles form a properly

weighted sample.

5. Resample the particles (see, Section 3.4.6).

� Using the previously calculated weights resample the particles, once com-

pleted each sample will have weight 1/n.

6. Augment the particles (see, Section 3.4.7).

� For each particle generate the individuals infected at this time step and add

this new information to the particle.

7. Move the particles (see, Section 3.4.8).

� For each particle run a short MCMC of length np, this will add diversity to the

samples and ensure the particles are from the target posterior distribution.

8. Return to Step 2.

� Repeat this process when new data arrives at the next time step.

We provide an illustration of the SMC algorithm developed in Figure 3.2. Addition-

ally, we provide a formal description in Algorithm 11, where the notation follows that

discussed in Section 3.2.3.
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Algorithm 11: Sequential Monte Carlo Algorithm for an SIR Epidemic

1. At time t = T generate n particles from π (θ, iτ :t | r0:t).

2. for t = T, T + 1, T + 2, . . .

(i) Gather the new data at time t+ 1, rt+1, and set Vt+1 = Rt+1\Rt.

(ii) for j = 1, . . . , n, if u
(j)
t ≥ vt+1 = |VT+1|

(a) Set D(j) = Vt+1\I(j)
t and E(j) = I(j)

t \Vt+1.

(b) for ` ∈ D(j)

• Select at random, a ∈ E(j), set i
`,(j)
t = i

a,(j)
t and then i

a,(j)
t =∞.

• Let E(j) −→ E(j)\{a}.

(c) For each z = τ, . . . , t calculate I(j)
z and S(j)

z .

(d) Calculate the approximate weight of particle j as

w
(j)
t+1 =

(
u

(j)
t

vt+1

) ∏
`∈Vt+1

P
(
H = t+ 1− i`,(j)t

)
P
(
H > t− i`,(j)t

) ×
∏

`∈I(j)t \Vt+1

P
(
H > t+ 1− i`,(j)t

)
P
(
H > t− i`,(j)t

) .

(iii) Resample n particles with probability proportional to their weight, w
(j)
t+1.

(iv) for j = 1, . . . , n

(a) for ` ∈ S(j)
t

• Generate X
(j)
` ∼ Bernoulli

(
1− Pt

(
` ; θ(j)

))
.

• if X
(j)
` = 1 then ` is newly infected at time t+ 1.

(b) Update y
(j)
τ :t+1 = i

(j)
τ :t+1 =

{
i
I,(j)
τ :t+1, i

R,(j)
τ :t+1

}
to incorporate information

on the new infections and removals.

(c) For each ` ∈ I(j)
t+1 generate the infectious period h

`,(j)
t+1 ∼ f

`,(j)
H (·)

where
f
`,(j)
H (x ; t+ 1) = P

(
H = x |H > t+ 1− i`,(j)t+1

)
.

(d) Compute the parameter covariance matrix and adapt the tuning

parameters if the previous movement step had a poor acceptance rate.

(e) Run an MCMC of length np on particle j then discard h
`,(j)
t+1 for

` ∈ I(j)
t+1.
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Figure 3.2: Illustration of the SMC algorithm for application to epidemic data.

The sequential Monte Carlo algorithm we have discussed can be applied at each

successive time step, as new information is obtained. The particles will continue to

update in each iteration to incorporate any newly obtained information and represent

the up-to-date posterior distribution.

Throughout we have treated the MCMC and SMC algorithms as alternative methods

to the same problem of generating samples from evolving target distributions. However,

the SMC algorithm we have constructed can also been seen as a hybrid of the sequential

importance resampling and the MCMC methods we discussed in Chapter 1. The strength

of the SMC algorithm we have constructed is that it combines elements of both methods

to produce a computationally efficient and accurate algorithm. Indeed, if we recall np,

the length of the MCMC applied to each particle at the end of the SMC algorithm, then

this can be see as a parameter controlling how similar to each algorithm our method is.

Small np produces a method similar to the sequential importance resampling algorithm,

whereas larger np constructs an algorithm closer to the standard MCMC. This hybrid

nature ensures that we have a flexible algorithm that can be tailored to the research

question we are interested in.
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3.5 Extension: A Non-Uniform Adjustment

Recall that, to generate samples from the target posterior distribution at time T , we

require samples for the unobserved process, yτ :T , where for the SMC this contains the

infection times of the observed and the occult individuals, such that yτ :T = iτ :T . Conse-

quently, we also need to infer who is infectious at time T . This can become problematic

at the next time step, as we may observe individuals being removed on day T + 1 who

were not inferred to be infectious on day T .

The proposed solution to this problem is to adjust the samples generated so that they

are compatible with the new data. We achieve this by randomly allocating the newly

removed individuals, who we had not inferred to be infectious at time T , infection times

from individuals who we inferred to be infectious at time T but who were not removed

at time T +1. This method ensures the particles generated at time T are consistent with

the new data obtained at time T + 1. Additionally, this adjustment aims to change each

sample as little as possible, preserving the infection times and the number of them—only

changing who is infectious at time T .

One potential problem with this adjustment is that it does not consider any properties

of the individuals when choosing how to adjust the particles. As such we may, by chance,

produce an adjusted particle containing individuals with highly unlikely infectious pe-

riods. We illustrate this using the example we have considered previously in Section 3.4.

Example Extension: the original adjustment

Recall that we have a population, {A,B,C,D,E, F,G,H, I, J}, with observed

data up until time T , RT = {J}. At time T , one possible sample is

i
I,(j)
τ :T =

{
{v, w, x, y, z} : I(j)

T = {E,A,B,H, I}
}
.

However, at time T +1 we witness RT+1 = {J,E, F,G}. Therefore, as individuals

F and G were not inferred to be infectious at time T , this particle is not consistent.

Using the current adjustment scheme we can fix this particle in the following way:

• With probability 1
2 select F , then swap them with A with probability 1

4 .
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• With probability 1 select G, then swap them with B with probability 1
3 .

Therefore we have the adjusted particle

ĩ
I,(j)
τ :T =

{
{v, w, x, y, z} : Ĩ(j)

T = {E,F,G,H, I}
}
.

Suppose that (w, x, y, z) = (T, T − 1, T − 4, T − 6) and thus we have allocated

the newly removed individuals very short infectious periods. If individuals are

assumed to have, on average, a long infectious period then it perhaps would have

been more appropriate to swap them with individuals H and I, whose infection

times are much earlier.

3.5.1 An Alternative Weighting

One possible extension to this idea is to instead select who we switch according to some

criteria. The criteria we shall focus on is based on the (discrete) hazard function,

h(t) = P (H = t |H ≥ t) =
P (H = t)

P (H ≥ t)
, (3.5.1)

where H is some discrete random variable. This function represents the probability of

dying at time t, given the individual has survived up to this time. We can recast this

by interpreting an individual’s infectious period as ‘dying’ and thus they are no longer

infectious. Therefore, continuing with our definition of the infectious period distribution

the probability mass function of H is gH .

Considering the adjustment step, we are interested in deciding which individuals

to swap with the newly removed individuals to make the particle consistent. In the

previous section we described choosing which individuals to switch at random. However,

now we instead propose an alternative method which utilises each individuals hazard.

Practically, this now means that for the newly removed individual at time T + 1, who

we did not correctly infer to be infectious at time T , we select their infection time to be

that of individual k ∈ IT \VT+1 with probability proportional to

h
(
T + 1− ikT

)
= P

(
H = T + 1− ikT | H ≥ T + 1− ikT

)
. (3.5.2)
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The justification behind this is that we are allocating those newly removed infection

times which means they had a high chance of being removed. We illustrate this new

adjustment scheme by continuing the previous example.

Example Extension: an alternative adjustment

We again suppose that at time T we have the sample,

i
I,(j)
τ :T =

{
{v, w, x, y, z} : I(j)

T = {E,A,B,H, I}
}
,

with VT+1 = {E,F,G}. Using the new adjustment scheme we can fix this particle

in the following way:

• With probability 1
2 select F and then swap them with A with probability

h(T + 1− w)

h(T + 1− w) + h(T + 1− x) + h(T + 1− y) + h(T + 1− z)
.

• With probability 1 select G and then swap them with B with probability

h(T + 1− x)

h(T + 1− x) + h(T + 1− y) + h(T + 1− z)
.

Therefore we have adjusted particle

ĩ
I,(j)
τ :T =

{
{v, w, x, y, z} : Ĩ(j)

T = {E,F,G,H, I}
}
.

The probability of the adjustment we performed is

(
1

2
× h(T + 1− w)

h(T + 1− w) + h(T + 1− x) + h(T + 1− y) + h(T + 1− z)

)

×
(

1× h(T + 1− x)

h(T + 1− x) + h(T + 1− y) + h(T + 1− z)

)
.

This adjustment scheme works in a similar way to the original, only now we take

into account the probability of witnessing certain infectious periods. As a result, the

adjusted distribution cannot be related to the true distribution in the same manner as

previously discussed (see, Section 3.4.5). We consider in the next section how this will
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affect the SMC algorithm. For clarity we refer to the previous adjustment method as

the ‘uniform’ adjustment and the new weighting as the ‘non-uniform’ adjustment.

3.5.2 The New Adjusted Distribution

We begin by considering the relationship between the adjusted distribution and the

posterior distribution. This relationship can be initially described in the same way as

for the uniform adjustment:

π̃
(
θ, ĩτ :T | r0:T+1

)
=

zT+1∑
c=0

∑
ac

P
(
ac −→ ĩτ :T )π(θ, ac | r0:T

)
. (3.5.3)

As mentioned previously there are Nc = mSTPc ×
(
vT+1
c

)
possibilities ac could take, such

that P (ac −→ ĩτ :T ) 6= 0. This comprises the number of ways we could have c incorrect

individuals from those newly removed,
(
vT+1
c

)
, and the number of different ways suscep-

tible individuals could have been substituted in their place, m
S
TPc =

mST !

(mST−c)!
(see Section

3.4.5 for further detail).

We assume that we can order the possible (pre-adjusted) samples in some way, such

that for c = 0, . . . , zT+1 we have the set

Ac =

{
ai,jc for i = 1, . . . ,

(
vT+1

c

)
; j = 1, . . . ,m

S
TPc s.t. P

(
ai,jc → ĩτ :T

)
6= 0

}
.

(3.5.4)

Therefore we can write (3.5.3) as

π̃
(
θ, ĩτ :T | r0:T+1

)
=

zT+1∑
c=0

(vT+1
c )∑
i=1

mSTPc∑
j=1

P
(
ai,jc −→ ĩτ :T

)
π
(
θ, ai,jc | r0:T

)
. (3.5.5)

To make progress we, once again, assume that the population is homogeneously mixing,

therefore

π̃
(
θ, ĩτ :T | r0:T+1

)
= π

(
θ, ĩτ :T | r0:T

) zT+1∑
c=0

(vT+1
c )∑
i=1

mSTPc∑
j=1

P
(
ai,jc −→ ĩτ :T

)
. (3.5.6)

Currently this relationship is the same, regardless of which updating scheme we use.

However, we can note that, as in the original adjustment scheme, we do not change the

infection times. As such, each set of possible susceptibles who could have been sampled
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as occults will have the same probability of adjustment (see, Section 3.4.5). We can see

this by briefly considering our example: the initial samples,

i
I,(j)
τ :T =

{
{v, w, x, y, z} : I(j)

T = {E,A,B,H, I}
}

i
I,(j)
τ :T =

{
{v, w, x, y, z} : I(j)

T = {E,C,D,H, I}
}
,

both have the same probability of being adjusted to

ĩ
I,(j)
τ :T =

{
{v, w, x, y, z} : Ĩ(j)

T = {E,F,G,H, I}
}
.

Therefore, we can rewrite (3.5.6) as

π̃
(
θ, ĩτ :T | r0:T+1

)
= π

(
θ, ĩτ :T | r0:T

) zT+1∑
c=0

mS
T !

(mS
T − c)!

(vT+1
c )∑
i=1

P
(
ai,·c −→ ĩτ :T

)
. (3.5.7)

Without selecting which individuals to switch uniformly at random, we cannot sim-

plify this any further. However, we can estimate (3.5.7) by noting that the leading order

term, when Npop is large, will be when c = zT+1 = vT+1. Therefore for large Npop we

find

π̃(θ, ĩτ :T | r0:T+1) ≈ π(θ, ĩτ :T | r0:T )
mS
T !

(mS
T − vT+1)!

P (a1
vT+1

−→ ĩτ :T ), (3.5.8)

where we only have a single term as
(
vT+1
vT+1

)
= 1.

Overall, we have determined that for large Npop, and therefore an expected larger

mS
T , we can use the following (approximate) relationship

π̃
(
θ, ĩτ :T | r0:T+1

)
∝ π

(
θ, ĩτ :T | r0:T

)
P
(
a1
vT+1

−→ ĩτ :T

)
. (3.5.9)

This relationship is pleasing in its simplicity. Although this will only be an approximate

to the true weight, we expect that it will be sufficient to account for the adjustment

that has occurred. Therefore we only need to compute a single probability to relate the

posterior and the adjusted posterior distributions.
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3.5.2.1 The New Weighting

Unfortunately, calculation of the required probability is not straightforward. We have

seen previously in our example that if we have an initial particle then there are many

possible ways to achieve a specific adjusted particle. As such we can write this probability

as

P
(
a1
vT+1

−→ ĩτ :T

)
=
∑
ω

(vT+1!)−1P
(
a1
vT+1

−→ ĩτ :T |ω
)

(3.5.10)

where ω represents the set of possible orderings in which we update the vT+1 new

infectives. This is such that |ω| = vT+1!.

For large vT+1 there will be too many configurations to calculate (3.5.10). However,

if we take a random permutation, ω′ ∈ ω, then

E
[
P
(
a1
vT+1

−→ ĩτ :T |ω′
)]

= P
(
a1
vT+1

−→ ĩτ :T

)
, (3.5.11)

and therefore P
(
a1
vT+1

−→ ĩτ :T |ω′
)

is an unbiased estimator of P
(
a1
vT+1

−→ ĩτ :T

)
.

Therefore, rather than spending significant time computing (3.5.10), we can instead

choose to estimate it by considering a random permutation.

Returning to the adjustment distribution, we find that

π̃(θ, ĩτ :T | r0:T+1) ≈ cπ(θ, ĩτ :T | r0:T )P (a1
vT+1

−→ ĩτ :T |ω′), (3.5.12)

for some constant, c. Therefore, we can use the weighting P (a1
vT+1

−→ ĩτ :T |ω′)−1 for

each adjusted particle, this will ensure we produce consistent particles from (approxi-

mately) the target distribution. The rest of the SMC algorithm will then follow in the

same way as previously (see, Section 3.4).

3.5.2.2 Summary

We have adapted the previous SMC algorithm to now incorporate the infectious period

distribution when adjusting the particles. The resulting algorithm remains the same,

only now we have a slightly different weighting. As previously, we have not been able to

calculate the true weight and therefore have had to approximate it. This addition may

not be necessary and thus, unless stated otherwise, we will continue to use the uniform

weighting throughout.
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3.6 Modelling an Agricultural Epidemic

3.6.1 Motivation

The SIR model is one of the most commonly examined compartmental frameworks,

however, it is not always the most suitable choice when handling real data.

One extension we shall consider in detail is the case of agricultural epidemics. We

are particularly interested in the 2001 UK Foot-and-Mouth (FMD) outbreak, which

is further discussed in Chapter 5. This was a severe outbreak which cost the public

sector an estimated £3 billion, representing 0.8% of the annual public expenditure (UK

National Audit Office (2002)). Using this outbreak as motivation we briefly describe an

extension based on the SINR model discussed in Section 2.4. Although we will have in

mind the FMD outbreak, we aim to construct a model which can be used more generally

for epidemics where

(a) The disease is rapidly transmitted at a farm level.

(b) There is complete culling/quarantining at the farm level.

Models of this form have been discussed in other work, for example, Deardon et al. (2010)

and Xiang and Neal (2014) analysed the 2001 UK FMD outbreak and Jewell et al. (2009)

considered both the FMD outbreak and a simulated Avian Influenza outbreak.

These outbreaks are characterised as occurring within a population of farms where,

rather than modelling each individual animal, we treat each farm as an ‘individual’ ca-

pable of transmitting the disease. For ease we shall still refer to a farm as an ‘individual’

with the ability to infect others, or be infected itself. Customarily, we declare a farm

as infectious once a single animal on that farm has been infected. This is suitable for

highly infectious diseases (such as Foot-and-Mouth disease) which will spread rapidly

through a farm once a single animal is infected. We note that we could choose to model

this outbreak at an individual animal level, we choose not to for two reasons. Firstly,

the data we have access to will usually only contain information at the farm level, and

secondly for diseases that spread quickly it appears reasonable to represent each farm

as a single individual.
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3.6.2 The SINR Model

A key feature of this form of agricultural epidemics is that, as we are dealing with farms

instead of people, it will often take some length of time before the farm can be fully

removed from the population. Usually in this state there are restrictions placed on the

farm to try to reduce the size of the outbreak. During this period a farm is infectious,

but with a reduced level of infectiousness. As a result, agricultural epidemics are often

modelled using an SINR framework.

In summary, first a farm is susceptible (S) and therefore can become infected. If

infection occurs then it will become infectious (I) and can pass on the disease to other

farms. Once the disease is identified within a farm it becomes notified (N) and may have

restrictions placed on it, before it is finally removed (R) once the disease is no longer

present or the farm has been quarantined. Once removed a farm plays no further role

in the spread of the outbreak. We therefore require the additional notation that there

are mN
t notified individuals at time t with now mI

t = ut +mN
t and mR

t ≤ mN
t ≤ mI

t .

Due to both the notification and removal times being observed we now will have

access to two sets of data with which to form the model, where the notification times are

now a sufficient indicator of which farms are infectious. As in the SIR example underlying

these two observed sets of data is an unobserved process defined by the infection times.

3.6.3 The Posterior Distribution

We construct the posterior distribution in the same way as for the SIR model, with

π(θ, yτ :t |x0:t) ∝ L(θ ; yτ :t, x0:t)π(θ), (3.6.1)

where x0:t contains the observed data and yτ :t the unobserved data. We now need to

add to our previous definitions, to include times relating to the notifications. For the

SINR model n will represent the notification times and ‘0’ is now the time of the first

observed notification. If ik, nk and rk represent the infection, notification and removal
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time of individual k respectively then

ikt =


ik if ik ≤ t

∞ if ik > t

, nkt =


nk if ik ≤ t

∞ if ik > t

, rkt =


rk if rk ≤ t

∞ if rk > t

,

(3.6.2)

and we define

iIτ :t = {ikt : k ∈ It}, iNτ :t = {ikt : k ∈ Nt}, iRτ :t = {ikt : k ∈ Rt},

nI0:t = {nkt : k ∈ It}, nN0:t = {nkt : k ∈ Nt}, nR0:t = {nkt : k ∈ Rt},

rR0:t = {rkt : k ∈ Rt},

(3.6.3)

where Nt represents those individuals in state N at time t. We note that now the

removal times take a slightly different form. This is because we do not model the

notification period (time between notification and removal). We now define the observed

and unobserved data to be

x0:t =
{
nN0:t, n

R
0:t, r

R
0:t

}
, yτ :t =

{
iτ :t, n

I
0:t

}
=
{
iNτ :t, i

R
τ :t, i

I
τ :t, n

I
0:t

}
. (3.6.4)

In practice we will treat iNτ :t and iRτ :t together, as the infection times of those known

to be infected, and iIτ :t as the infection times of the occult individuals, as before. Addi-

tionally, the key observed data is now nN0:t and nR0:t, as the notification times represent

when individuals are first known to be infected, taking the role of the removal times in

the SIR outbreak. As such, although we observe the removal times they do not hold the

same weight of information as in the SIR example.

