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Highlights: 

 An engine head test is conducted on the valve spring to validate simulation results.  

 A dynamical analytical model is used to simulate dynamical valve spring responses  

 A transient finite element model is developed to simulate spring operations at high engine 

speeds 

 The spring surge is simulated in a variable pitch spring at various engine speeds 

 The phenomenon of usual significant spring forces caused by coil clash is simulated  
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Abstract 

A transient non-linear finite element (FE) model is developed in this paper to calculate the natural frequencies 
of a high-speed beehive spring and simulate its dynamic responses at different engine speeds, with 

consideration of material damping, internal vibration and coil collision. A 3D scanning technique is used to 

obtain an accurate geometry of the spring model for the simulation. To validate the FE model, a conventional 
analytical model with varying stiffness is also developed for the same spring. By comparing the results of both 

models with the experimental results of engine head tests, it is shown that the FE model can successfully 

simulate the dynamic responses of the spring under different speeds. Especially, the FE model can predict the 

erratic force spikes of the spring at high testing speeds, which cannot be predicted by the conventional 
analytical model. Based on the analysis, the dynamic deformation mechanisms of the high-speed beehive 

spring are summarised and discussed. 

Keywords: Dynamics; Mechanics of material; Finite Element Simulation 

1. Introduction 

As the most flexible component in a valve train, the valve spring possesses the lowest elastic natural 

frequency. Other components that have much higher natural frequencies are usually treated as rigid bodies in a 

dynamic analysis [1, 2]. Valve springs, therefore, play a critical role in the dynamic analysis of a whole valve 
train [3-8]. Traditionally, valve springs were replaced by linear springs for simplification, and most of the 

studies primarily focused on the free vibration of helical springs, instead of studying the effects of the forced 

high-speed dynamics, using transfer matrix method [9], pseudo-spectral method [10] and Green’s matrix 
method [11]. Consequently, the mechanisms of spring surge and coil clash were not emphasized. However, 

the surge of a valve spring, which can result in high spring stresses, is an essential factor in valve spring 

dynamics. It may cause higher maximum spring forces than those predicted from a linear static spring model. 
In practice, neglecting spring surge could lead to serious consequences, for instance, premature failure and 

malfunction of valve springs in valve trains. These failures occur more frequently at higher engine speeds. In 

order to simulate the effects of spring surges, several methods, such as distributed parameter model, multi-

mass model and finite element model, have been developed. These models are reviewed below in details.  
The distributed parameter model was used to simulate dynamic response of springs by Wahl in 1944 [12] 

and the method was then improved by Pisano et al [13]. In order to analyse the internal motion of a spring, a 

Modal analytical spring model was developed by solving the motion equation [13]. To simplify the 
calculation process, it was then used as a distributed parameter model where the dynamic response of a spring 

was treated as a superposition of harmonics modes [14]. The same Modal model was later implemented with a 

moving boundary technique to include the effects of coil clash at the lower spring end [15]. However, the 

location of the boundary should be traced accurately at each time step to achieve accurate dynamic forces. The 
computing time is therefore increased significantly. Beside the researches on the conventional valve springs, 

the Modal model was improved to study progressive valve springs [16, 17], by which the improved model was 

able to simulate the valve spring with varying natural frequencies. However, the effects of coil collisions were 
still excluded. For a better understanding of the relationships between valve springs and their connecting parts, 

a Modal spring model coupled with a finger-follower model was generated [18]. It was demonstrated that the 

modal model failed to simulate the force spikes caused by coil collisions, though the spike forces on the valve 
lifter were well simulated. More recently, the Modal model was improved by considering varying damping 

ratio during dynamic compression [19]. It proved that accurate dynamic results could be obtained by defining 

the damping ratio empirically.  

Another popular method for analysing valve springs is the discrete mass model, or multi-body model. 
Discrete models that consist of two masses [20, 21], five masses [22], nine masses [23] have been developed. 

                  



These masses were connected by dampers and springs. Damping ratios of the dampers and stiffness of the 

springs were obtained from linear functions or static experiments. The method was also used by Prabakar et al 
[24] to simulate a dual-spring valve train system. To analyse the contacts between coils, the lowest mass of 

the total seven masses with a closer pitch was added into the normal multi-body model [25]. It was able to 

detect the coil contacts occurring on this mass. However, there are some limitations for the discrete mass 

model. Firstly, the stiffness of the springs connecting masses were used to calculate the vibration and impact 
forces. Therefore, these must be well defined to achieve accurate dynamic results. Secondly, regarding model 

properties, the multi-mass models only consider the coil contacts between the last two masses and coil clash 

between other coils are neglected. In addition, most of the multi-body spring models are one-dimensional, 
neglecting the effects of transverse vibration. The coupled discrete mass model was also applied to study 

