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Abstract—Spatial downscaling is an ill-posed, inverse problem, 

and information loss (IL) inevitably exists in the predictions 

produced by any downscaling technique. The recently popularized 

area-to-point kriging (ATPK)-based downscaling approach can 

account for the size of support and the point spread function (PSF) 

of the sensor and, moreover, it has the appealing advantage of the 

perfect coherence property. In this paper, based on the advantages 

of ATPK and the conceptualization of IL, an IL-guided image 

fusion (ILGIF) approach is proposed. ILGIF uses the fine spatial 

resolution images acquired in other wavelengths to predict the IL 

in ATPK predictions based on the geographically weighted 

regression (GWR) model, which accounts for the spatial variation 

in land cover. ILGIF inherits all the advantages of ATPK and its 

prediction has perfect coherence with the original coarse spatial 

resolution data which can be demonstrated mathematically. ILGIF 

was validated using two datasets and was shown in each case to 

predict downscaled images more accurately than the compared 

benchmark methods. 

 

Index Terms—Image fusion, downscaling, geostatistics, 

information loss (IL), geographically weighted regression (GWR). 

I. INTRODUCTION 

Downscaling is a process to increase the spatial resolutions of 

observations [1]. For remote sensing images, such a process 

involves the change-of-support problem (COSP), where the 

support is a geostatistical term meaning the space on which an 

observation or measurement is defined. The geostatistics-based 

area-to-point kriging (ATPK) technique is an effective solution 

to the COSP, which can predict a support that is smaller than that 

of the original data [2], [3]. ATPK was originally developed for 

census data (e.g., disease or health data) involving irregular 

geographical units (e.g., county) with different sizes and shapes 

[4]. Recently, the technique was popularized and extended to the 

remote sensing case which involves regular supports (pixels 

with the same size and shape) [5]. ATPK accounts for the size of 

support, spatial correlation, and the point spread function (PSF) 

of the sensor and has the appealing characteristic of perfect 

coherence with the original coarse spatial resolution data and, 

thus, it is an accurate method for downscaling [2]. 
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A. Information loss (IL) in downscaling 

Downscaling is essentially an ill-posed, inverse problem, in 

which multiple plausible solutions can lead to an equally 

coherent recreation of the original coarse image. As a result, 

some of the required fine spatial resolution information cannot 

be recovered in the process, particularly for heterogeneous 

landscapes and boundaries between land cover types. That is, 

there is unavoidably information loss (IL) in downscaling 

solutions, where the terminology IL is defined as the gap 

between the ideal fine spatial resolution image (i.e., reference 

image) and actual downscaling solutions (e.g., those based on 

spatial prediction, e.g., using ATPK), as shown in Fig. 1. IL is 

defined in contrast to information gain (IG) which refers to the 

gain of the downscaling solution over the original coarse image. 

The relation between the input coarse image and the ideal 

downscaling solution can be summarized in Eq. (1). Although 

the objective of downscaling is to minimize the IL, such loss 

always exists and is never zero. If the IL can be predicted, it can 

compensate the ATPK-based predictions to achieve more 

accurate downscaling predictions. 
 

Coarse image Downscaling solution Ideal solution

Information 

gain (IG)
Information 

loss (IL)

 
Fig. 1. The definition of IG and IL in image downscaling. 
 

Downscaling solution

Ideal solution = Coarse image + IG + IL .            (1) 

B. Potential solutions to IL prediction 

1) Learning-based solution. For downscaling in real 

applications, the reference (i.e., the ideal solution) is always 

unavailable (otherwise there is no need for downscaling). Thus, 

the IL for the study area at the required fine spatial resolution 

cannot be predicted straightforwardly. A plausible solution to 

predict IL for a downscaling prediction is to find the relation 

between the downscaling prediction (or original coarse image, as 

input) and the IL (as output) based on training data, and apply 

the fitting model to the downscaling prediction of the study area. 

The training images need to be at the same spatial resolution as 

the target fine spatial resolution for downscaling, and more 

importantly, need to have a similar spatial pattern as the study 

area [6]. In most cases, there may not be easy access to such 

demanding training data. Alternatively, the fitting model could 

be predicted based on a self-example scheme [7]: the coarse 

image of the study area is upscaled to a coarser spatial resolution, 

and the original coarse image is treated as the ideal solution to 

calculate the IL. In this scheme, however, the IL is predicted at 

the original coarse spatial resolution. For remote sensing data, 

the spatial content can be different when the spatial resolution 

varies. For example, the roads and buildings are visible in a 5 m 
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spatial resolution image, but may ‘disappear’ at a coarser (e.g., 

20 m) spatial resolution. 

2) Multi-resolution image fusion-based solution. With the 

development of satellite sensors such as WorldView, QuickBird, 

IKONOS, SPOT, Landsat ETM+ and more recently, Sentinel-2 

Multispectral Imager (MSI) [8], the Earth’s surface can be 

observed at different spatial resolutions in different wavebands. 

The finer spatial resolution images in some wavebands (e.g., 15 

m panchromatic (PAN) band in Landsat ETM+ or 10 m bands in 

Sentinel-2 MSI) have been used to guide the downscaling 

process for coarser spatial resolution images in other wavebands 

(e.g., 30 m multispectral bands in Landsat ETM+ or 20 m bands 

in Sentinel-2 MSI). This process is commonly known as 

multi-resolution image fusion in remote sensing, which has 

received increasing attention in recent years especially in 

relation to reliable monitoring. 

C. Brief review of multi-resolution image fusion 

Over the past decades, various multi-resolution image fusion 

methods have been developed. Two popular families are 

component substitution (CS) and multi-resolution analysis 

(MRA) [9]. The CS approach includes principal component 

analysis [10], band-dependent spatial-detail (BDSD) algorithm 

[11], Gram-Schmidt (GS) transformation [12], adaptive GS 

(GSA) [13], context-adaptive GSA (GSA-CA) [14] and partial 

replacement adaptive component substitution (PRACS) [15]. 

Common MRA examples are high-pass filtering [16], smoothing 

filter-based intensity modulation [17], a trous wavelet transform 

(ATWT) [18], Additive Wavelet Luminance Proportional 

(AWLP) [19], the generalized Laplacian pyramid with 

modulation transfer function-matched filter (MTF-GLP) [20], 

MTF-GLP with context-based decision (MTF-GLP-CBD) [21], 

and MTF-GLP with multiplicative injection model 

(MTF-GLP-HPM) [22]. Recently, sparse representation [23] 

and deep learning [24] based methods have also been developed 

for multi-resolution image fusion. It is beyond the scope of this 

paper to review the existing image fusion approaches explicitly, 

and several useful review articles exist [9], [25]. 

Multi-resolution image fusion methods were originally 

developed for the case of fusing a single PAN band (also termed 

pan-sharpening in remote sensing). Recently, Selva et al. [26] 

investigated the extension of the methods to the more general 

case of fusing more than one fine spatial resolution band, which 

is also termed “hypersharpening”. Specifically, two schemes 

(i.e., the selected band and synthesized band schemes) are 

summarized for using multiple fine spatial resolution bands. 

D. The proposed IL-guided image fusion (ILGIF) approach 

With the availability of fine spatial resolution data in some 

wavebands, the IL in downscaling for these bands can be 

quantified by downscaling the coarse data (simulated by 

upscaling the known fine resolution data) and comparing the 

predictions with the known fine spatial resolution image. The 

fine spatial resolution bands can be treated as training data, and 

the IL in these bands can be used to predict the IL in 

downscaling coarse images in other wavebands. On this basis, a 

new IL-guided image fusion (ILGIF) approach is proposed for 

fusing multi-resolution images. Based on the ATPK solution to 

the COSP, the ILGIF prediction is the combination of the ATPK 

prediction for the coarse image and the corresponding prediction 

for the IL. 

