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Abstract

Spatially aggregated epidemiological data is nowadays increasingly common because

of ethical concern of data use as well as preservation of patient confidentiality. They

are typically presented either as the count of disease cases or as an average measure-

ment from districts partitioning a study region. In most cases, the partitioning is

based on administrative convenience rather than information about the aetiology of

any disease or public health problem. While inference for spatially aggregated data

commonly make use of model that assumes a spatially discrete variation, we argue

that a spatially continuous model should be considered when there is a scientific jus-

tification for its use, especially when the underlying generating process of the disease

outcome is hypothesised to behave in a spatially continuous manner. In this thesis,

we consider geostatistical methods as a framework that can be used to analyse spa-

tially aggregated data. This thesis is a series of papers, two methodological and one

public health application. In the first methodological paper, we developed a com-

putationally efficient discrete approximation to log-Gaussian Cox process (LGCP)

models for the analysis of spatially aggregated disease count data. We compare the

predictive performance of our modelling approach with LGCP through a simulation

study and an application to primary biliary cirrhosis incidence data in Newcastle-

Upon-Tyne, UK. Our results suggest that when disease risk is assumed to be a spa-

tially continuous process, the proposed approximation to LGCP provides reliable
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estimates of disease risk both on spatially continuous and aggregated scales. In the

second methodological paper, We developed a model-based geostatistical approach

that allows us to model the relationship between the Life expectancy at birth (LEB)

and the index of multiple deprivation (IMD), when these are available over different

partitions of the study region. We found that the effect of IMD on LEB is higher for

males than for females. We show that our proposed model-based geostatistical ap-

proach does not only provide solution to any form of misalignment problem but also

allows for spatially continuous inferences. In the third application paper, we devel-

oped a spatio-temporal model for monthly Chronic Obstructive Pulmonary Disease

(COPD) emergency admissions data in South Cumbria and North Lancashire, UK,

2012-2018. We assess the relative contribution of socio-economic and environmental

variables for forecasting COPD emergency admissions. In addition, we develop an

early warning system that triggers an alarm whenever COPD emergency admissions

exceeds a predefined incidence thresholds. The result of our analysis can potentially

help NHS Morecambe Bay Clinical Commissioning Group stakeholders to define ar-

eas to target early intervention as well as inform resource allocation for healthcare

system so that its limited resources can be used to maximum effect.
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Chapter 1

Introduction

Aggregated epidemiological data is nowadays increasingly common. This is usually

because of ethical concern of data use as well as preserving patient confidentiality.

They are typically presented either as the count of cases or as average measurement

from administrative districts partitioning of the area of study. The partitioning is of

course in most cases based on administrative convenience rather than information

about the aetiology of any disease. For example, in England, various geographies are

used in the production of (health) statistics. The Output Areas (OA) is the lowest

geographical level at which census estimates are provided. Because of confidentiality

purposes, Super Output Areas (SOAs) were created to report official statistics, which

are an aggregation of adjacent OAs. There are two tiers of SOAs, the Lower Layer

Super Output Area (LSOA) which typically contain 4 to 6 OAs with a population

of around 1500 and the Middle Layer Super Output Areas (MSOAs) which contains

on average 7200 people. The caveat is that these SOAs were not designed based on

any epidemiological characteristics.

A key idea of formulating a typical spatial (or spatio-temporal) statistical model
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Chapter 1. Introduction

for most health outcomes is to assume that outcome depends on a range of factors,

some of which are known and some unknown - sometimes termed explained and

unexplained. Therefore modelling the outcome as a linear combination of explained

and unexplained variables. The explained component are measured characteristics,

whilst the unexplained component can be modelled as an unobserved spatially (or

spatio-temporally) varying stochastic process. The unexplained component can be

theoretically modelled either as a spatially continuous variation or spatially discrete

variation - the former is used in geostatistics (Diggle et al., 2007, 2013) specified

through a Gaussian Random Field (GRF) (Abrahamsen, 1997), while the latter is

modelled through the Gaussian Markov Random Field (GMRF), such as conditional

autoregressive (CAR) structure (Besag et al., 1991; Lee and Durbán, 2009; Leroux

et al., 2000). The link between GRFs and GMRFs have been studied by Lindgren

et al. (2011) and Simpson et al. (2012).

In this thesis we address some of the issues related to analysing spatially aggregated

data. In particular, we focus on how the geostatistical methods which are well

established in spatially point referenced data can be adapted to analyse spatially

aggregated data, since most spatially aggregated data is an aggregation of spatially

point referenced data. While inference for spatially aggregated data commonly make

use of model that assumes a spatially discrete variation, we argue that a spatially

continuous model should be considered when there is a scientific justification for

its use, especially when the underlying generating process of the disease outcome is

hypothesised to behave in a spatially continuous manner.

In the next section, we describe the standard geostatistical models, linear geostatisti-

cal model (LGM) and generalised linear geostatistical method (GLGM) for spatially

point referenced data. These methods will be extended for spatially aggregated data
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Chapter 1. Introduction

in the following chapters.

This thesis is a series of papers, two methodological and one applied. In the

first methodological paper, we develop a spatially discrete approximation to Log-

Gaussian Cox process for analysing spatially aggregated count data. In the second

methodological paper, we developed a model-based geostatistical approach that al-

lows us to model the relationship between the Life expectancy at birth (LEB) and

the index of multiple deprivation (IMD), when these are available over different par-

titions of the study region. In the third paper, we developed a spatio-temporal model

for monthly Chronic Obstructive Pulmonary Disease (COPD) emergency admission

in North Lancashire and South Cumbria, UK, 2012 - 2018.

1.1 The Standard Geostatistical Model for Spa-

tially Point Referenced Data

Here we describe the geostatistical methods for modelling spatially point referenced

data, LGM and GLGM.

1.1.1 Linear Geostatistical Model (LGM)

Consider a continuous response variable, Yi, measured at a discrete set of locations,

{xi : i = 1, . . . , n}, where each xi lies within a geographical region of interest, A.

The standard linear geostatistical model for Yi can be written as

Yi = d(xi)>β + S(xi) + Zi (1.1)

where d(xi) is a vector of explanatory variables including environmental and socio-

economic variables with associated regression coefficients β, usually used to explain

Johnson, O.O. page 4



Chapter 1. Introduction

some of the variations in Yi; S(xi) is a spatial stochastic process modelled as zero-

mean Gaussian process, used to account for unmeasured spatially structured risk

factors; and Zi is a zero-mean Gaussian noise sometimes referred to as the nugget

effect used to capture intrinsic random variation owing to measurement error.

By assuming that S(x) is a zero-mean, stationary and isotropic Gaussian process,

the joint distribution of S = (S(x1), . . . , S(xn)) is multivariate Gaussian with zero

mean and covariance Σ, with ij-th entry given as

Σij = Cov{S(xi), S(xj)} = σ2ρ(‖xi − xj‖; θ), (1.2)

where σ2 is the variance, ‖xi−xj‖ is the Euclidean distance between locations xi and

xj and ρ(·; θ) is the isotropic and stationary correlation function of S(x) indexed by

the parameter θ. We shall define ρ(·; θ) and give examples in Section 1.1.3. Finally,

the joint distribution of Z = (Z1, . . . , Zn) is multivariate Gaussian with zero mean

and covariance τ 2
In, where In is an n× n identity matrix and τ 2 is the variance.

1.1.2 Generalised Linear Geostatistical Model (GLGM)

The class of generalised linear geostatistical model is an extension of LGM used for

response variables that are not normally distributed. In epidemiological research,

the most common of this class of model are the Binomial logit-linear and Poisson

log-linear geostatistical model. This class of model have been well studied, see for

example Diggle and Ribeiro (2007). Specifically, extensive research on model-based

geostatistics for binomial data with application in low resource setting can be found

in Diggle and Giorgi (2016).

We retain the meaning of all notations used in the previous section except that

Yi is now a discrete response. We shall assume that conditionally on the random
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effects S(·) and Z, Yi are mutually independent random variables from a family

of the exponential distribution. If Yi is the number of positive response out of mi

individuals sampled in a region Ri, the natural model is Binomial logit-linear model,

and if Yi is the number of disease cases with mi population at risk, the natural model

is Poisson log-linear model. The two following ingredients are then needed to fully

characterize the probabilistic distribution of Yi (McCullagh, 2019).

• The linear predictor is defined as

ηi = d(xi)>β + S(xi) + Zi.

• The link function g(·) such that

E[Yi|ηi] = mig
−1(ηi),

A common choice of g(·) for Poisson model is the logarithm function and for Bino-

mial model is logit function. We shall discuss an extension to spatially aggregated

response data in Chapter 2.

1.1.3 Family of correlation function

The main ingredient of defining a fully parametric geostatistical model is a positive-

definite correlation function ρ(u; θ), where u = ‖x − x′‖, x and x′ are arbitrary

locations and θ = (κ, φ) or θ = φ. The following are the common functions that are

usually used.

1.1.3.1 Matérn family

Matérn family is the most popular and most often used class of correlation function.

This family is named after Matérn (1960) and it is characterised by two parameters,
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θ = (κ, φ):

• κ > 0, the shape (or smoothness) parameter, determines the differentiability

of the process S(x). More specifically, this will be dκe (i.e. the smallest integer

greater than or equal to κ) minus one times differentiable; and

• φ > 0 the range (or scale) parameter, regulates the rate at which the spatial

correlation decays for increasing distance u.

More specifically, its expression is given by

ρ(u; θ) = 1
2κ−1Γ (κ)

(
u

φ

)κ
Kκ

(
u

φ

)
,

where Kκ(·) is the modified Bessel function of the second kind of order κ > 0.

1.1.3.2 Exponential correlation function

ρ(u; θ) = e
−u
φ .

This is a special case of the Matérn family with parameter κ = 1/2. The resulting

process S(x) has sample functions that are not differentiable but are mean-squared

continuous, since ρ(·; θ) is continuous at the origin. It drops asymptotically towards

zero as u −→∞.

1.1.3.3 Gaussian correlation function

ρ(u; θ) = e
−u2
φ .

This is also a special case of the Matérn family with parameter κ −→ ∞. The

resulting process S(x) has sample functions that are infinitely times differentiable.
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1.1.3.4 Spherical correlation function

ρ(u; θ) =


1− 3

2(u/φ) + 1
2(u/φ)3 0 ≤ u ≤ φ

0 u > φ

.

The resulting process S(x) has paths that are not differentiable but are continuous

and it depends on a single unknown scale parameter, φ.

Figure 1.1a shows the Matérn family with different values of κ. Larger values of κ

lead to correlation functions with a larger scale, and thus stronger correlations for

larger distances. Figure 1.1b shows some examples of different correlation curves:

exponential; Gaussian; and Spherical. More examples of correlation functions as

well as its theoretical properties can be found in Wackernagel (2013).

(a) (b)

Figure 1.1: Examples of parametric correlation functions: Fig a: showing the the

Matérn family with different values of κ; Fig b: visualises exponential, Gaussian

and spherical correlation functions.

1.1.4 Spatial Exploratory Analysis

The key starting point of every spatial analysis is exploratory spatial data analysis

(ESDA) as we have in other types of statistical analysis. ESDA methods focus on
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assessing the spatial data for spatial autocorrelation and spatial heterogeneity.

A general approach used in geostatistics is the variogram. Variogram has been well

utilised in classical geostatistical analysis to describe the degree of spatial depen-

dence of a spatial random field or stochastic process S(x). The theoretical semi-

variogram for process W (x) = S(x) + Z is defined as

γ(x, x′) = 1
2var{W (x)−W (x′)}

= 1
2E[{W (x)−W (x′)}2]

= τ 2 + σ2(1− ρ(u; θ)),

for a stationary and isotropic spatial process S(x). Clearly, since ρ(u; θ) is a mono-

tonically decreasing function in u, the variogram is a monotonically increasing func-

tion in u.

In practice, the empirical variogram is used to test for the presence of residual spatial

correlation in the residuals after fitting a non-spatial model to the data. Empirical

variogram helps to describe the spatial dependence in the data and to estimate the

autocorrelation structure of the underlying stochastic process. Let Ŵi denote the

predicted residual. Metheron (1963) defined semivariance function, γ̂(u) as the half

of the average square difference between residuals at points that are separated by

an Euclidean distance u, written algebraically as,

γ̂(u) = 1
2|n(u)|

∑
(p,q)∈n(u)

(
Ŵp − Ŵq

)2
,

where n(u) is the set that contains all the neighbouring pairs at distance u, |n(u)| is

the number of distinct pairs of n(u). A schematic example of a typical variogram is

shown in Figure 1.2 (Johnson, 2016). A rising trend up across u divulges a presence

of spatial variation. To highlight the features: nugget variance τ 2 corresponds to

γ̂(u) at u = 0; sill is the total variance, sum of the nugget variance τ 2 and the signal
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variance σ2 obtained as u −→ ∞; and practical range is the distance at which the

semivariance value achieves 95% of the sill, that is the value of u when ρ̂(u; θ) = 0.05.

Figure 1.2: Schematic representation of a typical variogram, with structural param-

eters indicated.

The next step after constructing a variogram is to establish whether the observed

patterns are or are not compatible with random fluctuations. A simple Monte Carlo

test is used to test for the presence of residual spatial correlation via the following

steps:

1. Randomly permutes the labelling of Ŵi by holding the regions fixed.

2. Compute γ̂(u) in Equation 1.1.4 using the permuted Ŵi.

3. Repeat the steps in 1 and 2 for large samples, say B.

4. Use the resulting B of γ̂(u) to obtain 95% tolerance interval for each distance

bin, under the hypothesis that Ŵi is spatially independent.
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After completing step 4, if the initial γ̂(u) falls outside the 95% tolerance band, then

we conclude that there is evidence against the assumption of spatial independence.

1.1.5 Exceedance Probability

A more natural way to quantify uncertainty is to provide a standard error map but

they usually do not convey much information (Giorgi et al., 2018), especially when

the interest is on providing information on the degree of uncertainty. For example,

in health decision making, when the interest is to reliably identify areas where the

disease risk exceeds or go below a policy-relevant threshold. A more useful way to

convey the meaningful uncertainty in this setting is to use the exceedance probability

(EP) map. Let λ̂(x) be the predicted disease risk at location x, the expression for

the EP is

Pr(λ̂(x) > l|data),

where l is a predefined threshold. In general, values of EP close to 1 indicate that

disease risk is highly likely to be above l, while the values of EP close to zero

indicate that disease risk is highly likely to be below l. Finally, values of EP around

0.5 indicate that disease risk is equally likely to be above or below l, thus implying

a scenario with the highest uncertainty.