nonlinear vibration of coupled oscillator systems. A system with two masses connected with linear and 

nonlinear springs was studied [26] by applying the called energy balance method (EBM). In later papers [27, 
28] a mass-spring system with two masses and two springs was analysed using Hamiltonian Approach (HA) 

to achieve the accurate solution for the vibration of two-degree-of-freedom system. Results in these papers are 

in close agreement with the exact numerical value even with the presence of the nonlinear springs in the 

vibration systems.  
The finite element (FE) model was applied in the analysis of valve spring dynamics by Kim et al [29] to 

study the dynamic response of a spring at 8200-rpm engine speed. However, the valve spring was assumed to 

have constant stiffness, uniform spring diameter and no coil clash, though the overall valve train system was 
nonlinear. A FE spring model using rod elements was applied in Lee’s study [30], which considered the 

dynamic response of a spring in a two dimensional space. The FE model was later used to study the response 

of free vibrations of barrel, hyperbolical and conical springs [31]. A new method was developed by Huber and 
Clauberg [1, 2, 32] to simulate the dynamic response of valve springs at 2000-rpm, 4000-rpm and 6000-rpm 

engine speeds, respectively. In these studies, the valve springs were assumed as curved beams, from which 

hyperbolic partial differential equations were derived. These equations were discretised by FE method to 

calculate the dynamic forces of the valve springs. The simulation results agreed well with the measured spring 
forces at different engine speeds. However, spike forces observed at 6000-rpm engine speed were not 

explained by the model.  

To the authors’ best knowledge, there have been significant efforts made on the dynamic responses of high 
speed springs. However, most of the research focused on springs at an engine speed lower than 5000-rpm [1, 2, 

13, 15-17, 19, 20, 23]. Though there are a few studies analyzing springs at higher engine speeds (> 5000-rpm) 

[14, 25, 29, 33], the abnormal high-frequency spike forces were usually ignored. In addition, there is a trend 

showing that unique pitch curves are introduced in new designs of springs to develop nonlinear springs with 
changeable natural frequencies. By introducing narrow pitches in these designs, contacts between spring coils 

are allowed. Consequently, the natural frequencies of the springs alter during spring surging. Many valve 

springs have varying spring diameters, which help to damp the internal vibrations. However, there are 
insufficient works that include this effect.  

The objective of this study is to develop a transient finite element (FE) model to analyse the dynamic 

response of a high speed beehive valve spring, which has a varying spring diameter and narrow pitches. Using 
the developed model, the effects of coil collision, uneven spring diameter, varying spring stiffness, and 

therefore varying natural frequency on the overall dynamic response of the spring are discussed by comparing 

with a conventional analytical model and experiments. Especially, the unusual dynamic response of the valve 

spring at high engine speeds can be well simulated. The causes of spike spring forces at high engine speeds 

will be explained in detail by the transient FE model.  

2. Analytical Modal Model Considering Varied Stiffness 

An analytical model based on distributed parameter method is developed to compare its results with those of 

the FE model. In order to investigate the dynamic response of a spring, one can assume that spring show wave 

propagation of disturbances. The distributed parameter method can be applied to simulate the springs. In the 

method, the spring is discretized to small spring elements that are governed by the wave equation. In this 
paper, the investigated valve spring is considered running under different engine speeds, and both ends are 

fixed. The following derived differential equation Eq.(1) describes the motion of a spring element ψ at 

position x and time t [12]. It is in the same form as the widely known equation for longitudinal wave 
transmission.  

                  



 

   

   
    

   

   
                                                                                                                                                                      

 

In this, the wave speed c is a constant, i.e.    √      : L is spring length; k is spring stiffness; x denotes 

element position; t is time and m is the active spring mass. The internal vibration of the spring is considered as 

a superposition of eigenmodes [14, 16]. In order to simulate the dynamic response of each modes, Eq. (1) is 

transferred to the form of a damped harmonic oscillator as shown by Eq. (2). The second term with damping 
ratio ζ in Eq. (2) is added to include the effects of damping.  

The dynamic response of mode n can be achieved by solving Gn. Details and solutions of Eq. (1) and Eq. 

(2) can be found as published by Phlips, Schamel and Meyer [14], Schamel, Hammacher and Utsch [16], 

Schamel [17] and Liu and Kim [19]. The spring dynamic response problem is eventually reduced to a set of 
ordinary differential equations.  