The methods of using data augmentation to construct the likelihood are the same as

those discussed previously, therefore the likelihood takes the same form as in equation

(3.2.11),

L(θ; yτ :t, x0:t) =

t−1∏
s=τ

{ ∏
`∈Ss+1

Ps(` ; θ)
∏

`∈Ss\Ss+1

(
1− Ps(` ; θ)

)} ∏
j /∈St

gH
(
hjt ; θ

)
(3.6.5)

where Pt(` ; θ) is the probability of individual ` avoids transmission at time t. One key

difference is that now the infectious period refers to the time between notification and
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infection:

hjt =


nkt − ikt if ik ≤ t

0 if ik > t

. (3.6.6)

Therefore, the infectious period is the time spent in state I and the notification period is

the time spend in state N. Thus, to avoid infection an individual must avoid transmission

from each infectious and each notified individual, therefore

Pt(` ; θ) =
∏
j∈It

(1− qt(`, j))
∏
j∈Nt

(1− κqt(`, j)) (3.6.7)

where κ represents the reduction in infectiousness when an individual becomes notified.

We now therefore can interpret qt(`, k) as the probability individual k infects individual

` with no restrictions.

3.6.4 Extending the SMC Algorithm

The focus of the SMC algorithm defined has been on the application to data which follows

a SIR compartmental framework. This was in the interest of clarity and the majority of

the theory presented transfers over, the main difference is that the notification times take

the place of the removal times. The notification times then inform us as to who is newly

infectious and the removal times then act as an supplementary piece of information,

which we can easily incorporate.

In general as we observe both the notification and removal times we will not be

interested in modelling the length of this period, only how effective the notification

stage is in reducing the infectiousness of the farm before full removal can occur.

This will be further discussed in Chapters 4 and 5, where we apply the SMC algorithm

to simulated and real data from SINR-type outbreaks.

3.7 Discussion

We began this chapter with a discussion of the stochastic, discrete-time epidemic model

which shall be the focus of our analysis. Although we required some assumptions, the

final model is relatively general. As such the ideas presented in this chapter can be easily

applied to a variety of outbreaks.
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The first algorithm we considered was an adaptive MCMC, which uses data aug-

mentation to sample from the posterior distribution of interest. This MCMC has been

constructed to efficiently explore the posterior distribution and adaptively tune to en-

sure we obtain a reasonable acceptance rate. Next we focused on the main aim of this

thesis, which was to utilise the ideas underpinning sequential Monte Carlo methods and

adapt them for the epidemic setting. We successfully achieved this, constructing a novel

method of analysing infectious disease data. The method formed is highly general, with

the ability to be applied to outbreaks with a variety of behaviour.

The key advantage of the SMC algorithm when compared to the analogous MCMC

algorithm is it is, theoretically, much quicker to compute. Many of the steps within the

algorithm are performed on each particle independently, for example: the adjustment

step, calculation of the weight, the augmentation step and the movement of the parti-

cles. As such each of these steps can be very easily parallelized and performed for each

particle simultaneously. Additionally the SMC algorithm only ever updates the particles

it started with, thus avoiding restarting the algorithm from the beginning. For these

reasons it is a fast alternative to the commonly used MCMC algorithms.

Throughout we have formed the methods without specifying the form of the trans-

mission probability. This is to ensure the SMC algorithm can be used on a variety of

outbreaks. Thus when applying it we are free to specify an individual-level model that

incorporates specific heterogeneities of interest. Additionally we have not specified the

form of the infectious period distribution, again this can be chosen dependent on the

outbreak we are interested in modelling.

The SMC algorithm does require tuning and this will need to be further discussed

before we can truly state its advantages over any other algorithm. For example how

long does the movement step need to be, to ensure we obtain accurate estimates far into

the future? Too short a chain and the samples may be far from the true distribution,

but too long and the algorithm may become costly. It will be this balancing of accuracy

versus efficiency that requires further discussion.

Additionally, we do not currently have an understanding of the impact of the adjust-

ment step performed within the SMC. In the interest of tractability we had to approxi-

mate the weight for each particle. This was an appropriate solution, however, we are yet

to see how this will affect our inference when we apply the SMC algorithm developed.
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Overall we have produced a new method for the study of outbreak data. Although

further analysis will be required before we can fully know its strengths and weaknesses,

it does provide a potential alternative to MCMC methods.
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Chapter 4

A Comprehensive Simulation

Study

Having developed the SMC algorithm, in this chapter we demonstrate the application of

it to a collection of simulated data sets. As we will have knowledge of the true underlying

infection process, and the values of the parameters which drive it, this is a crucial step in

validating the SMC algorithm. We will assess the performance of the SMC by comparing

it to the analogous MCMC algorithm, as well as the true parameter values used within

the simulations.

The SMC algorithm we have constructed is fairly general in its methodology. As

a result of this generality, prior to applying it we must make some decisions about

the various tuning values within the algorithm. The choices we make could have a

considerable impact on the results obtained and therefore must be selected with care.

With this in mind, by conducting an intensive study of simulated data sets, in this

chapter we also aim to gain a greater understanding of the algorithm we have constructed

and how it performs under varying conditions.

4.1 Motivating Questions

Within this chapter our aim is to answer any outstanding questions we may have about

the application and performance of the SMC algorithm constructed. Specifically, in the

next sections we shall focus on answering the following questions:
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Do the particles represent a sample from the target distribution?

This is perhaps the most important question we need to answer. In Section 4.4 we

assess the results of the SMC algorithm by comparing it to the current ‘gold-standard’

of MCMC methods.

Does the performance of the SMC algorithm deteriorate when run for mul-

tiple time steps?

Ideally we wish to run the SMC algorithm until the end of the outbreak we are observing.

However, as epidemics often occur over long periods of time, we need the SMC algo-

rithm to remain robust when applied over many iterations. We consider this question

in Section 4.4.2.

How does the SMC algorithm perform when the new data significantly

change the shape of the distribution?

Often we may have a sudden influx of data that rapidly changes the shape or the loca-

tion of the posterior distribution. We investigate if the SMC remains accurate in this

situation in Section 4.4.2.

Is the SMC algorithm computationally faster than the analogous MCMC?

The key benefit of the SMC algorithm is that, in theory, it allows for the fast generation

of samples from the target distribution. We check that this is true in Section 4.5, where

we consider the computation time of the SMC against the comparable MCMC algorithm.

How many iterations are required in the movement step within the SMC

algorithm, to produce accurate results?

The introduction of a movement step ensures that the SMC repeatedly generates samples

from the evolving target distribution. In Section 4.6 we investigate the required length

of this step, which ensures that (at each time step) we are producing samples from

sufficiently close to the truth.

Can the SMC maintain reasonable efficiency, with no further human inter-

action necessary?

We constructed the SMC algorithm with the intention that it could repeatedly incor-

porate new observations, without requiring any further tuning to efficiently produce
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samples from the target distribution. We check that this is indeed the case in Section

4.7, where we consider the acceptance rate of the movement step.

How severe is the particle degeneracy and does this affect the results?

One disadvantage of the SMC algorithm will be the removal of particles during the

resampling step, which could impact the accuracy of the final output. We therefore

investigate the particle degeneracy of the SMC algorithm in Section 4.8.

Is the adjustment step necessary?

One weakness of the methods developed is that we choose to adjust the particles to

ensure that they are consistent with the new data. In Section 4.9 we illustrate why this

additional step is required.

How is the accuracy of our analysis affected if we use the wrong transmission

model?

When working with simulated outbreaks we are fortunate to know the true underlying

transmission mechanism, this is not the case when using real data. Therefore in Section

4.10 we consider the effect of assuming an incorrect transmission model.

Can the algorithm accurately infer the infectious period parameters?

The form of infectious period distribution is often difficult to infer. We aim to test this

in Section 4.11, where we estimate the value of the infectious period parameter.

4.2 Simulating Inhomogeneous Epidemic Data

We begin by briefly describing the generation of an inhomogeneous epidemic data set.

We will consider a fairly simple population where the differences between individuals

is only in their location, with no other heterogeneity incorporated. To simulate an

outbreak we assume we have a population of size Npop with, in most of the examples

that we consider, individuals uniformly distributed on a (1× 1) square.

The outbreak begins with a single infectious individual, chosen at random. Then at

each subsequent time step we randomly choose who is newly infected, dependent on their

probability of being infected at that time, 1 − Pt(·). If infected we then generate their

infectious period from the underlying infectious period distribution, with probability
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mass function gH(·). We repeat this at each time step, until there are no more infectious

or no more susceptible individuals.

We illustrate the simulation of a discrete-time SIR outbreak in Algorithm 12. A

similar method can be also be used to generate an SINR epidemic.

Algorithm 12: Simulating a Discrete-Time SIR Epidemic

1. Generate the spatial locations of Npop individuals.

2. Choose an individual from the Npop generated to be the initially infectious

individual. Denote this individual by υ and set their infection time as iυ = 0.

3. Generate the removal time of the initial infective as rυ ∼ gH .

4. Set S0 = {1, . . . , Npop}\υ, I0 = υ and R0 = ∅.

5. Let t = 0.

6. while |St| > 0 and |It| > 0

(i) for ` ∈ St

(a) Generate X` ∼ Bernoulli(1, 1− Pt(`)).

(b) if X` = 1 then

` is newly infected at time t+ 1 and we generate r` ∼ (t+ 1) + gH .

if X` = 0 then

` remains susceptible at time t+ 1.

(ii) Calculate St+1, It+1 and Rt+1.

(iii) Let t = t+ 1.

7. If desired, shift the times so that rυ = 0.

4.2.1 Generating the Notification and Removal Times

One choice when simulating epidemic data is the distribution of the time between infec-

tion and removal in the SIR model (or infection and notification in the SINR model),

represented in the Algorithm 12 by gH . As we are working in discrete time, in all of the

simulations we consider, we will choose infectious period distribution H ∼ Poisson(a)+1

where (a+1) is the mean length of the infectious period. The ‘+1’ is necessary to ensure

that we do not have individuals being removed on the same day that they were infected.

Additionally, when generating an SINR-type outbreak, we assume that the time
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between notification and removal is of constant length, d. This is fairly realistic as

we would expect there to be a standard protocol to follow once an individual becomes

notified.

Finally, once the outbreak has concluded we shift the times generated so that t = 0

relates to the time of the first observed notification or removal. This is to match with

the methods described in the previous chapter. The notification and removal times then

form the ‘observed ’ data.

4.2.2 The Transmission Probability

To simulate an outbreak we need to select the underlying mechanism of transmission.

If we have a susceptible individual, `, then we are interested in the probability ` avoids

infection at time t, denoted by Pt(`) = Pt(` ;θ) where θ are the parameters underpinning

the simulation. We define this as

Pt(` ; θ) =
∏
k∈It

(1− qt(`, k))
∏
l∈Nt

(1− κqt(`, l)), (4.2.1)

where recall qt(`, k) is the probability individual k infects individual ` (with no restric-

tions) and κ denotes the reduction in an individual’s infectiousness once they become

notified. When κ = 1 there are no restrictions once notified, therefore this reduces to

an extended SIR model. Similarly, when κ = 0 this is equivalent to there being no

notification period, as with probability 1 we avoid infection from someone who has left

the infectious state.

We shall assume that the population is only inhomogeneous with respect to the

location of the individuals. Additionally, to represent the spatial effect we select an ex-

ponential distance kernel, which will be a function of the Euclidean distance. Therefore,

for individual k we define

qt(`, k) =


(1− p)e−γd(`,k) if k ∈ It ∪Nt

0, if k ∈ St ∪Rt

, (4.2.2)

where d(x, y) is the Euclidean distance between individuals x and y. As such we have

chosen a transmission probability dependent on three parameters:
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� p, the base probability of avoiding infection,

� γ, a parameter determining how distance affects the probability of infection,

� κ, a parameter controlling how an individual’s infectiousness changes once they

enter the notification stage,

with θ = (p, γ, κ). This infection probability will be used to simulate the outbreaks and

be the assumed transmission model within the likelihood, highlighting the benefits of

first testing methods on simulated data sets.

4.3 The Simulated Data Sets

In this chapter we will primarily focus on two simulated outbreaks, generated using the

method defined in the previous section, with the conditions found in Table 4.1. In both

examples we are working with a medium sized population, uniformly spread across a

(1 × 1) square. The infection probability has a strong spatial effect (see Figure 4.1),

therefore we would expect to witness infectious individuals infecting those susceptible

individuals closest to them.

Npop p γ κ a d Population Distribution

SIR Simulation 500 0.975 15 - 3 - Uniform(0, 1)×Uniform(0, 1)

SINR Simulation 300 0.985 10 0.2 4 4 Uniform(0, 1)×Uniform(0, 1)

Table 4.1: The settings used to generate the SIR and the SINR epidemics. The trans-

mission parameters are θ = (p, γ, κ), a is the infectious period parameter and d is the

length of the notification period in the SINR example.

In Figures 4.2 and 4.4 we show the spread of those who were infected at regular

intervals during both of the outbreaks. As we may expect the larger value of γ in

the SIR outbreak produces an epidemic with a greater spatial effect. Both epidemics

occur over many days, therefore they will be useful for testing if the SMC algorithm can

perform well for the entirety of an outbreak. Finally, in Figures 4.3 and 4.5 we show

how the number of individuals within each state changes over time. As we can see both

of these outbreaks are fairly severe, with a significant portion of the population infected

during the course of the outbreaks.
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Figure 4.1: The transmission probability evaluated for different values of the Euclidean

distance, d(x, y), for both the SIR outbreak, with γ = 15 and p = 0.975, and the SINR

outbreak, with γ = 10 and p = 0.985.

4.4 Comparison to MCMC Methods

We will be applying the SMC algorithm described in Section 3.4 to the simulated out-

break data we have generated. The aim is to produce estimates for parameters p and γ

in both examples, as well as κ in the SINR example: these form the parameters θ. We

will also be interested in the number of occult individuals at each time step, t, denoted

by ut. Throughout this chapter, unless stated otherwise, we assume that the infectious

period parameter, a, is known, and therefore we are not interested in inferring it.

In both examples we initialise the SMC algorithm close to the start of the epidemic,

denoted by time T . We then will take the algorithm forward to time T + L, which will

be past the conclusion of the outbreak. Details of the state of the outbreak at the start

and end of our application can be found in Table 4.2. We see that, for both examples,

we are initialising the SMC algorithm with very few observations (small mN
T and (or)

mR
T ). This may, upon first inspection, appear overly ambitious, however, it will reflect

the reality of when these algorithms will be most useful. If we can initiate the algorithm

during the initial stages of an outbreak then this will allow for immediate information to

be conveyed about the form of the epidemic and thus help inform on any control policies.

Similarly there is use in checking the algorithm can be repeatedly applied, far forward

in time, as it is likely that an outbreak will evolve and the ability to capture this would

prove highly useful.
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Figure 4.2: The location of each individual within the population on which the simulated

SIR outbreak occurs. The colour indicates each individual’s status at the current time

step (top-right) as either susceptible (green), infectious (red) or removed (blue).
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Figure 4.3: The number of individuals in each of the three states: ‘Susceptible’, ‘Infec-

tious’, or ‘Removed, at each time step of the SIR outbreak.

144



Time −6 Time 9 Time 24

Time 39 Time 54 Time 69

Time 84 Time 99

Figure 4.4: The location of each individual within the population on which the simulated

SINR outbreak occurs. The colour indicates each individual’s status at the current time

step (top-left) as either susceptible (green), infectious (red), notified (yellow) or removed

(blue).
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Figure 4.5: The number of individuals in each of the four states: ‘Susceptible’, ‘Infec-

tious’, ‘Notified’, or ‘Removed, at each time step of the SINR outbreak.
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The first, and possibly the most important, question we need to answer is “Do the

particles represent a sample from the target distribution?” Answering this is difficult

as, by construction, the posterior distributions we are interested in are usually those

for which analysis is not straightforward. As such, in order to answer this question, we

will compare the SMC algorithm to the current gold-standard of stochastic epidemic

modelling: data-augmented MCMC.

To initialise the SMC algorithm we use the MCMC algorithm described in Section 3.3

to generate n = 1000 initial particles at time T , using the prior distributions described

in Table 4.3. These have been chosen to be fairly uninformative, as we wish to see how

well the SMC works when the data is driving our inference.

We choose to update all of the transmission parameters together, using the RWM

method from Section 1.4.4.2. Additionally, the MCMC will be adaptively tuned between

iterations b1 = 100 and b2 = 5000, following the methods previously described in Section

3.3.6.1. Once generated these are the samples we then feed into the SMC algorithm and

repeatedly transform, as we obtain new data. We will consider two SMC algorithms with

either np = 25 or np = 50 iterations in the movement step. At the end of each iteration

we will have n = 1000 particles approximately from the posterior distribution at that

time step. We then choose to compare the SMC algorithm to an MCMC algorithm,

which is provided with all of the data up to that time step and is applied with the same

conditions as those used to initialise the SMC. Additionally for the comparable MCMC

we use a burn-in of b = 10000 in both the SIR and SINR examples.

T mN
T mR

T T + L mN
T+L mR

T+L TNmax TRmax

SIR Simulation 3 - 6 80 - 146 - 74

SINR Simulation 3 5 0 105 103 103 95 99

Table 4.2: Information relating to the start and end points of when we apply the SMC

algorithm to the SIR and SINR outbreaks. Here mN
t and mR

t denote the number of

notified and removed individuals, respectively, at time t. Additionally we denote by

TNmax and TRmax the time of the last notification and removal, respectively.
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p γ κ

SIR Simulation Uniform(0, 1) Gamma(1.69, 0.13) -

SINR Simulation Uniform(0, 1) Gamma(2.25, 0.15) Uniform(0, 1)

Table 4.3: The prior distributions used within the two simulated outbreaks.