1.2 Thesis Structure

In Chapter 2, we proposed an alternative method to analyse spatially aggregated

count data. In this work, we developed spatially discrete approximation to log-

Gaussian Cox process (LGCP) for the analysis of spatially aggregated data. The

methodology extends the LGCP method for analysing spatially aggregated case-
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count data proposed by Li et al. (2012) and Diggle et al. (2013). We consider Yi as

a spatially aggregated case-count data derived from a point process data. We give

an overview of the existing method for modelling spatially aggregated case-count

data including hierarchical Poisson-Gaussian Markov random field model (Besag

et al., 1991) and LGCP models (Diggle et al., 2013; Li et al., 2012). We define

and develop our spatially discrete approximation to the LGCP models, by approx-

imating the conditional log-intensity of an LGCP as piecewise constant by taking

its weighted or simple average over Ri. We carry out parameter estimation for the

model using the Monte Carlo maximum likelihood (MCML) method (Christensen,

2012). We conducted a simulation study to assess the predictive performance of the

proposed approximation in (2.3) when the underlying process is an LGCP model.

We consider the prediction of the incidence λi and the spatially continuous relative

risk, exp{S(x)}. We applied our method to analyse the incidence data on primary

biliary cirrhosis (PBC) in Newcastle-Upon-Tyne, UK.

In Chapter 3, we proposed a novel joint geostatistical approach to model the rela-

tionship between two spatially misaligned dataset. We considered an application to

life expectancy at birth and the index of multiple deprivation in Liverpool, UK. We

estimate the parameters of the model using the Maximum Likelihood (ML) method.

We carry out a spatially continuous prediction of male and female LEB in Liverpool.

We used Non-exceedance probability (NEP) map to identify areas in the Liverpool

council district whose LEB is highly likely to fall below a threshold l, by setting l

to be England-wide average years for males (l = 79.2 years) and females (l = 82.9

years). Finally, we developed an online web application that allows the user to

dynamically change the threshold.

In Chapter 4, we analyse the monthly COPD emergency admission dataset. Predict
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the incidence of monthly COPD emergency admission for 12 months ranging from

April 2017- March 2018. We develop an early warning system that triggers an alarm

whenever COPD emergency admissions signal the likely exceedance of predefined

incidence thresholds.

Chapter 5 is a concluding general discussion where we present a summary of the main

contributions, the implications of our results on the analysis of COPD emergency

admission and explore possible future extensions of the developed methodologies in

the previous chapters.
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Summary

In this paper, we develop a computationally efficient discrete approxima-

tion to log-Gaussian Cox process (LGCP) models for the analysis of spatially

aggregated disease count data. Our approach overcomes an inherent limita-

tion of spatial models based on Markov structures, namely that each such

model is tied to a specific partition of the study area, and allows for spatially

continuous prediction. We compare the predictive performance of our mod-

elling approach with LGCP through a simulation study and an application

to primary biliary cirrhosis incidence data in Newcastle-Upon-Tyne, UK. Our

results suggest that when disease risk is assumed to be a spatially continuous

process, the proposed approximation to LGCP provides reliable estimates of

disease risk both on spatially continuous and aggregated scales. The proposed

methodology is implemented in the open-source R package SDALGCP.

Keywords: disease mapping; geostatistics; log-Gaussian Cox process; Monte

Carlo maximum likelihood.

Johnson, O.O. page 17



Chapter 2. Spatially Discrete Approximation to Log-Gaussian Cox Processes

2.1 Introduction

In this paper our concern is to make inference on a spatially continuous disease risk

surface using aggregated counts of reported disease cases, say yi, over regions Ri

forming a partition of a geographical area of interest A. In this context, information

on risk factors and on the population at risk may also be available, possibly at

different spatial scales. We shall denote these by d(x) and m(x), respectively, when

available on a spatially continuous scale, and by di and mi when they are spatially

aggregated.

Existing methods from small area estimation (SAE) only allow spatial prediction at

the aggregated level of the regions Ri and are usually based on a Gaussian Markov

random field (GMRF) structure. (Besag, 1974; Rue and Held, 2005) Typically, non-

zero elements of the precision matrix of a GMRF are restricted to contiguous pairs of

the Ri. Hence, the formulation and interpretation of a GMRF is tied to the specific

partition of A, which will usually have been drawn up for administrative, historical,

or other reasons unrelated to the disease aetiology. The use of such models also

becomes impractical when the spatial units Ri change over time. Wall (2004) points

out that the use of GMRFs is especially problematic when dealing with irregular

geometries, which can induce counter-intuitive forms for the correlation structure

between variables associated with the Ri.

The geostatistical paradigm, unlike SAE, treats disease risk as a spatially continuous

phenomenon irrespective of the data-format. Diggle et al. (2013) argue that the

analysis of spatially aggregated counts can be regarded as a special case of the class

of geostatistical problems and propose to model the yi as an aggregated realisation

Johnson, O.O. page 18



Chapter 2. Spatially Discrete Approximation to Log-Gaussian Cox Processes

of a Log-Gaussian Cox process (LGCP). Unlike GMRFs, LGCPs allow for prediction

of disease risk at any spatial scale, while avoiding the ecological fallacy (Wakefield

and Shaddick, 2006). However, fitting of LGCP models using the aggregated counts

yi is computationally demanding due to the iterative imputation of the unobserved

locations for each reported case within a region Ri (Li et al., 2012).

In this paper, our objective is to develop a computationally efficient approximation

to LGCPs in order to predict disease risk at any desired spatial scale. We argue

that this provides a more realistic alternative to GMRF models when LGCPs are

not computationally feasible, and can also be used as an exploratory tool in order

to inform more complex modelling approaches based on LGCPs.

In Section 2.2 of the paper, we review existing methods for modelling spatially aggre-

gated disease counts. In Section 2.3, we develop a computationally efficient spatially

discrete approximation to LGCP models. In Section 2.4 we carry out a simulation

study to investigate the predictive performance of the proposed approximation and

compare this with an exact fitting algorithm for LGCP models. In Section 2.5 we

show an application of the method to a data-set on primary biliary cirrhosis (PBC)

incidence in Newcastle, UK. Section 2.6 is a concluding discussion on the advantages

and limitations of the proposed approach.

The method has been implemented in the open-source R package SDALGCP (Johnson

et al., 2018), available from the Comprehensive R Network Archive. The R code for

reproducing the results of Section 2.5 is available as supplementary material.
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2.2 Existing methods for modelling spatially ag-

gregated disease count data

2.2.1 Gaussian Markov random field models

Let Yi denote the reported disease count in region Ri. Conditionally on a zero-mean

Gaussian process S = (S1, . . . , Sn), assume that the Yi are mutually independent

Poisson random variables with expectations

λi = mi exp{d>i β + Si}, i = 1, . . . , n (2.1)

where β is a vector of regression coefficients and mi is the population count or a stan-

dardised expectation of the number of cases, taking into account the demographics

of the population in subregion Ri but assuming that risk is otherwise spatially ho-

mogeneous. Spatially discrete models are then developed by specifying the precision

matrix for the Gaussian process S. Here, we focus on the two most commonly used

formulations for S, namely the conditional autoregressive (CAR) (Leroux et al.,

2000) and intrinsic conditional autoregressive (ICAR) (Besag et al., 1991) models.

Let i ∼ j be a shorthand notation for “Ri and Rj are neighbours”. A CAR model

then assumes that

Si|S−i ∼ N

ρc∑
j∼i

cijSj, τ
2
i

 , (2.2)

where S−i = {Sj : j 6= i}, ρc is the spatial dependence parameter and cij are known

quantities such that cij 6= 0 if and only if j ∼ i and j 6= i. It follows from Brook’s

Lemma (Brood, 1964) and the Hammersley-Clifford Theorem (Besag, 1974) that

the joint distribution of S is a multivariate zero-mean Gaussian distribution with
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covariance matrix

(I − ρcC)−1D̃, (2.3)

where D̃ = {τ 2
1 , . . . , τ

2
n}, while the specification of C is generally tied to the specific

arrangement of the partition of the region of interest. The most common approach is

to set cij = 1 if j ∼ i and 0 otherwise. The matrix in (2.3) is then a valid covariance

matrix if ξ−1
max < ρc < ξ−1

min (Cressie, 1993, pg. 472), where ξmin and ξmax are the

minimum and maximum eigenvalues of C, respectively. Scaling of the matrix C so

as to obtain a weighted average of the Sj in (2.2) also implies that −1 < ρc < 1.

The ICAR model is a special case of the CAR model when ρc = 1 in (2.2). Al-

though this leads to an improper distribution for S because of the singularity of its

covariance matrix, the associated conditional distribution of S given Y is proper.

2.2.2 Log-Gaussian Cox process models

A spatial point process is a stochastic mechanism that generates a countable set of

events xi ∈ R2. The class of inhomogeneous Poisson processes with intensity λ(x)

is defined by the following postulates.

1. The number of events, N(A), in any planar region A ⊂ R2 follows a Poisson

distribution with mean
∫
A λ(x)dx.

2. Conditionally on N(A), each event in A is an independent random sample

from a distribution on A with probability density function proportional to

λ(x).

A Cox process (Cox, 1955) is defined by a non-negative valued stochastic process

Λ(x) such that, conditional on a realisation of Λ(x), the process is an inhomogenous

Poisson process with intensity Λ(x). If we assume that log{Λ(x)} = S(x) is a
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Gaussian process, we obtain the log-Gaussian Cox process (LGCP); for more details

on the theoretical properties of LGCPs, see Møller et al. (1998).

Diggle et al. (2013) develop a modelling framework for aggregated disease count

data using LGCPs. They assume that, conditionally on S(x), the Yi are mutually

independent Poisson variables with means

∫
Ri
m(x) exp{d(x)>β + S(x)} dx, (2.4)

where d(x) is a vector of covariates at location x with associated regression coeffi-

cients β.

A first notable difference between (2.1) and (2.4) is that the latter uses spatially con-

tinuous information on the distribution of the expected cases, m(x), hence, unlike

(2.1), avoids the questionable assumption of a homogeneous distribution of the pop-

ulation at risk within Ri. However, population density is often only available in the

form of small-area population counts, implying a piece-wise constant surface m(x).

Note, however, that modelled spatially continuous maps for population density have

been made freely available; see, for example, sedac.ciesin.columbia.edu/data/collection/gpw-v4.

Furthermore, unlike the spatially discrete models described in the previous section,

LGCP is not tied to any particular partition of the area of interest and therefore

provides a route to a solution to the problem of combining information at multiple

spatial scales. However, this is offset by a substantial increase in the computational

burden arising from the need to impute the unobserved locations for each of the

reported cases within each of the Ri, i = 1, . . . , n (Li et al., 2012). In the next

section, we circumvent this issue by proposing a spatially discrete approximation to

S(x) which allows to model the counts yi as the realisation of a Poisson log-linear

mixed model.
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2.3 A spatially discrete approximation to Log-Gaussian

Cox processes

Let wi(x) be a positive function with domain Ri, such that
∫
Ri wi(x) dx = 1. Using

the same notation as in Section 2.2.2, we approximate the conditional log-intensity

of an LGCP as piecewise constant by taking its weighted average over Ri to give

log{Λ(x)} ≈
∫
Ri
wi(x)

[
d(x)>β∗ + S∗(x)

]
dx

=
∫
Ri
wi(x) d(x)>β∗ dx+

∫
Ri
wi(x) S∗(x) dx

= d>i β
∗ + S∗i , x ∈ Ri, (2.5)

where β∗ is a vector of regression coefficients for the aggregate explanatory variables

di and S∗(x) is a Gaussian process. The rationale for using the weighting function

wi(x) is to account for the potential non-homogeneous distribution of disease cases

within a region Ri. For example, a larger number of cases may concentrate in more

densely populated areas, thus a natural choice for wi(x) would be to set this equal to

m(x)/mi with mi =
∫
Rim(x)dx, if m(x) is available. If m(x) is instead unavailable,

a pragmatic approach would be to set wi(x) = 1/|Ri|.

Following from (2.5), we obtain the following approximation for the conditional

mean of the counts Yi

λi =
∫
Ri
m(x)Λ(x) dx ≈

∫
Ri
m(x) exp

{
d>i β

∗ + S∗i
}
dx

= mi exp{d>i β∗ + S∗i }

= mi exp{ηi}

= µi. (2.6)

The joint distribution of S∗ = (S∗1 , . . . , S∗n) is multivariate Gaussian with zero mean
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and covariance function

Cov{S∗i , S∗j } = σ2
∫
Ri

∫
Rj
wi(x)wj(x′) ρ(‖x− x′‖;φ) dx dx′, (2.7)

where ‖ · ‖ is the Euclidean distance and ρ(·;φ) is the isotropic and stationary

covariance function of S∗(x) indexed by the parameter φ. Hence, the resulting

model (2.6) falls under the class of generalized linear mixed models. Also, note that

the variance of S∗i depends on the size and shape of Ri, with larger regions leading

to smaller variances.

We now provide further details on the computation of the covariance function in

(2.7). Among the class of isotropic and stationary covariance functions for S∗(x)

in (2.6), one of the most commonly used is the Matérn covariance function,(Stein,

2012) which has expression

Cov{S∗(x), S∗(x′)} = σ2

2κ−1Γ (κ)

(
u

φ

)κ
Kκ

(
u

φ

)
, (2.8)

where u = ‖x − x′‖ is the Euclidean distance between any two locations x and

x′, σ2 is the variance, φ is a scale parameter that regulates the rate at which the

spatial correlation decays for increasing distance u, κ is the shape parameter that

determines the differentiability of the process S and Kκ(·) is the modified Bessel

function of the second kind of order κ > 0. Estimating κ reliably requires a large

amount of densely sampled data, which in this context is not available. As shown

by Zhang (2004), not all of the three parameters σ2, φ and κ can be consistently

estimated under in-fill asymptotics, and in practice this translates to κ often being

poorly identified. This issue is likely to be further exacerbated in this context. As

a pragmatic approach, we then set κ = 0.5 which reduces (2.8) to

Cov{S∗(x), S∗(x′)} = σ2 exp{−u/φ}
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corresponding to a mean-square continuous process. However, in our application,

we tried κ = 1.5 and κ = 2.5 and it gives similar prediction.

We approximate (2.7) as a discrete sum over Li and Lj randomly chosen points in

Ri and Rj to give
∫
Ri

∫
Rj
wi(x)wj(x′) ρ(‖x− x′‖;φ) dx dx′ ≈

∑Li
k=1

∑Lj
k′=1 wi(xk)wj(xk′) ρ(‖xk − xk′‖;φ)∑Li

k=1
∑Lj
k′=1 wi(xk)wj(xk′)

, (2.9)

To attain a good spatial coverage of Ri and Rj, we propose to draw each of the

xk and xk′ in the above equation using a class of inhibition processes (Diggle, 2013,

pp. 110-116) which combine simple sequential inhibition with rejection sampling.