 

    

   
   

     

   

   

  
  

     
 

   
 

    
 

  

   

   
                                                                                                    

 

where, ωcs is the cam speed, θ is the rotating cam angle, y is the excitation curve, Gn is the dynamic response 

of spring in mode n and ωn is the n
th
 order natural frequency of the valve spring. Both y and Gn are functions 

of cam angle θ. It is known that, in a normal car engine, the engine speed can always achieved by doubling the 

value of cam speed ωcs. The frequencies of the first three orders were calculated by a FE Modal analysis 

(Table 1) and used in this analytical model. The equation can be solved by transferring Gn and y into Fourier 

series (Eq. 3 and 4) as they are periodic and repeat over each cam cycle.  
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where aj, bj and ej, fj are the Fourier coefficients for the Fourier series of Gn and y respectively. The 

summation of the elastic modes Gn can be solved by substituting Eq. (3) and (4) into Eq. (2). In order to 

calculate the total force of the valve spring, Eq. (5) used in the previous studies [12, 14, 16, 19] is adopted.  
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where Ft is the overall spring force during operation, x0 is the spring compression with a fitted height, k is the 

stiffness of the spring, which is usually treated as a constant in the existing studies [14, 16, 17, 19]. However, 

it is not suitable to represent the spring with varying spring diameter and narrow pitches to be discussed in this 
paper. Hence, the constant stiffness k is replaced by a variable k(x). The formula of k(x) with respect to spring 

compression is derived from the result of a static compression simulation (Figure 3). Thus, the first term, k(x) ∙ 

x0, gives the initial spring force at the fitted height. The second term and the last term show the static and 
dynamic responses separately, where the varying stiffness k(x) has been considered. The natural frequency ωn 

used in Eq.(2) has a constant value of 630 Hz at the fitted height, the value of which is obtained from the FE 

Analysis model (Figure 4). Eventually, the non-linearity of varying spring stiffness during cam operation is 

included by replace term k by k(x). The nonlinear effects of coil clash are not considered in the analytical 

model.  

                  



3. Finite Element Model 

3.1. Geometry and material properties 

To develop a finite element model for high speed beehive valve springs, a geometry model was created using 
Solidworks. Instead of using design specifications, 3D scanning data of a spring was used to construct the 

model presented in Figure 1a. As shown in Figure 1(b-d), the 3D scanning profile of the manufactured spring 

is different to the original design specifications.  
For the coil diameter, there is a misalignment between the one based on the scanning data and the one 

based on the design specifications after coil number 4, as shown in Figure 1b. The diameter based on the 

design specifications decreases linearly from coil 4 to the top end (coil 7), while, the diameter based on the 
scanning data decreases in steps. Based on the design specifications, the height should increase linearly from 

coil 1 (the bottom) to coil 7 (the top), as seen in (Fig. 1c). However, the height based on the scanning data 

increases with several fluctuations, which reflects the features of the real product. The real pitch based on the 

scanning data shows different values to the one based on the design specifications. According to the design 
specifications, the pitch should vary linearly from coils 1 to 3, keep at a constant level from coils 3 to 6 and 

then decrease linearly from coils 6 to 7 (Figure 1d). Based on the scanning date, the change of the pitch 

against the coil number shows deviations from the one defined by the design specifications, which may be due 
to the manufacturing tolerance and the deformations due to the residual stresses produced during the 

manufacturing process. The deviations in geometric features may significantly affect the natural frequency, 

stiffness and self-contact, in other words the performance of the spring [12, 34]. Therefore, the scanning data 
was used in the FE analysis in this study to include these effects.  

The material used to fabricate the spring is super clean (SC) spring steel OTEVA 90. The density is 7850 

kg/m
3
, Young’s Modulus is 206 GPa and shear modulus is 79.6 GPa. The material used for the retainer and 

the spring seat is structural steel, density 7850 kg/m
3
, Young’s Modulus 200 GPa and shear modulus 76.9 GPa. 

The 3D beehive spring geomerty was constructured from the scanning data. It was then exported to build the 

FE model in Ansys Workbench as shown in Figure 2. 

3.2. Static and Modal FE Analyses  

The spring surge is mainly caused by internal vibrations of a valve spring. Hence, the natural frequency of the 
spring is directly associated with the shapes, magnitudes and frequency of the internal vibration. The beehive 

valve spring is fitted into an engine with a 7 mm pre-compression. To simulate the effect of the pre-

compression, a static FE model was developed (Figure 2a) using the commercial software Ansys Workbench. 