4.4.1 The SIR Outbreak

We begin by considering the SIR example. We compare the results of the SMC algorithm

to the corresponding MCMC, where the MCMC has been applied every 5 time steps (5,

10, . . .). A summary of the samples generated for each parameter, at various time steps,

can be found in Figure 4.6 and Table 4.4.
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Figure 4.6: Lines showing the median (solid) and the lower (2.5%) and upper (97.5%)

quantiles (dotted) of the samples, at each time step, generated using two runs of the SMC

algorithm (blues) and an MCMC algorithm (red), as applied to the SIR outbreak. The

SMC algorithm has been applied with movement step of length np = 25 and np = 50.

Also shown are the true values (orange), which were used to simulate the outbreak. The

SMC output is shown every time step and the MCMC every 5 times steps (5, 10, . . .).
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t = 30 t = 55 t = 80

Mean S.D. Mean S.D. Mean S.D.

p
SMC: np = 25 0.969 0.00997 0.973 0.00533 0.971 0.00536
SMC: np = 50 0.966 0.01100 0.972 0.00566 0.970 0.00544

MCMC 0.965 0.01140 0.972 0.00575 0.970 0.00551

γ
SMC: np = 25 16.1 2.54 15.1 1.38 16.2 1.38
SMC: np = 50 16.6 2.67 15.4 1.47 16.2 1.37

MCMC 16.9 2.61 15.5 1.44 16.2 1.39

ut

SMC: np = 25 13.4 6.48 8.89 4.88 0.061 0.435
SMC: np = 50 13.4 6.06 9.40 4.65 0.058 0.350

MCMC 12.5 5.64 9.28 4.40 0.079 0.519

Table 4.4: A comparison, at three time steps, of the mean and the standard deviation

(S.D.) generated using MCMC and SMC methods on the SIR outbreak, where the latter

method has been run with movement steps of length np = 25 and np = 50.

Focusing on the spatial parameter, γ, we can see in Figure 4.6 that the median

does not change with the incorporation of the additional data. What we do observe,

however, is the distribution of the particles beginning to peak (smaller variance), as we

become more and more confident in the value γ takes. We can see similar behaviour for

parameter p, the more data we have the more peaked the distribution becomes. If we

consider ut we see that this changes throughout time, reflecting the changing number of

occult individuals at each time step. For this outbreak the time of the last removal is

t = 74. We can see that the output is predicting this by estimating a declining number

of occult individuals.

As we have simulated the outbreaks we know the true values of the underlying

parameters. For γ, Table 4.4 shows that the average generated from both methods at

first tends towards the truth (γTRUE = 15) before moving slightly away towards the end

of the outbreak. Similarly the average for p gets closer in the initial stages before tending

away from the truth (pTRUE = 0.975) at the end of the outbreak. This is likely as with

the construction of our model we expect p and γ to be highly correlated, such that if

we have a higher base avoidance probability, p, then γ must be lower and vice versa.

Finally, if we consider the value of ut, we see that when compared to the truth both the

SMC and MCMC are fairly successful in estimating the number of occult individuals, at

each time step.

For both of the parameters and ut, the algorithms appear to be in agreement. Ad-
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ditionally, we can see that the longer movement step is unnecessary in this example as

np = 25 is matching very well with the output from the MCMC (see, Table 4.4). Alto-

gether we can see that the SMC algorithm is successfully capturing the changes in the

marginal distributions, matching the MCMC at each time step compared.

It is clear from the results displayed that the SMC and the MCMC algorithms are

generating samples from approximately the same distribution. What we find most im-

pressive is how closely the SMC and MCMC agree on the number of occult individuals.

As this is a dynamic value we would expect it to be the hardest for the SMC algorithm

to estimate, at each time step.

4.4.2 The SINR Outbreak

Next we consider the more complicated SINR outbreak. The SIR example was a fairly

severe outbreak that infected a large number of individuals, over a relatively short space

of time. The SINR outbreak involves fewer new infection cases, but does evolve over

a longer period of time. This will challenge the SMC algorithm in a different manner,

testing if it can repeatedly incorporate information far into the future.

Our aim is, as in the SIR example, to compare the output of the SMC algorithm

to that generated using MCMC methods. There are now three parameters to consider:

as well as p and γ, we are now also interested in the parameter κ, which represents the

reduction in the infectiousness of an individual when they are notified. Additionally we

will again be interested in inferring the number of occult individuals at each time step,

ut.

In Figure 4.7 and Table 4.5 we show a comparison of the MCMC and SMC methods.

We can observe that, as in the previous example, the two algorithms agree. This is true

even for the tails of the distributions, which we would expect to be harder to capture.

Due to the additional notification period this epidemic exhibits different behaviour to

the previous example. Nevertheless the SMC is still performing strongly, this is again

true for the shorter movement step (np = 25).

Both the SMC and MCMC produce estimates for the parameters which are close to

the truth. This is also true for ut, whose evolution is correctly estimated. The value of

κ is harder to pick up for both algorithms and results in the least agreement between

the two methods. This is likely a consequence of how we have generated the simulated
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data, resulting in there being only a small amount of data provided to either algorithm

in which to distinguish the parameters.

Returning to our initial aim, the second question we wish to answer is “Does the

performance of the SMC algorithm deteriorate when run for multiple time steps?” In this

example the SMC algorithm is successfully applied up to the conclusion of the outbreak,

over many iterations. We see that the accuracy of the SMC does not deteriorate, even

over many successive iterations.
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Figure 4.7: Lines showing the median (solid) and the lower (2.5%) and upper (97.5%)

quantiles (dotted) of the samples, at each time step, generated using two runs of the SMC

algorithm (blues) and an MCMC algorithm (red), as applied to the SINR outbreak. The

SMC algorithm has been applied with movement step of length np = 25 and np = 50.

Also shown are the true values (orange). The SMC output is shown every time step and

the MCMC every 5 times steps (5, 10, . . .).

Linked to this we are also interested in answering, “How does the SMC algorithm

perform when the new data significantly change the shape of the distribution?” In Figure
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t = 25 t = 65 t = 105

Mean S.D. Mean S.D. Mean S.D.

p
SMC: np = 25 0.986 0.00686 0.981 0.00525 0.984 0.00378
SMC: np = 50 0.986 0.00674 0.981 0.00543 0.984 0.00391

MCMC 0.985 0.00696 0.979 0.0059 0.982 0.00415

γ
SMC: np = 25 9.65 2.17 11.0 1.43 10.3 1.13
SMC: np = 50 9.64 2.17 11.1 1.45 10.4 1.19

MCMC 9.71 2.19 11.5 1.48 10.6 1.15

κ
SMC: np = 25 0.264 0.205 0.431 0.223 0.284 0.166
SMC: np = 50 0.256 0.213 0.394 0.217 0.280 0.150

MCMC 0.258 0.213 0.372 0.212 0.188 0.131

ut

SMC: np = 25 3.04 2.90 13.0 5.41 1.240 1.600
SMC: np = 50 3.07 3.05 13.2 5.40 2.080 1.750

MCMC 3.16 3.01 13.6 5.44 0.031 0.358

Table 4.5: Comparison of the mean and the standard deviation (S.D.) generated using

SMC methods, with two values for np, and MCMC methods, as applied to the SINR

outbreak.

4.8 we show the density plots of the final samples generated by the SMC, at the end

of the outbreak, and compare them to the samples used to initiate the SMC algorithm.

With the incorporation of the new data, we can see that the SMC method has had to

account for significant changes in the shape and location of the posterior distribution.

This has not affected the accuracy of the output and the SMC performs as well as the

MCMC, which is allowed to ‘restart’ with each new piece of data. This is true for each

time step compared.
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Figure 4.8: The density plots generated at the end of the SINR outbreak, using SMC

methods (solid blue) applied from the start of the outbreak. We also include the initial

particles used to seed the SMC (solid grey) and the prior distributions used (dashed

orange).

151



4.4.3 Conclusions

In this section we have illustrated that the SMC algorithm can repeatedly generate

samples from a target posterior distribution that evolves with time. These samples match

the analogous MCMC, which is able to restart and be applied with all of the observed

data. This illustrates that the combination of steps we described in the previous chapter

are sufficient to transform the samples in such a way that they represent the evolving

posterior distribution.

Overall this is a strong start to better understanding the SMC algorithm we have

constructed. In the following sections we aim to look closer at how it is working, with

the aim of learning of any strengths or weaknesses it may have.

4.5 Comparison of Computation Time

In the previous section we concluded that the SMC produces samples that are com-

parable to those generated using MCMC methods. The next step therefore is to test

the statement we made previously and answer the question: “Is the SMC algorithm

computationally faster than the analogous MCMC?”

As is the nature of simulation methods, there are many choices about how we apply

the MCMC and SMC algorithms, that will impact their computation time. Therefore

we stress that throughout this section we aim to only provide an illustration of the

comparative computation time of both methods.

4.5.1 Estimating the Computation Time

We choose to estimate the run-time of each method, under the condition that we can run

X jobs in parallel. This is to illustrate that often we will not have access to resources

that allow for full parallelization, instead we might only be able to split the jobs onto a

limited number of processors. In practice, if we had unlimited resources, the maximum

number of parallel jobs we could possibly run is Xmax = n, where n is the number of

particles we have generated. For our examples Xmax = 1000.

We are interested in the time it takes to sample n particles from the posterior dis-

tribution of interest, at time t. One option is to run an MCMC using all of the data

observed up to time t. Timing this accurately is difficult as the time it takes to run
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will depend on various factors. As our interest is in testing if the SMC is quicker we

choose to underestimate the time it takes to complete the MCMC and overestimate the

time for the SMC. This should allow us to observe the minimum speed increase we could

obtain by using SMC methods instead of MCMC. Therefore when timing the MCMC

we choose to only record the time it takes to complete each MCMC algorithms burn-in

period. Thus the conditions of applying the MCMC are that we have access to resources

which allow 1000 independent chains (the maximum) to run in parallel, and we then

select the first value from each, once the burn-in has been completed. This is not the

true setting in which we would run it, rather this will serve as a lower bound estimate

of the true time it would take to run the MCMC algorithm.

Considering the SMC, we recall that it has several steps, some of which are paral-

lelizable and some which are not. For those which can be run in parallel, we assume

that we split the n particles into X groups, each with n/X samples. Within each of the

groups that step of the SMC is performed in serial, therefore this stage of the SMC is

completed when the last group has finished. Additionally, for the SMC we choose to

over-estimate the runtime, again in an effort to illustrate the minimum possible speed

increase. Therefore, in the estimates to follow we assume that the longest running jobs

all occur within the same group. This is unlikely to be the case and as such this will

represent an upper bound for the time it takes to complete a single iteration of the SMC.

Suppose we denote by T
(t)
z the time it takes to complete step z of the SMC, at time

t, where this will be a vector with n elements if this step can be parallelized. We split

the timing of the SMC algorithm into the following parts:

T
(t)
Data Initialise each iteration i.e. the inputting/collecting of the new data.

T
(t,j)
Weight Adjust and find the weight of particle j, with T

(t)
Weight=

(
T

(t,1)
Weight, . . . , T

(t,n)
Weight

)
.

T
(t)
Resample Resample the particles.

T
(t,j)
Augment Augment particle j, with T

(t)
Augment =

(
T

(t,1)
Augment, . . . , T

(t,n)
Augment

)
.

T
(t)
Tune Adaptively tune the algorithm, e.g. calculate the new covariance matrix.

T
(t,j)
Move Move particle j, with T

(t)
Move =

(
T

(t,1)
Move, . . . , T

(t,n)
Move

)
.

T
(t)
Collect Collect together the moved particles.
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These steps match those discussed in Section 3.4.9, where we summarised the SMC

algorithm. We have split the timing in this way as we have serial components and

embarrassingly parallel components, that require no communication between each other.

Additionally, we do not incorporate the time required to initially set the code running,

as this will be similar for both methods and negligible compared to the computation

time of the algorithms.

We define S
(t)
Weight as the set T

(t)
Weight placed in descending order, such that S

(t,k)
Weight

is the time it takes to calculate the weight for the particle with the kth longest weight

computation time. We define SAugment and SMove in a similar way. Therefore, under

our assumption that the longest jobs all occur in the same batch, the total time it takes

to complete iteration t of the SMC algorithm is defined as

T
(t)
Data +

n/X∑
k=1

S
(t,k)
Weight + T

(t)
Resample +

n/X∑
k=1

S
(t,k)
Augment + T

(t)
Tune +

n/X∑
k=1

S
(t,k)
Move + T

(t)
Collect (4.5.1)

where recall X is the number of parallel jobs we can run. For ease we have assumed

n/X ∈ N, this is not necessary and the calculation can easily extend.

4.5.2 Simulation Examples

We consider the timings for both the SIR and SINR outbreaks discussed previously, the

results can be seen in Figure 4.9. As we can see, even overestimating the time the SMC

algorithm will take and underestimating the MCMC, with a relatively small X the SMC

can be computed much quicker than the corresponding MCMC algorithm. For example,

we found previously that np = 25 is sufficient for accurate analysis and we see that even

with X = 5 the SMC is quicker than the MCMC. As such we have shown that not only

does the SMC algorithm produce similar results to the MCMC algorithm, but it can do

so in a much quicker time frame.

The longer the movement step the longer each iteration of the SMC will take, how-

ever, this is negligible for larger X. We should note that this is only an estimate of the

time-to-compute where, throughout, we have aimed to show the minimum speed increase

possible when using SMC methods as opposed to MCMC. In practice the SMC is found

to be much quicker, especially when we deal with more realistic data which requires a

significantly longer burn-in period.
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Figure 4.9: A comparison of the (estimated) time taken to apply both the SMC and

MCMC methods to the SIR and SINR outbreaks, where the former is applied with two

values of np. The MCMC (black) is run with a burn-in of b = 10000 and has been

applied every 5 time-steps (5, 10, . . .). The SMC has been applied at every time step

and split into X jobs, where different values of X are represented by a different colour.

Finally we note that, as we can see in Figure 4.9, the length of the time to compute

both the SMC and MCMC algorithm, on average, increases through time. This is for

two reasons: firstly the more data we have the more time it will take to process and,

secondly, when calculating the likelihood we need to consider a greater number of time

steps. As we can observe there are some deviations from this trend, for example the

MCMC algorithms applied at the end of the outbreak. This is as at these time steps

we are estimating a smaller number of occult individuals, therefore the dimension of the

problem is reduced and thus this results in a quicker computation time. Overall the

greater number of occult individuals the longer the calculations will take, however, this

is true for both methods.

4.5.3 Summary

In general the movement step of the SMC is the time-limiting factor of this method.

Therefore for the SMC to be computationally quicker, we just require np × (n/X) to be

less than the number of iterations in the burn-in of the MCMC. This is key to remember,

as in later sections we choose np to be much higher; however, this still results in a

significant speed increase over the corresponding MCMC algorithm, which also requires
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a longer burn-in.

4.6 The Length of the Movement Step

So far we have illustrated the effectiveness of the SMC algorithm in comparison to its

MCMC counterpart. The algorithm appears stable to uninformative choices of prior

distribution and the requirement to be run multiple time steps into the future. Next we

are interested in how the length of the movement step impacts on the output of the SMC

algorithm and its agreement with the MCMC algorithm. Thus we move on to answering

the question of “How many iterations are required in the movement step within the SMC

algorithm, to produce accurate results?” We have shown in the previous sections that a

movement chain of length np = 25 is enough to generate samples from close to the target

distribution. In this section we consider if it is possible to use a smaller value of np. This

is of interest as the movement step of the SMC algorithm is the most computationally

expensive, thus reducing it will allow for faster inference.

We consider the SINR outbreak previously discussed. We run the SMC and MCMC

algorithms as previously, only now for the SMC we consider np = 1, 5, 10, 25, 50. A

summary of the results can been seen in Figure 4.10.

We can see from Figure 4.10 that with np = 1 the parameter outputs produced using

the SMC and MCMC algorithms are not in agreement for many time steps. However, ut

is well estimated by the SMC algorithm run with a shorter movement step, matching the

MCMC algorithm even with very small values of np. This is perhaps as the assumptions

we have had to make within the SMC algorithm will impact the transmission parameters

rather than the number of occults we infer, which we aimed to keep the same. For the

parameters we see that, as we expect, the increase in np leads to the SMC and MCMC

having greater agreement. Even so, we can see that with np = 5 the estimates from both

algorithms are fairly close.

Figure 4.10 highlights the hybrid nature of the SMC algorithm we have developed.

The smaller value of np produces an algorithm closer to the sequential-importance-

resampling algorithm, whereas larger np produces an algorithm closer to an MCMC

algorithm. We observe that the shorter movement steps appear to begin well, and it is

only after multiple iterations that the accuracy deteriorates. This is likely as any error
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Figure 4.10: A comparison of the particles generated using SMC methods with different

values of np (blues) and MCMC methods (red), as applied to the SINR outbreak.

in our weighting will be compounded the more iterations that are run. Additionally

the particle degeneration associated with sequential-importance-resampling algorithms

will be worse for smaller np. In conclusion, we can see that the accuracy of the SMC

algorithm is highly dependent on the length of the movement step. Thus to apply the

methods one must balance an increase in accuracy with the increased cost of running

the algorithm.

4.7 Monitoring the Acceptance Rate

Another fundamental question we wish to answer is “Can the SMC maintain reasonable

efficiency, with no further human interaction necessary?” Ideally the SMC algorithm

will continue to incorporate the new data and produce accurate output, with little need
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for further (human) intervention.

Of particular interest is tracking the acceptance probability of the movement step

within the SMC algorithm. From previous discussions, we deemed a ‘reasonable’ accep-

tance rate to be around 25%. For the parameters this is achieved using the Gaussian

random-walk Metropolis algorithm defined previously. This requires estimation of the

covariance matrix of the parameters, which for the SMC was recalculated prior to the

movement step. Additionally, for the unobserved data, if the acceptance rate drifted

too low or too high (outside of (0.25 − 0.15, 0.25 + 0.15)), the algorithm is designed to

automatically update the tuning parameters in order to improve the acceptance rate.

Therefore in this section we check to see if this method of automating the SMC has been

successful.

As we have n different MCMC runs, each with np iterations, we track the average

acceptance rate across all n×np iterations. Recall that there are four updating steps in

the MCMC algorithm, therefore we monitor the acceptance rate for each:

� ARθ, updating the parameters.

� ARi, updating the infections times of the observed removals.

� ARo1 , updating the times of the occult individuals.

� ARo2 , updating which individuals are the occults.

The average acceptance rates across each particles movement step, at each time step,

for the SIR and the SINR outbreaks, can be found in Figure 4.11. As we can see the

acceptance rates for each updating step mostly stay within the desired rates. The rate

for the changing of the occult individuals is often quite high; however, this is unavoidable

as even if we update every occult individual we obtain a high acceptance rate. This is

likely due to the fact that the estimated number of occult individuals, ut, is fairly low

throughout these outbreaks, therefore updating all of the occults is unlikely to change

the likelihood significantly.
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Figure 4.11: The average acceptance rates for each proposal step in the MCMC move-

ment step applied to each particle within the SMC algorithm. We consider both the SIR

and the SINR simulated outbreaks.