More specifically, we proceed through the following steps.

1. Compute wmax = maxx∈Ri wi(x).

2. Generate xprop over Ri from a homogeneous Poisson process with intensity

wmax.

3. Compute p(xprop) = wi(xprop)/wmax.

4. Generate a sample u from the uniform distribution on (0, 1).

5. If k = 1, set x1 = xprop if u ≤ p(xprop); for k > 1 and given {xj : j =

1, . . . , k − 1}, set xk = xprop if u ≤ p(xprop) and xprop falls at the intersection

of Ri and {x ∈ Ri : ‖x− xj‖ > δ(1− w(xj)/wmax)}. Otherwise, reject xprop.

6. Repeat 2 to 5, until k = Li.

To identify a suitable value for Li (the total number of generated points within Ri),

a possible solution is to use the packing density for a sequential inhibitory point

process given by

γ = Liπδ
2

4|Ri|
, (2.10)
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where δ is the minimum permissible distance between points. The maximum possi-

ble value for γ is obtained by close-packed discs whose centres form an equilateral

triangular lattice with sides of length δ = π/
√

12. Through a simulation study,

Tanemura (1979) suggested to set γ = 0.55 in order to achieve good spatial cover-

age in a relatively small number of iterations. Once γ and δ are fixed, we can then

obtain Li through equation (2.10).

An alternative solution is to leave choose γ as a function of φ using the following

adaptive algorithm.

1. For a given φ, initialize a batch size k and a relative tolerance ε;

2. Locate k quadrature points with packing intensity γ(k) = kπδ2/4|Ri|, evaluate

the integral in (2.9) and denote its value as Iold;

3. Add k points using a packing intensity γ(k)/2, re-evaluate the integral and

denote its value as Inew;

4. If Inew = Iold, stop the algorithm. Otherwise, set Inew = Iold, add k points

with γ(k)/3 and repeat until |Iold − Inew| < ε|Inew|.

Since φ is almost always unknown, the adaptive algorithm becomes more computa-

tionally demanding, especially in the case of a large number of regions in the study

domain and for small values of φ which require a finer grid for a satisfactory approx-

imation of (2.7). When fitting the model in (2.6) (see next section for more details),

our recommendation is to use the non-adaptive algorithm first, in order to locate the

likely value of φ, and then to run a final estimation using the adaptive algorithm. In

the application in Section 2.5, the adaptive algorithm increases the elapsed time by

about 10 minutes (592 seconds) on a laptop with 7.6GiB memory and 2.40GHz× 4

processor. Furthermore, in order to reduce the computational burden, we propose
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to discretise φ over a finite set of values and pre-compute the covariance matrix as

defined by (2.9) for each of the pre-defined values. To obtain a 95% confidence inter-

val for φ, we then compute the profile likelihood over the discrete set and interpolate

it using a natural cubic spline. In our experience, the fineness of the discretisation

does not have tangible effects on the spatial predictions but, instead, directly affects

the goodness of the numerical approximation of the 95% confidence interval based

on the profile likelihood.

2.3.1 Monte Carlo maximum likelihood

We carry out parameter estimation for the model in (2.6) using the Monte Carlo

maximum likelihood (MCML) method (Christensen, 2012).

Let f(·) be a shorthand notation for “the density function of ·”. Let y> = (y1, . . . , yn)

and linear predictor η> = (η1, . . . , ηn); it then follows that conditionally on S∗ =

(S∗1 , . . . , S∗n)>, the joint distribution of Y is

f(y|η) =
n∏
i=1

f(yi|ηi),

where

f(yi|ηi) ∝ exp{yi log µi − µi}.

Let ψ = (β, σ2, φ) denote the vector of the model parameters, then the likelihood

function for ψ is obtained by integrating out S∗, i.e.

L(ψ) =
∫
Rn
f(y|η) f(η;ψ) dη. (2.11)

In (2.11) f(η;ψ) is a multivariate Gaussian distribution function with mean Dβ,

where D denotes a matrix of explanatory variables, and covariance matrix Σ, whose

(i, j)-th entry is given by (2.7). To reduce the computational burden accrued from

Johnson, O.O. page 27



Chapter 2. Spatially Discrete Approximation to Log-Gaussian Cox Processes

the numerical approximation (2.9), we restrict the maximization of (2.11) to a finite

set of predefined values for φ and, for each of these, pre-compute the covariance

matrix Σ together with its inverse, determinant and Cholesky decomposition.

Since the high-dimensional integral in (2.11) cannot be solved analytically, we use

Monte Carlo methods for the approximation of the likelihood. Let ψ0 denote our

best guess of ψ. We re-write (2.11) as

L(ψ) ∝ Eη|y

[
f(η;ψ)
f(η;ψ0)

]
, (2.12)

where the expectation E is taken with respect to the conditional distribution of η

given y with parameters vector ψ0. We provide the proof of this in Appendix A.1

of the supplementary material.

To generateN samples, say η(j), from the conditional distribution of η given y, we use

a Monte Carlo Markov chain (MCMC) algorithm implemented in the Laplace.sampling.MCML

function in the PrevMap package(Giorgi and Diggle, 2017). This function uses a

Metropolis-adjusted Langevin MCMC algorithm to update the standardised vector

of random effects, η̃ = Σ̂−
1
2 (η − η̂), where η̂ and Σ̂ are the mode and the inverse

of the negative Hessian of f(η;ψ0) at η̂. We can then approximate the likelihood

function in (2.12) as

L(ψ) ≈ LN(ψ) = 1
N

N∑
j=1

f(η(j);ψ)
f(η(j);ψ0) . (2.13)

As N → ∞, in the above equation, LN(ψ) converges to L(ψ). Geyer (1994, 1996);

Geyer and Thompson (1992)

Finally, we maximize (5) using a constrained quasi-Newton optimization algorithm,

implemented in the nlminb function in the R software environment, by providing

analytical expressions for the first and second derivatives of (5) with respect to ψ.
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If ψ̂N denote the resulting MCML estimate, we then set ψ0 = ψ̂N and repeat the

previous steps until convergence.

2.3.2 Continuous spatial prediction

We now consider the problem of carrying out spatial prediction of S∗(x) at a pre-

defined location x within the study area A. Using the same notation as in the

previous section, we first note that

f(S∗(x)|y) =
∫
Rn
f(η, S∗(x)|y) dη

=
∫
Rn
f(η|y)f(S∗(x)|η, y) dη

=
∫
Rn
f(η|y)f(S∗(x)|η) dη. (2.14)

Hence, we sample from f(S∗(x)|y) using the following two-step procedure: (1) draw

samples η(j), for j = 1, . . . , N from f(η|y) using the MCMC algorithm described in

the previous section; (2) for each η(j), for j = 1, . . . , N simulate from f(S∗(x)|η(j)), a

Gaussian distribution with mean µ∗(x) = c(x)>Σ−1(η(j)−Dβ) and variance v2(x) =

σ2 − c(x)>Σ−1c(x), where c(x)> = (c1(x), . . . , cn(x)), ci(x) = σ2 ∫
Ri w(x)ρ(‖x −

x′‖) dx′, and we use (2.9) to approximate the integral. The resulting samples from

f(η|y) can then be used to compute non-linear properties of S∗(x) and to summarise

these using, for example, predictive means and standard errors.

2.4 Simulation Study

We now conduct a simulation study to assess the predictive performance of the

proposed approximation in (2.3) when the underlying process is an LGCP model.

We simulate B = 1, 000 data-set of counts using the administrative boundaries of
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the lower layer super output areas (LSOAs) in Newcastle-Upon-Tyne, UK, as in the

application of Section 2.5. We specify the offsets m(x) using population density

estimates from the OpenPopGrid database (Murdock et al., 2015) and simulate

the locations of the events using an inhomogeneous Poisson process with intensity

m(x) exp{S(x)}. We define three scenarios by setting the standard deviation of the

Gaussian random field S(x) to σ = 0.706 and let φ (whose unit of measure is metres)

vary over the set {100, 800, 1500}, which correspond to a case of small, medium

and large spatial correlation, respectively. The value of the standard deviation

corresponds to the posterior mean obtained from the fitted LGCP in the application

to primary biliary cirrhosis data described in the next section. Finally, for each of the

1, 000 simulated data-sets of aggregated counts at LSOA level, we fit the following

models.

• LGCP. We use a Bayesian data augmentation technique implemented in the

lgcp package (Taylor et al., 2015). We overlay a computational grid at a

spacing of of 300 × 300 metres onto the area of interest and fit the model in

(2.4). We run 3,100,000 iterations of the MCMC algorithm with a burn-in of

100,000 samples and then retain every 300-th sample.

• Spatially discrete approximation (SDA) to LGCP. We fit the approximation

in (2.3) using a population weighted average (SDA I, with wi(x) = m(x)/mi)

and simple average (SDA II, with wi(x) = 1/|Ri|) of the log-intensity. For

both, we use the MCML method described in Section 2.3.1 and run 110,000

iterations of the MCMC algorithm with a burn-in of 10,000 samples and then

retain every 10-th sample.

We summarise the results from the simulation study through the bias, root-mean-

square-error (RMSE), width of the predictive interval (WPI) and the 95% coverage
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probability (CP) for the incidence at LSOA level, λi, and for the spatially continuous

relative risk, exp{S(x)}. Let λ(j)
i denote the true simulated incidence for Ri at the

j-th simulation; hence

BIAS = 1
nB

n∑
i=1

B∑
j=1

(λ̂(j)
i − λ

(j)
i ),

RMSE =

√√√√√ 1
nB

n∑
i=1

B∑
j=1

(λ̂(j)
i − λ

(j)
i )2,

WPI = 1
nB

n∑
i=1

B∑
j=1

(PI(j)
0.95,U − PI

(j)
0.95,L),

CP = 1
nB

n∑
i=1

B∑
j=1

I(λ(j)
i ∈ PI

(j)
0.95),

where λ̂(j)
i is the mean of the predictive distribution for λ(j)

i , I(λ(j)
i ∈ PI

(j)
0.95) is an

indicator function that takes value 1 if λ(j)
i falls inside the 95% prediction interval

and 0 otherwise, and PI(j)
0.95,U and PI(j)

0.95,L are the upper and lower limits of the 95%

prediction interval, respectively. Similarly, we compute the three indices for the

relative risk exp{S(x)} by averaging each of these over the regular grid at a spacing

of 300 metres covering the whole of Newcastle-Upon-Tyne, UK.

Table 2.1 reports the results for the prediction of λi, the incidence at LSOA level.

We observe that SDA I and II have a slightly lower bias and RMSE than LGCP in all

three scenarios, with SDA I having the best performance. The coverage probability

is close to the 95% nominal level and the WPI is comparable for all three models.

The results for the spatially continuous relative risk, exp{S(x)}, are shown in Table

2.2. LGCP has the lowest bias and RMSE followed by SDA I in all three scenarios,

with larger differences for φ = 800 and φ = 1500. Both SDA I and II are more

conservative than LGCP and provide prediction intervals with a larger coverage

than the nominal level, as the result of a large RMSE. We also observe that the use
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of the population weighted average in SDA I leads to a tangible reduction in RMSE

and bias with respect to SDA II.

Table 2.1: Average bias, root-mean-square-error (RMSE), width of the 95% predic-

tion interval (WPI) and the 95% coverage probability (CP) for the LSOA incidence,

λi, from the simulation study of Section 2.4.

φ = 100 φ = 800 φ = 1500

SDA I SDA II LGCP SDA I SDA II LGCP SDA I SDA II LGCP

Bias -0.006 -0.007 -0.009 -0.002 -0.003 -0.004 -0.008 -0.008 -0.011

RMSE 0.020 0.021 0.022 0.003 0.004 0.006 0.027 0.029 0.030

WPI 0.015 0.016 0.017 0.002 0.003 0.004 0.026 0.028 0.028

95%CP 0.940 0.942 0.948 0.942 0.943 0.952 0.943 0.944 0.945

Table 2.2: Average bias, root-mean-square-error (RMSE), width of the 95% pre-

diction interval (WPI) and the 95% coverage probability (CP) for the spatially

continuous relative risk, exp{S(x)}, from the simulation study of Section 2.4.

φ = 100 φ = 825 φ = 1500

SDA I SDA II LGCP SDA I SDA II LGCP SDA I SDA II LGCP

Bias -0.575 -0.582 -0.566 0.842 0.965 -0.108 0.299 0.316 0.227

RMSE 2.590 2.800 0.045 0.439 0.531 0.005 2.070 2.260 0.002

WPI 2.525 2.739 0.564 0.719 0.806 0.108 2.048 2.238 0.227

95%CP 0.988 0.990 0.940 0.979 0.983 0.948 0.975 0.982 0.942
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2.5 Application: mapping of primary biliary cir-

rhosis risk

We analyse incidence data on primary biliary cirrhosis (PBC) in Newcastle-Upon-

Tyne, UK, obtained from the original study carried out by Prince et al. (2001);

the data-set is freely available from the lgcp R package. The data consist of geo-

referenced cases of definite or probable PBC between 1987 and 1994. The objective

of this analysis is to quantify the difference in the predictive inferences between

the gold-standard LGCP model and the proposed spatially discrete approximation

(or SDA), on PBC incidence at LSOA level and the spatially continuous relative

risk surface. In the case of SDA, we fit the population weighted (SDA I) and

simple average (SDA II) versions described in the previous section. We also consider

the exponential variogram (EV) model proposed by Wall (2004) consisting of a

geostatistical Poisson model for the counts whose spatial structure is defined using

the centroids of each LSOA. Finally, we fit the Besag et al. (1991) (BYM) model, one

of most commonly used approaches in small area estimation, with linear predictor

log λi = d>i β
∗ + Si + Zi

where Si is a zero-mean intrinsically autoregressive process with variance σ2 and Zi

is Gaussian noise with variance τ 2.

In all five models, we use the index of multiple deprivation (IMD) as a covariate of

the linear predictor. The IMD is publicly available from the UK Government online

archives (webarchive.nationalarchives.gov.uk). The regression coefficients for

the IMD are denoted by βi in the LGCP model and by β∗i in the BYM, EV and

SDA models, with i = 0 corresponding to the intercept and i = 1 the effect of IMD.
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For the SDA models, we run 110,000 iterations of the MCMC algorithm with a burn-

in of 10,000 samples, and then retain every 10-th sample. We discretise φ using 100

equally spaced values between 50 and 2000 meters.

For the LGCP model, we specify independent priors as follows: log σ ∼ N(log 1, 0.15),

log φ ∼ N(log 500, 2) and (β0, . . . , β7) ∼MVN(0, 106I). We run 3,100,000 iterations

of the MCMC algorithm with a burn-in of 100,000 samples and retain every 3000-th

sample so as to obtain a set of 1,000 weakly dependent samples.