There are two different types of elements in the model, the hexahedron element and the tetrahedron element. 
A hexahedron element is a topological cube that has 8 vertices, 12 edges, bounded by 6 quadrilateral faces. It 

provides high accuracy of solutions for the same element amounts. In this paper, it is used to mesh the spring 

coils 02, 03, 04, 05 and 06. A tetrahedron element has 4 vertices, 6 edges, and is bounded by 4 triangular faces. 
Considering that the spring coils 01 and 07 are grounded that have complex geometries, the tetrahedron 

element is used to mesh the spring coils 01 and 07. In addition, a retainer was developed on the top of the 

spring model, and a valve seat was developed underneath the spring. Both of them were meshed by 

hexahedron elements. In total, 160245 elements were used for the static FE model. To fix the spring in 
between the retainer and the valve seat, the upper (Figure 2b) and the lower end faces (Figure 2c) of the spring 

were bonded with the retainer and spring seat, respectively (Figure 2a). Frictionless contact is defined across 

the elements of the whole spring geometry to consider the effects of internal contact during vibration. To 
apply the load, the bottom of the spring seat was fixed in all six degrees of freedom. A 7 mm displacement 

was applied on the retainer (Figure 2a) along the z axis. All others degrees of freedom were fixed. The 

deformed FE spring model under the 7 mm pre-compression is shown in Figure 2d. It is noted that coil 2 is 
compressed onto coil 1. The spring force of the static compression test and the static FE simulation are shown 

Figure 3. The slopes of the two curves, which also represent the stiffness of the spring, change slightly at 

around 5 mm compression. It illustrates that the stiffness is changing as coils collapse during operations. The 

deformed spring, together with the static stresses recorded in the elements was imported to a modal FE model. 
In the modal model, both the end faces of the spring (Figure 2(b-c)) were fixed. Figure 4(a-c) display the 

displacement of the first three modes of vibration in the longitudinal direction. The FE Modal analysis shows 

the vibration modes as those predicted by the classic theory shown in Figure 4d. In the first mode, the phase 
motion of the entire valve spring is to the same spring end. The centre part of the spring has the largest 

                  



amplitude. In the second mode (Figure 4b), the upper part and lower part of the spring move in antiphase. In 

the third mode, the phase motion has a similar behaviour as that in the second mode (Figure 4c). The 
simulated frequencies of the first three modes are shown in Table 1.They have been used in the analytical 

modal analysis in Eq. (2).  

3.3. Transient analysis settings and boundary conditions 

To simulate the dynamic response of the 3D beehive spring, a transient FE model (Figure 5a) was developed 

based on the geometric model with the pre-load obtained by the static FE model (Figure 2d). In this model, the 
regions at both the upper (coil 07) and the lower (coil 01) ends of the spring were meshed using refined 

elements. It can be seen that coil 01 and coil 07 have finer meshes than that of the middle portion as coil 

collisions are expected to occur repeatedly at these regions at a high loading speed. In total, 160245 elements 
were used in this model. The size function of curvature and mixed element types of tetrahedron and 

hexahedron were used for meshing. The material properties are unchanged. The damping ratio was defined as 

0.016, which is an empirical value used by most of relevant studies [19, 35]. The lowest harmonics frequency 
of the spring was 630 Hz (Table 1). The damping ratio and the frequency were used to determine the Rayleigh 

Damping coefficients for this transient model. To simulate the constraints of the spring, the end faces of coil 

01 and coil 07 were bonded with the retainer and the valve seat, respectively. The bottom of the spring seat 

was fixed and the loading was applied on the top surface of the retainer. As shown in Figure 5a, Node 01 is 
located at the centre of the cross-section of the end of coil 01. Similarly, Node 02 is the central node of the 

cross-section of the end of coil 02. These nodes are used in the analysis of the internal vibrations of the spring, 

as well as to determine coil collision occurrence.  
The cam stroke curve (Figure 6) is the applied dynamic loading for one cam cycle. It can be divided into 

three operation stages, i.e., Stage I (0-127 degree of cam angle), Stage II (127-233 degree) and Stage III (233-

360 degree). At stage I, the spring carries zero (0-90 degree) or very low (90-127 degree) external loading that 

increases with the cam angle. It means that the spring almost moves under free vibration. At the Stage II, a 
large valve lift displacement is applied, when the cam angle increases from 127 to 233 degree. At the final 

stage (Stage III), the external loading becomes very low due to the profile of the cam. When the cam angle 

reaches 270 degree, the loading becomes zero, similar to the loading condition at Stage I.  
The spring FE model was firstly compressed by the 7 mm install height to simulate the fixture of the valve 

spring (Figure 2d). As a result, the transient simulation started with a 289 N pre-load at the install height. 72 

steps were taken in the analysis of one cam cycle. For each step, there were 10 sub-steps, which gave a total of 
720 time steps for an entire cam cycle. Three different engine speeds, namely 4200-rpm, 5600-rpm and 8000-

rpm were used in the simulations. The corresponding cam speeds and the time steps are listed in Table 2. For 

each testing speed, two continuous cam cycles were simulated as shown in Figure 7. However, only the results 

of the second cam cycle (Cycle II) of every engine speed were analysed as the first cycle starts from a 
stationary state, as shown in Figure 7, which is not a representative cam cycle of a working spring. The second 

cam cycle (Cycle II) started with the residual spring vibration from Cycle I, which could represent realistic 

loading conditions of the spring. The reaction force of the lower end of the spring (Figure 2c) was recorded at 
each time step of cycle II. The displacement, velocity and acceleration of Node 01 and Node 02 (Figure 5a) 

were extracted to analyse the internal vibration and coil collision. 