4.8 Particle Degeneracy

The next question we wish to answer is “How severe is the particle degeneracy and does

this affect the results?” One way of monitoring this is to record the number of unique

particles produced after the resampling step, in each iteration of the SMC algorithm.

We display this in Figure 4.12, for both the SIR and SINR outbreaks. We see that

the number of unique samples remains steadily high throughout the iterations. We also

can see that the increased length of the movement step does not appear to reduce the
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degeneracy, once we introduce some movement (here np > 5).
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Figure 4.12: The number of unique particles resampled in each iteration of the SMC

algorithm during the resampling step, when different lengths of the movement step (np)

are considered.

Achieving a high number of particles resampled at each iteration is important for

ensuring we have a diverse set of samples and thus, together with the movement step,

do not suffer from severe particle degeneracy.

4.8.1 Relationship to the Number of New Observations

For the simulations considered, we find that the number of unique particles sampled is

directly related to the number of new observations. If we consider np = 50 then, for

the SIR outbreak, there is a correlation of −0.87 between the number of new removals

observed and the number of unique particles sampled. Similarly for the SINR outbreak

there is a correlation of −0.88 between the number of new notifications and the number

of unique particles sampled.

These results are to be expected as, firstly, with more data we expect a greater change

to the posterior distribution and thus we are more likely to produce particles with a very

small weight. Secondly, with a greater number of new observations we will need to make

more significant adjustments to each particle to ensure that they are consistent. This
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may also result in a greater number of particles with smaller weights. Overall, this implies

that if we need to incorporate large amounts of new data, within a single iteration, then

we are likely to suffer from a greater level of particle degeneracy. Although the movement

step can reduce the impact of this, a high level of particle degeneracy is likely to result

in particles which do not represent the posterior distribution.

4.9 The Adjustment Step

Previously in Sections 3.4.3–3.4.5 we introduced the adjustment step, which ensures the

particles are consistent with the new data. In this section we consider the question “Is

the adjustment step necessary?” To answer this we consider the SIR outbreak and apply

the same methods as discussed previously, only without the adjustment step within the

SMC algorithm.

The results are shown in Figure 4.13, where we have applied the algorithm up to the

time step at which it fails (no particles match the new data), immediately illustrating

the necessity of the adjustment step. Additionally, we can see that we achieve very poor

matching between the SMC and the comparable MCMC. At each time step, the SMC

estimates ut as much higher than the MCMC estimate. This is likely as those particles

most likely to match with the data are those with the highest number of proposed occults.

Thus we resample an increasing number of particles with a higher value of ut.

The poor matching between the two methods has been compounded by the tuning

that occurs within the SMC algorithm, which occurs after resampling and thus can result

in very small proposal steps within the movement step, if the variance of the particles

is low. We can see this when considering the estimation of the parameters produced by

the SMC: these suddenly converge to a single point, as in the previous iteration we only

resampled a single unique particle. We could reduce this problem by choosing a more

appropriate RWM algorithm, however in practice we found that the SMC still performed

poorly.

In Figure 4.14 we can see that there is significant correlation between the number

of unique particles resampled and the number of new observations. Additionally, we

can see that in many iterations we lose a significant number of the particles during the

resampling step of the SMC. This again illustrates the necessity of the adjustment step.
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Figure 4.13: A comparison of the output generated using MCMC (red) and SMC meth-

ods with np = 25 (blue), where the latter no longer has the particle adjustment step.
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Figure 4.14: The number of unique particles resampled in each iteration, when using the

SMC algorithm with no adjustment step and np = 25. The colour of each bar represents

the number of new removals observed at that time step.

Overall, the key issue with choosing to not adjust the particles so that they are

consistent with the new data is that the SMC will, almost always, fail at some time step,

t. This makes it a method which is unsuitable for most applications. Additionally, this

simulation is only a simple example, in epidemics when we have many new cases per day
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the degeneracy will be even more severe and failure is likely to occur much sooner.

4.10 The Wrong Kernel

Throughout, when modelling the outbreaks, we have used the same transmission mech-

anism when forming the posterior distribution, as we did in the simulation. However,

when considering real data we will not know the true mechanism, therefore in this sec-

tion we are concerned with answering the question “How is the accuracy of our analysis

affected if we use the wrong transmission model?”

Throughout we have used an exponential distance kernel, exp{−γd(i, j)}, to both

simulate and model the epidemic. In this section we instead consider the following:

� We simulate the epidemic with an exponential kernel, but model it assuming a

Gaussian kernel of the form exp{−(γd(i, j))2}.

� We simulate the epidemic with an Gaussian kernel, but model it assuming an

exponential kernel.

We expect the parameters p and γ to be dependent on how we model the outbreak,

however, what will be interesting is how the value of ut is affected by using the wrong

model.

We consider two simulated SINR outbreaks, which will be different to those we have

considered thus far. This is as we wish to test how important the distance kernel is

on outbreaks which are highly spatial. The new outbreaks each occur on a population

existing on a 10× 1 square, to exaggerate the spatial aspect of the simulated outbreaks.

For both examples we use the same prior distributions for κ and p as in the previous

SINR example, however, due to the population existing on a space of greater area, we

now use a Gamma(0.9, 0.3) prior for γ in both examples.
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4.10.1 True Exponential Kernel

The first outbreak we consider has a true exponential kernel, therefore it is the same as

the previous simulations with underlying transmission probability

qt(`, k) =


(1− p)e−γd(`,k) if k ∈ It ∪Nt

0, if k ∈ St ∪Rt
. (4.10.1)

We simulate this outbreak with p = 0.9, γ = 3.25 and κ = 0.2, additionally this epidemic

occurred on a population of size Npop = 100. We will compare the output of two SMC

algorithms, with movement step np = 25. The first assumes an exponential kernel

(correctly matching the truth) and the second assumes a Gaussian kernel. We display a

comparison of the result in Figure 4.15.
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Figure 4.15: The mean values (solid) for each parameter generated using the SMC

algorithm which uses either an exponential or a Gaussian distance kernel. Also shown

is the mean ± the standard deviation (dashed).

We have not included the estimates for the values of γ and p as these depend on

which kernel we are using and therefore are not directly comparable. However, what

is surprising is that the value of κ and ut match very well for the two different kernels

used. Therefore, despite this being a spatial epidemic, the wrong model has not affected

our estimation of the other parameters.
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4.10.2 True Gaussian Kernel

We simulate the second outbreak using the underlying transmission probability

qt(`, k) =


(1− p)e−(γd(`,k))2 if k ∈ It ∪Nt

0, if k ∈ St ∪Rt
. (4.10.2)

This is therefore the same as in the previous simulations, only now the transmission

probability is a function of the squared Euclidean distance between individuals.

We simulate this outbreak with p = 0.991, γ = 1 and κ = 0.2, additionally this

outbreak occurred on a population of size Npop = 250. We analyse this outbreak in the

same way as the first example, and the results are shown in Figure 4.16.

Time

κ

6 20 30 40 50 60

0.
0

0.
5

1.
0

Time

u t

6 20 30 40 50 60

0.
0

7.
5

15
.0

Gaussian Kernel (True)
Exponential Kernel

Figure 4.16: The mean values (solid) for each parameter generated using the SMC

algorithm which uses either an exponential or a Gaussian distance kernel. Also shown

is the mean ± the standard deviation (dashed).

As in the previous example, the values of p and γ depend on which model we have

used, however, we can once again see that κ and ut do not. This is reassuring as it means

that the choice of distance kernel will not significantly impact on the final results.

4.10.3 The Transmission Probability

Finally, we can consider the overall transmission probability, qt, and how this is estimated

when we use the wrong model. We display this in Figure 4.17. We can see that, for

both examples, the value of p and γ change to produce transmission probabilities close

to the truth, even when the wrong kernel is selected.
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Figure 4.17: The transmission probability generated using the mean values outputted

using SMC methods (taken at the last day of analysis), under the two different trans-

mission models. Shown in black is the true transmission kernel used to simulate the

outbreak. Also shown under each plot is the distribution of the distances between each

pair of individuals within the population.
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Overall we can answer our original question and say that our analysis, specifically

the estimation of the number of occults and the overall transmission probability, is not

highly dependent on the choice of spatial kernel, as long as it has similar properties

(e.g. decaying as individuals move further apart). In this example we have not consid-

ered significantly different distance kernels. This is because currently we are concerned

with determining if the power we raise distance to affects the estimation of the other

transmission parameters. In the future it would be interesting to compare significantly

different distance kernels and see the effect this has, especially within the context of

model selection problems.

4.11 The Infectious Period Distribution

So far we have assumed that the infectious periods come from a Poisson distribution with

known underlying parameter. The assumption of a known parameter is an appropriate

one as often the length of an infectious period may be well studied from observing

cases and utilising expert knowledge. This is in contrast to who infects whom which is,

firstly, often unobservable and secondly, will depend significantly on the population the

outbreak is occurring in. However, it would be useful if we could allow the infectious

period parameter to be determined, along with the other parameters. With this in mind

we consider our final question, “Can the algorithm accurately infer the infectious period

parameters?” Recall that we assume that each individual’s infectious period comes

from a Poisson(a) + 1 distribution, therefore we are now interested in seeing if we can

determine the infectious period parameter, a.

4.11.1 Updating a

We will denote the parameters of interest to now be θ = (p, γ, κ, a). Considering the

MCMC algorithm, we will not update the infectious period parameter, a, with the

transmission parameters, p, γ and κ. This is as from the construction of the posterior

distribution we can instead use a different proposal step for a.

We begin by noting that as we have used a Poisson(a) + 1 distribution for the infec-

tious periods

gH(x; a) =
ax−1e−a

(x− 1)!
, (4.11.1)
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where recall gH is the probability mass function for the infectious period distribution.

Additionally if we consider the likelihood function (see Section 3.2.4), then the (marginal)

posterior distribution of a is

π(a |θ-a, yτ :t, x0:t) ∝

{ ∏
j /∈St

gH(hjt ; a)

}
π(a) (4.11.2)

where θ-a = θ\{a} and π(a) is the prior distribution of a. Next, we can note that

∏
j /∈St

gH(hjt ; a) ∝ a

∑
j /∈St

(hjt−1)

e−m
I
t a, (4.11.3)

which we can see follows a Gamma
(∑

j /∈St(h
j
t − 1) + 1, mI

t

)
distribution. Therefore we

can choose to use a conjugate prior (Section 1.2.3), here we choose a Gamma(λa, µa)

prior, such that the posterior distribution for a now has the form

π(a |θ-a, yτ :t, x0:t) ∝

(
a

∑
j /∈St

(hjt−1)

e−m
I
t a

)
×

(
aλa−1e−µa

)

= a

∑
j /∈St

(hjt−1)+λa−1

e−(mIt+µa)a. (4.11.4)

Therefore, by using a conjugate prior, we find

π(a |θ-a,yτ :t,x0:t) ∼ Gamma

∑
j /∈St

(hjt − 1) + λa, m
I
t + µa

 . (4.11.5)

As a result of the marginal distribution for a taking a simple form we instead choose

to use the Gibbs sampler discussed in Section 1.4.3 to update it.

4.11.2 Simulation Example

To test the accuracy of the SMC algorithm with a unknown, we will use a different

simulated outbreak than those discussed so far. This is as, from our experience, a

is increasingly difficult to determine for larger values. This could be a result of the

adjustment and weighting steps within the SMC, which are highly dependent on the

parameter a.
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Npop p γ κ a d Population Distribution

SIR Simulation 500 0.978 20 - 7 - Uniform(0, 1)×Uniform(0, 1)

Table 4.6: The settings used to generate the SIR epidemic, for which we aim to estimate

the value of the infectious period distribution parameter, a.

We simulate an SIR outbreak with the parameters defined in Table 4.6. This outbreak

resulted in 94 individuals being infected with the last removal occurring at time t =

126; this outbreak has different dynamics to those we considered previously due to its

longer infectious period. We used the same prior as previously for p, however now we

use a Gamma(4, 0.2) prior for γ. Additionally, to understand the impact of the prior

distribution for a we choose to consider four different choices:

Gamma(0.49, 0.07) Gamma(16, 4) Gamma(49, 7) Gamma(81, 9),

which we illustrate in Figure 4.18.
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Figure 4.18: The prior distributions we place on the infectious period parameter, a.

The aim is the same as in our previous analysis, to the estimate the parameters

underpinning the observed outbreak. We will compare the output from an MCMC, to

that generated using an SMC algorithm applied with np = 50. In Figure 4.19 we show

the density plots at two times steps, of the samples generated using each method, for

each of the prior distributions for a.

Firstly, we can note that the distribution of parameter a is highly dependent on

the prior chosen and this appears to be regardless of the amount of data we use to

construct the likelihood. This suggests that the infectious period parameter is difficult
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to determine given the limited data we have. The other parameters appear fairly robust

to different values of a. However, we can see that the number of occult individuals at

each time step, ut, does appear to change slightly, dependent on the prior distribution

for a.
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Figure 4.19: The density plots of the particles generated for each parameter using MCMC

(solid) and SMC (dashed) methods, compared at two time steps: t = 45, 90. Each colour

represents a different prior distribution for parameter a. We use a movement step of

length np = 50 within the SMC.

Overall we see that even when the infectious period parameter is free the MCMC and

SMC are in good agreement, however, they agree the least when considering the flatter

prior for a. The infectious period parameter is highly influenced by the choice of prior

placed on it, this suggests that if we are to include a as a parameter the prior must be

chosen with care. Similarly if we fix it then we must also do so keeping in mind the effect

this may have on the estimation of the other underlying parameters. Altogether we find

that although the data can provide some insight about the infectious period parameter,

it is not significant enough to overcome the effect of the informative priors that we have

considered.

4.12 Extension: Non-Uniform Adjustment

In this chapter we have witnessed the SMC successfully generate samples from the target

distribution. Additionally, we have answered some of the outstanding questions we had
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from developing the algorithm in Chapter 3. In the final two sections of this chapter we

consider two extensions to the ‘vanilla’ SMC algorithm and test how they perform.

Throughout we have been using the uniform weighting scheme when adjusting the

particles. In this section we consider the non-uniform weighting scheme introduced in

Section 3.5. For clarity we will refer to the ‘uniform’ weighting as U-SMC (also known

as just SMC) and the ‘non-uniform’ weighting as NU-SMC. Our aim is to compare the

performance of the U-SMC to the NU-SMC.

We choose to use the same simulated SIR outbreak as described previously in Section

4.3. Recall that this was an epidemic with two parameters of interest: p, the base rate

of infection and γ, the spatial parameter. Additionally we are again interested in the

number of occult individuals at each time step, ut.

We can apply the NU-SMC algorithm in the same way as we did the original (uni-

form) algorithm (U-SMC). We choose to consider a mixing of np = 25 and we will

compare the output of the U-SMC and the NU-SMC to the MCMC generated every 5

time steps. The results are displayed in Figure 4.20.
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Figure 4.20: A comparison of the particles generated using the SMC algorithm with both

the original, uniform, weighting (U-SMC) and the extension with non-uniform weights

(NU-SMC). We additionally show the results from the analogous MCMC algorithm. We

compare the samples generated at every 5 times steps.
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We can see that the two SMC algorithms are in agreement with the MCMC. This

is true for both parameters and the value of ut. We should note that previously in this

example we did not have any trouble in matching the MCMC. As such, we are only

testing that the alternative weighting scheme produces samples from the evolving target

distributions—which we see it does.

4.12.0.1 Unique Particles

Another measure we can consider is the number of unique particles resampled during

each iteration of the SMC algorithm. We display the results in Figure 4.21. We can

see that the alternative weighting regime has increased the number of unique particles

sampled, at almost every time-step considered. This is likely due to the fact that we

are proposing a more sensible adjustment, and therefore we will not lose as many ‘good’

particles as a result of the ‘bad-luck’ of a poor adjustment. This may prove important

for applying the SMC to outbreaks which produce many new events each day, as we

found previously that the severity of the degeneracy was highly linked to the intensity

of the outbreak (see, Section 4.8).
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Figure 4.21: A comparison of the number of unique particles resampled at each iteration

of the SMC algorithm, when the two different weighting schemes are used.
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In Figure 4.21 we note that the improvement is most noticeable during the middle

of the outbreak. This is when we are observing the most new observations each day

and thus having to make more significant adjustments. Overall this new adjustment has

improved the particle degeneracy, without affecting the parameter estimates.

Overall this suggests that the alternative scheme is also producing weights which

ensure we are sampling from the evolving target distributions.

4.13 Extension: Duplication Step

The methods we have developed have been successfully applied to the simulated data

set. In this section we briefly consider another extension to the SMC algorithm, which

may also help to reduce the particle degeneracy. We again assume that we are working

with the SMC defined in Section 3.4, which uses the ‘uniform’ adjustment scheme.

As we illustrated in Section 3.4.4, when working with large data sets we will find that

in the particle adjustment step there will be many possibilities as to how the particle is

changed. This means that the same particle, by random chance, could be adjusted in

several different ways, which may then result in very different weights. This randomness

may result in particles being lost, that under different adjustments may have been likely

to be resampled. For this reason we propose an addition to the SMC algorithm, a

duplication step; before we adjust our particles we duplicate each one nd times resulting

in a set of n×nd particles. These particles are each then adjusted using the methods of

Section 3.4.4. We then calculate the weight of each of these particles and resample n of

them from the set of size n× nd. This addition is illustrated in Figure 4.22.

We hope that this will reduce the loss of ‘good’ particles due to chance, whilst

not affecting those particles that are poor candidates: they will still have a low weight

regardless of their adjustment. The aim of the duplication step is not to directly improve

the accuracy of the estimates, but rather aid in the reduction of particle degeneracy

possibly induced by the adjustment step. In the next section we consider adding this

step to the SMC algorithm and seeing how it performs when applied to a simulated

outbreak.
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Figure 4.22: Illustration of the SMC algorithm for outbreak data, with the addition of

the duplication step.

4.13.1 Simulation Example

We consider the SIR simulation example discussed previously in Section 4.4. We analyse

this outbreak as previously, with np = 25 iterations in the movement step. However, we

now consider nd = 1, 5, 10, 20, where nd = 1 matches the previous analysis. This example

did not suffer from severe particle degeneracy hence this extension is not required for

this outbreak: however, any improvement to the number of unique particles will only

serve to strengthen the SMC algorithm.

The two questions we are interested in answering are:

� Does duplicating particles reduce the particle degeneracy?

� Does duplication decrease the accuracy of the parameter estimates?