According to one of the protocols in Wald et al. [27], any 

fused synthetic image, once degraded to its original spatial 

resolution, should be as identical as possible to the original 

coarse image. This has been a great challenge for the existing 

image fusion methods. As a new multi-resolution image fusion 

method based on a new conceptualization, ILGIF has the 

appealing merits of preserving perfectly the spectral property of 

the original coarse images (can be demonstrated 

mathematically), and thus, satisfies the aforementioned protocol. 

Moreover, ILGIF accounts for the PSF of the sensor and is easy 

to implement. ILGIF is suitable for fusion of PAN and 

multispectral images (i.e., the standard pan-sharpening problem) 

and fusion of multispectral and multi/hyperspectral images (i.e., 

where two groups of images are in different wavelength ranges). 

The remainder of this paper is organized into four sections. 

Section II introduces briefly the principles of ILGIF. Section III 

provides the experimental results of two groups of datasets for 

validation of ILGIF. Further issues related to ILGIF and opening 

future research are discussed in Section IV. Finally, Section V 

concludes the paper. 

II. METHODS 

A. Problem formulation 

Let ( )l

C iZ x  be the measurements of pixel C centered at ix  

(i=1,…, M, where M is the number of pixels) in coarse band l 

(l=1,…, L, where L is the number of coarse bands), and ( )k

F jZ x  

be the measurements of pixel F centered at jx  (j=1,…, 
2MG , 

where G is the spatial resolution (zoom) ratio) in fine band k (k 

=1,…, K, where K is the number of fine bands). Note that F and 

C represent the fine and coarse pixels, respectively. The 

objective of downscaling is to predict variables ( )l

FZ x  for all 

fine pixels in all L coarse bands. In the proposed ILGIF method, 

the process consists of ATPK-based downscaling and IL 

estimation. Denote the predictions of ATPK and IL as ˆ ( )l

FAZ x  

and ˆ ( )l

FIZ x , the ILGIF prediction is 

ˆ ˆ ˆ( ) ( ) ( )l l l

F FA FIZ Z Z x x x .                          (2) 

The calculation of ATPK and IL predictions is detailed in the 

following Section II-B, and Sections II-C and -D. 

Fig. 2 is the flowchart of the proposed ILGIF method, where a 

coarse band l is used as an example for illustration. The 

implementation of ILGIF is summarized by the following steps. 

Step 1 For a coarse band l, it is downscaled to the fine spatial 

resolution using ATPK. This step is detailed in Section 

II-B. 

Step 2 The ILs for the K fine bands in other wavebands are 

calculated, see Eqs. (8), (9) and (11). This step is detailed 

in Section II-C. 

Step 3 The K weights transforming the ILs for the K fine 

bands to that for the coarse band are calculated using 

geographically weighted regression (GWR). This step is 

detailed in Section II-D. 

Step 4 The IL for the coarse band is calculated (see Eq. (13)) 

and added to the ATPK prediction in step 1) (see Eq. (2)). 
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Step 5 Steps 1-4 are performed for all L coarse bands.  

Coarse band 

Input

Output

ILGIF

l

CZ

Fine bands

 ( 1,2,..., )k

F k K Z

Coarse bands

 ( 1,2,..., )k

C k K Z
ATPK prediction

 ˆ ( 1,2,..., )k

FA k K Z

ATPK prediction

 ˆ l

FAZ

Information loss

 

ILGIF prediction

 ˆ ˆ ˆl l l

F FA FI Z Z Z

GWR:

ATPK

ATPK

Information loss

 

1

ˆ ˆ
K

l k

FI k FI

k




Z Z

α

ˆ ˆk k k

FI F FA Z Z Z

Upscaling

Step 1

Step 

2-2)

Step 3

Step 4

Step 

2-1)

Step 

2-3)

 
Fig. 2. Flowchart of the proposed ILGIF method, where red and blue lines represent the ATPK and IL prediction processes, respectively. A coarse band l is used as the 

example and the process is implemented for each coarse band in turn. 
 

B. Area-to-point kriging (ATPK) 

For a fine pixel centered at 0x  in band l, the ATPK-based 

downscaling prediction can be simply described as a linear 

combination of the neighboring coarse pixels 

0

1 1

ˆ ( ) ( ), s.t. 1
N N

l l

FA i C i i

i i

Z Z 
 

    x x                  (3) 

where i  is the weight for the ith coarse neighboring pixel 

centered at ix  and N is the number of coarse neighbors. The N 

weights are calculated according to the kriging matrix below 

1 1 1

1

( , ) ... ( , )

. . . .

. . . .
. . .

( , ) ...

l l

CC CC N

l l

CC N CC

 

 

  

   
   
  

 

x x x x

x x

0 11

0

( , )

. .

. .

. .

( , ) ( , )

1 ... 1

l

FC

l
NN N FC N



 



    
    

     
           

    
    
          

x x

x x x x

.   (4) 

In (4), ( , )l

CC i j x x  is the coarse-to-coarse semivariogram 

between coarse pixels centered at ix  and jx  in band l, 

0( , )l

FC j x x  is the fine-to-coarse semivariogram between fine 

(to be predicted) and coarse pixels centered at 0x  and jx  in 

band l, and   is the Lagrange multiplier. Let s be the Euclidean 

distance between the centroids of any two pixels, ( )l

FF s  be the 

fine-to-fine semivariogram between two fine pixels, and ( )l

Ch s  

be the PSF for band l. ( )l

CC s  and ( )l

FC s  in (4) are calculated 

by convoluting ( )l

FF s  with the PSF ( )l

Ch s  as follows 

( ) ( )* ( )l l l

FC FF Ch s s s                              (5) 

( ) ( )* ( )* ( )l l l l

CC FF C Ch h  s s s s                       (6) 

where * is the convolution operator. The key issue becomes the 

estimation of the fine-to-fine semivariogram ( )l

FF s . If any prior 

spatial structure information at target fine spatial resolution for 

the band is available, it can be used readily for estimation. 

However, such information is not always available in reality. In 

this case, its estimation is achieved based on deconvolution, 

where the original coarse data are treated as areal data. The 

optimal solution to the fine-to-fine semivariogram is identified 

as the one that, when convolved with the PSF according to (6), is 
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the same as the areal semivariogram. Details of the several 

approaches for deconvolution can be found in the literature [4], 

[6]. 

An appealing advantage of ATPK is that the prediction has 

perfect coherence with the input coarse image. That is, once the 

ATPK prediction is upscaled to the original coarse resolution, it 

is exactly the same as the original coarse data [2], [3] 

ˆ ( )* ( ) ( )l l l

FA C CZ h Zx x x .                           (7) 

C. Information Loss (IL) 

As downscaling is an ill-posed, inverse problem, there exists 

unavoidable IL in ATPK prediction when compared with the 

ideal prediction (reference). The IL may not be an important 

problem for homogeneous landscapes, but it is crucial for 

restoration of heterogeneous landscapes with great spatial 

variation. For more reliable downscaling, it is important to 

predict the IL in ATPK predictions. In this paper, it is achieved 

using the K available fine spatial resolution images 
1

FZ , 
2

FZ ,…, 

K

FZ  in other wavebands. The process is detailed below. 

1) Upscaling the K fine bands to simulated coarse bands. 

Each fine spatial resolution image is upscaled to match the 

spatial resolution of the coarse image 
l

CZ  

( ) ( )* ( )k k l

C F CZ Z hx x x .                           (8) 

2) ATPK-based downscaling for the simulated K coarse bands. 