4. Results and discussions 

4.1. Dynamic response at 4200-rpm engine speed 

To analyse the dynamic response of the spring, the results obtained from both the FE and the analytical 

models are compared with the results of engine head tests. When the loading speed is 4200-rpm, the spring 

force with respect to the cam angle is shown in Figure 8. It is clear that the spring force oscillates over a range 
of 12 N (from 270 N to 282 N) at stage I, which is a free vibration due to the residual energy from the 

previous cam cycle. With the rotation of the cam, the spring starts to be compressed by a large valve lift 

(Stage II), when the cam angle is 127 degree. The reaction force increases significantly until the cam angle is 

around 183 degree, where peak forces are obtained. The magnitudes are 818 N, 814 N and 806 N for the FE 
model, analytical model and experiment, respectively. Then, the reaction force decreases until the cam angle 

reaches 233 degree (the end of Stage II). In general, both the FE and the analytical models can describe the 

dynamic response of the spring with good agreements to the test results. However, according to the test results, 

                  



there are high-frequency vibrations when the cam angle is around 235 degree, which is due to the internal 

contacts of spring coils. As can be seen in Figure 8, the FE model can simulate the phenomena, while the 
analytical model does not provide adequate detail of the occurrence.  

To analyse the internal motion of the spring coils, the two reference nodes, Node 01 and Node 02 are 

marked as shown in Figure 5a. The accelerations, velocities and displacements of the nodes along the Z axis at 

4200-rpm are given in Figure 9. It is noteworthy that the displacement of Node 02 is obtained by recording the 
co-ordinate positions of Node 02, where the distance between coil 01 and coil 02 at all cam angles has been 

subtracted. Therefore, a zero value of it indicates that coil 02 is touching coil 01. Within the cycle, the 

displacement of Node 01 (Figure 9a) is almost constant and close to zero, which means that coil 01 
experiences no significant longitudinal motion. Node 02 (Figure 9a) oscillates freely at the beginning of stage 

I, which is due to the residual vibrations from Cycle I. At the end of stage I, the effect of free vibration 

reduces due to the effects of damping and the compression of the external loading. At the beginning of Stage 
II, the compressive displacement is 0.07 mm, when coil 02 makes contact to coil 01. Both coils 01 and 02 

deform elastically, which explains that the negative values in this stage. During Stage III, Node 02 starts to 

vibrate freely under a certain frequency.  

As shown in Figure 9b, the velocity of Node 01 keeps constant in the entire cam cycle which shows that 
coil 01 does not move. For Node 02, its velocity varies slightly during Stage I and Stage II. It indicates that 

coil 02 moves due to the residual vibration at stage I and oscillates with a higher frequency due to the contact 

with coil 01. At Stage III, the velocity of Node 02 changes rapidly. The points of these rapid changes are also 
the ones where the displacement of Node 02 changes significantly (Fig. 8a). The acceleration responses of 

Node 01 and Node 02 are presented in Figure 9c. The acceleration of Node 01 keeps at a very low level 

during Stages I and II, although there are fluctuations around 140 degree and 160 degree. During Stage III, the 
acceleration varies at a higher level. The fluctuations are around 280 degree, 300 degree and 315 degree. The 

peak acceleration of Node 01 is approximate -4.24e6 mm/s
2
 occurred at 315.5 degree of cam angle at Stage III. 

For Node 2, the trend is similar to Node 1. However, the magnitudes of the fluctuations are higher than those 

of Node 01. The peak acceleration, approximate 5.49e6 mm/s
2
, of Node 02 occurs at around 314 degree at 

Stage III. The peak accelerations of both Node 02 and Node 01 are consequences of the rapid changes of 

velocities, which is due to the coil collisions between coil 01 and coil 02.  

According to the results of the FE simulation, it can be concluded that coil 02 vibrates freely at Stage I and 
Stage III. During Stage II, it is compressed to contact coil 01 by external loading, and there is no separation 

between the two coils. During Stage III, the rapid changes on velocity and acceleration of Node 02 are also 

caused by the contact between coils 1 and 2, which could explain the high-frequency fluctuations of the spring 

force around 165 degree, 235 degree, 280 degree, 300 degree and 315 degree of cam angle.  