Fitting of the BYM model using CARBayes (Lee, 2013) is carried out by iterating the

MCMC algorithm 1,100,000 times with a burn-in of 100,000 samples and retaining

every 100-th sample.

Finally, for the EV model which fit using the spBayes (Finley et al., 2007) R package,

we specify an conjugate inverse-Gamma prior on the variance parameter σ2 with

shape parameter 1 and scale parameter 2. The spatial scale parameter φ is assigned

a uniform prior in the interval [50, 2500]. For the regression coefficients β, we use a

flat prior. We run 1,100,000 iterations of the MCMC algorithm with a burn-in of

100,000 samples and retain every 40-th sample.

A conjugate inverse-gamma prior was specified for the variance parameter σ. Gen-

erally, conjugate priors have appealing computational properties and for this reason

it is widely used in practice. Also, we used a weakly informative prior for β because

it allows the likelihood to dominate if there is a reasonably large information in the

data. No formal sensitivity analysis was done on the prior, however, through the

simulation study in section 2.4, we demonstrated that the models have a good cov-

erage probability. Meaning that the posterior distribution is not strongly influenced

by our choice of prior.
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Trace-plots and correlograms are used to assess convergence of the MCMC algo-

rithms in each of the fitted models. These are reported in the Appendix, from

section A.2 to A.5, and all indicate a good mixing of the resulting MCMC samples.

Note that we run a larger MCMC run for LGCP model because the target is high

dimensional as there are 8196 parameters to estimate.

Tables 2.3 reports the point and interval estimates for the parameters of each of the

fitted models. We observe that the differences amongst the point estimates of the

regression coefficients from the five models are small.

Figure 2.1 shows a map of the estimated PBC incidence at LSOA level from the

five models. The spatial spatial pattern estimated by each of these is comparable,

as indicated by the scatter plots of Figure 2.3. The same consideration holds for

the predictive standard errors (Figures 2.4 and 2.2). More specifically, the estimated

incidence from the LGCP model has a correlation of about 0.7 with the other models,

expect the BYM model for which the correlation is about 0.6. The good performance

of the EV model can be explained by the fact that, in this scenario, the size of most

of the LSOAs is small relative to the range of the spatial correlation, hence the use

of the centroid becomes less problematic.

Figure 2.5 shows the map of the estimated continuous relative risk surface exp{S(x)}

over a 300×300 meters regular grid covering the whole of the study area and Figure

2.6 shows its standard error. The scatter plots (Figures 2.7 and 2.8) indicate that

the point estimates from the LGCP and the SDA approach are strongly similar,

with a correlation of 0.862 between SDA I and LGCP and of 0.884 between SDA

II and LGCP. However, we also observe that the standard errors from SDA, both I

and II, are larger than those from LGCP. This is consistent with our results from

the simulation study of the previous section.

Johnson, O.O. page 35



Chapter 2. Spatially Discrete Approximation to Log-Gaussian Cox Processes

2.6 Discussion

In this article we have developed a spatially discrete approximation (SDA) to log-

Gaussian Cox process (LGCP) models in order to carry out spatial prediction of

disease risk at any desired spatial scale using spatially aggregated disease count

data.

As variation in disease risk occurs in a spatial continuum irrespective of the format

in which the data are available, we consider the LGCP framework to be a natural

statistical paradigm for modelling aggregated disease count data. However, when

computational constraints make the fitting of an LGCP infeasible, we argue that

SDA provides a computationally efficient solution while respecting the spatially con-

tinuous nature of disease risk. SDA also overcomes some of the limitations inherent

to other spatially discrete models, such as CAR models. In addition to providing

spatially continuous predictions, SDAs can also deal with the issue of changing ad-

ministrative boundaries over time and allow incorporation of covariates available at

any spatial scale.

Kelsall and Wakefield (2002) developed a similar approach to the proposed SDA for

modelling count data available at areal level. Specifically, by assuming an intercept-

only model, they approximate (2.4) using a multivariate log-Gaussian distribution

with mean

E[λi] = exp{β0 + σ2/2}

and covariance

Cov{λi, λj} = exp{β0 + σ2/2} ×[∫
Ri

∫
Rj
wi(x)wj(x′) exp{σ2ρ(‖x− x′‖;φ)} dx dx′ − 1

]
.
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Table 2.3: Point estimates and 95% confidence/credible intervals (CI) for the model pa-

rameters of the spatially discrete approximation to log-Gaussian Cox Process (LGCP)

using a population-weighted log-intensity average (SDA I) and a simple average (SDA II),

the exponential variogram (EV) model, Besag-York-Mollié (BYM) model and the LGCP

model.

Model Parameter Estimate 95% CI

SDA I σ2 1.043 (0.907, 1.180)

φ 742.857 (453.153, 1005.405)

β∗0 -8.080 (-8.248, -7.912)

β∗1 0.008 (0.004, 0.011)

SDA II σ2 1.020 (0.898, 1.142)

φ 857.143 (489.590 1037.638)

β∗0 -7.876 (-8.029, -7.722)

β∗1 0.006 (0.002, 0.010)

EV σ2 0.316 (0.246, 0.369)

φ 525.570 (367.719, 949.950)

β∗0 -8.069 (-8.177, -7.957)

β∗1 0.009 (0.006, 0.011)

BYM τ 2 0.108 (0.012, 0.470)

ν2 0.023 (0.003, 0.173)

β∗0 -7.917 (-8.167, -7.694)

β∗1 0.007 (0.001, 0.014)

LGCP σ2 0.479 (0.237, 0.914)

φ 1163.877 (528.618, 1967.756)

β0 -19.333 (-19.738, -19.013)

β1 0.008 (0.001, 0.015)
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Figure 2.1: Maps of the estimated primary biliary cirrhosis (PBC) incidence in each

lower layer super output area (LSOA) of Newcastle-Upon-Tyne from the four fitted

models in Section 2.5.
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Figure 2.2: Maps of the standard error of the estimated primary biliary cirrhosis

(PBC) incidence in each lower layer super output area (LSOA) of Newcastle-Upon-

Tyne from the five fitted models in Section 2.5.
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Figure 2.3: The lower and upper off-diagonal panels are scatter plots and correla-

tion coefficients of the estimated primary biliary cirrhosis (PBC) incidence in the

lower layer super output areas (LSOA) of Newcastle-Upon-Tyne for each pair of the

fitted models in Section 2.5. The diagonal panels show smoothed histograms of the

estimated PBC incidence from each model.
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Figure 2.4: The lower and upper off-diagonal panels are scatter plots and correlation

coefficients of the standard errors of primary biliary cirrhosis (PBC) incidence in the

lower layer super output areas (LSOA) of Newcastle-Upon-Tyne for each pair of the

fitted models in Section 2.5. The diagonal panels show smoothed histograms of the

standard errors from each model.
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Figure 2.5: Maps of the predicted relative risk surface exp{S(x)} from the fit-

ted spatially discrete approximation to log-Gaussian Cox Process (SDA) using a

population-weighted log-intensity average (SDA I, upper panel) and a simple aver-

age (SDA II, middle panel), and the exact LGCP model (lower panel).
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Figure 2.6: Maps of the standard error of the predicted relative risk surface

exp{S(x)} from the fitted spatially discrete approximation to log-Gaussian Cox Pro-

cess (SDA) using a population-weighted log-intensity average (SDA I, upper panel)

and a simple average (SDA II, middle panel), and the exact LGCP model (lower

panel).
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Figure 2.7: The lower and upper off-diagonal panels are scatter plots and correlation

coefficients of the estimated spatially continuous relative risk exp{S(x)} for each pair

of the fitted models in Section 2.5. The diagonal panels show smoothed histograms

of the estimated relative risk from each model.
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Figure 2.8: The lower and upper off-diagonal panels are scatter plots and correlation

coefficients of the standard errors for the estimated risk exp{S(x)} for each pair of

the fitted models in Section 2.5. The diagonal panels show smoothed histograms of

the standard errors from each model.
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Kelsall and Wakefield (2002) then advocate the use of the log-Gaussian approxima-

tion as a Bayesian prior for spatial smoothing but no reference is made to the LGCP

framework. In this paper, instead, our objective was to develop a computationally

efficient approximation to the LGCP model which, in Bayesian terms, is our chosen

prior for modelling disease risk.

In fitting SDA models, most of the computational burden is due to the approxi-

mation of the integral in (2.7), which defines the area-level correlation between the

spatial random effects. In our example, the SDA model is about 5 to 15 times faster

to fit than the LGCP model, depending on the number of values used to discretise

the scale of the spatial correlation φ. To make SDA even faster, efficient approxima-

tions to Gaussian processes should also be considered (see, for example, Lindgren

et al. (2011)). These could be used to sample from the predictive distribution of

S∗(x) in (2.5) and avoid computation of the integral in (2.7).

We conclude that SDA is a reliable approximation to LGCP for carrying out pre-

dictions at areal-level, both in terms of point predictions and in the quantification

of uncertainty. It also provides spatially continuous predictions in disease risk that

are comparable to those from LGCP, but with larger standard errors and more

conservative predictions intervals.

Finally, extension to the spatio-temporal case of the method discussed in this paper

is possible and is work in progress. For example, let us consider counts yit for the

region Ri over the time interval (t, t+ 1). Let S(x, t) be a spatio-temporal Gaussian

process with covariance function

cov{S(x, t), S(x′, t′)} = σ2 exp{−|t− t′|/ψ} exp{−‖x− x′‖/φ}.

By modelling the yit as realisations of a spatio-temporal log-Gaussian Cox process
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with conditional intensity Λ(x, t) = exp{α+ S(x, t)}, we can then approximate this

with a spatio-temporally discrete Gaussian process S∗t = (S∗1t, . . . , S∗nt), such that

S∗t = ϕS∗t−1 +Wt, 0 < ϕ < 1,

where the temporal innovation Wt is modelled as a multivariate Gaussian distri-

bution with covariance matrix given by (2.7). Preliminary results suggest that the

reduction in computing time with respect to a spatio-temporal LGCP model is sub-

stantially larger than that observed for the purely spatial scenario presented in this

paper.
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Summary

Background

Life expectancy at birth (LEB), one of the main indicators of human longevity,

has often been used to characterise the health status of a population. Under-

standing its relationships with the deprivation is key to develop policies and

evaluate interventions that are aimed at reducing health inequalities. How-

ever, methodological challenges in the analysis of LEB data arise from the

fact that different Government agencies often provide spatially aggregated in-

formation on LEB and the index of multiple deprivation (IMD) at different

spatial scales. Our objective is to develop a geostatistical framework that,

unlike existing methods of inference, allows to carry out spatially continuous

prediction while dealing with spatial misalignment of the areal-level data.

Methods

We developed a model-based geostatistical approach for the joint analysis of

LEB and IMD, when these are available over different partitions of the study

region. We model the spatial correlation in LEB and IMD across the areal

units using inter-point distances based on a regular grid covering the whole

of the study area. The advantages and strengths of the new methodology are

illustrated through an an analysis of LEB and IMD data from the Liverpool

district council.

Results

We found that the effect of IMD on LEB is stronger in males than in females,

explaining about 63.35% of the spatial variation in LEB in the former group

and 38.92% in the latter. We also estimate that LEB is about 8.5 years lower

between the most and least deprived area of Liverpool for men, and 7.1 years

for women. Finally, we find that LEB, both in males and females, is at least

80% likely to be above the England wide average only in some areas falling in

the electoral wards of Childwall, Woolton and Church.

Conclusion

The novel model-based geostatistical framework provides a feasible solution to

the spatial misalignment problem. More importantly, the proposed method-

ology has the following advantages over existing methods: 1) it can deliver

spatially continuous inferences using spatially aggregated data; 2) it can be

applied to any form of misalignment with information provided at a range of

spatial scales, from areal-level to pixel-level.

Keywords: deprivation; life expectancy; likelihood-based inference; model-

based geostatistics; spatial misalignment; health inequality
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3.1 Background

Over the last decades, access to better healthcare and education have led to a surge

in human longevity, especially in high-income countries (Chetty et al., 2016; Kontis

et al., 2017; Oeppen and Vaupel, 2002). Life expectancy at birth (LEB), one of the

main indicators of human longevity, has often been used to characterise the health

status of a population (OECD, 2017). Measuring deprivation is also important in

order to describe health inequalities within a population and to better understand

variation in health outcomes (Allik et al., 2016; Krieger et al., 2003). Previous

studies have shown that the LEB is strongly affected by deprivation (Chetty et al.,

2016; Tobias and Cheung, 2003; Woods et al., 2005) and that differences in LEB

between most and least deprived individuals are larger among men than women

(Auger et al., 2010; Tsimbos et al., 2014).

The main determinants of human longevity can be generally classified into social

factors, genetic traits, life-style (e.g. consumption of tobacco, alcohol, dietary habits

and physical activity) and environmental factors (e.g. overcrowded housing and pol-

lution) (Christensen and Vaupel, 1996). As indices of deprivation are constructed

by combining variables that are also likely determinants of human longevity, the

reported associations with LEB are thus not surprising. However, linear regression

models used to quantify the association between LEB and deprivation should also

acknowledge the imperfect nature of the latter by making suitable distributional

assumptions on the residuals of the model. Accounting for spatial correlation is

especially important in this context so as to deliver reliable inferences on the re-

gression relationship between LEB and deprivation. However, methodological chal-

lenges arise from the fact that different Government agencies often release spatially

Johnson, O.O. page 54



Chapter 3. Spatial misalignment: A model-based geostatistical approach

aggregated information on LEB and other socio-demographic variables, including

deprivation, at different spatial scales. For example, in the UK, the Life Events and

Population Sources Division of the Office for National Statistics releases informa-

tion on LEB by Middle Super Output Area (MSOA) while the index of multiple

deprivation (IMD), published by the Ministry of Housing, Communities and Local

Government, is available at a higher spatial resolution by Lower Super Output Area

(LSOA). An example of this is given by Figure 3.2 showing maps for male and female

LEB and IMD in Liverpool, United Kingdom (UK). The rationale for calculating

LEB at MSOA-level is that reliable estimates of LEB cannot be obtained from a

population of less than 5000 individuals (Toson and Baker, 2003) and MSOAs satisfy

this requirement, having 7200 inhabitants on average (Office for National Statistics,

2018).

In the recent paper by Buck et al. (2017), the authors investigate the association

between LEB and IMD in England using a linear regression modelling framework.

Their analysis is carried out at MSOA-level by taking the population-weighted av-

erage IMD based on the LSOAs falling in each of the corresponding MSOAs while

assuming independent and identically distributed Gaussian residuals. This mod-

elling approach ignores two important aspects: the within-MSOA variation which

could result in a biased estimate for the regression coefficient associated with IMD;

the residual spatial correlation in LEB, which affects the standard errors of the re-

gression coefficient estimates (Thomson et al., 1999). Furthermore, the technique

used by Buck et al. (2017) can only be reliably applied when spatial units at different

scales are nested within each other.