ATPK is performed on the simulated coarse image 
k

CZ  for band 

k to downscale it back to the fine spatial resolution. Similarly to 

(3), the prediction for a fine pixel centered at 0x  in band k is 

0

1 1

ˆ ( ) ( ), s.t. 1
N N

k k

FA i C i i

i i

Z Z 
 

    x x                  (9) 

in which i  is the weight for the ith coarse neighbor. The 

weights are calculated in the same way as in (5). Based on the 

perfect coherence property of ATPK, the simulated coarse image 
k

CZ  can be reproduced exactly when the ATPK prediction 

ˆ ( )k

FAZ x  is upscaled to the coarse spatial resolution 

ˆ ( )* ( ) ( )k l k

FA C CZ h Zx x x .                          (10) 

3) Calculating the ILs for the K fine bands. Since the reference 

for 
0

ˆ ( )k

FAZ x  is known, the IL in the ATPK prediction for the fine 

pixel at 0x  in band k is quantified as 

0 0 0
ˆ ˆ( ) ( ) ( )k k k

FI F FAZ Z Z x x x .                     (11) 

From (8) and (10), we can conclude an important property of the 

quantified IL: once it is upscaled to the coarse spatial resolution, 

it is zero 

ˆ ( )* ( )
ˆ[ ( ) ( )]* ( )

ˆ( )* ( ) ( )* ( )

( ) ( )
0

k l

FI C
k k l

F FA C
k l k l

F C FA C
k k

C C

Z h

Z Z h

Z h Z h

Z Z

 

 

 


x x

x x x

x x x x

x x

.                 (12) 

4) Calculating the ILs for the L coarse bands. The ILs of the K 

fine bands are used to predict the ILs in the L coarse bands. 

Specifically, the IL in ATPK prediction for a pixel centered at x 

in coarse band l (i.e., ˆ ( )l

FIZ x  in (2)), is assumed to be a linear 

combination of all K ILs in the K available fine bands 

1

ˆ ˆ( ) ( ) ( )
K

l k

FI k FI

k

Z Z


x x x                          (13) 

where ( )k x  is the weight for the kth fine band. The weights are 

determined according to the relation between the coarse band l 

and K fine bands. That is, a larger weight will be assigned to 

band k if the relation between images 
l

CZ  and 
k

CZ  is larger, and 

vice versa. 

As acknowledged widely, the spatial structure of land cover 

always varies spatially [28], [29]. For images composed of 

pixels, the relation between the coarse and fine bands is not fixed, 

but a function of the pixel. This requires a non-stationary 

spatially adaptive model to characterize the relation (e.g., a 

fitting model in a local window). Moreover, in the local window, 

pixels can exert different effects on the center, as their spatial 

distances to the center are not the same. Thus, it would be more 

reasonable to quantify their influence according to spatial 

distance. On this basis, the GWR model [30] is proposed to 

predict the weights in (13). 

D. Geographically weighted regression (GWR)-based weight 

estimation 

GWR has been used widely in spatial analysis [31] and data 

assimilation [32], [33]. The model can relate data from different 

sources or platforms. For example, GWR was used to relate field 

data (e.g., PM2.5) to satellite sensor data [32] and normalized 

difference vegetation index (NDVI) to rainfall [33]. GWR can 

also relate data acquired from the same platform, such as filling 

the missing data (due to could or scan line corrector (SLC)-off) 

in remote sensing images [34] using temporally close, complete 

data. 

In this paper, GWR is applied for estimation of ( )k x  in (13) 

by relating remote sensing data acquired in different wavebands. 

GWR is a local model that accounts explicitly for the spatial 

non-stationarity between the dependent and independent 

variables. Moreover, it allows the contributions from neighbors 

to vary according to their distances to the center pixel [33]. With 

the coarse band l and K fine bands, the GWR model is 

constructed as 

0

1

( ) ( ) ( ) ( )
K

l k

C k C

k

Z Z 


 x x x x .                  (14) 

In (14), 0 ( ) x  is the intercept. Let ( )P x  be an N0×(K+1) matrix 

composed of the coarse pixel values of all K bands 
1

CZ , 
2

CZ ,…, 

K

CZ  (produced according to (8)) in the local window (including 

N0 pixels for each band) centered at x, with the last column being 

a N×1 vector of ones; ( )Q x  be an N0×1 vector composed of the 

coarse pixel values of the local window centered at x in coarse 

band l; ( )W x  be an N0×N0 spatial weighting diagonal matrix. 

The K weights for the pixel, included in a (K+1)×1 vector, are 

predicted by 
T 1 T( ) [ ( ) ( ) ( )] ( ) ( ) ( )α x P x W x P x P x W x Q x .        (15) 

As seen from (15), the matrices of ( )P x  and ( )Q x  

constructed from a local window result in weights varying on a 

pixel basis, which can cope with spatial non-stationarity. 

Furthermore, the diagonal elements in ( )W x  ensure that pixels 

near to the location x have more influence on the prediction than 
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the further pixels [33]. They can be determined based on a 

bi-square function 


2 2[1 ( / ) ] , if 

0, otherwise
i i

i

d H d Hw   


                   (16) 

in which id  is the distance between the ith neighboring pixel 

and the center pixel at x, and H is the bandwidth for the kernel. 

E. Coherence property of ILGIF 

As mentioned in (2), the final ILGIF prediction ˆ ( )l

FZ x  is a 

combination of the ATPK prediction ˆ ( )l

FAZ x  in (3) and IL 

prediction ˆ ( )l

FIZ x  in (13). Combining (7), (13) and (12), we can 

derive the following important property of the ILGIF prediction 

1

1

ˆ ( )* ( )
ˆ ˆ[ ( ) ( )]* ( )

ˆ ˆ( )* ( ) ( )* ( )

ˆ( ) ( ) ( )* ( )

( ) ( ) 0

( )

l l

F C
l l l

FA FI C
l l l l

FA C FI C
K

l k l

C k FI C

k
K

l

C k

k
l

C

Z h

Z Z h

Z h Z h

Z Z h

Z

Z









 

 

 

  







x x

x x x

x x x x

x x x x

x x

x

.                 (17) 

It means that once the ILGIF prediction is upscaled to the coarse 

spatial resolution, it is exactly the same as the original coarse 

input 
l

CZ , that is, it has the perfect coherence property. It should 

be noted that such a property is not affected by the specific value 

of weights ( )k x  and the specific form of PSF (as long as a 

consistent PSF is used in the whole process of ILGIF). 

III. EXPERIMENTS 

A. Data and experimental setup 

Two datasets were used for experimental validation of the 

proposed ILGIF method, including a WorldView-2 dataset and a 

Sentinel-2 dataset. The WorldView-2 dataset contains eight 

multispectral bands with a spatial resolution of 2 m and a PAN 

band with a spatial resolution of 0.5 m. The spatial sizes of the 

multispectral and PAN images are 400 by 400 pixels and 1600 

by 1600 pixels, respectively. The data were acquired in April, 

2011 and cover an urban area in Shenzhen, China. 

The used Sentinel-2 dataset contains four 10 m bands and six 

20 m bands. It was acquired on 18 August 2015. The study area 

is located in Verona, Italy, and is covered mainly by a mix of 

vegetation and urban fabric. The dataset has a spatial extent of 8 

km by 8 km (400 by 400 pixels for 20 m bands and 800 by 800 

pixels for 10 m bands). 