4.2. Dynamic response at 5600-rpm engine speed 

The results of dynamic response of the valve spring at 5600-rpm engine speed are displayed in Figure 10. At 

Stage I, the spring force starts to oscillate within a range between 250 N and 350 N, which is approximate 90 

N larger than the one at 4200-rpm engine speed. Then, the spring is compressed significantly at the beginning 
of Stage II (127 degree of cam angle). The spring force increases until the cam angle is around 175 degree, 

where the peak force is obtained. The magnitudes obtained from the FE model, the analytical model and the 

experiment are 896 N, 865 N and 845 N, respectively. It is clear that the peak forces in Stage II at 5600-rpm 
are about 60 N higher in average than those at 4200-rpm. It means that the dynamic effects of both the natural 

vibration and the forced motion are greater due to the increase of engine speed. After 175 degree of cam angle, 

the spring force decreases until the cam angle is 233 degree (the end of Stage II). The loading starts to be 

removed at the beginning of Stage III, and the spring vibrates freely. Both analytical model and FE model 
well fit the experimental curve at the Stage I and Stage II. However, high-frequency spring forces are detected 

in both the FE model and the experiment results around 240 degree of cam angle, when the analytical model 

fails to show this effect. The maximum values of these spike forces is as high as 620 N, which is about 305 N 
higher than that at 4200-rpm. The peak force obtained from the analytical model is 380 N at this point of time.  

The accelerations, velocities and displacements of the reference nodes along the Z axis at 5600-rpm are 

given in Figure 11. Similar to the results at 4200-rpm, the displacement of Node 01 keeps constant during the 

whole cam cycle in Figure 11a, because the end of this coil is fixed. The displacement of Node 02 oscillates 
regularly during Stage I. It illustrates that coil 2 vibrates freely starting with the residual vibration of previous 

cam cycle. The magnitude of the displacement can reach as high as around 0.2 mm, which is nearly 10 times 

the one at 4200-rpm. During Stage II, the displacement keeps nearly a constant. It is because coil 02 is pressed 

                  



onto coil 01 by the external loading. At the beginning of Stage III, it starts to fluctuate at a high frequency. As 

shown in Figure 11b, the velocity of Node 01 is around zero during the whole cam cycle, which is 
corresponding to its constant displacement shown in Figure 11a. On the other hand, the velocity of Node 02 

fluctuates with a range of 1290 N (from -742 mm/s to 548 mm/s) in Stage I. It is reduced, then, to zero during 

Stage II due to the external compressive loading. During Stage III, it reaches to a peak velocity of 1352 N/mm 

at 241.5 degree toward the negative direction of the z axis after a 1000 mm/s velocity toward the z axis. Then, 
it fluctuates with a range of 1598 mm/s (from -978 mm/s to 620 mm/s). The accelerations of Node 01 and 

Node 02 are displayed in Figure 11c. The acceleration of Node 01 is nearly constant during Stage II while 

spike accelerations appear at 20 degree, 46.5 degree, 73 degree, 100 degree, around 245.5 degree, 300 degree, 
328 degree and 354.5 degree, respectively, during Stage I and Stage III. Another phenomenon is that the spike 

accelerations of Node 02 always appear at the same time. It means that coil collisions occur between coil 01 

and 02 at those times. Contact status between coil 01 and coil 02 at three different cam angles is shown in 
Figure 12. The areas where coil 02 contacts coil 01 are in pink. ‘Sliding’ indicates that there are transverse 

slides between contact surfaces. The areas in yellow named as ‘near’ indicating that coil 01 and coil 02 are 

close but still separated. From cam angle 240 degree to 245.5 degree, the two coils experience a contact-

separation-contact process within a 0.327e-3 second. The process indicates a violent coil collision, and 
explains the spike forces occurring at the time points.  

Comparing to the dynamic response at 4200-rpm, the spring force is generally higher due to the higher 

loading speed of 5600-rpm. The high-frequency fluctuations also appear at the beginning of Stage III. 

However, the spike forces are much higher than the ones at 4200-rpm, caused by the violent coil collisions.  

4.3. Dynamic response at 8000-rpm engine speed 

Figure 13 shows the dynamic responses of the valve spring at 8000-rpm engine speed. The zoomed in area 

shown in Figure 14 displays a greater details of Stage III, during which the peak forces occurred. At Stage I, 

the spring force oscillates at a range of 200 N (between 250 N and 450 N), which is approximate 100 N larger 
than the magnitude (100 N) at 5600-rpm and 190N larger than the one (10 N) at 4200-rpm engine speed. The 

frequencies of the vibration obtained from the FE model generally agree with the ones from experiments. 

However, a phase difference is observed in the result of the analytical model. For instance, the first three peak 
forces appear at 12.5 degree, 42 degree and 84.5 degree from the FE model and test results, while they appear 

at 24 degree, 58 degree and 100 degree in the analytical model. The phase difference is approximately 15 

degree. When the spring is compressed at Stage II, the spring force increases to the first peak, around 940 N in 
the FE model (895 N from test), at about 160 degree of cam angle. However, the force curve of the analytical 

model reaches its peak force (880 N) at 170 degree of cam angle, thus, represents a phase lag of 10 degree. 