The issue of spatial misalignment has been widely addressed in the statistical lit-

erature; see Gotway and Young (2002) and Banerjee et al. (2014) for an overview.
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Our concern in this paper is with “areal-areal” misalignment, i.e. when data are

available over misaligned, not necessarily nested, partitions of the same study area.

A common approach used to address this problem is to predict the aggregated values

of all the variables on a common set of spatial spatial units and use the resulting

predictions to build a regression model; Buck et al. (2017) is an example of this.

Madsen et al. (2008) refers to this strategy as “krige and regress”. They show that

the estimator of the regression coefficient is consistent but the variance estimator

can be biased. More rigorous approaches have been developed by joint modelling of

the outcome variable and the covariates. For example, Agarwal et al. (2002) devel-

oped a joint model for outcomes observed at pixel-level and covariates at areal-level.

The spatial correlation is modelled using conditionally autoregressive (CAR) models

(Besag, 1974) for both pixel- and area-level spatial random effects. However, the

use of CAR models for modelling outcomes aggregated over irregular spatial units

(as in the case of LSOAs and MSOAs) is questionable because the adopted spatial

structure is tied to the given partition of the study area, which is often drawn for

administrative convenience. Also, Wall (2004) showed that when dealing with re-

gions of varying size and shape, CAR models can induce counter-intuitive spatial

correlation structure.

In this paper, our objectives are: 1) to develop a model-based geostatistical ap-

proach that allows the joint analysis of LEB and IMD data when these are available

as spatially aggregated indices over misaligned partitions of the study area; 2) to

carry out spatially continuous inference on LEB using spatially aggregated data.

We illustrate our modelling approach through the analysis of LEB data from the

Liverpool district council in the UK. Liverpool has been ranked as the most deprived

local authority area in England in 2004, 2007 and 2010, and as the 4th most deprived
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in 2015 (Liverpool City Council, 2015). In 2018, LEB for both men and women was

lower than the overall average in England (Public Health England, 2018). Under-

standing the relationship between deprivation and life expectancy within a single

conurbation helps to develop policies and evaluate interventions that are aimed at

reducing health inequalities (Bennett et al., 2018).

To address the aforementioned limitations of existing methods of inference, we de-

velop a geostatistical framework that avoids the re-aggregation of IMD at MSOA-

level. Instead, we jointly model LEB and IMD as aggregated outcomes of a spatially

continuous stochastic process. More specifically, we model the spatial correlation

across MSOAs for LEB and across LSOAs for IMD using inter-point distances based

on a regular grid covering the whole of the study area. The methodology presented

in this paper can also be used to model any spatially aggregated health outcome

and estimate its association with risk factors that may be available at a range of

spatial scales.

All the analyses presented in this paper have been developed R software environ-

ment (cran.r-project.org) and maps have been generate using the Q-GIS software

(qgis.org). We provide the analysed data and the implemented R code in supple-

mentary material.

3.2 Existing methods for analysing spatially mis-

aligned data

Spatial misalignment has been well-studied in the literature, a good starting point

the work done by Gotway and Young (2002) and Banerjee et al. (2014). Spa-
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tial misalignment can occur as point-point misalignment, point-areal misalignment

areal-point misalignment and areal-areal misalignment. Geostatistical methods are

popular solution to point-point misalignment, point-areal misalignment but its use

for areal-areal and area-point misalignment is less studied. The common approach

used to address areal-areal and area-point misalignment is conditional autoregressive

(CAR) models (Besag, 1974). One of the limitations of this approach is inability to

provide spatially continuous inference as they are tied to the data format.

In the sections that follow, we provide a review on model-based methods for spa-

tially misaligned point-referenced data and spatially misaligned areal data using

geostatistical methods and CAR models, respectively.

3.2.1 Geostatistical method for spatially misaligned point-referenced

data

Let Yi denote a continuous response variable, measured at a set of discrete locations,

{xi : i = 1, . . . n}, where each xi lies within a geographical region of interest, A and

let Dk denote the predictor variable at measured at a set of discrete locations,

{xk : k = 1, . . .m}, where each xk lies within a geographical region of interest, A.

We assume that the locations of the set of xi are different the set of xk implying that

they are spatially misaligned. Also, let U(x) and U∗(x) denote spatially continuous

Gaussian process defined over xi and xk, respectively, Ti is an independent and

identically distributed Gaussian variable defined on a set of the xi and let Vk is an

independent and identically distributed Gaussian variable defined on a set of the

xk. Model-based approach for analysing such dataset proceeds by developing a joint

model for the response and the predictor Madsen et al. (2008). Therefore, the joint
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model for Yi and Dk takes the form
Yi = α + βU(xi) + Ti for i = 1, . . . , n

Dk = γ + U∗(xk) + Vk for k = 1, . . . ,m

, (3.1)

where the β parameters quantify the strength of the association between Y and D,

whilst the α and γ are intercept parameters. U(x) is defined as a spatially continuous

Gaussian process, with stationary and isotropic covariance function such that

Cov{U(xk), U(xk′)} = (Σm)(k,k′) = τ 2ρ(‖xk − xk′‖; θ), (3.2)

where τ 2 is the variance, ‖xk − xk′‖ is the Euclidean distance between locations

xk and xk′ and ρ(·; θ) is the isotropic and stationary correlation function of U(x)

indexed by the parameter θ. Ti is Gaussian distributed with mean zero and variance

ω2 and Vk is Gaussian distributed with mean zero and variance ν2. The likelihood

function for the model define in Equation (3.1) is given as

L(θ) = [Y,D;ψ]

= [Y |D;ψ][D;ψ], (3.3)

where ψ is the vector of the parameters, [D;ψ] is multivariate Gaussian with mean

γ1m×1 and covariance Σm + ν2
Im. Finally, [Y |D;ψ] is a multivariate Gaussian with

mean

α1n×1 + C>Σ−1
m (D − γ1m×1), (3.4)

and covariance

Σn − C>Σ−1
m C, (3.5)

where C is the cross-covariance between Y and D whose entries are given by

Cov{Yi, Dk} = β2τ 2ρ(‖xi − xk‖; θ),
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where ‖xi− xk‖ is the Euclidean distance between locations in set {xi : i = 1, . . . n}

and in set {xk : k = 1, . . .m}, (k, k′) entry for Σm is given in Equation 3.2 and

Σn = β2Σm + ω2
In.

3.2.2 Conditional autoregressive models for spatially misaligned areal

data

The main referenced paper for areal misalignment are Mugglin et al. (2000) and

Agarwal et al. (2002), they proposed a fully model-based approach implemented

within a Bayesian framework. The advantage of working in Bayesian framework is

that it allows estimation of model parameters and prediction jointly. Their approach

is as follows: let Yi denote a continuous response variable measured over a region

Ri, for i = 1, . . . n, where Yi’s are considered as an aggregated measurement ∑k Yij,

where Yij is unobserved and the summation is over a regular grid indexed by k. Also,

let Dk denote the predictor variable measured over a region Rk, also considered as

an aggregated measurement ∑lDkl, where Dkl is unobserved. The set of partitions

Yi and Dk are spatially misaligned. Random effect Ui was introduced to capture the

spatial association among the Yi’s and random effect U∗k was introduced to capture

the spatial association among the Dk’s. These random effects are given a CAR prior

(Besag, 1974) specification with the assumption that the latent Yij inherit the effect,

Ui and that the latent Dkl inherit the effect U∗k . The joint distribution of Y and D

can be expressed as

n∏
i=1

[Yi1, . . . , Yiji |Yi]
n∏
i=1

[Yi|Ui]
m∏
k=1

[Dkl, . . . , Dklk |Dk]
m∏
k=1

[Dk|U∗k ]

The CAR prior on Ui assumes that

Ui|U−i ∼ N

ρc∑
j∼i

cijUj, τ
2
i

 , (3.6)
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where U−i = {Uj : j 6= i}, ρc is the spatial dependence parameter and cij are known

quantities such that cij 6= 0 if and only if j ∼ i and j 6= i. It follows that the joint

distribution of U is a multivariate zero-mean Gaussian distribution with covariance

matrix

(I − ρcC)−1D̃, (3.7)

where D̃ = {τ 2
1 , . . . , τ

2
n}, while the specification of C is generally tied to the specific

arrangement of the partition of the region of interest. The most common approach

is to set cij = 1 if j ∼ i and 0 otherwise.

In Section 3.3.2, we present how geostatistical framework can be used to solve this

problem by assuming a spatially continuous process for Ui. An advantage of this

is that it allows for spatially continuous prediction regardless of the format of the

data.

3.3 Methods

3.3.1 Data

3.3.1.1 Index of Multiple Deprivation

IMD is a measure of relative deprivation and can thus be used to rank neighbour-

hoods. It combines seven distinct domains of deprivation: income; employment;

education; skills and training; health deprivation and disabilit; crime, barriers to

housing and services; and living environment. Weighted cumulative models are

used to compute the IMD score, with weights obtained via the maximum likelihood

method for factor analysis (Liu and Rubin, 1998; Smith et al., 2015). IMD data are

made available either as a scores, deciles or ranks. In this study, we used the IMD
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score released in 2015, which was based on data collected between 2012 and 2013.

Larger values of the IMD score can be interpreted as corresponding to a higher level

of deprivation of an area relative to the others (UK Government, 2015).

3.3.1.2 Life expectancy at birth

Our outcome variable is the LEB released by the Office for National Statistics (2015)

(ONS). The ONS estimates LEB using life tables that are constructed by applying

the Chiang method (Chiang, 1984) to mortality data collected over five consecutive

years, starting from 2009. This method assumes that the probability of dying is

constant within a specified set of age intervals at−1 and at. The resulting estimator

is

LEB =
T∑
t=1

[(at − at−1)pt +mtdt]

where pt is the fraction of the total population that has not died in the time interval

(at−1, at), mt is the average number of years lived in an interval by an individual

who passes away in (at−1, at), dt is the fraction of the total population that dies in

(at−1, at) between ages at−1 and at and T is the number of age intervals. In our case,

we have T = 19, (a1, a2) = (0, 1), (a2, a3) = (1, 4) and for t > 3, at − at−1 = 5.

Life tables are usually constructed separately for males and females because of their

different mortality patterns (Gjonça et al., 1999). In the next section, we exploit

the correlation between LEB for the two genders, and their associaton with IMD,

in order to obtain more accurate estimates.
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3.3.2 Modelling framework

Let LEBij denote the life expectancy at birth for males, if i = 1, and females,

if i = 2, at the j-th MSOA, henceforth MSOAj, for j = 1, . . . , n. Similarly, we

use IMDk to denote the IMD score for the k-th LSOA, henceforth LSOAk, for

k = 1, . . . ,m.

Define U(x) to be a spatially continuous Gaussian process, with stationary and

isotropic exponential covariance function, i.e.

Cov{U(x), U(x′)} = τ 2 exp{−‖x− x′‖/δ},

where τ 2 is the variance and δ is a scale parameter regulating the rate of decay of

the spatial correlation for increasing Euclidean distance ‖x − x′‖ between any two

locations x and x′.

We then model the cross-correlation in space between LEB and IMD through U(x)

as follows. Define the averaged spatial processes based on U(x) over LSOAs and

MSOAs as Uj =
∫
MSOAj

U(x) dx/|MSOAj| and U∗k =
∫
LSOAk

U(x) dx/|LSOAk|,

where |A| corresponds to the area in m2 of a spatial unit A. The proposed joint

model for LEBij and IMDk takes the form
LEBij = αi + βiUj + Tij for i = 1, 2; j = 1, . . . , n

IMDk = γ + U∗k + Vk for k = 1, . . . ,m

, (3.8)

where the βi parameters quantify the strength of the association between LEB and

IMD, whilst the αi and γ are intercept parameters. Also in (3.8), the Vk are i.i.d.

Gaussian variables with mean zero and variance ν2, whilst (T1j, T2j) are i.i.d. bi-
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variate Gaussian variables with mean zero and covariance matrix

Ω =

ω
2
1 ω12

ω12 ω2
2

 .

It follows that the covariance between LEBij and IMDk is

Cov{LEBij, IMDk} = βiτ
2

|MSOAj||LSOAk|
f(MSOAj, LSOAk; δ), (3.9)

where

f(MSOAj, LSOAk; δ) =
∫
MSOAj

∫
LSOAk

exp
{
−‖xj − xk‖

δ

}
dxj dxk. (3.10)

In order to understand how much of the spatial variation in LEB is explained by

IMD, we compare the fitted model (3.8) with the special case of no association with

IMD, i.e. β1 = β2 = 0.

An important feature of the spatial covariance structure defined by equation (3.9) is

that it accounts for the different shapes and sizes of the various areal units involved.

3.3.3 Inference: parameter estimation and spatially continuous predic-

tion

Let LEBi = (LEBi1, . . . , LEBin) and IMD = (IMD1, . . . , IMDm) and denote

by θ the vector of model parameters. Also, let ΣLSOA and ΣMSOA be the spatial

covariance matrices of the IMD at LSOA- and MSOA-level, respectively. The (k, k′)

entry for ΣLSOA is

(ΣLSOA)kk′ = τ 2

|LSOAk||LSOAk′|
f(LSOAk, LSOAk′ ; δ) (3.11)

where f(LSOAk, LSOAk′ ; δ) is as specified in equation (3.10). The elements of

ΣMSOA are obtained similarly, replacing the domains of the integrals that define
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(3.11) with those of the corresponding MSOAs. Using [·] as a shorthand notation

for “the density function of the random variable ·,” the likelihood function for θ can

now be expressed as

L(θ) = [LEB1, LEB2, IMD; θ]

= [LEB1, LEB2 | IMD; θ][IMD; θ], (3.12)

where [IMD; θ] is multivariate Gaussian with mean γ1m×1 and covariance ΣLSOA+

ν2
Im. Finally, [LEB1, LEB2 | IMD; θ] is a multivariate Gaussian with mean

α⊕ 1n×1 + C>Σ−1
LSOA(IMD − γ1m×1), (3.13)

and covariance

ΣLEB − C>Σ−1
LSOAC, (3.14)

where: α = (α1, α2)>; ⊕ is the Kronecker product; C = (C1, C2)> with Ci being

the cross-covariance between LEBi and IMD whose entries are given by Equation

(3.9); finally,

ΣLEB =

 β2
1ΣMSOA + w2

1In β1β2ΣMSOA + w12In

β1β2ΣMSOA + w12In β2
2ΣMSOA + w2

2In

 .

We calculate each of the integrals in (3.9) and (3.11) using the numercial approxima-

tion described in Section 3 of Johnson et al. (2019). Finally, we estimate θ through

maximization of the likelihood function in (3.12).