To test the first question we consider the number of unique particles resampled in each

iteration of the SMC algorithm. Now we define a unique particle as a unique set of the

parameters, thus selecting two different duplications of the same original particle would
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only count as a single unique particle. In Figure 4.23 we display the number of unique

particles, as we see increasing nd leads to an increase in the number of unique particles

resampled. However, increasing nd further has little effect and nd = 5 produces a similar

number of unique particles to nd = 20.
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Figure 4.23: The number of unique particles resampled at each step of an SMC algorithm

with movement np = 25 and different values for nd, the number of duplications. This

example is the SIR simulated data considered in Section 4.4.

The second question is of greater importance, does duplication reduce the quality

of the output of the SMC algorithm? To test this we consider the distribution of the

particles generated, for each value of nd. This is illustrated in Figure 4.24 where we

see that the distribution of the samples generated for each value of nd appear to be the

same. Thus we see that we have successfully improved the particle degeneracy, without

suffering a loss in accuracy.

Although we are introducing an additional component the weighting step is signifi-

cantly quicker to perform than the movement step. As such this does not increase the

computation time significantly. We illustrate this in Figure 4.25 where we show that even

with full parallelization the time it takes to adjust and weight the additional particles is

negligible when compared to the movement step.
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Figure 4.24: A comparison of the output produced using the SMC algorithm (np = 25),

shown every 5 time steps. We have chosen different values for the duplication parameter,

nd, where nd = 1 matches the previous analysis performed on this data set.
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Figure 4.25: A comparison of the time taken to complete each stage of the SMC al-

gorithm, as applied to an SIR outbreak, with np = 25. We have considered varying

levels of duplication, nd = 1, 10, 20, and different values for the number of parallel jobs:

P = 100, 1000. Here the ‘weight’ steps includes both the adjustment and weighting of

the particle (see Section 4.5 for further details).
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4.13.2 Conclusions

Overall this addition to the algorithm is likely to prove useful, especially in examples

with a large amount of particle degeneracy. The main benefit of this extension is in its

simplicity, it can aid in reducing the issues typically associated with SMC algorithms,

without a significant computational burden. We should note that throughout we shall

use nd = 1, unless stated otherwise.

4.14 Discussion

In this chapter we have applied the SMC method developed in Chapter 3 to multiple

simulated data sets. We have seen that the SMC algorithm matches the accuracy of

the MCMC algorithm, even when we use a relatively small movement step. This is

reassuring as it means the approximation of the weight is reasonable and therefore the

SMC produces samples from (approximately) the target distribution. We have also

illustrated that the SMC algorithm continues to be accurate when applied over many

iterations, successfully incorporating the new data throughout.

We have also considered extensions to the epidemic model, such as the application

when we have infectious periods whose underlying parameters are unknown, as well as

additions to the algorithm itself in the form of a duplication step and an alternative

weighting. This illustrates the flexibility of the SMC algorithm we have constructed

and we expect there to be many more extensions we could incorporate to further the

capabilities of this method.

Within this chapter we have only discussed a handful of simple, simulated epidemics,

however, this is not when the SMC algorithm is most appropriate. The SMC algorithm

we have developed will be of greatest use when we have epidemics for which analysis

usually takes longer than 24 hours i.e. longer than the time it takes to obtain the new

data. This is often the case when analysing epidemics using MCMC methods which,

especially with large amounts of missing data, can take a long time to converge. As

such, in the next chapter we aim to apply the methods developed to a real data set, for

which online analysis would prove highly beneficial. In this scenario the properties of

the SMC algorithm would make it superior to the corresponding MCMC algorithm.

Overall we have shown that SMC methods prove to be a viable alternative to MCMC
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methods, that can be used in real-time analysis of infectious disease data, repeatedly

incorporating new data when it is received. We expect with further consideration and

study these methods may grow to be the algorithm of choice for conducting real-time

statistical analysis of an epidemic.
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Chapter 5

UK Foot-and-Mouth Disease

Outbreak (2001)

The sequential Monte Carlo methods we have developed produced impressive results

when applied to simulated data sets in Chapter 4. However, as this is data that we have

simulated, the underlying mechanism is simple and mathematically well described, this

is in contrast to a real data set. For this reason in this section we aim to apply the

methods developed in Section 3.4 to a real-world infectious disease outbreak, for which

data was collected during its progression. This will present more of a challenge than the

simulated data sets: as such this will be a true test of the SMC methods capabilities.

The data set we will be investigating contains the notification and removal times

of the farms involved in the 2001 UK Foot-and-Mouth Disease (FMD) outbreak. This

data set is of continual interest due in part to the severity of the outbreak, as well as the

richness of the data. The outbreak spread very quickly suggesting it is an ideal candidate

for the application of the SMC algorithm which can make fast, on-line inference.

5.1 Aims

Within this chapter we aim to achieve the following:

1. Apply the SMC methods to a real data set.

Applying the SMC algorithm developed to a real data set will truly test if it can produce

results comparable to those obtained via alternative methods.
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2. Demonstrate applying the SMC algorithm in real time.

Ideally the algorithm developed will be applied as the epidemic evolves and new cases

are observed. As such, testing it on data that was collected during the progression of

the FMD outbreak will be key in checking that the algorithm constructed is appropriate

for real-time analysis.

3. Estimate key parameters underpinning the Foot-and-Mouth disease out-

break.

We wish to gain a greater understanding and insight into which factors where impor-

tant in determining the spread of this disease. Additionally, we will be interested in

comparing our inference to that previously performed on this data set.

5.2 Background

Prior to the construction of the FMD epidemic model, we will consider the key charac-

teristics of this outbreak. This will aid in our decision of which features are important

to include within the model.

5.2.1 Foot-and-Mouth Disease

Foot-and-Mouth disease is a virus which affects cloven-hoofed animals such as sheep,

cattle, pigs, goats and deer. It is rarely fatal to the animal, nevertheless, it will often

cause permanent weight loss, as well as a reduction in the quality of their milk. The

virus itself spreads extremely quickly and once a farm is infected all trading with it will

cease, causing a substantial loss in income. The virus can be transmitted in multiple

ways, for example: animal-to-animal contact, contaminated vehicles, items of clothing,

contaminated water supplies and animal feed. It is this ease of transmission which allows

FMD to rapidly spread, once introduced into a population.

One of the most noticeable symptoms of the virus are vesicles. These are similar

in form to blisters but they will often pop quickly, making them difficult to diagnose.

The virus has an incubation period of around 2–14 days, although this can vary between

species (OIE (2013)).
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5.2.2 Timeline of the 2001 UK Foot-and-Mouth Disease Outbreak

We shall be focusing on a specific outbreak of FMD within the UK in 2001. We begin

by describing the key moments of the 2001 UK outbreak, as contained within the NAO

report (UK National Audit Office (2002)). A timeline of the key events is shown in

Figure 5.1.

23/02/2001 - 18/02/2002

Great Britain a controlled area

21/02/2001 - 05/02/2002

Ban on moving animals susceptible to FMD and non-treated products
 from the UK enforced by European Commission

23/02/01

Great Britain
 made a

 controlled
 area 

22/01/2002

UK regains
 international

 FMD free
 status

30/09/2001

Last confirmed 
case of FMD

05/02/2002

All remaining
 restrictions lifted 
by the European 

Commission

21/02/01

Movement 
around

 infected farm
 banned

28/02/2001

First case in
 Cumbria

30/03/2001

Largest number of
 cases in a day (50)

21/02/01

Ban on the 
export of 

susceptible 
animals

25/02/01

First case in
 Devon

19/02/01

First 
suspected 

case

20/02/01

First case 
confirmed

23/02/01

First case
 outside Essex

18/02/2002

Controlled area
 fully lifted 
across all
of Great 
Britain

Figure 5.1: Summary of the key events during the 2001 UK Foot-and-Mouth epidemic.

The dates are taken from the UK National Audit Office (2002). Note that, as given by

UK National Audit Office (2002), the definition of controlled area is “The area affected

by general control on movement of susceptible animals”.

The first suspected case of FMD during the 2001 outbreak occurred at an abattoir in

Essex on 19th February 2001. This was officially confirmed the following day, however,

by this time there were already an estimated 57 farms infected and it is likely the initial

farm had been infected for weeks. The disease was able to spread so successfully as it

had a very short incubation period and animals could infect others before clinical signs

of the disease could be seen. Additionally, the disease was primarily spread by sheep

as the sheep industry has multiple nationwide animal movement networks, coupled with

the fact that symptoms are often difficult to observe in sheep. In Figure 5.2 we can

see that this outbreak was confined to specific pockets of the UK, this is as the control
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Figure 5.2: The farms within Britain that avoided culling (blue) and the farms which

were culled during the 2001 FMD outbreak (red). The large patch of red shows the

severity of the outbreak in Cumbria. This is plotted using ArcGIS.

measures put in place prevented the disease from spreading to high risk dairy and pig

farming regions (UK National Audit Office (2002)).

In total 2026 premises in Britain were declared infectious, with the worst hit area

being Cumbria which had a total of 893 confirmed infectious farms; we can see this

severity in Figure 5.2. Also severely affected were the regions of Dumfries and Galloway

(176 cases) and Devon (173 cases). The highest number of cases in a single day was 50,

with the largest number of cases in a single week being 299 (see, Figure 5.3). Overall

the epidemic lasted a total of 32 weeks with the last confirmed case on 30th September

2001. However, it was not until 22nd January 2002 that the UK officially re-obtained its

FMD-free status and some restrictions on exports were still in-place until 5th February

2002.

In total the outbreak cost the public sector over £3 billion and the private sector

over £5 billion. This demonstrates why this epidemic has remained of such interest to

researchers. It was a fast moving outbreak, which caused significant cost to the public

and private sector. Additionally the control measures put in place were found to be
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Figure 5.3: The number of new confirmed cases per week, taken from UK National Audit

Office (2002).

inadequate (see, UK National Audit Office (2002, Section 2.13)) and as such improving

our understanding of how this outbreak spread is of great importance.

5.3 Previous Work

5.3.1 Summary of the Key Findings

There has been a substantial amount of research into FMD, with considerable efforts

placed in trying to determine its transmission mechanism and pathogenesis. Alexan-

dersen et al. (2003) performed a general review of FMD, within which they found that

mass culling is required to stem any outbreak, as animals can carry the disease without

showing symptoms. Also of note they found that within infected sheep there are two

levels of infectiousness: an initial period of 7-8 days during which the sheep is highly

infectious followed by 1-3 days where it is less so.

Considering the 2001 UK outbreak, Keeling et al. (2001) found that cattle are more

infectious and more susceptible to the disease than sheep, however, this is often bal-

anced by the fact that sheep are greater in number. They also found that culling is of

much greater effect in limiting the spread than vaccination and therefore stricter culling

schemes are the key component in successfully managing an outbreak. This was sim-

ilarly reported in Ferguson et al. (2001a) who simulated future incidents, finding that

ring culling and ring vaccination regimes are required to bring the infections rapidly
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under control, with culling again being found to be more effective than vaccination.

Again considering the transmission of FMD within the UK, Ferguson et al. (2001b)

found that smaller farms are significantly less infectious and less susceptible than larger

farms. In agreement with other results they also found cattle farms to be the most

susceptible. Interestingly, they additionally concluded that fragmented farms resulted

in an increase in transmission, as vehicles often move between the separated farms.

Diggle (2006) also concluded that cattle are more infectious and susceptible to infection

than sheep, they also found that the relationship between farm size and infectivity and

susceptibility is predicted as sub-linear.

5.3.2 Previous Model Assumptions

Before we can apply the SMC algorithm we need to construct the epidemic model.

Therefore in this section we will look closer at the model assumptions made in previous

work conducted on this data set. We will relate back to this section when defining our

own epidemic model in Section 5.5. We provide only a brief overview as motivation for

the construction of our model; for a thorough discussion of the models and methods

used to analyse this epidemic we refer the reader to Keeling (2005) and Kypraios (2007,

Chapter 3).

5.3.2.1 Keeling et al. (2001) (Cambridge-Edinburgh Model)

We begin by focusing on the work performed by Keeling et al. (2001), which much

subsequent analysis has been compared against (for example, Diggle (2006), Kypraios

(2007) and Jewell et al. (2009)). Their model treated farms as individuals due to the

rapid nature of this outbreak—an assumption which the majority of subsequent work also

makes. They used a spatial, individual-level, SEIR model (see, Section 2.4.2) assuming

a fixed incubation period of 5 days followed by an infectious period of 4 days until the

farm was reported.

Their model allowed the infectiousness and susceptibility of a farm to vary based

on the species present and the size of the farm, specifically the number of cattle and

sheep on a farm. Additionally, this model treated the relationship between farm size

and infectiousness and susceptibility as linear. They used a distance kernel which was a

function of the Euclidean distance and produced by DEFRA by tracing the path of the
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infection.

Keeling et al. (2001) used two methods to conduct analysis, firstly they constructed

the discrete-time likelihood and used maximum-likelihood methods. However, they

found this to be inadequate due to biases in the data. Therefore, for their second form of

analysis they used their initial estimates obtained via ML and ‘refined’ them using least-

squares methods, measuring the difference between the observed and expected number

of daily cases. Using these methods they found that large farms are more susceptible to

the disease and that cattle are both more infectious and more susceptible than sheep.

They concluded that, as well as a biological factor, this may be a result of the contact

networks the two different species were involved in. Overall they concluded that cattle

probably contributed more per capita to the spread of FMD, however, this is balanced

by the far greater number of sheep.

5.3.2.2 Deardon et al. (2010)

The work performed by Keeling et al. (2001) was continued in Deardon et al. (2010)

where several extensions were proposed, including: a non-linear relationship between

farm size and a farms infectivity and susceptibility, the ability to have spontaneous in-

fection and a more general spatial kernel. The methods used by Deardon et al. (2010)

required knowledge of the status of all farms at all times, these were estimated if un-

known. Additionally, like Keeling et al. (2001), the model assumed a constant period of

9 days between infection and reporting, split into a latent and infectious period.

Deardon et al. (2010) conducted analysis using a Bayesian framework and explored

the posterior distribution using MCMC methods. The authors found that the kernel used

by Keeling et al. (2001) overestimates short distance risks, whilst underestimating the

risk of long-distance infections. They additionally matched the results of previous work,

showing that cattle are more infectious than sheep as well as being more susceptible.

However, they found that the assumption of the infectivity and susceptibility of a farm

scaling linearly, as made in Keeling et al. (2001), to be dubious.

5.3.2.3 Jewell et al. (2009)

The next work we shall focus in on is the continuous-time SIR model used by Jewell et al.

(2009) and applied to the subset of the data belonging to Cumbria. Following the work
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of Keeling et al. (2001) this model also only focuses on the transmission mechanism

as a function of the number of cattle and sheep, additionally the authors allow for a

non-linear relationship between a farm’s size and its infectiousness and susceptibility.

They also define the environmental transmission as a function of the Euclidean distance

between farms k and `, denoted by the kernel K(k, `, γ) where γ is to be inferred. For

this model a Cauchy type kernel is used.

To model this outbreak Jewell et al. (2009) assumed that an infectious farm, k, makes

infectious contact with a susceptible farm, `, at points of a time-inhomogeneous Poisson

process with rate

βk,` = (β1(ck)
χ + (sk)

χ)︸ ︷︷ ︸
Infectiousness

of k

(β2(c`)
χ + (s`)

χ)︸ ︷︷ ︸
Susceptibility

of `

K(k, `, γ)︸ ︷︷ ︸
Environmental

transmission

, (5.3.1)

where cx and sx denote the number of cattle and sheep respectively, on farm x. The

parameters β1 and β2 denote the relative infectiousness and susceptibility of cattle to

sheep and χ represents how the size of a farm affects the rate of transmission. The

spatial effect now encapsulates the effect of environmental factors on transmission, such

as the disease being spread by rodents, birds, people etc.

In contrast to the work of Keeling et al. (2001) and Deardon et al. (2010), the authors

additionally allow the farms’ infectious periods to be random, assuming that the time

between infection and removal follows a Gamma(a, b) distribution where a = 4 and b is

some unknown parameter to be determined.

With the model constructed, Jewell et al. (2009) conducted inference in a Bayesian

setting using MCMC methods. They additionally consider a partially non-centered

MCMC algorithm (see Papaspiliopoulos (2003, Chapter 7)), with 25% of the infection

times non-centered in each iteration.

The authors find that over 4km there is little infectious pressure exerted. Additionally

the results obtained showed that cattle are more susceptible and more infectious than

sheep, matching previous results. In agreement with other work, the authors also found

there to be a sub-linear relationship (χ between 0.25 and 0.4) between the rate of infection

and the number of animals on each farm. Finally, the authors find that the infectious

period is on average between 6.5 and 9 days, this result is slightly different to the

assumptions made in other work (for example Keeling et al. (2001) and Deardon et al.
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(2010)), however, this model did not incorporate an exposure period so this is to be

expected.

5.3.2.4 Xiang and Neal (2014)

The final model we consider is that used by Xiang and Neal (2014), which shares many

similarities to the epidemic model used by Jewell et al. (2009). They applied an SIR

model to the Cumbria data set, making the assumption of Gamma(a, b) infectious

periods. Similarly, they used MCMC methods to learn about the form of the parameters,

also applying non-centering methods.

The authors results matched well with those produced in Jewell et al. (2009). Inter-

estingly, they also found that the mean length of the infectious period is highly dependent

on the value of a. If a = 1 the average infectious period is 5.4, for a = 4 it is 7.9 and for

a = 20 it is 9.5. This shows two things: firstly the results do not directly match those of

Keeling et al. (2001), which used a fixed infectious period, and secondly the data itself

can have difficulty in determining the true infectious period. However, overall the au-

thors found that the average total infectious pressure exerted by a farm throughout the

outbreak is not highly dependent on the infectious period, as many of the transmission

parameters are robust to changes in its form. This matches with our observations in

Section 4.11 where we found that although the form of the infectious period was difficult

for the methods to determine, the transmission parameters were largely unaffected by

its value.

5.4 The Data Set

With our discussion of the previous work on this outbreak completed, in this section we

describe the data set we will be using and consider its interesting features.

5.4.1 Cleaning the Data

We shall be performing analysis on the 2001 UK Foot-and-Mouth outbreak, restricted to

those farms located in the county of Cumbria. This region was one of the most severely

affected during the course of the outbreak (see, Figure 5.2) and, as such, is where the

focus of our analysis shall lie. Specific analysis of the outbreak within Cumbria has been
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discussed in Diggle (2006), Jewell et al. (2009) and Xiang and Neal (2014).

To simplify the model we will begin by cleaning the data, as stated we shall only

be keeping the data on those farms that fall within the traditional county boundaries

for Cumbria. We will also omit those farms which are removed at the time of the

first observed notification, these farms were removed 22 days before any other observed

notification or removal time, thus we assume that they were not involved in the major

outbreak within Cumbria. During this outbreak there were farms culled preemptively,

without their infection status being confirmed. To match the work performed by Jewell

et al. (2009) and Kypraios (2007) we do not use this information, focusing only on data

relating to those farms culled as infectious premises during the outbreak. Finally we only

consider farms that contained some cattle or sheep, as these species were the primary

carriers of FMD (see, Keeling et al. (2001)).