For objective evaluation where fine spatial resolution data are 

required for examination, synthetic datasets were used (i.e., the 

reduced resolution case as termed in [9]). Specifically, for the 

WorldView-2 dataset, the eight 2 m multispectral bands and 0.5 

m PAN band were upscaled to 8 m and 2 m by convolving them 

with a PSF, as shown in Fig. 3(a) and (b). Similarly, for the 

Sentinel-2 dataset, the six 20 m and four band 10 m bands were 

upscaled to 40 m and 20 m (see Fig. 5(a) and (b)). In all 

experiments, a Gaussian PSF was used and the standard 

deviation (size of the PSF width) was set to half of the coarse 

pixel size. The task of downscaling is to restore the eight 2 m 

WorldView-2 multispectral bands and six 20 m Sentinel-2 bands, 

by fusing them with the synthesized 2 m WorldView-2 PAN 

band and four 20 m Sentinel-2 bands, respectively. The 

predictions were compared to the original 2 m WorldView-2 

bands and 20 m Sentinel-2 bands for objective evaluation. This 

scheme has been used commonly to evaluate downscaling 

approaches [35]. For clarity, we termed the experiments for the 

two datasets as pan-sharpening and multispectral sharpening. 

Four CS methods (i.e., PRACS [15], GSA [13], GSA-CA [14] 

and BDSD [11]) and six MRA methods (i.e., ATWT [18], 

AWLP [19], MTF-GLP [20], MTF-GLP-CBD [21], 

MTF-GLP-HPM [22] and the recently developed morphological 

half gradient (MF-HG) [36]) were considered as benchmark 

methods. The CS and MRA approaches use a single fine band 

(e.g., PAN band) for the coarse bands. Thus, a single band needs 

to be extracted from the set of fine bands to adapt them for 

multispectral sharpening. Two schemes summarized in [26] (i.e., 

the selected band and synthesized band schemes) were 

considered in the experiments. With respect to the selected band 

scheme, for each coarse band, the fine band with the greatest 

correlation (quantified by CC) with it was selected. Regarding 

the synthesized band scheme, for each coarse band, a single fine 

band was synthesized as a linear combination of the available 

fine bands. The weights were determined using the multiple 

regression model built between the coarse band and all fine 

bands. 

For quantitative evaluation, we used the correlation 

coefficient (CC), universal image quality index (UIQI), Q2
n
 

index [37], relative global-dimensional synthesis error (ERGAS) 

and spectral angle mapper (SAM). CC and UIQI were first 

calculated for each band, and the values for all bands were 

finally averaged. For Q2
n
 and SAM, they were calculated for 

each pixel first and then averaged. Moreover, to measure the 

ability to honour the original coarse data, coherence (quantified 

by the CC) was used. More precisely, the fused image was 

upscaled to the original coarse spatial resolution and evaluated 

with the original coarse image based on CC. 

B. Experiment on pan-sharpening 

ATPK-based downscaling for the input 8 m coarse image (Fig. 

3(a)) is an important first step of ILGIF. To illustrate the 

advantage of ATPK-based downscaling, it was compared to the 

classical polynomial interpolation (with 23 coefficients). Fig. 

3(c) shows the polynomial interpolation result for Fig. 3(a). 

Compared with the ATPK result in Fig. 3(d), the polynomial 

interpolation result is more blurred and the gaps between the 

buildings cannot be restored satisfactorily. Table 1 lists the 

accuracies for the two methods, where the advantage of ATPK is 

obvious from the quantitative comparison. More precisely, 

ATPK increases the Q2
n
 and UIQI by around 0.10 and 0.07, 

respectively. The more satisfactory performance of ATPK 

mainly lies in the ability to account for the size of support and 

PSF and more importantly, the preservation of the original data 

(i.e., coherence property, see Eq. (10)). 
 

Table 1 Comparison between polynomial interpolation and ATPK for the 

WorldView-2 dataset (the bold values mean the most accurate results in each 
term) 

 CC UIQI Q2n ERGAS SAM Coherence 

Ideal 1 1 1 0 0 1 

Polynomial 0.8197 0.7741 0.6885 3.1083 0.0516 0.9802 

ATPK 0.8552 0.8440 0.7923 2.7643 0.0453 0.9985 
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ATPK was performed on the 8 m upscaled PAN image, and 

the 2 m IL (in units of digital number (DN)) produced by 

comparing to the 2 m reference PAN in Fig. 3(b) is shown in Fig. 

3(e). It is seen that for the boundaries of the small-sized 

buildings, there exists relatively large uncertainty in 

downscaling. Based on GWR, the IL in Fig. 3(e) was then used 

for estimation of the IL in ATPK-based restoration of the 2 m 

multispectral bands (i.e., the prediction in Fig. 3(d)). By adding 

the IL to the ATPK prediction, the final ILGIF prediction was 

produced, as shown in Fig. 3(f). It is clear that by adding the IL, 

the smoothing effect in ATPK result was obviously reduced and 

much more spatial detail was reproduced. As a result, the ILGIF 

result is much more similar to the reference in Fig. 3(g). 

The ten benchmark methods were implemented. For a clearer 

comparison with the results, all fused images were compared 

with the reference in Fig. 3(g) and produced the error maps in 

Fig. 4. It is clear visually that the proposed ILGIF method has the 

smallest error among all methods, especially for restoration of 

building boundaries (heterogeneous features). 

Table 2 lists the quantitative assessment results for all 11 

methods. Comparing to the results in Table 1, it is seen that the 

accuracies of the image fusion methods are greater than that for 

the method using only the input coarse image. For example, both 

CC and UIQI are increased by about 0.12 from ATPK to ILGIF. 

Focusing on the result in Table 2, GSA and GSA-CA have very 

similar performance and the ERGASs are smaller than 1.6. Both 

are more accurate than the other two CS methods (i.e., PRACS 

and BDSD). Among the MRA methods, MTF-GLP, 

MTF-GLP-CBD and MTF-GLP-HPM tend to be more accurate. 

However, the accuracies of both the CS and MRA methods are 

smaller than the proposed ILGIF method. ILGIF produced the 

largest CC, UIQI and Q2
n
 and smallest ERGAS and SAM. 

Regarding coherence, ILGIF produced a value very close to the 

ideal value of 1, suggesting its perfect coherence property. 

 
Table 2 Quantitative assessment for different methods for the WorldView-2 

dataset (the bold values mean the most accurate results in each term) 
 CC UIQI Q2

n
 ERGAS SAM Coherence 

Ideal 1 1 1 0 0 1 

PRACS 0.9499 0.9268 0.9067 2.0261 0.0457 0.9940 

GSA 0.9663 0.9585 0.9413 1.5557 0.0401 0.9958 

GSA-CA 0.9662 0.9581 0.9409 1.5618 0.0402 0.9957 

BDSD 0.9516 0.9503 0.9317 1.7869 0.0466 0.9767 

ATWT 0.9573 0.9459 0.9196 1.7010 0.0392 0.9929 

AWLP 0.9529 0.9398 0.9187 1.8211 0.0419 0.9923 

MTF-GLP 0.9603 0.9502 0.9262 1.6410 0.0387 0.9930 

MTF-GLP-CBD 0.9558 0.9554 0.9274 1.6625 0.0371 0.9928 

MTF-GLP-HPM 0.9606 0.9506 0.9269 1.6447 0.0393 0.9929 

MF-HG 0.9589 0.9530 0.9283 1.6277 0.0386 0.9930 

ILGIF 0.9709 0.9692 0.9489 1.3581 0.0337 0.9997 

 

Table 3 Quantitative assessment for different methods for the WorldView-2 
dataset at full resolution (the bold values mean the most accurate results in each 

term) 

 QNR Coherence 

Ideal 1 1 

PRACS 0.9781 0.9909 

GSA 0.9632 0.9914 

GSA-CA 0.9529 0.9891 

BDSD 0.9393 0.9615 

ATWT 0.9660 0.9934 

AWLP 0.9613 0.9931 

MTF-GLP 0.9641 0.9935 

MTF-GLP-CBD 0.9665 0.9943 

MTF-GLP-HPM 0.9646 0.9935 

MF-HG 0.9550 0.9945 

ILGIF 0.9749 0.9997 

 

All 11 methods were also implemented for the full resolution 

case, that is, fusion of the eight 2 m multispectral bands and the 

0.5 m PAN band to create an eight-band, 0.5 m multispectral 

image. The Quality with No Reference (QNR) index [38] was 

used to evaluate the methods quantitatively. As claimed by 

Palsson et al. [38], consistency can also give reliable assessment 

of the relative performance of image fusion methods at full 

resolution and it tends to be superior to the commonly used QNR 

metrics. Thus, the coherence was also used here. The results for 

the two indices are shown in Table 3. Comparing the QNR 

values, the ILGIF can produce greater accuracy than the 

benchmark methods except PRACS. Checking the coherence 

values, however, ILGIF has the largest value, suggesting the 

result is the most accurate. 