To quantify the contribution of IMD in explaining the spatial variation in LEB, we

use the fraction of the total variance explained, given by

Var{βiUj}
Var{LEBij}

= β2
i τ

2

β2
i τ

2 + ω2
i

, (3.15)

with i = 1 for the male population and i = 2 for the females, respectively.
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We carry out spatial prediction over a regular grid at a spatial reslution of 250 by

250 meters, covering the whole of the Liverpool council area. Let {x1, . . . , xq} be

the set of points forming the grid, with q = 1787, and let LEBi(xh) = αi + βiU(xh)

be the unobserved value of LEB at xh, for h = 1, . . . , q. Now, write LEB∗ =

(LEB1(x1), . . . , LEB1(xq), LEB2(x1), . . . , LEB2(xq))>; the predictive distribution

for LEB∗, i.e. its conditional distribution given the data, is multivariate Gaussian

with mean

α⊕ 1q×1 +D>Σ−1
LEB(LEB − α⊕ 1n×1), (3.16)

and covariance matrix

ΣLEB∗ −D>Σ−1
LEBD. (3.17)

In (3.17), the (h, h′)-th element of ΣLEB∗ is given by (ΣLEB∗)hh′ = τ 2 exp{−‖xh −

xh′‖/δ}. Also,

D =

D1

D2


where Di is the n× q matrix whose h-th column is (d1(xh), . . . , dn(xh)), and

dj(xh) = β2
i τ

2 ∫
MSOAj

exp {−‖xh − x‖/δ} dx.

Using the above results, we can then draw samples for LEB∗ and obtain any pre-

dictive summary of interest. For example, to identify areas in the Liverpool council

district that are highly likely to fall below a threshold l, we map the non-exceedance

probabilities (NEPs)

NEPi(x) = Pr(LEBi(x) < l | LEB1, LEB2, IMD). (3.18)

In the results shown in the next section, we set l to be England-wide average years

for males (l = 79.2 years) and females (l = 82.9 years). Values of NEP close to

1 indicate that LEB is highly likely to lie below l. Conversely, values close to 0

indicate locations whose LEB is highly likely to be above l. Finally, locations with
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values around 0.5 are equally likely to be below or above l, thus corresponding to

the scenario with highest uncertainty.

Our results have been made publicly available at the following link

http://fhm-chicas-apps.lancs.ac.uk/shiny/users/johnsono/LEBLiverpool/

where interactive maps for NEPs can be generated from our model for any chosen

threshold l.

We provide the derivation of all the equations in Appendix A.7 of the supplementary

material.

3.3.4 Model validation: testing for residual spatial correlation

One of the main assumptions of the fitted bivariate model (3.8) is that all the spatial

variation in LEB is captured by the IMD. To validate this assumption, we proceeds

as follows. We first estimate the Tij as

LEBij − α̂i − β̂iÛj for i = 1, 2; j = 1, . . . , n

where α̂i and β̂i are the maximum likelihood estimates and Ûj is the predictive mean

of Uj. For each MSOA, we then extract the centroid associated with each of the

T̂ij. For both males (i = 1) and females (i = 2), we then compute the empirical

variogram given by

γ̂i(U) = 1
2|U|

∑
(j,k)∈U

(T̂ij − T̂i′j)2, (3.19)

where U = [u0, u1] is the set of all pairs of all pairs of centroids that no less than

u0 and no more than u1 distant apart, and |U| is the number of pairs within the

set. In the current analysis, we construct the empirical variogram by segmenting

the interval [0, 10] (km) into 12 equally spaced intervals.
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In order to test whether the observed γ̂i(U) is compatible with assumption of no

residual spatial correlation, we use the following Monte Carlo approach to construct

95% tolerance intervals around γ̂i(U):

1. permute the order of Tij, while holding the centroid of the MSOAs fixed;

2. compute the empirical variogram γ̂i(U) for the permuted Tij;

3. repeat step 1 and 2 for a large number of times, say B;

4. use the resulting B empirical variograms to generate 95% tolerance intervals

at each of the predefined distance bins.

If γ̂i(U) lies within the 95% tolerance intervals, we conclude that the assumption

that the IMD fully captures the spatial variation in LEB is supported by the data.

If, instead, γ̂i(U) falls outside the 95% tolerance intervals, we conclude that the data

show evidence against the fitted model in (3.8).

3.3.5 Assessment of the coverage probabilities for the regression param-

eters and the spatial predictions

In this section, we outline a simulation study which we carry out in order to assess

the reliability of the confidence intervals generated for the regression coefficients βi,

the spatially continuous predictions and the MSOA-level predictions for LEB. This

is especially important in our case as we carry out spatial predictions by plugging-in

the maximum likelihood estimates, hence ignoring parameter uncertainty.

We then simulate B = 10, 000 data sets under the bivariate the model in (3.8)

using the administrative boundaries of Liverpool and proceed through the following

iterative steps:
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1. Simulate the spatially continuous process U(x) over a 150 × 150 metres grid.

2. Simulate the spatially continuous surface for IMD and LEB on the same regular

grid.

3. Average the LEB over the MSOAs boundaries and the IMD over the LSOAs

boundaries.

4. Fit the model in (3.8) and compute confidence intervals of coverage α for β1

and β2.

5. Compute the prediction intervals of coverage α for the LEB at MSOA-level

and over the 150 × 150 metres grid.

In this simulation we set the true value of the parameters to the point estimate

reported for Model 1 in Table 3.1. We let the coverage probability α vary over the

set {5i/100 : i = 1, 2, . . . , 19}. Using the resulting 10,000 confidence intervals in

step 4 and prediction intervals in step 5, we compute the fraction of times that the

true values fall within those intervals in order to obtain the actual coverage.

3.4 Results

Table 3.1 shows the point and interval estimates for the model with (Model 1) and

without (Model 2) IMD. The likelihood-ratio test for the null hypothesis β1 = β2 = 0

yields a p-value smaller than 0.001, hence indicating that Model 1 is a better fit to

data. We find that the fraction of total variance explained (see equation 3.15)) is

about 38.92% for females and 63.52% for males, respectively. We estimate that the

range of the spatial correlation, defined as the distance beyond which the correlation

is below 0.05, is approximately 4.6 km. The correlation in LEB between males and
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females, given by ratio ω12/(ω1ω2), is 0.59 with associated 95% confidence interval

(0.31, 0.90).

Figure 3.1 shows the boundaries of the electoral wards (EWs) in Liverpool district

and their names. In commenting the results, we shall refer to the different areas of

the Liverpool district council based on the EWs in Figure 3.1.

Figure 3.2 (upper and middle panel) shows the estimated surface of LEB at MSOA-

level for females and males. As expected, female LEB is consistently higher than

that for males, as also reflected in the spatially continuous predictions of Figure

3.3. In contrasting the maps of Figure 3.2 with those of Figure 3.3, we notice that

spatially continuous predictions provide useful insights into the variation in LEB

within MSOAs that is otherwise hidden by the aggregated estimates at MSOA-level.

To demonstrate this, we selected the MSOA with the lowest and largest estimated

value in LEB for both males and females; these MSOAs are identified identified by

the white (largest LEB) and green (lowest LEB) boundaries in upper and middle

panels of Figure 3.2. More specifically, for males, the lowest estimated value in LEB

at MSOA-level is about 70.2 years and the largest is 85.2 years, whilst for females

these are respectively 73.5 years and 89.6 years. In the maps of Figure 3.4, we then

draw the contour lines for these same values in LEB. These reveal the actual extent

of the areas where LEB reaches its highest and lowest values, that cannot be possibly

discerned from Figure 3.2: the white contour lines encompass a relatively small at

the intersection of Childwall, Woolton and Church; the green contour lines, instead,

delineate a wide area consisting of three disjoint sub-regions in the north-west and

north-east of Liverpool.

Figure 3.4 shows the non-exceedance probability maps of female and male LEB,

with thresholds of 82.9 years and 79.2 years, respectively. These two values also
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correspond to the national average LEB in England for the two genders. For fe-

males, we find that LEB is at least 80% likely to be below 82.9 years in the areas

of Kirkdale, Kensington and Fairfield and Princes Park; for males, a wider area is

instead identified, comprising those same EWs with the addition of Fazakerley, Nor-

ris Green, Clubmoor, County, Anfield, Everton, Tuebrook and Stoneycroft, Picton,

Central, St Michaels and Speke-Garston. On the other hand, areas that are at least

80% to be above the England-wide averages are are found in the EWs of Childwall,

Woolton and Church for both males and females. In the EWs of West Derby and

Mossley Hill the model is most uncertain as these are equally likely to have a LEB

above or below the chosen thresholds for the both males and females.

Figure 3.5 the results for the variogram-based validation procedure. Since the ob-

served variograms for both males and females lie within the 95% band, we interpret

this as evidence that the data do not show any adittional residual spatial correla-

tion. This leads us to conclude that the IMD was able to explain most of the spatial

variation in LEB.

Figure 3.6 shows the scatter plots of the actual coverage, obtained from the simu-

lation study, against the nominal coverage. For the spatial predictions, the actual

coverage is averages over all the MSOAs and over the regular grid, respectively. The

plots show a strong concordance between actual and nominal coverage levels. We

then conclude that the interval estimates for the regression coefficients and the spa-

tial predictions generated by the fitted model are in fact reliable when using plug-in

estimates.
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Figure 3.1: Map of Liverpool district council, UK showing the 30 electoral wards
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Figure 3.2: Maps of the estimated female (upper panel) and male (middle panel) life

expectancy at birth (LEB) and index of multiple deprivation (IMD) (lower panel). Middle

Super Output Area (MSOA) with boundaries coloured in green correspond to the lowest

estimated LEB, whilst those in white to the highest. For males, the lowest estimated LEB

is 70.2 years and the highest is 85.2 years; for females, the lowest is 73.5 years and the

highest is 89.6 years.
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Figure 3.3: Spatially continuous prediction maps of female (upper panel) and male

(lower panel) life expectancy at birth (LEB) in Liverpool, UK. In the upper panel,

the white contour lines are for a LEB of 89.6 years and the green contour lines for

a LEB of 73.5 yers; in the lower panel, the white contour lines correspond to 70.2

years and the green contour lines to 85.2 years.
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Figure 3.4: Maps of the non-exceedance probability of female (upper panel) and

male (lower panel) life expectancy at birth (LEB), with threshold 82.9 and 79.2

(average LEB in England, UK), respectively in Liverpool, UK.

Johnson, O.O. page 75



Chapter 3. Spatial misalignment: A model-based geostatistical approach

(a) Female

(b) Male

Figure 3.5: Plots of the observed variograms (points) and the 95% tolerance band-

width (dashed lines) generated under the assumption of absence of residual spatial

correlation.
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Figure 3.6: Scatter plots of the actual against the nominal coverage for the confidence

intervals generated for β1 and β2 (upper panels), and for the spatially continuous

and MSOA-level predictions of LEB (lower panels). The red lines in each panel

correspond to the identity line.
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Table 3.1: Point estimates and 95% confidence intervals (CI) for the three model

parameters.

Model 1 Model2

Parameter Estimate CI 95% Estimate CI 95%

α1 75.466 (75.596, 76.135) 75.131 (74.990, 75.272)

α2 81.120 (80.883, 81.357) 81.375 (80.927, 81.823)

β1 -0.154 (-0.180, -0.128) - -

β2 -0.129 (-0.167, -0.091) - -

logω2
1 1.810 (1.494, 2.126) 3.036 (2.955, 3.117)

logω2
2 2.581 (2.272, 2.890) 3.160 (3.033, 3.287)

logω12 1.671 (1.257, 2.086) 2.871 (2.768, 2.974)

γ 39.221 (28.242, 50.200) 39.190 (28.073, 50.306)

log τ 2 6.226 (3.611, 8.841) 6.232 (5.678, 6.586)

log δ 7.336 (6.845, 7.827) 7.349 (6.318, 7.846)

log ν2 2.586 (2.244, 2.927) 2.589 (2.064, 2.932)

Log-likelihood -1429.491 -1465.432
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3.5 Discussion

We have developed a model-based geostatistical approach that allows to model the

relationship between life expectancy and the index of multiple deprivation when

these are provided over misaligned partitions of the study area. Unlike existing

methods of analysis (e.g. Buck et al. (2017)), one of the main advantages of our

approach is that it allows to combine information from multiple data sources without

coarsening their resolution to a common spatial scale. The underpinning principle of

our modelling framework is that spatially aggregated data should be treated as the

realization of an aggregated spatially continuous stochastic process. This approach

is strongly linked to that of Diggle et al. (2013) who propose the use of an integrated

log-Gaussian Cox process to model disease counts at areal-level. As result of this,

the proposed modelling paradigm allows to carry out spatially continuous inference

which would be otherwise infeasible if the spatial models were tied to the specific

data-format at which LEB and IMD are provided. Conditionally autoregressive

models (Besag, 1974) are one of the most commonly used approaches to analyse

areal-level data that suffer from this limitation (Agarwal et al., 2002; Mugglin et al.,

2000).

Our novel methodology has highlighted the importance of dealing with variation in

LEB occurring within areal units. In our application, the use of spatially contin-

uous predictions was especially useful in order to visualize patterns in LEB that

were hidden by the aggregated estimates. Furthermore, the use of non-exceedance

probabilities also provides a way of measuring uncertainty in relation to a predefined

threshold in LEB in order to identify areas that need urgent intervention.
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One of the limitations of the model defined by equation (3.8), is that all the spatial

variation in LEB and IMD is modelled through a single spatial process U(x). The

model could then be made more flexible through the introduction of a second spatial

process, say W (x), into the first line of equation (3.8), i.e.

LEBij = αi + βiUj +Wj + Tij, for i = 1, 2; j = 1, . . . , n

where Wj = |MSOAj|−1 ∫
MSOAj

W (x) dx. In this model, the Wj would allow to

account for unexplained spatial variation in LEB that is unrelated to IMD. How-

ever, in our attempt to fit such a model, we incurred in identifiability issues as the

estimated spatial scale for the process W (x) was well below the extent of the small-

est MSOA. This also suggests that most of the large scale spatial variation in LEB

is in fact well captured by the IMD and that unexplained variation occurring on a

smaller spatial scale is instead accounted for by the unstructured component of the

model Tij.