5.4.2 Summary Statistics

The Cumbria data set comprises of 7876 farms, of which 891 were culled as infectious

premises by the end of the epidemic. The progression of FMD within Cumbria was rapid

and showed a strong spatial component.

In Figure 5.4 we show the total number of reported cases over time. We can see that

this outbreak had an initial period of rapid spread, followed by a longer period of lesser

intensity. We will focus on using the methods we have developed near the start of the

outbreak, as this is when fast analysis is of greatest use. However, this may be difficult

for the SMC algorithm as we will have many new observations to incorporate each day.
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Figure 5.4: The total number of farms confirmed as infectious premises, from the time

of the first observed case.
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In Figure 5.5 we can again see this rapid spread. Additionally we can observe the

highly localised nature of this outbreak, with the majority of the infected farms residing

in the north of Cumbria. This suggests that the outbreak did have a large spatial

element, as we would expect. We can also see how this outbreak might be problematic

for analysis using the SMC algorithm, with a large number of new cases occurring in a

very short space of time.

Figure 5.5: The number of notified cases (mN
t ) recorded every 7 days, from time t = 4

up to time t = 32, these will be the times at which we compare the SMC and MCMC

methods later in Section 5.6. For comparison, we have also included the state of the

outbreak at the time of the first notification, t = 0. In grey we show every farm and in

red we display those confirmed as infectious at time t.

Another potential issue highlighted by Figure 5.5 is that we may have some im-

pact from boundary effects. For example there are infections occurring to the south of

Cumbria, which may be more likely to have occurred from outside the county borders.

Throughout we will not investigate the impact of this, however it is worth bearing in

mind. One future solution would be to consider the work of Diggle (2006) and incor-

porate a chance of spontaneous infection. This would be suitable for accounting for

infections coming into Cumbria from outside the boundary we have considered.

We may also be interested in the composition of the farms, as summarised in Figure

5.6. We can note that within this population the majority of farms held both sheep and

cattle. However, we can see in Figure 5.7 that overall there is a far greater number of
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sheep than cattle within the county of Cumbria.
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Figure 5.6: The proportion of farms within Cumbria with only cattle, majority cattle

and some sheep, only sheep, majority sheep and some cattle or equal number of cattle

and sheep.
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Figure 5.7: Histogram of the total number of cattle and sheep on each of the farms

within Cumbria.

To analyse this outbreak, we have access to two pieces of data: the notification

and removal times. Respectively these times represent when a farm is first known to

carry FMD (notified) and when the animals have been culled (removed). We display

the distribution of the notification period in Figure 5.8. We see that it will be useful to

incorporate this period as the majority of farms have a delay between identification and

the removal of all of the infected animals.
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Figure 5.8: The time between notification and removal, for the farms infected within

Cumbria during the 2001 UK FMD outbreak.

5.5 Constructing the Model

Now that we have explored the data that we are interested in analysing, we can begin

construction of our model. We will use the form of the data set, as well as the work

previously performed, to inform on our choices.

5.5.1 Disease Progression

Following the discussion in the previous section, we choose to model this outbreak using

an SINR model. This is in contrast to much of the previous work on this data set, which

focuses either on SIR models, such as Jewell et al. (2009) and Xiang and Neal (2014), or

on SEIR models, such as Keeling et al. (2001) and Deardon et al. (2010). We choose this

model as from Figure 5.8 we can see that the period between notification and removal

is not trivial, as such we aim to utilise both pieces of data we have access to. It will

be interesting to see if we can pick out the behaviour occurring during the notification

period as, for most farms, it is very short.

5.5.2 Spatial Component

Given the data it is evident that we will require a spatial component within any model

we construct. This will take the form of a distance kernel, K(d(i, j)), where d(i, j) is a

distance metric which defines how we quantify the distance between two farms.
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5.5.2.1 Distance Metric

When previously designing our epidemic model we always utilised the Euclidean dis-

tance between individuals when defining the spatial component. This need not be the

case, therefore we briefly justify why using the Euclidean distance between farms is an

appropriate metric for the 2001 UK FMD outbreak. This has been previously discussed

in Jewell et al. (2009).

Savill et al. (2006) showed that for each sub-region they considered, the Euclidean

distance and the quickest route were equally good predictors of risk for the 2001 UK

FMD outbreak. One of the regions they considered was Cumbria. The authors noted

that even when accounting for the unique features of this region, for example the M6

motorway running through it, a Euclidean based transmission kernel was sufficient to

model transmission between farms on either side of it—despite this feature separating

them. This is possibly as there are many routes through which the disease can be

transmitted (e.g. private farmers tracks, footpaths etc.) thus the Euclidean distance

is a better representation of the spatial effect than other simplifications: for example

the shortest route via roads. As such we will continue to use the Euclidean metric to

represent the spatial separation between farms.

5.5.2.2 Spatial Kernel

There has been significant interest in choosing an appropriate distance kernel for the

FMD epidemic. For example Keeling et al. (2001) used a highly tailored distance kernel

produced by DEFRA, which used tracing data and expert knowledge to deduce the most

likely source of infection. As a result of its construction, which was based on (subjective)

estimation by veterinarians on the most likely source of infection, this kernel was found

to overestimate the effects of short-distance transmissions, whilst underestimating those

occurring over a longer distance (Deardon et al. (2010)). This was improved by Deardon

et al. (2010) who produced a kernel with a change point such that short distances were

explained by a constant, whilst long distances were described by a geometric kernel.

Both of these kernels were used to represent the spatial transmission across the whole of

the UK epidemic. These may not be as appropriate for our context, where we are only

interested in the outbreak occurring within Cumbria.
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The Cumbria data was discussed by Diggle (2006) who used a distance kernel which

allowed direct transmission over short distances, whilst also allowing spontaneous trans-

mission to account for the longer distances. Also using the Cumbria data, a Cauchy

kernel was used by Jewell et al. (2009) due to its heavy tail.

We will choose to keep the exponential distance kernel used previously in the simu-

lated outbreaks. This will allow us to see how the general model performs, as ideally we

wish to create a method which can be quickly and easily applied to data from different

outbreaks. Additionally, as we are working with a reduced data set, the heavy tailed

distribution is not as necessary, unlike the work which considers the outbreak across the

whole of the UK. This is illustrated in Figure 5.5 where we can see that the outbreak

appears to be dominated by short-range infections. In the future it would be interesting

to consider the impact of using a heavy-tailed distance kernel, as in Jewell et al. (2009).

Although relative to the whole of the UK Cumbria is small, the region could be still

considered large and therefore a heavy-tailed kernel may result in different conclusions.

Finally, we note that in the previous chapter the wrong choice of distance kernel

did not severely impact the estimation of the parameters. Thus, we might expect that

this would also hold for the FMD dataset: as such, we continue to use the exponential

distance kernel.

5.5.3 The Infectious Period

The infectious period is often assumed to be fixed in previous work (see, Keeling et al.

(2001) and Deardon et al. (2010)), however, this is highly restrictive. Therefore we allow

the infectious periods to be variable. As we are working in discrete time a Poisson(a)+1

distribution seems appropriate, the +1 is required as we assume that a farm cannot be

notified on the day it is infected. We additionally choose a to be fixed at a = 5, due

to the difficulty of inferring the infection parameter from the data alone (see Section

4.11). Additionally, previous work has suggested that the inference of the transmission

parameters is relatively unaffected by the infectious period, see Xiang and Neal (2014)

and the simulated example in Section 4.11. We choose an average of 6 days (a = 5) for

the infectious period as, together with the notification stage, this agrees with the length

of the infectious period found by Kypraios (2007), Jewell et al. (2009) and Xiang and

Neal (2014).
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In many cases the distribution of the infectious period is relatively well-known and

can be observed by other means (e.g. previous outbreaks or laboratory analysis). How-

ever, what is often unknown is what is driving the spread of the disease. This will be

case dependent and as such our focus will remain on the transmission parameters.

5.5.4 Additional Model Parameters

For the other model settings we choose to follow previous work and incorporate the num-

ber of cattle and sheep that reside on each farm into the infectiousness and susceptibility

of a farm. Additionally—due to the work by Diggle (2006), Jewell et al. (2009) and Dear-

don et al. (2010)—we choose to incorporate the possibility of a non-linear relationship

between the probability of infection and the size of the farms. In Diggle (2006) and

Jewell et al. (2009) this was controlled by a single parameter, however, we will choose

to consider two parameters to see if the scaling for susceptibility and infectiousness are

distinct (see, for example, Deardon et al. (2010)).

5.5.5 The Posterior Distribution

With the model assumptions made we can begin construction of the posterior distri-

bution. We briefly describe the set-up for an SINR model, as previously discussed in

Section 3.6. For an SINR model, we define the form of the posterior distribution as

π(θ, yτ :t | x0:t) ∝ L(θ; yτ :t, x0:t)π(θ)

where x0:t = {nN0:t, n
R
0:t, r

R
0:t} and yτ :t =

{
iτ :t, n

I
0:t

}
=
{
iNτ :t, i

R
τ :t, i

I
τ :t, n

I
0:t

}
. Recall

that now the infectious period refers to the time between notification and infection:

hjt =


nkt − ikt if ik ≤ t

0 if ik > t

. (5.5.1)

Additionally the time between notification and removal is referred to as the notification

period.
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We can then define the likelihood function to be

L(θ; yτ :t, x0:t) =
t−1∏
s=τ

{ ∏
`∈Ss+1

Ps(` ; θ)
∏

`∈Ss\Ss+1

(
1− Ps(` ; θ)

)} ∏
j /∈St

gH

(
hjt ; θ

)
(5.5.2)

where Pt(` ; θ) is the probability that farm ` avoids infection at time t and gH is the

infectious period density function. For the SINR model we define the probability of

avoiding infection to be

Pt(` ; θ) =
∏
k∈It

(1− qt(`, k))
∏
l∈Nt

(1− κqt(`, l)), (5.5.3)

where we can interpret qt(`, k) as the probability farm k infects farm ` with no restric-

tions. We refer to this as the transmission probability. We additionally denote by κ the

reduction in infectiousness when a farm becomes notified. This is the basic structure of

the SINR model we use throughout.

5.5.5.1 The Transmission Probability

The next step in constructing the posterior distribution is to define the form of the

transmission probability, this will allow us to define Ps(` ; θ) in the likelihood equation,

(5.5.3).

We construct this by considering the parameters we have decided to incorporate,

additionally we choose to follow closely to the model described in Jewell et al. (2009),

as displayed in Section 5.3.2.3. We denote by cx and sx the number of cattle and sheep

respectively on farm x, then for a farm ` ∈ St we define the unrestricted probability that

it is infected by farm k ∈ It/Nt, at time t, as:

qt(`, k) = 1− exp
{
− β0 (β1ck + sk)

χ1︸ ︷︷ ︸
Infectiousness

of k

(β2c` + s`)
χ2︸ ︷︷ ︸

Susceptibility

of `

exp {−γd(`, k)}︸ ︷︷ ︸
Environmental

transmission

}
, (5.5.4)

where d(x, y) is the Euclidean distance (measured in meters) between farms x and y.

The parameters incorporated are:
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� γ, the parameter controlling the importance of two farms’ proximity in the infection

probability. We use an exponential spatial component to represent the decay in the

transmission probability when considering farms that are separated by increasing

distance.

� β0, the base-rate of infection.

� β1 and β2, the relative contribution a cow makes compared to a sheep in the

infectiousness and susceptibility, respectively, of a farm.

� χ1 and χ2, parameters which determine how the infectiousness and susceptibility,

respectively, of a farm changes with size.

With this choice of transmission probability we can see that for an infectious farm,

k ∈ It, and a susceptible farm, ` ∈ St,

as d(`, k) −→∞ qt(`, k) −→ 0,

as d(`, k) −→ 0 qt(`, k) −→ 1− exp {−β0 (β1ck + sk)
χ1 (β2c` + s`)

χ2 } .

Therefore the further away two farms are the less likely transmission is. However, even

if the farms are very close to each other, transmission is not guaranteed and will still be

dependent on the structure of the farms.

We have already chosen the form of the infectious period distribution in Section 5.5.3,

where we decided to fix the infectious period parameter. Therefore the parameters we

are interested in inferring are

θ = (κ, γ, β0, β1, β2, χ1, χ2). (5.5.5)

Additionally, we again assume independent priors, such that

π(θ) = π(κ)π(γ)π(β0)π(β1)π(β2)π(χ1)π(χ2). (5.5.6)

For κ we assign a Beta prior distribution whilst for all other parameters, which are

defined on the positive half-line, we assign a Gamma prior distribution.
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5.6 Analysis

With the model defined we can begin our analysis of the Cumbria FMD data set. The

form of analysis will follow the same outline as the analysis performed on the simulated

outbreaks discussed in Chapter 4.

5.6.1 Algorithm Conditions

We will begin our analysis at time T = 4, four days after the first notification has been

observed. By this time there has only been mN
4 = 15 notifications and mR

4 = 6 removals

observed. Thus, as in the simulated examples of Chapter 4, we are initialising the SMC

at close to the start of the outbreak.

To begin we need to generate the n = 1000 initial particles; we achieve this using the

same MCMC algorithm discussed in Chapter 3. This algorithm will additionally be used

for comparison and for the movement step of the SMC. One modification is that, to help

improve the acceptance rate, we choose to scale the covariance matrix in the parameter

proposal distribution by 1/d2 rather than 1/d (see, Section 1.4.4.4). For the MCMC

algorithm which incorporates a burn-in (i.e. not the MCMC within the movement step)

we choose to adaptively tune between iterations b1 = 2000 and b2 = 10000 and use a

burn-in of 500000.

In Table 5.1 we display the prior distributions we will be using for each parameter.

To reflect our lack of knowledge about the values of the parameters, we have used

uninformative prior distributions. We have chosen for β0 a prior with a small mean,

this is to reflect that the per-contact transmission probability is relatively low. Similarly

the prior for γ also has a low mean, a result of the distance kernel being a function of

meters. For β1 and β2 we choose a prior with mean 1 to reflect the initial premise that

cattle and sheep contribute equally to both a farm’s infectiousness and susceptibility.

Finally we have chosen the priors for χ1 and χ2 to have an expected value of 0.5, as from

previous work (see, Diggle (2006)) it is found that the scaling is sub-linear. Additionally

in Deardon et al. (2010) the estimated values for the comparable parameters varied

between 0.1 and 0.9.

Once the initial particles have been generated we will then run the (uniform) SMC

algorithm forward 28 days to time t = 32, which coincides with the epidemic ending
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Parameter κ γ β0 β1

Prior Uniform(0, 1) Gamma(1, 1000) Gamma(1, 10000) Gamma(1, 1)

Parameter β2 χ1 χ2

Prior Gamma(1, 1) Gamma(1, 2) Gamma(1, 2)

Table 5.1: The uninformative priors placed on each parameter used to model the FMD

data set.

its period of rapid growth, with mN
32 = 386 and mR

32 = 361. We will then assess the

results of the SMC algorithm by comparing it to the output of an MCMC algorithm, as

in Chapter 4.

We shall compare the results of the SMC algorithm applied with movement steps of

length np = 200 and np = 500 to the analogous MCMC algorithm. We will refer to the

SMC with np = 200 and np = 500 as the ‘shorter’ and ‘longer’ SMC algorithms, respec-

tively. The movement step is much longer than previously considered in the simulated

outbreaks in Chapter 4. This is to account for the fact that the outbreak was severe

and had many new cases each day. As we found previously, this is likely to reduce the

number of unique particles and in general the SMC algorithm will struggle more. The

use of a longer movement step is not an issue as it will still take a fraction of the time

of the corresponding MCMC, which can take a long time to converge. To also aid in

reducing the particle degeneracy we utilise the duplication step previously described in

Section 4.13 and set nd = 10. Finally, as before, the tuning parameters are adaptively

chosen in each iteration of the SMC to produce an acceptance rate close to the optimal

25%.

5.6.2 Results

We show in Figure 5.9 a comparison of the density plots produced by the SMC algorithms

and the MCMC algorithm, compared at times t = 11, 18, 25, 32 (a week apart). Also

included are the initial particles generated at time t = 4, which the SMC algorithms are

initiated with. We also show in Table 5.2 a summary of the results generated at each

time step. When discussing the results it is with implicit reference to Table 5.2 and

Figure 5.9. We are only comparing at these time steps to illustrate the results, however,

the SMC algorithm has produced output for each time step in between.
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Overall we see that the three algorithms are mostly in agreement and, as we would

expect, the longer SMC algorithm (np = 500) is closer to the results produced by the

MCMC algorithm than the shorter (np = 200). In general there is least agreement

between the SMC and MCMC when inferring the number of occult individuals, ut. This

is likely as this value is dynamic and highly related to the large number of unknown

infection times, corresponding to the occult individuals. This will be further discussed

in Section 5.6.2.7.

We show in Figure 5.10 a comparison of the prior and the posterior distributions at

time t = 32. We can see that, with the exception of β1, the parameters are insensitive

to the choice of prior distribution. We began this outbreak with relatively little data: as

a result the posterior distribution at time t = 32 is drastically different to that at time

t = 4. The SMC has therefore successfully handled significant changes in the shape of

the target distribution. In the next sections we consider these results in detail.
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Figure 5.10: The posterior distribution (blue) generated at time t = 32 by the SMC

algorithm with np = 500. Also shown is the prior distribution (orange) for each param-

eter.
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5.6.2.1 Spatial Parameter

We begin by considering the spatial parameter, γ. We can see in Figure 5.9 that for this

parameter we have reasonable agreement between the algorithms, although the shorter

SMC struggles more at the later time steps. In Figure 5.11 we display the distance kernel

evaluated at each value of γ generated by the three different methods. Again we can

see that the SMC and the MCMC are in close agreement. This is important as quickly

understanding the spatial component of a disease outbreak is vital when informing on

control policies.

(a) t = 11, MCMC (b) t = 11, SMC: np = 200 (c) t = 11, SMC: np = 500

(d) t = 32, MCMC (e) t = 32, SMC: np = 200 (f) t = 32, SMC: np = 500

Figure 5.11: The distance kernel, K(i, j) = exp(−γd(i, j)), evaluated at each of the

values of γ generated using the three methods, at times t = 11 and t = 32. We only

show a portion of the distance range due to the kernel flattening out for very large

distances. In black we show the kernel evaluated using the mean value of γ generated

using each method.