C. Experiment on multispectral sharpening 

The 20 m downscaling results of polynomial interpolation and 

ATPK for the input 40 m coarse Sentinel-2 images in Fig. 5(a) 

are shown in Fig. 5(c) and (d), respectively. Again, ATPK can 

reproduce more spatial details. For example, in Fig. 5(d), the 

linear features of the urban fabric can be observed more clearly. 

The advantage is also supported by the quantitative assessment 

in Table 3. Furthermore, by adding ILs derived from the four 20 

m bands to the APTK result, the produced ILGIF result Fig. 5(f) 

is more accurate and much closer to the reference in Fig. 5(c). 

The error maps for all 11 methods are shown in Fig. 6. For 

each benchmark method, the results for both selected and 

synthesized band schemes are exhibited. As seen from the 

results, ILGIF has the smallest error among all cases, which can 

be observed clearly by checking the locations of the rivers. Table 

4 also indicates that ILGIF produces greater accuracies than the 

ten benchmark methods, no matter whether the selected or 

synthesized band scheme is applied. More precisely, the CCs 

and UIQIs of the ten methods are below 0.99, but ILGIF 

produced a CC and UIQI of 0.99. The ERGASs of the ten 

methods are all above 2.5 (even exceeds 3.4 for PRACS with 

both schemes), but for ILGIF it is about 2. In addition, the 

coherence value of ILGIF is almost the ideal value of 1. 
 

Table 4 Comparison between polynomial interpolation and ATPK for the 

Sentinel-2 dataset (the bold values mean the most accurate results in each term) 

 CC UIQI Q2n ERGAS SAM Coherence 

Ideal 1 1 1 0 0 1 

Polynomial 0.9287 0.9135 0.8713 5.3082 0.0450 0.9909 

ATPK 0.9501 0.9489 0.9257 4.2934 0.0381 0.9991 

D. Analysis of alternatives for ATPK and GWR in ILGIF 

To analyze the advantages of using ATPK and GWR in the 

proposed ILGIF method, different combinations of interpolation 

and IL estimation were performed for the two datasets. Table 6 

shows the accuracies of four combinations: 

1) Polynomial + GLR (global linear regression) (i.e., 

MTF-GLP with synthesized band scheme); 

2) Polynomial + GWR; 

3) ATPK + GLR; 

4) ATPK + GWR (i.e., the proposed ILGIF method). 

By comparing ATPK + GLR (or GWR) to Polynomial + GLR 

(or GWR), it is seen clearly that the accuracies of the two 
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ATPK-based methods are greater than the two polynomial-based 

methods for both datasets. For example, focusing on the results 

for the WorldView-2 dataset, the Q2
n
 of ATPK + GWR is 

0.0118 larger than those of Polynomial + GWR, while the Q2
n
 of 

ATPK + GLR is 0.0260 larger than those of Polynomial + GLR. 

This means that the use of ATPK is more advantageous than 

polynomial interpolation in the image fusion problem, which is 

also consistent with the findings in Tables 1 and 4. When 

comparing ATPK (or Polynomial) + GWR to ATPK (or 

Polynomial) + GLR, it is observed that the two GWR-based 

methods are more accurate than the two GLR-based methods, 

suggesting the benefits of using the GWR scheme in IL 

estimation. Overall, ATPK + GWR produces the most accurate 

results among all four combinations. 
 

Table 5 Quantitative assessment for different methods for the Sentinel-2 dataset (the bold values mean the most accurate results in each term) 

 CC UIQI Q2n ERGAS SAM Coherence 

Ideal 1 1 1 0 0 1 

Selected 
band 

PRACS 0.9759 0.9690 0.9602 3.4023 0.0346 0.9951 

GSA 0.9787 0.9768 0.9705 3.0390 0.0334 0.9952 

GSA-CA 0.9783 0.9766 0.9702 3.0513 0.0351 0.9940 

BDSD 0.9722 0.9701 0.9585 3.3719 0.0340 0.9944 

ATWT 0.9767 0.9765 0.9696 3.1310 0.0375  0.9952 

AWLP 0.9759 0.9745 0.9674 3.2080 0.0413 0.9946 

MTF-GLP 0.9781 0.9758 0.9682 3.0607 0.0336 0.9961 

MTF-GLP-CBD 0.9766 0.9763 0.9699 3.2438 0.0387 0.9958 

MTF-GLP-HPM 0.9800 0.9776 0.9691 2.9222 0.0324 0.9965 

MF-HG 0.9790 0.9782 0.9704 2.9427 0.0341 0.9959 

Synthesized 

band 

PRACS 0.9694 0.9647 0.9599 3.7088 0.0415 0.9838 

GSA 0.9675 0.9669 0.9617 3.8208 0.0442 0.9794 

GSA-CA 0.9733 0.9731 0.9667 3.4471 0.0411 0.9847 

BDSD 0.9716 0.9698 0.9586 3.4237 0.0354 0.9933 

ATWT 0.9812 0.9810 0.9751 2.8379 0.0324 0.9962 

AWLP 0.9798 0.9785 0.9722 2.9764 0.0367 0.9955 

MTF-GLP 0.9823 0.9807 0.9749 2.7582 0.0304 0.9969 

MTF-GLP-CBD 0.9839 0.9836 0.9780 2.6502 0.0312 0.9974 

MTF-GLP-HPM 0.9817 0.9788 0.9712 2.8587 0.0317 0.9967 

MF-HG 0.9820 0.9817 0.9760 2.7240 0.0311 0.9964 

ILGIF 0.9901 0.9899 0.9861 2.0578 0.0263 0.9999 

 
Table 6 Comparison between different combinations of interpolation and IL estimation methods (the bold values mean the most accurate results in each term) 

 
WorldView-2 Sentinel-2 

CC UIQI Q2n ERGAS SAM Coherence CC UIQI Q2n ERGAS SAM Coherence 

Ideal 1 1 1 0 0 1 1 1 1 0 0 1 

Polynomial + GLR 0.9603 0.9502 0.9262 1.6410 0.0387 0.9930 0.9823 0.9807 0.9749 2.7582 0.0304 0.9969 

Polynomial + GWR 0.9659 0.9622 0.9371 1.4919 0.0372 0.9966 0.9884 0.9882 0.9838 2.2552 0.0282 0.9994 

ATPK+GLR 0.9707 0.9679 0.9522 1.3988 0.0355 0.9997 0.9891 0.9888 0.9849 2.1308 0.0260 0.9999 

ATPK+GWR 0.9709 0.9692 0.9489 1.3581 0.0337 0.9997 0.9901 0.9899 0.9861 2.0578 0.0263 0.9999 

 

    
(a)                                                            (b)                                                            (c)                                                             (d) 
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(e)                                                                   (f)                                                             (g) 

Fig. 3 Results for the WorldView-2 dataset (bands 4, 3 and 2 as RGB). (a) 8 m coarse multispectral image. (b) 2 m fine PAN image. (c) 2 m polynomial interpolation 

result. (d) 2 m ATPK result. (e) IL in downscaling 8 m PAN to 2 m. (f) 2 m ILGIF result. (g) 2 m reference. 