Although our application to mapping LEB in Liverpool only dealt with areal mis-

alignment, our methodology is more widely applicable to almost any scenarios of

spatial misalignment. Consider, for example, the case where a second spatially vary-

ing factor associated with LEB is available in raster format over a regular grid, say

{x̃1, . . . , x̃q}, covering the whole of the Liverpool council area. Let V (x̃k) denote the

value of such a variable at the grid location x̃k, for k = 1, . . . , q. Model (3.8) could

then be extended by replacing the first line with

LEBij = αi + βiUj + δiVj + Tij,

where Vj = |MSOAj|−1 ∫
MSOAj

V (x) dx. Assuming a high enough spatial resolution

of the raster file for V (x), this integral could then be approximated by taking a

sample average over the grid locations falling within MSOAj. If, instead, the grid is
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too coarse, spatial variation in V (x) within pixels can be accounted for by building a

geostatistical model in a similar fashion as for the IMD in the second line of equation

(3.8).

3.6 Conclusion

We have developed a novel joint geostatsitical approach to model the relationship

between life expectancy at birth and the index of multiple deprivation while deal-

ing with the issue of spatial misalignment. Unlike existing spatial methods based

on conditional autoregressive models, one of the main strengths of the proposed

modelling framework is the ability to carry out spatially continuous predictions re-

gardless of the format of the data. Furthermore, it is also more widely applicable

to more complex data scenarios where information is provided at a range of spatial

scales, from pixel-level to areal-level.
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Summary

Background

Chronic Obstructive Pulmonary Disease (COPD) is one of the leading causes

of mortality worldwide with an estimated 3 million deaths in 2015, correspond-

ing to 5% of all deaths globally. Acute exacerbations are a major contributor

to the number of emergency admission in the UK. COPD is the second most

common cause (after a heart attack) of admission to a medical ward in the

UK - i.e., it’s a huge cost burden and there is a belief that many cases could be

prevented, hence the interest in predictions. In this study, we pursue two ob-

jectives: 1) to assess the relative contribution of socio-economic and environ-

mental variables for forecasting COPD emergency admissions; 2) to develop a

reliable surveillance system that triggers an alarm whenever COPD emergency

admissions signal the likely exceedance of predefined incidence thresholds.

Methods

We developed a predictive model using a class of generalised linear mixed

model. We select the best predictors using the root mean square error (RMSE).

We developed an early warning system based on exceedance probabilities.

Results

The resulting predictors from our model selection are; minimum temperature;

PM10; income deprivation; the proportion of males; and the proportion of

the population aged above 75 years. We found that, overall, the selected

predictor variables explain about 22% of the variability in the residual ran-

dom effects. Among these variables, income deprivation attained the largest

relative variance reduction of about 14%.

Conclusion

Our results demonstrate how to develop a predictive model as well as an early

warning system for COPD emergency admission. Our model has the potential

to predict correctly in most areas with high sensitivity and specificity. The

early warning system can help to: identify and notify areas of a high inci-

dence of COPD emergency admission; and inform resource allocation for the

healthcare system.

Keywords: COPD; emergency admission; early warning system; variogram;

geostatistics; generalised linear mixed model; predictive model
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4.1 Introduction

Chronic Obstructive Pulmonary Disease (COPD) is one of the leading causes of

mortality worldwide (Hasegawa et al., 2014; Mathers and Loncar, 2006) with an

estimated 3 million deaths in 2015, corresponding to 5% of all deaths globally (World

Health Organisation, 2016). Acute exacerbations are a major contributor to the

number of emergency admission and hospitalization (Tian et al., 2012), especially

during the winter months as a result of the increase in respiratory viral infections.

The pathogenesis of COPD is still little understood while current research has been

focused on understanding the risk factors associated with its exacerbation (Bahadori

and FitzGerald, 2007; Chan et al., 2011; Osman et al., 2017).

While the majority of exacerbations are caused by infectious agents, especially rhi-

noviruses Wedzicha (2004), there has been evidence from previous studies that bio-

logical, environmental and socio-economic factors can also trigger COPD emergency

hospitalisation (Hemming et al., 2009). Hemming et al. (2009) developed a Bayesian

network approach in order to identify factors that can help predict COPD admissions

in the UK and found a combination of environmental, socio-economic and health-

related variables to be useful predictors. These included weather type (classified

as sunny, cloudy, rainy, windy and snowy) temperature, outdoor air pollution, gas

emissions, urbanisation, smoking, population age, environmental tobacco smoke, in-

door air pollution (housing condition), income and education, infection load, number

of previous admission and severity of the disease. However, most studies have exam-

ined these factors separately and only a few have assessed their joint contribution

to COPD risk.
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Predictive models have been developed in several studies to identify patients at high

risk of COPD exacerbations (Billings et al., 2006; Samp et al., 2018; Urwyler et al.,

2019; Yii et al., 2019) which add significant cost to the patients care. Hence, being

able to accurately predict their occurrence can be especially useful in order to reduce

avoidable COPD emergency admissions by targeting patients in most need. In order

to develop a robust and scalable predictive models for COPD emergency admissions,

the availability of comprehensive health records of patients is essential so as to ensure

its reliability. Predictive power can also be further enhanced by incorporating risk

factors concerning the lifestyle behaviour (e.g. smoking status), income, exposure

to pollutants and other individual traits. However, such detailed information may

not be readily available to researchers due to confidentiality issues or because it has

not been collected. Notwithstanding, statistical modelling provides solutions that

can be used to alleviate this issue. For example, generalized linear mixed models

(GLMMs) (Breslow and Clayton, 1993) are an extension of the classical generalized

linear modelling framework that allows to account for the unavailability of risk

factors through the use of so-called random effects. However, the full potential

offered by this modelling framework has not been fully exploited in the analysis of

COPD data and, in this paper, we aim to fill this gap.

While some analyses on COPD emergency admissions have focused on individual

analysis where biological markers (e.g. forced expiratory volume in 1 seconds and

blood level) were used to predict the risk of an emergency admission, here we focus

our attention on studies that were concerned with understanding the geographical

variation of COPD risk at population-level. Niyonsenga et al. (2018) model the

prevalence of COPD and asthma over census units in the western area of Adelaide,

South Australia, and assess the spatial clustering of cases using the local Getis-Ord’s
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Gi indices (Anselin, 1995). Kauhl et al. (2018) analyse how the prevalence of COPD

varies across northeastern Germany and identify risk factors including proportions

of insurants aged above 65, proportions of insurants with migration background,

household size and area deprivation as statistically significant predictors for COPD.

Holt et al. (2011) were the first to characterise geographic variations in COPD

hospitalization across Health Service Areas (HSAs) and at state level across the

United States. They found distinct geographical pattern in COPD hospitalisation

rate in the HSA and state level, suggesting that different risk factors could be

operating at different spatial scales. In another study conducted in Taiwan, Chan

et al. (2014) analyse the spatio-temporal distribution of COPD mortality over a 9

year period, from 1999 to 2007. They found that smoking rate, the percentage of

aborigines within a district, PM10, altitude and density of healthcare facilities were

significantly associated with COPD mortality.

Most spatio-temporal analysis on COPD have used conditional autoregressive mod-

els (CAR) (Besag et al., 1991) to carry out spatial smoothing of COPD risk but

did not attempt any forecasting. CAR models are formulated by defining a cor-

relation structure between neighbouring areal units (e.g. districts or regions). In

addition, all of these studies (Chan et al., 2014; Holt et al., 2011; Kauhl et al., 2018)

have focused their efforts in predicting mean level of risks. In this paper, we argue

that statistical modelling should, instead, aim to predict the exceedance of clinically

relevant thresholds beyond which COPD risk is of public health concern.

In our analysis of COPD admissions, we pursue two specific objectives: 1) to assess

the relative contribution of socio-economic and environmental variables for fore-

casting COPD emergency admissions; 2) to develop a reliable surveillance system

that triggers an alarm whenever COPD emergency admissions signal the likely ex-
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ceedance of predefined incidence thresholds. To the best of our knowledge, this

is the first study that attempts to achieve these objectives using state-of-the-art

spatio-temporal statistical methods for the analysis of data on COPD emergency

admissions.

4.2 Methods

4.2.1 COPD admission data

Using the International Classification of Diseases (ICD) code (10th revision)49 ,

J44 for COPD, we extracted monthly counts of COPD emergency admissions for

patients above 19 years living in the LA postcode area, covering parts of South

Cumbria and North Lancashire in England (see Figure 4.1). The total population

of the study region was 272,520 based on the 2011 census. The data cover the period

from 1 April 2012 to 30 March 2018. To protect confidentiality and anonymity of the

patients, spatial information on their place of residence was provided at the Lower

Super Output Area (LSOA). From the same database, we also obtain the proportion

of people older than 75 years and the proportion of male patients admitted, for each

at LSOA-level.

4.2.1.1 Environmental variables

We obtained monthly weather data for 2012-2018 including monthly relative humid-

ity, number of days of ground frost and temperature from the UK Met Office, freely

available from the Centre for Environmental Data Analysis (http://data.ceda.

ac.uk/). The spatial resolutions of the weather raster files is of 1× 1km2 across the
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UK. We also obtained yearly pollution data including Particulate Matter less than

10 m in diameter (PM10), Sulphur Dioxide (SO2) and Nitrogen Dioxide (NO2),

available from the Department of Environmental Food and Rural Affairs (DEFRA)

(https://uk-air.defra.gov.uk/data/pcm-data). The estimate of the pollutants

are provided at 1× 1km2resolution over the entire Great Britain. For our analysis,

we computed the population weighted average of all the available raster data over

the LSOAs shown in Figure 4.1.

Figure 4.1: Map of South Cumbria and North Lancashire containing 209 LSOAs.

4.2.1.2 Socio-economic variables

We obtained the index of multiple deprivation (IMD) created by the Department for

Communities and Local Government in order to account for socio-economic hetero-

geneities across LSOAs. The IMD combines seven domains which relate to income

deprivation, employment deprivation, health deprivation and disability, education

skills and training deprivation, barriers to housing and services, living environment
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deprivation, and crime. The IMD is available as either a score, decile or rank. In

this study, we used the IMD score for 2015, the most recent release. Larger values

of the score corresponds to a higher level of the domain deprivation 21.

4.2.1.3 Population data

We obtained the yearly population data per LSOA from the Office of National

Statistics (ONS), UK. ONS usually updates their population estimates yearly based

on migration data and any other physical adjustments (Office for National Statistics,

2018). The average population of LSOAs in England and Wales according to the

census data in 2011 was 1,614 with 95% of LSOAs having a population of between

1,157 and 2,354.

4.2.2 Statistical modelling and assessment of residual spatio-temporal

correlation

Let Yit denote the monthly COPD emergency admission count at LSOA i and month

t. We then assume that the Yit, conditionally on a random effect Zit, follow a Poisson

distribution with mean mitλit, where mit denotes the population at LSOA i and

month t and it represents the monthly incidence of COPD emergency admission at

given LSOA.

We define the log-linear model for the incidence it as

λit = exp{d>itβ + Zit}, (4.1)

where dit is a vector of covariates with associated regression coefficients β. Finally,

we assume that the Zit are independent and identically distributed Gaussian vari-

ables with mean zero and variance σ2. In order to build our regression model, we
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select predictors within three domains that are known to affect COPD admissions:

weather, pollution and deprivation. The variables that we consider within each of

these domains are listed in Table 4.1. As the variables within each group are highly

collinear, our goal is to select the best predictor from each group. In addition to the

variables of Table 4.1, we include proportion of males and proportion of the popu-

lation aged above 75 years as background predictors at LSOA-level of the incidence

of COPD emergency admission.

Table 4.1: The table showing the set of predictors available for this study.

Predictors Variables

Weather
Minimum temperature; relative humidity; and number of days

of ground frost.

Pollution
PM10 SO2; and NO2. All in micrograms per cubic metre

(µgm−3)

Deprivation

Income deprivation; employment deprivation; health depriva-

tion and disability; education skills and training deprivation;

barriers to housing and services; living environment depriva-

tion; and crime deprivation.

In order to carry out the selection of the best predictors, we split the dataset into

training and test sets, with the former covering the months from April 2012 to March

2017 and the latter from April 2017 to March 2018. The rationale for the chosen

test and training sets is that we aim to develop an early warning system that can

better capture temporal features of the latest reported admissions. We then fit 63

models obtained by combining one predictor from each domain of Table 4.1 and,

for each of those, we compute the root-mean-square-error (RMSE) for the predicted
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COPD admissions incidence using the test set.

From the mixed model with the best set of predictors identified through the pro-

cedure outlined above, we assess whether the random effects Zit show evidence of

residual spatio-temporal correlation. To this end, we compute the empirical spatio-

temporal variogram (ESTV) for the estimates of Zit, using the centroid of each

LSOA in order to quantify the proximity between LSOAs. Let Ẑ(xi, ti) denote the

estimate of Zit from model (1) associated with the centroid xi at time ti. The

expression of the ESTV is

γ̂(u, v) = 1
2|n(u, v)|

∑
(i,j)∈n(u,v)

{Ẑ(xi, ti)− Ẑ(xj, tj)}2,

where |n(u, v)| is the number of pairs set.

We used Monte Carlo methods to construct a 95% tolerance interval around (u, v)

in order to test the presence of residual spatio-temporal variation. We then proceed

through the following iterative steps:

1. permute the order of Ẑ(xi, ti), while holding (xi, ti) fixed;

2. compute the empirical variogram for Ẑ(xi, ti);

3. repeat step 1 and 2 for a large number of times, say B times; and

4. use the resulting B empirical variogram to generate 95% tolerance interval at

each of the predefined distance bins.

If γ̂(u, v) lies outside these intervals, then we conclude that the Z(xi, ti) shows an

evidence of residual spatio-temporal variation. To quantify the relative contribution

of each predictor in the model, we compute the relative variance reduction (RVR)
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defined as

RV R =
σ2
−j − σ2

σ2
−j

where σ2 the variance of the Zit from the final model and σ2
−j is the variance of the

Zit when the j−th predictor is excluded from the final model.

4.2.2.1 An early warning system based on exceedance probabilities

Using the best model identified in the previous stage of the analysis, we compute the

exceedance probability (EP), i.e. the predictive probability that incidence exceeds

a predefined threshold, say l, formally expressed as

EPit = Pr(λ̂it > l|yit).

Values of EP close to one indicate that incidence is highly likely to be above l, while

the values of EP close to zero indicate that incidence is highly likely to be below

l. Finally, values of EP around 0.5 indicate that incidence are equally likely to be

above or below l, thus implying a scenario with highest uncertainty.

For a given LSOA and month, an alarm is then triggered whenever the EP exceeds

a value, say p. To identify an optimal value of p, we maximise the sensitivity (the

ability of the early warning system to trigger alarms in districts where it exceeds

l) and specificity (the ability of the early warning system not to trigger alarms in

districts where it does not exceed l) of the early warning system using the test set

from April 2017 to March 2018. Finally, we summarise the predictive power of the

model using the area under the Receiver Operating Characteristic (ROC) (Bradley,

1997) curve (henceforth, AUC).
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4.3 Result

4.3.1 Descriptive Analysis

The age distribution of the COPD admissions is shown in Figure 4.2a. We observe

the largest number of admissions for the age group 70-79. The COPD admissions

incidence by sex show that females (Kilic et al., 2015). We also explore the incidence

rate of COPD emergency admision by age group and sex in Figure 4.2b. These rates

were calculated by dividing the number of admissions by the total number of male

or female population in that age group. Clearly, incidence rate in males and females

show a similar pattern, with slightly higher rate in females, up to the age group

70-79, beyond which incidence for female start to drop while incidence for males

continue to increase. One reason for this could be that smoking (a major cause of

COPD) was not common in females many years ago.