From Figure 5.11 we can see that the spatial effect appears significant for farms up

to 15km away. This is surprising given the work of Jewell et al. (2009), who found that

there was significance only up to 4km away. This is possibly because we have not used

a heavy-tailed kernel, thus the fitted kernel has to account for both short and long-

distance transmissions. Therefore the ‘significance’ may actually be an artefact of the

transmission kernel we have used. We may consider in the future using a thicker-tailed
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distance kernel, or introducing an additional chance of spontaneous infection (see, Diggle

(2006)). Additionally, we can see in Figure 5.11 that the effect of distance becomes more

significant with the incorporation of more data. These results suggest that the initial

spread is fairly dispersed, with spatial effects becoming more prominent as the outbreak

continues. This reflects the increasing restrictions on movement which were enforced,

resulting in the transmissions becoming highly localised as the epidemic progressed. We

note that this illustrates another strength of the SMC algorithm: it can detect changes

in behaviour during the outbreak.

5.6.2.2 The Infectious Farm

We next examine the parameters relating to the structure of a farm, beginning with

the contribution to the transmission probability from the infectious farm. Thus we are

considering parameter β1, the relative infectiousness of each cow compared to each sheep,

and χ1, a parameter determining how the contribution from the infectious farm scales

with the size of that farm.

For β1, we see (in Figure 5.10) that this value does not change much from the prior

distribution placed on it, suggesting that the data alone cannot distinguish this value.

This is not overly concerning as it is likely that, under our model, the difference in the

infectiousness of cattle and sheep does not play an important role in the transmission of

the disease. Additionally, we find that the average value of β1 is close to 1 at each time-

step considered (see, Figure 5.9). Although not directly comparable, similar overall

findings occur in the other work on this data set. For example, although they found

cattle to be more infectious, Diggle (2006), Jewell et al. (2009) and Xiang and Neal

(2014) estimated that cattle and sheep contribute (almost) equally to the infectiousness

of a farm.

If we consider how the infectiousness of a farm scales with the size of the farm, χ1, the

value for this is fairly low (an average < 0.1 for each time step considered), minimising

the contribution of the infectious farm in the transmission probability. This is similar to

the scaling found in Deardon et al. (2010): although the authors used two parameters so

the results are not directly comparable, they found that the infectiousness scaled with

sheep by χs1 ∈ (0.000, 0.249) and by cattle as χc1 ∈ (0.147, 0.471). We can additionally

note that the value of χ1 provides insight into the results for β1. As χ1 is fairly small this
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will mean there is less contribution to the transmission probability from the infectious

farm and thus this may be why we have difficulty in determining the value of β1 from

the data.

Overall for β1 and χ1 the SMC and MCMC are in agreement. This is to be expected

for β1 as there has been little change throughout the time steps considered. However,

for χ1 we can see the shape of its distribution underwent significant changes between

times t = 4 and t = 11 which the SMC has captured, even with the shorter movement

step.

5.6.2.3 The Susceptible Farm

We next examine the contribution to the transmission probability from the susceptible

farm. Therefore we consider parameter β2, the relative susceptibility of each cow com-

pared to each sheep, and χ2, a parameter determining how the contribution from the

susceptible farm scales with the size of that farm.

In contrast to β1, we see that β2 is defined as much greater than 1 (> 3 at each time

step considered in Figure 5.9), increasing in value at each time step compared. This

suggests that each individual cow contributes more to the susceptibility of a farm than

each individual sheep. This matches with the previous work discussed in Section 5.3, for

example, Keeling et al. (2001).

Additionally we see that in contrast to χ1, χ2 is defined as being around 0.6–0.7.

Therefore, although the effect of the farm size on the susceptibility of a farm is sub-

linear, it is not negligible. This may relate to why, in contrast to β1, we can determine

the value for β2, as its contribution to the transmission probability is significant. The

value of χ2 matches with those found by Deardon et al. (2010), who again split this into

two parameters with the susceptibility scaling for sheep estimated as χs2 ∈ (0.877, 0.941)

and for cattle as χc2 ∈ (0.842, 0.934).

As with the infectious farm parameters, overall the MCMC and SMC are in agree-

ment when inferring the values of β2 and χ2. This is especially impressive as we see χ2

in particular has a shift in location, as we obtain new data. This has not been an issue

for the SMC and the re-weighting has accounted for this. The shorter movement step

struggles at time t = 32 to determine β2, which is likely due to the significant shift in

value that this parameter experiences between times t = 25 and t = 32.
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5.6.2.4 Total Transmission Probability

In this next section we consider how the estimated values for the parameters affects

the overall transmission probability between farms. We test this by considering the

transmission probability:

qt(`, k) = 1− exp
{
− β0 (β1ck + sk)

χ1︸ ︷︷ ︸
Infectiousness

of k

(β2c` + s`)
χ2︸ ︷︷ ︸

Susceptibility

of `

exp {−γd(`, k)}︸ ︷︷ ︸
Environmental

transmission

}
. (5.6.1)

Following Jewell et al. (2009) we consider four farms as described in Table 5.3. We

then consider the transmission probability between farms with this composition using

the mean values generated for each parameter, from each method, at time t = 32. We

plot the results in Figure 5.12.

Large Farm Cattle Only Sheep Only Small Holding

Sheep 500 0 1000 6
Cattle 50 100 0 2

Table 5.3: The composition of the four ‘typical’ farm types in the Cumbria data set, as

used in Jewell et al. (2009).

From Figure 5.12 it is difficult to see the difference between the transmission proba-

bility for the MCMC and the SMC with np = 500, as they lie on top of each other. This

indicates that, although the parameter distributions vary slightly between the SMC and

the MCMC, they are estimating similar transmission probabilities. For the shorter chain

the transmission probability is not as close to that produced by the MCMC, reflecting

the lesser agreement in the individual parameters.

Considering Figure 5.12 in greater detail we can notice some interesting behaviour.

Firstly, we can see that the smaller holding is around 10 times less likely to be infected

than the larger farm. Thus, as we expected from the parameter values, the contribution

from the farms does not scale linearly. Additionally we see that the average cattle only

and sheep only farm behave similarly, reiterating that although each individual cattle

is more susceptible, this is counteracted by the on average higher number of sheep per

farm.

We can also now see even clearer that the transmission probability does not depend

on the structure and size of the infectious farm, but is rather fully determined by the
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Figure 5.12: The probability of infection, qt(i, j), against distance, d(i, j), between farms

of different sizes (see Table 5.3), where ‘Inf’ represents the infectious farm and ‘Sus’

represents the susceptible farm. qt(i, j) is evaluated at the average value generated for

each parameter, at time t = 32, using the three different algorithms.

susceptible farm. This will impact on how we would advise on control policies, with

evidence suggesting that it is important to contain all infectious farms, with even small

holdings posing a risk, matching the conclusions of Jewell et al. (2009). It also sug-

gests that we should concentrate on reducing movement to those farms most at risk of

infection.

Overall the results for the transmission parameters relating to the effect of a farm’s

structure on the transmission probability match with work previously performed on

this data set i.e. that the infectiousness and susceptibility does not scale linearly and

that cattle contribute more per capita to the transmission probability than sheep. We

have also additionally found that, in the event of an outbreak, it is the structure of the

susceptible farms that plays a key role in how the disease is spread.
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5.6.2.5 Notification Parameter

The notification parameter, κ, represents the reduction in the infectiousness of a farm

once we become aware of its infectiousness. We can see in Figure 5.9 that we are

predicting κ as between 0.2–0.5, suggesting that the control measures placed on a farm

once we are aware it is infectious are reasonably successfully in reducing the infectiousness

of that farm.

We observed previously in Section 5.4.2 that the response once a farm became notified

was fairly rapid. As a result we will have limited data with which to estimate the

notification parameter. This is reflected in Figure 5.9 where we can see that there

appears to be a large amount of uncertainty around the value of κ. This additionally

may be reflecting that κ cannot be accurately described by a point estimate, as the

effectiveness of control measures is likely to vary widely by farm.

Also of interest, we find that the the mean value of κ changes between time steps

t = 18 (in the longer SMC κ̂ = 0.235) and t = 32 (κ̂ = 0.368). This may be a result

of the posterior distribution evolving as we acquire more data. Additionally this could

suggest that there may have been a change in behaviour during the outbreak, which has

resulted in a change in the shape of the posterior distribution. From the post-outbreak

report from UK National Audit Office (2002) it is stated that there was a backlog in the

disposal of the animals such that “carcasses were sometimes left rotting on farms for

days on end and this discouraged prompt slaughter”. This may be what we are witnessing

in the behaviour of the parameter value, as a backlog occurs there are less resources to

contain the infectious farms and thus there is less reduction in their infectiousness. This

once again illustrates the ability of the SMC algorithm to detect potential changes in

behaviour that can then be further investigated and then, if needed, acted upon.

5.6.2.6 Parameter Correlation

Next, we check to see if the values produced by the various methods are a result of any

correlation between the parameters. In Figure 5.13 we plot the correlation between the

parameters generated at times t = 18 and t = 32, using each method.

The first thing to note is that there is a strong negative correlation between χ2 and

β0, −0.7 as generated at t = 32 by the SMC with np = 500. This is understandable

as if χ2 increases then β0 will need to decrease in order to compensate. We can note
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Figure 5.13: An illustration of the correlation between the parameters, as computed

using the particles generated by the three different algorithms. We display the results

for times t = 18 and t = 32.
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that this correlation is stronger than the correlation between β0 and χ1 (−0.37). This is

likely due to the smaller estimated value of χ1. Similarly there is a positive correlation

between γ and β0 (0.25). This is because a strong spatial component (high γ) requires

a larger value of β0 to compensate for the rapid decay in infectivity.

We observe that there are stronger relationships between the parameters in the

shorter SMC when compared to the MCMC and the longer SMC. Additionally, this

effect appears to become worse as we apply the SMC over an increasing number of iter-

ations. However, by utilising a longer movement step within the SMC we appear to be

better matching the MCMC in terms of the relationship between parameters.

5.6.2.7 The Number of Occults

Finally, we are interested in inferring the current number of occult individuals, ut, at

each time step. If we recall Figure 5.9 then we find that for t = 11 and t = 18 the three

methods are (mostly) in agreement. This is good to see as the value of ut is fairly high

(ut estimated as greater than 90 throughout the time period we consider). However,

when we consider the later time steps we see that the SMC and MCMC algorithms are

in worse agreement. Both SMC algorithms struggle at time t = 25, however, the longer

SMC matches well with the MCMC at time t = 32. The value of ut at time t = 25 (ut

around 200) is estimated higher than at time t = 32 (ut around 140), suggesting that

the SMC algorithm has greatest difficulty when there are a greater number of occult

individuals. This is perhaps to be expected given the nature of the algorithm, the

unknown infections will be difficult to accurately infer.

Overall the longer SMC (np = 500) provides a reasonable estimate for the value of

ut, at each time step. Additionally, due to there being little correlation between ut and

the transmission parameters (see, Figure 5.13), the other estimates are not significantly

affected by its value.

These results demonstrate a key advantage of the SMC: in real-time analysis the

current number of infectious individuals can be accurately predicted. We can then use

these predictions as indications of the severity of the outbreak, possibly days before

formal confirmation. For outbreaks which are spreading rapidly this information is vital

for informing on how to best reduce the current spread of the outbreak. We display in

Figure 5.14 the estimated number of occults at each time step, highlighting the ability of
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Figure 5.14: The median number of occults (solid) at each time step, generated using

an SMC algorithm with np = 500. Also shown are the upper (97.5%) and lower (2.5%)

quantiles represented by the dashed lines.

the SMC to adaptively predict the number of currently infectious individuals, throughout

time.

5.6.3 Conclusions

This epidemic was severe, with many new cases observed each day—as displayed in

Figure 5.15. Because of this, the SMC algorithm needed to incorporate a large amount

of information at each time step. As we might expect, the hardest value to infer was the

number of occult individuals: the true value of this will change at each time step and,

as such, is the biggest challenge for the methods developed. Overall, however, we have

seen that the SMC and MCMC algorithms are in agreement when estimating the key

parameters underpinning the FMD outbreak.
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Figure 5.15: The number of new confirmed cases (notifications) observed at each time

step, from the start of the SMC at t = 4 to the end of the time frame analysed, t = 32.
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5.7 Non-Uniform Adjustment

We have seen in the previous section that the SMC and MCMC are in reasonable agree-

ment with each other. However, the SMC method did appear to have greatest difficulty

in inferring the number of occult individuals, ut. This may be a result of the adjust-

ment step of the SMC algorithm (discussed in Section 3.4.4), as this directly involves

inference about the occult individuals. Therefore in this section we consider the alter-

native adjustment scheme introduced in Section 3.5, which may result in a greater level

of agreement between the output of the SMC and MCMC algorithms.

We are primarily interested in seeing if this alternative adjustment improves the

accuracy of the output, specifically with regards to estimating the number of occult

individuals, ut. Previously, although agreement was good, we witnessed some difference

between the MCMC and the SMC, especially for the shorter movement step. This is

likely as ut will be highly impacted by the adjustment scheme, despite our best efforts

to change the particles as little as possible.

The alternative, ‘non-uniform’, adjustment scheme may perform stronger as it uses

information about the removal process of the individuals when proposing the adjustment.

We will again for clarity compare the uniform SMC (U-SMC) to the non-uniform SMC

(NU-SMC).

We begin by showing a comparison of the density plots produced using both the

uniform and the non-uniform adjustment schemes in Figures 5.16 and 5.17, as well as

summarising the results for the NU-SMC algorithm in Table 5.4. As we can see the new

adjustment process is a significant improvement on the uniform SMC. This is especially

true for the previously most difficult quantity to estimate, ut. In Figure 5.16 and Table

5.4 we can see that this is true even for the shorter NU-SMC output (np = 200).

Altogether this suggests that the adjustment step is not moving the particles far

from the true posterior distribution and, as such, we obtain accurate estimation of the

key parameters. Previously we found that ut was poorly estimated for the SMC with

movement step of length np = 200, however, this is no longer the case with the alternative

adjustment scheme. This is important as the movement step was by far the most time-

costly step of the SMC algorithm. Thus, our addition has resulted in more accurate

estimates, with a shorter movement step.
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5.7.1 Parameter Relationships

Next we consider the relationship between the parameters. We see in Figure 5.18 that the

NU-SMC correctly matches the output of the MCMC. Previously, when considering the

uniform-SMC, we found that even when the overall distribution of the parameters was

captured, the true relationship between the parameters was not outputted by the shorter

movement step (np = 200). The alternative weighting scheme has rectified this, with the

NU-SMC producing accurate estimation of the relationship between the transmission

parameters, even for the smaller value of np.

5.7.2 Computation Time

Finally, in Chapter 4 we provided an in-depth discussion of the speed increase offered

by the SMC. We noted that, as the movement step is dominant, we can compare the

number of iterations of the MCMC in the movement step of the SMC, to the number of

iterations in the burn-in of the full MCMC. As such, as long as np × (n/X), where X is

the number of parallel jobs we can run, is shorter than the length of the MCMC burn-in

we will produce the estimates in a shorter amount of time. This is true again here.

For example, if we can run 25 parallel jobs then the t = 32 iteration of the SMC, with

np = 500, requires at most 7 hours to complete, the MCMC, however, was computed over

the course of multiple days, making it unsuitable for real-time analysis. Even if we could

construct an MCMC requiring a shorter burn-in period it will still take considerably

longer to implement than the SMC method.

Perhaps of greatest importance though, is that we can see in Table 5.5 that we

can easily produce results that can be generated within a day and thus we can quickly

incorporate the new data. This is key as it means that the SMC is suitable for the real-

time analysis of infectious disease outbreaks. We note that, as previously, we assume that

all of the longest running particles are contained in the same job. This is an overestimate

and if, as in practice will occur, the particles are allocated at random then the expected

computation time is much faster, e.g. for X = 5 and np = 500 the expected computation

time is actually around 5 hours quicker.
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(f) NU-SMC with np = 200 at t = 32

Figure 5.18: The correlation between the particles generated at times t = 18 and t =

32, using MCMC, U-SMC and NU-SMC algorithms, where for the latter two methods

np = 200.
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X = 5 X = 10 X = 25 X = 50 X = 100 X = 1000

NU-SMC: np = 200 12.9 6.7 2.8 1.4 0.7 0.1

NU-SMC: np = 500 28.8 15.2 6.4 3.4 1.7 0.2

Table 5.5: The (maximum) expected time it will take, in hours, to complete the move-

ment step of the NU-SMC at time t = 32, where we split the calculations into X parallel

jobs and have n = 1000 particles. The burn-in of the comparative MCMC was computed

over the course of several days.

5.7.3 Conclusions

Overall the alternative weighting scheme has proven useful, especially in the case of

the FMD data set. The non-uniform weighting scheme is likely to be most appropriate

when we have longer infectious periods or outbreaks which are very intense i.e. many

new cases each day. The ease of introducing this extension (see, Section 3.5) illustrates

the flexibility and potential of the SMC algorithm we have constructed. Additionally

it has demonstrated the robustness of the algorithm to the use of approximate weights,

which we have found to be sufficient in weighting the particles so that they represent

samples from the evolving posterior distributions.

Another interesting extension to the SMC algorithm would be the incorporation

of the infection process, as well as the removal process, when adjusting the particles.

Currently we have only focussed on the removal process as this is significantly simpler

than the infection process.

5.8 Discussion

In this chapter we have applied the SMC methods of Chapter 3 to the 2001 UK Foot-

and-Mouth outbreak data set, focusing on Cumbria. This data acted as a true test of

if the SMC method developed could be applied to data that is less ‘well behaved’. This

added difficulty arose in many ways, such as:

� The requirement to incorporate many new observations at each time step.

- As we incorporate the new data the shape and location of the posterior distri-

bution can change significantly, over a short number of time-steps, which the

SMC needed to capture.
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� The outbreak occurring on a much larger population, with many occult individuals

at each time step.

- We might expect the SMC algorithm to have greatest difficulty when there are

a large number of unknown infectious individuals.

Overall, despite the increase in difficulty, the (uniform) SMC method produced estimates

comparable to those generated using the MCMC algorithm. A longer movement step

was required to ensure that the two methods concur, however, this coincides with the

requirement of a longer burn-in for the MCMC. Additionally, we found that the accuracy

of the SMC algorithm when applied to the FMD data set can be improved by using the

alternative adjustment scheme. This alternative weighting enabled the shorter SMC to

match the MCMC for each parameter and the number of occults, ut.

Our analysis of the 2001 UK FMD outbreak has contributed to the current under-

standing of this epidemic. Specifically, we have successfully incorporated information

relating to both the notification and removal times of the farms. Although the noti-

fication parameter is often difficult to determine its incorporation is important as we

produce a model closer to the true behaviour of the outbreak. The incorporation of the

notification stage is additionally crucial in determining the importance of the prompt

culling of the infected farms.

Overall, despite the difficulties which arise when analysing this data set, the results

have shown that the SMC can be utilised in the analysis of ongoing epidemics. At each

time step the SMC successfully incorporates multiple new observations and produces

samples from the evolving set of posterior distributions. These samples then inform us

about the current characteristics of the outbreak, in real-time.