 

    
(a)                                                            (b)                                                            (c)                                                             (d) 

    
(e)                                                            (f)                                                            (g)                                                             (h) 

   
(i)                                                            (j)                                                            (k) 

Fig. 4 Error maps for the different methods for the WorldView-2 dataset (bands 4, 3 and 2 as RGB). (a) PRACS. (b) GSA. (c) GSA-CA. (d) BDSD. (e) ATWT. (f) 
AWLP. (g) MTF-GLP. (h) MTF-GLP-CBD. (i) MTF-GLP-HPM. (j) MF-HG. (k) ILGIF. 

 

   
(a)                                                                                 (b)                                                                                  (c) 
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(d)                                                                                 (e)                                                                                  (f) 

Fig. 5 Results for the Sentinel-2 dataset (bands 4, 3 and 2 as RGB for (b) and bands 12, 8a and 5 as RGB for (a) and (c)-(f)). (a) 40 m coarse image. (b) 20 m fine image. 
(c) 20 m reference. (d) 20 m polynomial interpolation result. (e) 20 m ATPK result. (f) 20 m ILGIF result. 

 

        
(a)                                                                                                    (b) 

        
(c)                                                                                                    (d) 

        
(e)                                                                                                    (f) 

        
(g)                                                                                                    (h) 
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(i)                                                                                                    (j) 

 
(k) 

Fig. 6 Error maps for the different methods for the Sentinel-2 dataset (bands 12, 8a and 5 as RGB). For (a)-(j), the left and right are results for the selected and 
synthesized bands, respectively. (a) PRACS. (b) GSA. (c) GSA-CA. (d) BDSD. (e) ATWT. (f) AWLP. (g) MTF-GLP. (h) MTF-GLP-CBD. (i) MTF-GLP-HPM. (j) 

MF-HG. (k) ILGIF. 

 

IV. DISCUSSION 

Both ATPK and GWR are popular methods in spatial 

statistics. The proposed ILGIF method integrates them into a 

single framework for multi-resolution image fusion. ATPK is 

employed for initial downscaling, while GWR transforms the 

ILs from the fine bands covering the same area, but in other 

wavelengths, to that for the coarse band. Based on the important 

property of the IL (i.e., once upscaled to the coarse spatial 

resolution, it is exactly zero), it is concluded from (17) that the 

perfect coherence property of ILGIF is not influenced by the 

specific value of the weights in (13). This means that any weight 

can lead to a prediction with perfect coherence with the original 

coarse data. Such a property opens doors to more powerful 

alternatives to GWR for weight estimation. 

In the experiments, when comparing the ILGIF predictions to 

the reference (ideal downscaling solution), there still exists gaps, 

which means IL still remains. The uncertainty in IL estimation in 

the ILGIF method may be ascribed to the inconsistency in terms 

of wavelength between the coarse band fine bands, as ILGIF 

treats the fine bands as training data and makes use of the ILs 

extracted from the fine bands. It would be worth developing 

more powerful models to relate the ILs from the fine bands to the 

coarse bands. Another possible choice for enhancement is to 

seek training data that fall in the same wavelength with the 

coarse band. As mentioned in the Introduction, such types of 

data may be challenging to provide as they need to be at the 

target fine spatial resolution and have a similar spatial pattern 

with the study area [6]. On the other hand, a large volume of 

such training data may be required to achieve as accurate a 

prediction as possible. This also motivates the development of 

more intelligent training schemes, such as that based on deep 

learning [40]. 

To reduce the smoothing effect in ATPK prediction and 

reproduce the variation at target fine spatial resolution, 

conditional simulation was developed in some literature [2], [41]. 

The idea of compensating ILs for the ATPK prediction in ILGIF 

is analogous to conditional simulation. However, they are 

substantially different. Specifically, for conditional simulation, 

an unconditional simulation at fine spatial resolution is produced 

first and then upscaled to match the spatial resolution of the 

input coarse data. The ATPK prediction for the simulated coarse 

data is compared to the available unconditional simulation and 

the difference (analogous to the IL defined in this paper) is 

finally added back to the ATPK prediction of the input coarse 

data [41]. Different unconditional simulation will lead to 

different prediction. Any prediction of conditional simulation 

has perfect coherence with the original coarse data. Admittedly, 

the conditional simulation scheme can increase the spatial 

variation of downscaling predictions, but this scheme is highly 

conditioned by the target spatial variation and the prediction 

always contains unstructured features, presenting as noise. This 

is because the unconditional simulation is derived from a 

random realization of white noise (zero-mean) without any 

spatial continuity. In this paper, however, IL is a fixed 

realization derived from fine bands which contain spatial 

continuity information highly related to the coarse bands (these 

bands were acquired over the same scene). ILGIF can, therefore, 

be viewed as a special case of conditional simulation, where the 

‘unconditional simulation’ is actually a set of the available fine 

bands in different wavelengths. 

Inheriting the advantages of ATPK, ILGIF accounts for the 

PSF and is suitable for any PSF. In the two experiments, we 

simulated coarse data based on the assumption of a Gaussian 

PSF, a filter widely used in remote sensing [42]-[44]. On the one 

hand, it should be noted that the sensor PSF in reality may be 

different from the Gaussian filter. For example, Tan et al. [45] 

claimed that the MODIS sensor has a scanning mirror which 

ensures that the shape has a directional component, and the 

sensor PSF was assumed to be triangular in the along-scan 

direction, but rectangular in the along-track direction. The 

characterization of the real PSF remains an open problem, and 

the most appropriate PSF model varies for different sensors. 

Specifically, the PSF depends on the used optics, the detector 

and the exploited scanning system and the electronics. Moreover, 
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it can vary over time due to the aging process [46]. As mentioned 

earlier, however, the implementation of ILGIF is not affected by 

the specific form of PSF, and any PSF can be readily used in 

ILGIF once it is known or estimated in advance. 

It is necessary to use an accurate PSF in the ILGIF method. 

For example, for the Sentinel-2 dataset where the PSF was 

simulated with a Gaussian filter, when ILGIF was performed 

using a different square wave filter (i.e., the ideal PSF filter), the 

CC and UIQI of the prediction were 0.9361 and 0.9248, which 

are 0.054 and 0.065 smaller than those produced by the correct 

PSF. On the other hand, it should be stressed that when fusing 

images with different spatial resolutions, we are more interested 

in the PSF of the scale transformation than the PSF of the sensor 

(i.e., original measurement). It would be interesting to develop 

new methods to predict the mathematical formulation and 

corresponding parameters for the PSF in scale transformation. 

This is part of our ongoing research. 

V. CONCLUSION 

In this paper, based on the concept of IL, a new method called 

ILGIF is proposed for image fusion. ILGIF compensates the IL 

to the initial APTK prediction of the observed coarse image, 

where the IL is predicted using the ILs for fine spatial resolution 

bands acquired in other wavelengths. GWR is proposed to relate 

the two types of ILs and transform the ILs for the fine bands to 

the observed coarse band. ILGIF has the perfect coherence 

property and is suitable for pan-sharpening and fusion of 

multispectral and multi/hyperspectral images. Experiments on 

two datasets showed that ILGIF can produce more accurate 

results than six benchmark methods. 