With the rotation of the cam, the force decreases to around 580N in the FE model (581 N from test) at 

approximate 172 degree. When the cam angle is 186.5 degree, the force increases again and reaches its second 
peak value, around 1200 N in the FE model (1051 N from test). The second peak of the force based on the 

analytical model is 778 N at 203 degree, where the lag is 16.5 degree comparing with the results of the FE 

model and the experiment. After the second peak, the force keeps decreasing until 250 N at the end of Stage II 
(233 degree). At Stage III, the change of the force is mainly dominated by a free vibration due to the low 

external loading. During this stage, very high spike forces are obtained. For instance, the spring force reaches 

as high as 1430 N at 254.5 degree from both the FE model and the test results, which is even higher than the 
peak force in Stage II. However, the peak force calculated by the analytical model is only 360N, when the 

cam angle is270 degree. The results show that the analytical model is not capable of simulating dynamic 

responses of the valve spring at a relative high engine speed.  

To understand the internal vibrations of the spring at 8000-rpm engine speed, the accelerations, velocities 
and displacements of Node 01 and Node 02 are shown in Figure 15. At Stage I, the displacement of Node 01 

(Figure 15a) remains constant and is close to 0 mm. The displacement of Node 02 (Figure 15a) oscillates in a 

range of 0.17 mm. By comparing to the results at 4200-rpm and at 5600-rpm, it appears more irregularly. At 
Stage II, there is nearly no movement when the external loading is executed. It illustrates that coil 02 is nearly 

compacted onto coil 01 despite very small vibrations at 155 degree and 185 degree. At the end of Stage II 

(233 degree), Node 02 begins to move upward. It reaches its maximum displacement 0.68 mm, when the cam 

angle is around 243 degree (Stage III). It is about 0.4 mm and 0.63 mm higher than the magnitudes at 5600-
rpm and 4200-rpm respectively. Then, the force starts to oscillate irregularly. The velocities of Nodes 01 and 

02 are displayed in Figure 15b. The velocity of Node 01 remains nearly constant throughout the whole Stage I, 

II and III, though slight vibration observed at 270 degree and 300 degree in Stage III. For Node 02, the 

                  



magnitude of velocity varies irregularly within a range of 1320 mm/s at Stage I. Then it keeps nearly zero 

during Stage II except two fluctuations of velocities occurs at 155 degree and 185 degrees. At the beginning of 
Stage III, the magnitude increases significantly from 0 mm/s (232 degree) to 2130 mm/s (238.5 degree), and 

then dramatically decreases by 4815 mm/s to -2685 mm/s at 251.5 degree. With a further rotation of the cam 

(from 251.5 degree to 252.5 degree), the velocity increases rapidly again, which is from -2685 mm/s to 811 

mm/s. This process occurs within 41.6e-6 second. The magnitude varies arbitrarily during the rest of Stage III. 
Figure 15c shows the acceleration curves for Nodes 01 and 02. The acceleration of Node 01 has no obvious 

fluctuation in Stage I and Stage II. At stage III, there are some fluctuations where the peak values are 3.92e7 

mm/s
2
, 1.53e7 mm/s

2
 and 3.07e7 mm/s

2
 at 254.5 degree and 297 degree, respectively. For Node 2, the levels 

of fluctuations in Stage I and Stage II are lower comparing with the one in Stage III. When the cam angle is 

254.5 degree, the acceleration reaches its maximum 1.03e8 mm/s
2,
 which is corresponding to the peak spring 

force at the same time. In addition, significant spike forces (Figure 13) also occur at these positions (254.5 
degree and 297 degree). It can be therefore assumed that violent coil collision occurs between coil 01 and coil 

02 at these times. The dynamic spring force is hugely lifted by these impact forces, which are shown by the 

significant spike forces in the final results.  

Contact status between coil 01 and coil 02 at 8000-rpm is shown in Figure 16. It is shown that a contact-
separation-contact process occurs, when the cam angle increase from 253.5 degree to 255.5 degree. The 

process occurs within 0.0832e-3 second. The violent coil collision explains the spike spring force at 254.5 

degree. At 8000-rpm engine speed, the effects of coil collision on the spike forces are enhanced. The peak 
force of the spring occurs during Stage III due to the coil collision rather than external loading. The results of 

modal analyses do not show the spike forces caused by coil collisions, and certain phase difference is 

observed in the whole cam cycle. In sum, it shows that the FE model has a robust ability to simulate the 
dynamic effects of valve springs at this speed with a good agreement with the test results. On the contrary, the 

analytical modal model fails to be comparable with the test results at this speed.  