5.8.1 Further Analysis of the FMD Data Set

Our analysis has presented some areas that would be interesting to further consider when

analysing this data set.

5.8.1.1 Premise Type

To match with previous work we have only considered the data on those farms removed

as infectious premises. However, during this outbreak there were farms removed as a
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preventative measure—before they were declared infectious. An interesting extension

would be to incorporate this additional information and see if it changes our inference.

This will increase the accuracy of the model, and thus we will gain an even greater

understanding of the propagation of FMD throughout the UK, during the 2001 epidemic.

5.8.1.2 Contact Network

Another interesting extension would be to incorporate the contact network of the farms

within the population. There are clear links between certain farms, for example if they

have shared external contacts. Therefore, to better understand the spread of FMD,

and future outbreaks, incorporating known information about the contact rates between

farms would be an interesting addition. This idea was considered for a simulated Avian

Influenza outbreak within the UK by Jewell et al. (2009), where the authors incorporated

knowledge of the commercial contacts of each premise.

5.8.1.3 Model Selection

Within this example we have used an exponential distance kernel, however, as we pre-

viously noted, there has been significant work into finding an appropriate kernel for the

Foot-and-Mouth data set. Therefore, it would be interesting to incorporate the ideas of

model selection (see, Neal and Roberts (2004), O’Neill and Marks (2005), Clancy and

O’Neill (2007), Knock and O’Neill (2014)) and see if the SMC method can be used to

determine the kernel best suited to this outbreak. We discuss this idea further in the

next chapter.
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Chapter 6

Conclusions

6.1 Summary

Within this thesis we have focused on the construction of methods capable of conducting

Bayesian inference on a (progressing) infectious disease outbreak.

6.1.1 The MCMC Algorithm

The first algorithm we considered was an adaptive MCMC, which used data augmenta-

tion to produce samples from the target posterior distribution. This MCMC was novel

in its proposal steps, which allowed the space in which the occult individuals lie to be

thoroughly explored. Additionally, the adaptive scheme implemented ensured that we

obtained a reasonable acceptance rate, for each example we considered.

The MCMC we have developed is highly flexible and can be applied even in problems

with substantial missing data, as is often the case with epidemic data. However, its fun-

damental weakness is that it needs to be restarted whenever we observe new data. This

flaw lead to our discussion of an alternative method which can sequentially incorporate

the data as it is received, without the need to restart. Specifically, we were motivated

by the desire for a method which could be used in the real-time analysis of an ongoing

epidemic. With this in mind we next aimed to adapt sequential Monte Carlo methods,

to be used within the context of infectious disease modelling.
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6.1.2 The SMC Algorithm

The construction of a suitable sequential method was, unfortunately, not straightforward.

The abundance of missing data can result in our previous analysis not always being

consistent with the newly observed data. This was the main obstacle in applying SMC

methods in conjunction with outbreak data. However, we overcame this incompatibility

by incorporating an additional, adjustment, step. This step ensured that the newly

observed data and the samples previously generated were fully consistent. The resulting

SMC algorithm was as flexible as its MCMC counterpart; additionally, it was constructed

in such a way that the usual problems associated with SMC methods, such as particle

degeneracy, were not an issue.

When developing the MCMC and SMC algorithms we made sure to keep the form of

the transmission probability and the infectious period distribution as general as possible.

As a result we can easily incorporate any covariates we are interested in modelling. For

example, if desired, we could easily consider the effect of an individuals age on the

probability of transmission. Overall both the MCMC and SMC algorithms we have

developed can be applied to a wide range of outbreaks, with few rigid assumptions

required.

6.1.3 Testing the Methods

The SMC algorithm we have produced required multiple approximations to ensure that

the new data and the previous days analysis were compatible. It is important to un-

derstand the impact of such approximations, therefore we rigorously tested the SMC

on a range of simulated outbreaks. These examples illustrated the effectiveness of the

method we had constructed, as well as aiding our understanding of each of the steps of

the SMC. We additionally could compare the MCMC and the SMC algorithms, where

we found that they matched each other in output, however, the SMC was much quicker

due to its parallel nature.

The study of simulated data was important for understanding the strengths of the

SMC, however, a true test of the algorithm would be an outbreak that was rapid, with

many new cases each day, occurring on a large, heterogeneous population. As such,

following the simulated study, we applied the SMC and MCMC algorithms to the 2001

UK Foot-and-Mouth disease outbreak. This was an important test of the capabilities of
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the SMC methods developed. We found that overall the SMC generated samples which

matched those produced by the MCMC. This was particularly impressive as the posterior

distribution showed dramatic changes in location and shape, with the incorporation of

the new data. However, we found that the SMC required a much longer movement

step in order to match the MCMC when predicting the number of occults. This was

accompanied, however, by the necessity for a much longer burn-in in the MCMC, which

still resulted in the SMC being computationally faster.

Although the SMC was successful in estimating the transmission parameters, the

difficulty it faced in estimating the number of occult individuals motivated the use of an

alternative method of adjusting the particles, which utilised information about how long

individuals had been inferred to be infectious for. This extension proved to be highly

successful, with the MCMC and SMC algorithms producing similar results, only with

the SMC requiring considerably less time to do so.

6.1.4 Final Conclusions

Overall we have constructed a new method of analysing infectious disease data, which

can be applied to an epidemic which is still in progress. The SMC algorithm developed

can repeatedly incorporate newly observed data throughout the course of an epidemic,

whilst maintaining its accuracy across multiple iterations. Additionally the SMC can be

trivially parallelized and thus offers a significant reduction in computation time when

compared to alternative methods. Therefore, as well as being novel, it stands to be

competitive with the current gold-standard of MCMC algorithms for conducting online

inference of infectious disease outbreaks.

6.2 Future Work

Due to its flexibility, the SMC algorithm we have developed is well suited for the in-

troduction of additional steps or extensions. We have already considered a couple of

extensions to the SMC algorithm within this thesis, in this section we propose several

more—as well as points of interest for work going forward.
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6.2.1 The Movement Step

Within the SMC algorithm we include a movement step, the length of which has thus

far been chosen such that it is sufficient to ensure we obtain samples from the desired

distribution. In the future, however, it would be good to have a greater understanding

of this step of the algorithm. Of use would be a metric which informs upon the length

of the movement step. For example, we have noted that the SMC has difficulty when

there is a large amount of new data, therefore perhaps the length of the movement step

should be a function of the number of new observations.

6.2.2 Utilising Research on Sequential Monte Carlo Algorithms

Linked to the improvement of the movement step is the incorporation of the vast work

that has been performed in the development of SMC methods.

Previously in Chapter 1 we briefly highlighted some of the proposed extensions to

SMC methods. For example, using alternative methods of resampling which can reduce

the randomness from the resampling step (Li et al. (2015)), or reducing the particle

degeneracy by using the idea of a threshold, such that we only resample in some iterations

of the SMC (Liu and Chen (1995), Doucet and Johansen (2011)). These extensions would

be simple to incorporate and may offer slight improvements to the methods developed.

We do not expect these to have a significant impact, however any reduction in particle

degeneracy will aid in improving the SMC algorithm developed.

Next we note that throughout, when performing the movement step, we update the

infection times relating to all those individuals who are removed at the time of analysis.

However, far into the future we do not expect the new data to change our inference from

early on in the outbreak. As such we could use the ideas of fixed-lag approximation (see,

for example, Doucet and Johansen (2011)) and thus if we began the SMC at time T and

we are currently at time t > T then we do not update the infection times relating to

those who were removed before time t − ∆, where ∆ is to be selected and we assume

this is at a time such that t −∆ > T . This will aid in reducing the computation time

for the SMC algorithm.

There exists many more extensions to the field of SMC algorithms and thus this

would be an interesting area to further consider.
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6.2.3 Model Selection

As we have stated throughout, to model an epidemic we must make various assumptions

about the outbreak. These can come in many forms, for example deciding which het-

erogeneities to include, or making assumptions about how the virus develops. This was

clearly illustrated when we discussed the FMD data set, for which there has been consid-

erable work performed in choosing an appropriate transmission kernel—which captures

the spatial aspect of the spread of the disease. One method of making these decisions is

to use expert knowledge and previous work to make an informed choice. Alternatively,

by using model selection we can instead let the data itself choose which assumptions to

make. For this reason model selection is a well-used method within infectious disease

modelling (see, for example, Neal and Roberts (2004), O’Neill and Marks (2005) and

Clancy and O’Neill (2007)).

The SMC algorithm developed is well suited for use in conjunction with model selec-

tion techniques. Typically these involve using RJ-MCMC methods to allow for jumps

between models of varying dimension. Here we describe an alternative approach which

could be used with the SMC algorithm developed in Chapter 3. Suppose that we are

interested in m models: M1, . . .Mm. We could initialise the SMC by generating n

particles from the posterior distribution at time t, under model Mi:

{(
θi,(j), y

i,(j)
τ :t ,Mi

)
: j = 1, . . . , n and i = 1, . . . ,m

}
. (6.2.1)

Thus we would have a total of m×n particles under m different models. We could then

combine the particles and run the SMC algorithm using all m× n samples.

During the SMC, we would expect the models least suited to have a lower chance

of being resampled. We can then recover the posterior probabilities of the m models

and observe which is (are) the preferred model(s) for the data. The advantage to this

method of model selection is that we do not need to construct dimension jumping steps

as each particle keeps the same model throughout, with changes to the proportion of

each model occurring only through the resampling step.

There are some technicalities with this method, such as how to adaptively tune,

however, we expect this is simple enough to specify. For example, each model could
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have its own adaptively tuned parameters and covariance matrix. For example,

Σ̂i =
1

ni − 1

ni∑
j=1

(
θi,(j) − θ̄i

)(
θi,(j) − θ̄i

)T
for i = 1, . . . ,m, (6.2.2)

where ni is the number of samples under model i and θ̄i is the average parameter values

for those samples from model i. These will become progressively worse if there are

fewer particles under that model, however, this is to be expected if the model is a poor

descriptor of the data.

6.2.4 SEIR Model

Another possible extension is to apply the methods developed to an SEIR compart-

mental framework. Recall that this has an additional ‘exposure’ state, during which

an individual has been infected but is yet able to infect others. This extension would

require the incorporation of additional unknown data in the form of exposure times, for

example eτ :t where now τ would denote the time of the first exposure.

We could model the exposure time by either setting it as a fixed length of time before

infection, for example there are x days between exposure and becoming infectious. This

is often used within SEIR models, for example Keeling et al. (2001) and Deardon et al.

(2010) assumed a fixed period between exposure and infection when modelling the FMD

outbreak. Alternatively we could allocate the time between exposure and infectiousness

to have some distribution, a function of underlying and possibly unknown parameters.

The SMC algorithm could easily be used to model such an outbreak, with little

changes required to be applied. SEIR models are frequently discussed within the epi-

demic literature thus this extension would prove simple and useful.

6.2.5 Adjustment Step Based on Individual Covariates

In Chapter 3 we discussed an alternative adjustment scheme, which improved the ac-

curacy of the SMC algorithm when applied to the FMD data set in Chapter 5. This

extension adjusted particles according to the length of the current occults infectious pe-

riods. However, another option would be to perform the adjustment by using knowledge

of the characteristics of the individuals themselves.

We could aim to match individuals based on key variables and swap those most
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similar. For example, suppose we have a sample at time T ,

i
I,(j)
τ :T =

{
{v, w, x, y, z} : I(j)

T = {A,B,C,D,E}
}

and at time T + 1 we have new a removal, VT+1 = {F}, such that we need to select one

of {A,B,C,D,E} to swap with individual F . We could achieve this by weighting the

particles according to some ‘closeness’ to individual F . For example, if we have a highly

spatial epidemic then it may be desirable to adjust the particles in such a way that the

spatial locations of the infectious individuals does not change significantly. Therefore we

could select who to swap with F with weight proportional to a function of their distance

e.g. individual A would be adjusted with probability proportional to wA ∝ d(A,F )−1

where d(A,F ) is the Euclidean distance between individuals A and F .

This extension would be useful for highly heterogeneous populations, where the ad-

justment step becomes problematic if it results in highly unlikely particles.

6.2.6 Time-Varying Parameters

Throughout we have assumed that the parameters underpinning the epidemic are static,

if this is a reasonable assumption then we should witness the SMC converging to a point

estimate, with the variance decreasing as we perform multiple iterations. However, if we

witness the mean changing through time then this might suggest that the parameters

themselves are changing as the outbreak progresses. This is an interesting advantage

of using the SMC algorithm, we can directly witness changes in behaviour. Therefore,

analysis of simulated data generated with parameters which vary through time would

be an interesting study on the behaviour of the SMC; for example, how quickly can it

detect a change in behaviour?

Another, simple, extension is the incorporation of parameters which change depen-

dent on the behaviour and characteristics of the individual. So far, in our simulations,

we have used the transmission probability

P (i infects j) = (1− p) exp{−γd(i, j)}. (6.2.3)

We expect that an individual may not have constant infectiousness throughout the course

of their infection. Therefore, we could instead model parameter p as dependent on
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how many days an individual has been infectious for. This could represent various

mechanisms, such as a host becoming less infectious as the disease progresses in their

body, or the reduced chance of spreading the disease to others once symptoms begin to

show.

In many ways we have already considered this by including a notification period, this

can been seen as a change point at which the infectiousness of an individual takes a dif-

ferent form. We are therefore proposing to extend this idea by allowing the transmission

probability to instead be a function of how long that individual has been infectious for.

For example

P (i infects j ; t) = (1− pt(i)) exp{−γd(i, j)}, (6.2.4)

where pt(i) depends on how many days individual i has been infectious for at time t.

There exist many more extensions we could consider for the constructed SMC algo-

rithm: its strength lies in its ability to be adapted for different epidemics, with a range

of characteristics. It is this flexibility, as well as the viability of on-line inference, that

make the SMC method competitive with the current gold standard of MCMC algorithms

for applications within stochastic epidemic modelling.
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Appendix A

Appendix of Additional

Calculations

A.1 Alternative Likelihood Calculation

Calculation of the likelihood can be slow: this is especially true in large populations

where the number of infectious individual is small when compared to the total popu-

lation. In this section we describe a method of reducing the computation time of this

calculation.

We denote by Qt the contribution to the likelihood at time t, such that

Qt =
∏

`∈St+1

( ∏
k∈It

pt(`, k)

)
︸ ︷︷ ︸

Main Calculation

∏
`∈St\St+1

(
1−

∏
k∈It

pt(`, k)

)
︸ ︷︷ ︸

At

. (A.1.1)

The majority of the time spent in computing (A.1.1) is in calculating the probability

that each susceptible individual avoids infection. Therefore if we can avoid repeating

this calculation we may reduce the overall computation time.

We wish to determine the relationship between Qt and Qt+1. We begin re-writing
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(A.1.1) as

Qt =
∏

`∈St+1∩St+2

 ∏
k∈It∩It+1

pt(`, k)


×

∏
`∈St+1∩St+2

 ∏
k∈It\It+1

pt(`, k)


︸ ︷︷ ︸

Bt

×
∏

`∈St+1\St+2

∏
k∈It

pt(`, k)


︸ ︷︷ ︸

Ct

×At

=At × Bt × Ct ×
∏

`∈St+1∩St+2

 ∏
k∈It∩It+1

pt(`, k)

 .

Similarly we can rewrite Qt+1, noting that St+2 ∩ St+1 = St+2 and St+2\St+1 = ∅,

Qt+1 =
∏

`∈St+1∩St+2

 ∏
k∈It∩It+1

pt+1(`, k)

 ∏
`∈St+1∩St+2

 ∏
k∈It+1\It

pt+1(`, k)


︸ ︷︷ ︸

Et+1

×At+1

= At+1 × Et+1 ×
∏

`∈St+1∩St+2

 ∏
k∈It∩It+1

pt+1(`, k)

 .

We can therefore relate Qt and Qt+1 in the following way,

Qt+1 = Qt ×
(
At+1 × Et+1

At × Bt × Ct

)
. (A.1.2)

Note: the different time subscripts, pt and pt+1, do not affect the cancellation as they

simply denote that the probability of avoiding infection will be dependent on which

individuals are infectious at each time step. Using this relationship we can calculate part

of the likelihood sequentially. This may not always offer a speed increase: however, it

will be useful when individuals have long infectious periods or we have a large susceptible

population.

A.2 Status Changes

In this section we formally describe how we adjust the particles, to that ensure they

are consistent with the newly observed data, specifically focusing on how we change the
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status of individuals. For clarity we drop the superscript denoting which particle we are

adjusting.

Consider a particle with occult information, yτ :T = {iIτ :T , i
R
τ :T }, that is not consistent

with the newly observed removals, rT+1. Let vT+1 = |rT+1| such that we have observed

vT+1 new removals at time T + 1. As stated we wish to change this particle as little

as possible, therefore we keep the number of occult individuals, uT , the same and do

not change the infection times themselves. Rather, we look at swapping the individuals

attached to these infection times so that the particle and the new observations are con-

sistent. This will effectively only change the status of a small portion of the individuals

and not the parameter values themselves.

If vT+1 > uT then, without changing the particle significantly, we cannot correct it

to be compatible with all of the data. Therefore, we will give it a weighting of zero. If

vT+1 ≤ uT then we can adjust the particle. Supposing that the latter is true, the idea is

to change the labellings of those individuals newly observed to be removed to have been

occult individuals at time T . As such their status at time T will change from S to I. To

counteract this we will also select the same number of occult individuals at time T to

swap their status from I to S, so that the value of uT remains the same.

Formally let VT+1 denote the set of indexes of those individuals that are newly re-

moved at time T + 1 such that VT+1 = RT+1\RT . Recall that we denote the indexes of

the occult individuals and the susceptible individuals at time T by IT and ST respec-

tively, where both of these depend on which particle we are adjusting. If VT+1 ⊆ IT then

this particle and the new data are consistent and therefore it does not need to be altered.

However, if VT+1 6⊆ IT then the particle and the new data are not compatible with one

another. Supposing that the latter is true let G be a random sample of individuals from

the set IT \VT+1 of size |G| = |IT | − |VT+1|. We then define the corrected set of occult

individuals at time T as ĨT = VT+1 ∪G. This is such that |ĨT | = |IT | and VT+1 ⊆ ĨT .

This leaves those in the set H = Gc ∩ (IT \VT+1) as those whose status will change to

susceptible. We set S̃T = (ST \VT+1)∪H, which we can again show to be of a consistent

size. Therefore, S̃T and ĨT are now fully consistent with the newly observed data, whilst

retaining much of the same information.

In the amendment process we are only changing the indexes in each of the three states,

as such the infection times do not change, they are just attached to different individuals.
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If we let D = VT+1\IT then the set H contains the indexes of those individuals whose

status will change from I to S and the set D contains those individuals moving from S

to I. Thus, the infection times of those in H become the infection times for those in D.
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