ACKNOWLEDGMENT 

The authors would like to thank Dr. Gemine Vivone of the 

University of Salerno, Italy, for sharing the toolbox of 

pan-sharpening and for his kind discussion on their 

implementation considerations. The authors would also like to 

thank the Associate Editor and anonymous reviewers for their 

valuable and constructive comments which greatly improved the 

manuscript. 

REFERENCES 

[1] P. M. Atkinson, “Downscaling in remote sensing,” International Journal 

of Applied Earth Observation and Geoinformation, vol. 22, pp. 106–114, 

2013. 

[2] P. Kyriakidis and E.-H. Yoo, “Geostatistical prediction and simulation of 
point values from areal data,” Geographical Analysis, vol. 37, no. 2, pp. 

124–151, 2005. 

[3] P. C. Kyriakidis, “A geostatistical framework for area-to-point spatial 
interpolation,” Geographical Analysis, vol. 36, no. 3, pp. 259–289, 2004. 

[4] P. Goovaerts, “Kriging and semivariogram deconvolution in presence of 

irregular geographical units,” Mathematical Geosciences, vol. 40, no. 1, pp. 
101–128, 2008. 

[5] A. Boucher and P. C. Kyriakidis, “Super-resolution land cover mapping 

with indicator geostatistics,” Remote Sensing of Environment, vol. 104, no. 
3, pp. 264–282, 2006. 

[6] Q. Wang, P. M. Atkinson, W. Shi, “Indicator cokriging-based subpixel 

mapping without prior spatial structure information,” IEEE Transactions 
on Geoscience and Remote Sensing, vol. 53, no. 1, pp. 309–323, 2015. 

[7] M. Bevilacqua, A. Roumy, C. Guillemot, M.-L. Alberi Morel, 

“Single-image super-resolution via linear mapping of interpolated 

self-examples,” IEEE Transactions on Image Processing, vol. 23, no. 12, 

pp. 5334–5347, 2014. 

[8] M. Drusch, et al., “Sentinel-2: ESA’s optical high-resolution mission for 

GMES operational services,” Remote Sensing of Environment, vol. 120, pp. 

25–36, 2012. 

[9] G. Vivone, L. Alparone, J. Chanussot, M. Dalla Mura, A. Garzelli, G. A. 

Licciardi, R. Restaino, and L. Wald, “A critical comparison among 

pansharpening algorithms,” IEEE Transactions on Geoscience and Remote 
Sensing, vol. 53, no. 5, pp. 2565–2586, 2015. 

[10] V. K. Shettigara, “A generalized component substitution technique for 

spatial enhancement of multispectral images using a higher resolution data 
set,” Photogrammetric Engineering and Remote Sensing, vol. 58, no. 5, pp. 

561–567, 1992. 

[11] A. Garzelli, F. Nencini, and L. Capobianco, “Optimal MMSE pan 
sharpening of very high resolution multispectral images,” IEEE 

Transactions on Geoscience and Remote Sensing, vol. 46, no. 1, pp. 228–

236, 2008. 
[12] C. A. Laben, B. V. Brower, “Process for enhancing the spatial resolution of 

multispectral imagery using pan-sharpening,” U.S. Patent 6011875, 2000. 

[13] B. Aiazzi, S. Baronti, and M. Selva, “Improving component substitution 
pansharpening through multivariate regression of MS+Pan data,” IEEE 

Transactions on Geoscience and Remote Sensing, vol. 45, no. 10, pp. 

3230–3239, 2007. 
[14] B. Aiazzi, S. Baronti, F. Lotti, M. Selva, “A comparison between global 

and context-adaptive pansharpening of multispectral images,” IEEE 

Geoscience and Remote Sensing Letters, vol. 6, pp. 302–306, 2009. 
[15] J. Choi, K. Yu, Y. Kim, “A new adaptive component-substitution based 

satellite image fusion by using partial replacement,” IEEE Transactions on 

Geoscience and Remote Sensing, vol. 49, pp. 295–309, 2011. 
[16] P. S. Chavez Jr., S. C. Sides, and J. A. Anderson, “Comparison of three 

different methods to merge multiresolution and multispectral data: Landsat 

TM and SPOT panchromatic,” Photogrammetric Engineering and Remote 
Sensing, vol. 57, no. 3, pp. 295–303, 1991. 

[17] J. G. Liu, “Smoothing filter based intensity modulation: A spectral 

preserve image fusion technique for improving spatial details,” 
International Journal of Remote Sensing, vol. 21, no. 18, pp. 3461–3472, 

2000. 

[18] G. Vivone, R. Restaino, M. Dalla Mura, G. Licciardi, J. Chanussot, 
“Contrast and error-based fusion schemes for multispectral image 

pan-sharpening,” IEEE Geoscience and Remote Sensing Letters, vol. 11, 

pp. 930–934, 2014. 
[19] X. Otazu, M. González-Audícana, O. Fors, and J. Núñez, “Introduction of 

sensor spectral response into image fusion methods. Application to 
wavelet-based methods,” IEEE Transactions on Geoscience and Remote 

Sensing, vol. 43, no. 10, pp. 2376–2385, 2005. 

[20] B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli, M. Selva, “MTF-tailored 
multiscale fusion of high-resolution MS and Pan imagery,” 

Photogrammetric Engineering and Remote Sensing, vol. 72, pp. 591–596, 

2006. 
[21] L. Alparone, L. Wald, J. Chanussot, C. Thomas, P. Gamba, and L. M. 

Bruce, “Comparison of Pansharpening Algorithms: Outcome of the 2006 

GRS-S Data-Fusion Contest,” IEEE Transactions on Geoscience and 
Remote Sensing, vol. 46, no. 10, pp. 3012–3021, 2007. 

[22] B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli, and M. Selva, “An 

MTF-based spectral distortion minimizing model for pan-sharpening of 
very high resolution multispectral images of urban areas,” in Proceedings 

of 2nd GRSS/ISPRS Joint Workshop Remote Sensing Data Fusion URBAN 

Areas, 2003, pp. 90–94. 
[23] Q. Wei, J. Bioucas-Dias, N. Dobigeon, and J. Tourneret, “Hyperspectral 

and multispectral image fusion based on a sparse representation,” IEEE 

Transactions on Geoscience and Remote Sensing, vol. 53, no. 7, pp. 3658–
3668, 2015. 

[24] Y. Wei, Q. Yuan, H. Shen, L. Zhang, “Boosting the accuracy of 

multispectral image pansharpening by learning a deep residual network,” 
IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 10, pp. 1795–

1799, 2017. 

[25] P. Ghamisi, B. Rasti, N. Yokoya, Q. Wang, B. Hofle, L. Bruzzone, F. 
Bovolo, M. Chi, K. Anders, R. Gloaguen, P. M. Atkinson, J. A. 

Benediktsson, “Multisource and multitemporal data fusion in remote 

sensing,” IEEE Geoscience and Remote Sensing Magazine, vol. 7, no. 1, pp. 
6–39, 2019. 

[26] M. Selva, B. Aiazzi, F. Butera, L. Chiarantini, and S. Baronti, 

“Hyper-sharpening: A first approach on SIMGA data,” IEEE Journal of 
Selected Topics in Applied Earth Observations and Remote Sensing, vol. 8, 

no. 6, pp. 3008–3024, 2015. 

[27] L. Wald, T. Ranchin, M. Mangolini, “Fusion of satellite images of different 
spatial resolutions: assessing the quality of resulting images,” 



 

 

12 

Photogrammetric Engineering and Remote Sensing, vol. 63, no. 6, pp. 

691–699, 1997. 

[28] G. M. Foody, D. S. Boyd, M. E. J. Cutler, “Predictive relations of tropical 

forest biomass from Landsat TM data and their transferability between 

regions,” Remote Sensing of Environment, vol. 85, pp. 463– 474, 2003. 