5. Conclusion 

In this paper, a nonlinear FE model has been developed to simulate the dynamic responses of a beehive valve 

spring at various engine speeds. Large deformations, varied spring diameter, varied spring pitch and therefore 

varied natural frequency, coil collisions are all considered in this model. An analytical modal model was also 
developed and its results were compared with those of the FE model. A set of engine head test results were 

used to validate the computational results of both models. According to the analysis of the results, the 

following conclusions are made:  

1. By comparing with engine test results, both the FE modal and the analytical models are able to simulate 

the reaction force of the spring at Stage II of the deformation, when the engine speed is relative low (4200-
rpm). At this speed, the reaction force is a result of both the external loading and the internal vibrations of 

the coils. However, the FE model can also simulate the high-frequency vibrations at the beginning of Stage 

III, when the analytical model fails to.     
 

2. At relative higher engine speeds (5600 rpm), the peak reaction force is still determined by the external 

loading and natural frequency. Both the analytical and FE models can calculate the peak reaction force at 

Stage II accurately. However, the effects of coil collision become more significant with the increased 
engine speed. The unusual spike forces are observed at the stage III of the deformation in both the FE 

model and the testing results. Again, the analytical model cannot analyse the effects due to its intrinsic 

limitations.  
 

3. At 8000-rpm engine speed, the peak dynamic force occurs at the stage III of the deformation, which is due 

to the dominating effect of coil collisions. The high frequency contact force between the coils results in the 

extreme high spike reaction force, which is absent from the analytical model. In practices, the analytical 
model is still widely used in the design and analysis of valve springs. Therefore, the dynamic factor of the 

spring is likely to be underestimated by the analytical model, which may cause premature failure of the 

valve spring. For a more reliable spring design, the new FE model developed in this paper can be used to 

predict the reaction forces at different engine speeds, including extreme high speeds.  
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Figure 1: (a). Spring Terminology. Design Specification and 3D Scan Data of (b). Spring Coil Outer Diameter, (c). 

Spring Height, and (d). Spring Pitch. 

 

                  



 
Figure 2: (a). Boundary conditions of Modal FE model, and the fixed (b). upper end and (c). lower end of the spring. (d). 
TheFEmodel with a 7mm pre-compression.  

 

 
Figure 3: FE static 7 mm simulation validated by the results of compression test.  

 

                  



 
Figure 4: The simulated (a). First. (b). Second, and (c). Third modal modes in AnsysFE Modal Analysis. (d). the 
theoretical first three modal modes described in [16, 17, 32]. 

 

 
Figure 5: (a). Node Id selected in transient FE simulations. (b). Beehive spring sample manufactured by Force 

Technology Ltd. 

 

                  



 
Figure 6: Valve lift curve of the beehive valve spring in the real engine. 

 

 
Figure 7: A typical load and displacement relationship at engine speed: 4200-rpm 
 

                  



 
Figure 8: Dynamic spring force curves of engine head test, FE simulation and analytical model at 4200-rpm engine 

speed. 

 

 
Figure 9: (a). Displacements, (b). Velocities and (c). Accelerations of Node 01 and Node 02 along Z axis at 4200-rpm 

engine speed. 

 

                  



 
Figure 10: Dynamic spring force curves of engine head test, FE simulation and analytical model at 5600-rpm engine 

speed. 

 

 
Figure 11: Acceleration, velocity and deformation curves of Node 01, 02 and 03 at 5600-rpm engine speed. 

 

                  



 
Figure 12: Contact status of the coil 1 and coil 2 at (a). 240 degree, (b). 243.5 degree and (c). 245.5 degree under 5600-

rpm engine speed. 

 

 
Figure 13: Dynamic spring force curves of engine head test, FE simulation and analytical model at 8000-rpm engine 

speed. 

 

                  



 
Figure 14: Dynamic spring force curves of engine head test, FE simulation and analytical model at 8000-rpm engine 

speed between 220 degree and 320 degree cam angle. 

 

 
Figure 15: Acceleration, velocity and deformation curves of Node 01, 02 and 03 at 8000-rpm engine speed. 

 

                  



 
Figure 16: Contact status of the coil 1 and coil 2 at (a). 253.5 degree, (b). 254.5 degree and (c). 255.5 degree under 
8000-rpm engine speed. 

 

 

 

 

 

 

 

 
Table 1: Frequencies of the first three modes of spring vibration 

Mode of Vibration First (01) Second (02) Third (03) 

Frequency (Hz) 630 1120 1639 

 

 

Table 2: The engine speeds, cam speeds, time of each analysis step and time of each sub-steps for the transient FE simulation 

Engine Speed 

(RPM) 

Cam Speed 

(RPM) 

Time per analysis 

step (s) 

Time per sub-step 

(s) 

4200 2100 3.97E-04 3.97E-05 

5600 2800 2.98E-04 2.98E-05 

8000 4000 2.08E-04 2.08E-05 
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