[29] Q. Wang, W. Shi, H. Zhang, “Class allocation for soft-then-hard subpixel 
mapping algorithms with adaptive visiting order of classes,” IEEE 

Geoscience and Remote Sensing Letters, vol. 11, no. 9, pp. 1494–1498, 

2014. 
[30] C. Brunsdon, A. S. Fotheringham, M. E. Charlton, “Geographically 

Weighted Regression: A Method for Exploring Spatial Nonstationarity,” 

Geographical Analysis, vol. 28, no. 4, pp. 281–298, 1996. 
[31] A. S. Fotheringham, M. E. Charlton, C. Brunsdon, “Geographically 

weighted regression: a natural evolution of the expansion method for 

spatial data analysis,” Environmental and Planning A, vol. 30, pp. 1905–
1927, 1998. 

[32] W. Song, H. Jia, J. Huang, Y. Zhang, “A satellite-based geographically 

weighted regression model for regional PM2.5 estimation over the Pearl 
River Delta region in China,” Remote Sensing of Environment, vol. 154, pp. 

1–7, 2014. 

[33] G.M. Foody, “Geographical weighting as a further refinement to regression 
modelling: An example focused on the NDVI–rainfall relationship,” 

Remote Sensing of Environment, vol. 88, pp. 283–293, 2003. 

[34] C. Zhang, W. Li, D. Civco, “Application of geographically weighted 
regression to fill gaps in SLC-off Landsat ETM+ satellite imagery,” 

International Journal of Remote Sensing, vol. 35, no. 22, pp. 7650–7672, 

2014. 
[35] P. M. Atkinson, “Issues of uncertainty in super-resolution mapping and 

their implications for the design of an inter-comparison study,” 

International Journal of Remote Sensing, vol. 30, no. 20, pp. 5293–5308, 
2009. 

[36] R. Restaino, G. Vivone, M. D. Mura, and J. Chanussot, “Fusion of 

multispectral and panchromatic images based on morphological operators,” 
IEEE Transactions on Geoscience and Remote Sensing, vol. 25, no. 6, pp. 

2882–2895, 2016. 

[37] A. Garzelli and F. Nencini, “Hypercomplex quality assessment of 
multi-/hyper-spectral images,” IEEE Transactions on Geoscience and 

Remote Sensing, vol. 6, no. 4, pp. 662–665, 2009. 

[38] L. Alparone, B. Aiazzi, S. Baronti, A. Garzelli, F. Nencini, and M. Selva, 
“Multispectral and panchromatic data fusion assessment without reference,” 

Photogrammetric Engineering and Remote Sensing, vol. 74, no. 2, pp. 
193–200, Feb. 2008. 

[39] F. Palsson, J. R. Sveinsson, M. O. Ulfarsson, J. A. Benediktsson, 

“Quantitative quality evaluation of pansharpened imagery: Consistency 
versus synthesis,” IEEE Transactions on Geoscience and Remote Sensing, 

vol. 54, pp. 1247–1259, 2016. 

[40] L. Zhang, L. Zhang, B. Du, “Deep Learning for Remote Sensing Data: A 
Technical Tutorial on the State of the Art,” IEEE Geoscience and Remote 

Sensing Magazine, vol. 4, no. 2, pp. 22–40, 2016. 

[41] J. Wang, D. G. Brown, D. Hammerling, “Geostatistical inverse modeling 
for super-resolution mapping of continuous spatial processes,” Remote 

Sensing of Environment, vol. 139, pp. 205–215, 2013. 

[42] F. D. van der Meer, “Remote-sensing image analysis and geostatistics,” 
International Journal of Remote Sensing, vol. 33, no. 18, pp. 5644–5676, 

2012. 

[43] B. N. Wenny, D. Helder, J. Hong, L. Leigh, K. J. Thome, D. Reuter, “Pre- 
and post-launch spatial quality of the Landsat 8 Thermal Infrared Sensor,” 

Remote Sensing, vol. 7, pp. 1962–1980, 2015. 

[44] Q. Wang, P. M. Atkinson, “The effect of the point spread function on 
sub-pixel mapping,” Remote Sensing of Environment, vol. 193, pp. 127–

137, 2017. 

[45] B. Tan, et al., “The impact of gridding artifacts on the local spatial 
properties of MODIS data: Implications for validation, compositing, and 

band-to-band registration across resolutions,” Remote Sensing of 

Environment, vol. 105, pp. 98–114, 2006. 
[46] G. Vivone, M. Simoes, M. Dalla Mura, R. Restaino, J. M. Bioucas-Dias, G. 

A. Licciardi, J. Chanussot, “Pansharpening based on semiblind 

deconvolution,” IEEE Transactions on Geoscience and Remote Sensing, 
vol. 53, pp. 1997–2010, 2014. 

 

 
Qunming Wang (M’15) received the Ph.D. degree from The Hong Kong 

Polytechnic University, Hong Kong, in 2015. 

He is now a Professor in College of Surveying and Geo-Informatics, Tongji 
University, Shanghai, China. He was a Lecturer (Assistant Professor) in 

Lancaster Environment Centre, Lancaster University, UK from 2017 to 2018. 

His three-year PhD study was supported by the hyper-competitive Hong Kong 
PhD Fellowship and his PhD thesis was awarded as the outstanding thesis in the 

Faculty. His current research interests focus on remote sensing, image 

processing and geostatistics. He has published over 40 peer-reviewed articles in 
international journals such as Remote Sensing of Environment, IEEE 

Transactions on Geoscience and Remote Sensing and ISPRS Journal of 

Photogrammetry and Remote Sensing. He serves as a reviewer for 30 
international journals, including most of the international journals in remote 

sensing. He is an Associate Editor for Photogrammetric Engineering & Remote 

Sensing and Computers and Geosciences. 

 

 
Wenzhong Shi obtained the PhD degree from University of Osnabrück in 

Vechta, Germany, in 1994. 
He is a Chair Professor in GIS and remote sensing, and the Head of 

Department of Land Surveying and Geo-Informatics, The Hong Kong 

Polytechnic University. His current research interests include GIS and remote 
sensing, uncertainty and spatial data quality control, image processing for high 

resolution satellite images. He has published over 160 SCI papers and 10 books. 

Prof. Shi received the State Natural Science Award from the State Council of 
China in 2007 and The Wang Zhizhuo Award from International Society for 

Photogrammetry and Remote Sensing in 2012. 

 

 
Peter M. Atkinson received the PhD degree from the University of Sheffield 

(NERC CASE award with Rothamsted Experimental Station) in 1990. More 

recently, he received the MBA degree from the University of Southampton in 
2012. 

Peter is Dean of the Faculty of Science and Technology at Lancaster 

University. He was previously Professor of Geography at the University 
Southampton, where he is currently Visiting Professor. He is also Visiting 

Professor at Queen’s University Belfast, UK and at the Chinese Academy of 

Sciences, Beijing, China. Peter previously held the Belle van Zuylen Chair at 

Utrecht University, the Netherlands and is recipient of the Peter Burrough Award 

of the International Spatial Accuracy Research Association. The main focus of 

Peter’s research is in remote sensing, geographical information science and 



 

 

13 

spatial (and space-time) statistics applied to a range of environmental science 

and socio-economic problems. He has published over 270 peer-reviewed articles 

in international scientific journals and around 50 refereed book chapters. He has 

also edited nine journal special issues and eight books. He is Associate Editor for 

Computers and Geosciences and sits on the editorial boards of several further 

journals including Geographical Analysis, Spatial Statistics, the International 

Journal of Applied Earth Observation and Geoinformation, and Environmental 
Informatics. He sits on various international scientific committees. 

 