As expected, the empirical pattern of monthly counts of COPD emergency admission

showed a seasonal pattern with the highest peaks found in the winter period each

year, especially January and December (Figure 4.3). It is well established that

COPD patients suffer from increased exacerbation and a decline in lung function

during cold weather (Donaldson et al., 1999). The number of admissions is lowest

in September.

4.3.2 Spatio-temporal Analysis

By applying the variables selection procedure described in Section 2.2, our final set

of predictors consists of minimum temperature, PM10, income deprivation.

Johnson, O.O. page 98



Chapter 4. Spatio-temporal modelling of incidence in COPD emergency admissions

(a)

(b)

Figure 4.2: (a) Count of COPD emergency admission, by age group and sex, in

South Cumbria and North Lancashire, 2012-2018; and (b) Incidence rate of COPD

emergency admission per 1000 population, by age group and sex, in South Cumbria

and North Lancashire, 2012-2018.
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Figure 4.3: Boxplot showing seasonal variation in the monthly count of COPD

emergency admission in South Cumbria and North Lancashire, 2012-2018.

Table 4.2 shows the relative variance reduction (RVR) of each predictor in the model.

We find that, overall, the selected predictor variables explain about 22% of the

variability in the residual random effects. Among these variables, income deprivation

attained the largest RVR of about 14%.

In order to test whether the predictors included in this model can capture all the

spatio-temporal correlation in the data, we applied the Monte Carlo procedure of

Section 4.2.2 based on the spatio-temporal variogram for both an intercept-only

model, that excludes all of predictors of the final model (Figure 4.4), and the final

model (Figure 4.5). A comparison between Figures 4.4 and 4.5 indicates that the

predictors used in the final model allowed us to capture most of the residual spatio-

temporal correlation in COPD emergency admissions.

We then predict the incidence of COPD emergency admission for April 2017 – March
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2018 and classify each LSOA as being above or below an incidence threshold l which

we set to 12 per 100,000, a choice which is informed by the experts having tried

different thresholds since there is currently no data or statistics to inform this value.

For this threshold, we found that the value of EP that maximizes the sensitivity and

specificity of the early warning system was p = 0.85, yielding a 72% sensitivity and

a 70% specificity. We also found that the area under the curve of the final model

was about 78% (Figure 4.6) which indicates a satisfactory predictive performance.

Figure 4.7 shows the LSOA that were correctly and incorrectly classified based on

our modelling approach. Whilst it is evident that our model can potentially predict

correctly in most LSOAs, there exist a very few LSOAs with incorrect prediction.

Table 4.2: The table showing the relative variance reduced by the predictors.

Predictors RVR (%)

Minimum temperature 1.23

PM10 0.88

Income deprivation 14.33

Proportion over age 75 3.35

Proportion of male 0.05

All predictors 21.58

4.4 Discussion

We have developed a predictive statistical model for the incidence of COPD in South

Cumbria and North Lancashire district (Northwest England). Our predictive model

uses a combination of environmental and socio-economic variables as predictors.
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Figure 4.4: Spatio-temporal variogram of the residual from an intercept only model.

This shows an evidence of spatio-temporal variation.

We also demonstrated that instead of predicting the incidence, a more meaningful

prediction would be to predict the exceedance of clinically relevant threshold beyond

which COPD risk is of public health concern.

Another major finding of this study is that after including the predictors into the

model, we observed no presence of residual spatio-temporal variation meaning that

the predictors have captured the spatio-temporal structure in the incidence. How-

ever, suppose a spatio-temporal structure is observed in the residual, we would have

considered modelling Zit as a spatio-temporal Gaussian process. Hence, consider yit

as a realisation of a spatio-temporal log-Gaussian Cox process, we refer the reader

to Johnson et al. (2019).

Also, we found that income deprivation reduced the highest proportion of variance

in the monthly incidence of COPD emergency admission. It has been shown in other
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Figure 4.5: Spatio-temporal variogram of the residual from model including all the

predictors. This shows that there is no evidence of spatio-temporal variation.

studies that people who live in deprivation are more likely to be admitted (Calderón-

Larrañaga et al., 2011; McAllister et al., 2013). This suggests that a good predictive

model for incidence of COPD should take into account socio-economic status.

A strong correlation exists among the set of potential predictors of COPD emer-

gency admission. Liverani et al. (2016) have shown that IMD and air pollution are

collinear; as well as some domains of deprivation. Income and employment depri-

vation is highly correlated, which is clearly due to the way income deprivation is

measured. Income deprivation measures the proportion of the population experi-

encing deprivation due to low income, whereas people with low-income are those

who are out of work or receive low earnings at work. Environmental deprivation is

also correlated with PM10 - which makes the use of IMD and PM10 unfeasible in

a single model. Furthermore, Income and education are also correlated. Therefore

Johnson, O.O. page 103



Chapter 4. Spatio-temporal modelling of incidence in COPD emergency admissions

Figure 4.6: The receiver’s characteristics curve (ROC) with area under the curve

(AUC) =0.78. The red dot indicates the value of the sensitivity and specificity for

which the optimal cut off p = 0.85 value was chosen.

including all the domains of IMD separately in a single model is not plausible.

Our developed warning system can potentially help to inform NHS Morecambe Bay

CCG and policymakers where to target intervention/resources as well as reducing

the need for hospital care or unplanned COPD emergency admission. The Met

Office Health forecasting team has developed a similar approach in the past using

an algorithm model, which predicts times when COPD patients are at elevated risk

of having a flare-up (Bakerly et al., 2011; Hemming et al., 2009; Marno et al., 2010).

The details of the model are no longer available on the Met Office webpage. However,

we utilised a fully parametric statistical predictive model, which is well understood

and can provide an estimate of the uncertainties. Our model can be updated in

real-time, which in turn will lead to better sensitivity and specificity as one would
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Figure 4.7: The monthly-predicted surveillance maps comparing the predicted and

the true alarm for each LSOA. Colour blue indicates an LSOA that is correctly

predicted to be below the threshold; orange indicates an LSOA that is correctly

predicted to be above the threshold; purple indicates an LSOA that is incorrectly

predicted to be below the threshold; and red indicates an LSOA that is incorrectly

predicted to be above the threshold. The incidence threshold used is 12 per 100,000.

expect from short-range prediction.

The model performs fairly well at predicting LSOA-level incidence of COPD emer-

gency admission in the test set, however, there is clear room for improving the

predictive accuracy. The value of the true positive rate is quite interesting which

suggest that our model can potentially identify 72% of the high incidence LSOAs.

A good warning system model needs to achieve a balance between the sensitivity

and specificity in order to avoid the waste of resources and identifying “real” high

incidence LSOA. A warning system with high sensitivity is capable to detect LSOAs
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with “real” high incidence, but suffer losses from incurring additional resources due

to low specificity. Similarly, a warning system with high specificity benefits from a

significant reduction in the consumption of resources but has a decreased capacity

to detect “real” high incidence LSOA due to low sensitivity. However, our model

has high sensitivity and high specificity suggesting a good balance.

Also, note that choosing the optimal value of p by maximizing the sensitivity and

sensitivity, implying sensitivity to be equal to specificity, is a pragmatic choice.

There are other instances when sensitivity is preferred to be greater than specificity

and vice versa depending on the risk and cost of the choice.

Limitations in the predictors and unavailability of other predictors affect the pre-

dictive accuracy of the model. Out of the predictors, the proportion of male and

proportion of people over the age of 75 do not have any limitation as they were de-

rived from the COPD health record provided by NHS Morecambe Bay. There is also

a limitation in how a single year value of income deprivation was used for the entire

years of study. The government published deprivation data at some specific time

point and we used the one released in 2015 since that is the only one released during

the period of study. PM10 data were only measured at few monitoring stations in

the UK and the data was interpolated over the entire area. There are several limita-

tions with this, one is that if there is a large variability between the monitoring sites

it will increase the interpolation error and second is that aggregating the quantities

over the LSOAs can further increase the error. The monthly minimum temperature

data is available as a raster over a 1km grid and then aggregated over the LSOAs.

The use of average temperature across the month is a limitation, as it does not allow

us to account for the variation across the month.

The smoking rate would have been a very good predictor for our predictive model
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but getting such data is a challenge. We thought of using lung cancer rate as used

in other studies as a proxy but it is also not readily available. Other variables that

would have improved our predictive accuracy that is not available are influenza rate,

and proportion of the population employed in mining or agriculture.

Our results demonstrate how to develop a predictive model and an early warning

system for COPD emergency admission. Potential applications of the early warn-

ing system include identification and notification of high incidence areas of COPD

emergency admission; and ability to support resource allocation for the healthcare

system. Future studies will improve the model by accounting for more risk factors

that are not captured in the study.
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Chapter 5

General discussion, conclusions

and future work

Whilst each paper contains its discussion, we further give an extensive discussion

of each paper in this chapter. Also, we outline some future extensions of the prob-

lems tackled and how we can improve and widen the applicability of the methods

developed.

5.1 Summary and future extensions of SDALGCP

models

In Chapter 2 of this thesis, we developed a spatially discrete approximation (SDA) to

LGCP models in order to carry out a spatial prediction of disease risk at any desired

spatial scale using spatially aggregated disease count data. As variation in disease

risk occurs in a spatial continuum irrespective of the format in which the data are

available, we consider the LGCP framework to be a natural statistical paradigm for
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modelling aggregated disease count data. However, when computational constraints

make the fitting of an LGCP infeasible, we argue that our approach, SDALGCP pro-

vides a computationally efficient solution while respecting the spatially continuous

nature of disease risk.

The method proposed can be extended to spatio-temporal and multivariate outcome

cases. Extension to spatio-temporal case can be considered when disease cases

is spatially aggregated over space and time. For example, the COPD emergency

admission dataset that we analysed in Chapter 4. In this dataset, COPD emergency

admission cases are aggregated over the LSOAs and the months, April 2012 to

March 2018. A spatio-temporal analysis will proceeds as follows: let yit denotes the

COPD emergency admission count for LSOA i and time t; let dit be a vector of

explanatory variables for LSOA i and time t with corresponding coefficient β; mit

be the population count; and let Sit be a spatio-temporal Gaussian process. By

modelling the yit as realisations of a spatio-temporal log-Gaussian Cox process we

obtained the approximation to the mean count as

µit = mit exp{ditβ∗ + S∗it}. (5.1)

The most common approach is to assume a separable covariance form for S∗it such

that:

cov{S(x, t), S(x′, t′)} = σ2 exp{−‖x− x′‖/φ} exp{−|t− t′|/ψ}.

Since the time index t is observed at discrete time, the simplest and the most

frequently used model to account for temporal correlation is the AR(1) process,

which assumes the form

S∗t = ϕS∗t−1 +Wt, 0 < ϕ < 1, (5.2)

where the temporal innovation Wt is modelled as a multivariate Gaussian distri-
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bution with covariance matrix σ2V , modelled as given by Equation (2.7). The

parameter ϕ controls the influence of the lagged values S∗t−1 on S∗t . Note that if

we define ϕ = exp{−1/ψ}, the AR(1) process in (5.2) can be interpreted as a dis-

cretized version of a continuous-time process with exponential correlation function.

From the assumption in Equation 5.2, it follows that the joint distribution of S∗t can

be re-written as in terms of conditional density such that

f(S∗) = f(S∗1 , . . . , S∗T )

= f(S∗1)f(S∗2 |S∗1) . . . f(S∗T−1|S∗T−2)f(S∗T |S∗T−1)

then the log-joint density is

log f(S∗) =
T∑
t=1

log f(S∗t ) = log f(S∗1) +
T∑
t=2

log f(S∗t |S∗t−1),

where

log f(S∗1) = −1
2

n log 2π + n log
(

σ2

(1− ρ2)

)
+ log |V |+ S∗1

>
(

σ2V

(1− ρ2)

)−1

S∗1


and

log f(S∗t |S∗t−1) = −1
2

[
n log 2π + n log σ2 + log |V |+

(
S∗t − ρS∗t−1

)>
(σ2V )−1 (S∗t − ρSt−1)

]
.

The inference for the spatio-temporal model follows directly from the static spatial

case. Note that the joint log-density can now be computed in parallel because each

conditional density can be evaluated independently of each other which in turn leads

to computationally efficient evaluation of the likelihood.

Extension to multivariate version can also be considered. This is when there are

k > 1 number of outcomes measured at each spatial unit. For example, suppose we

are interested in analysing data related to a respiratory condition, namely: COPD,

Asthma and Lung Cancer. k = 3 in this case. And, we have the case-count of each
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disease for each spatial unit. Two basic questions are usually of interest in multivari-

ate analysis, one is to examine the dependence between disease count in each unit,

and second is to examine the association between measurements across the units.

There are two general frameworks for analysing this problem, namely: conditioning

and joint approach. An extensive discussion on multivariate models in geostatistics

is provided in Wackernagel (2013). SDALGCP extension to multivariate analysis

will proceed as follows: let yij denotes the disease cases count for LSOA i and dis-

ease j; let dij be a vector of explanatory variables for LSOA i and disease j with

corresponding coefficient βj; and let S∗ij be a Gaussian process. To model the data,

we consider modelling yij as a realisation of a spatially aggregated log-Gaussian Cox

process and we obtained the approximation to the conditional mean count as

µij = mij exp{dijβ∗j + S∗i0 + S∗ij}, (5.3)

where S∗i0 is the Gaussian process common to all the diseases and S∗ij is the Gaussian

process specific to each disease. This specification of model 5.3 with a spatially

continuous Gaussian process for S∗i0 and S∗ij allows us to capture when the outcome

is observed at a common or misaligned spatial unit. Method for inference of this

model can proceed as discussed in the paper in Chapter 2.

Our modelling approach can be extended to several other problems. One is the

changing boundary problem where the partitioning of the entire regions changes

with time; see Taylor et al. (2018) for example. Another is when the outcome

variable is a combination of point and aggregated data. (Wilson and Wakefield,

2018) and Moraga et al. (2017) have addressed this problem by assuming a common

underlying continuous surface and use SPDE approach (Lindgren et al., 2011) to

model the latent field.
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5.2 Summary and future extensions of geostatis-

cal methods for analysing spatially misaligned

areal data

In chapter 3, we developed a model-based geostatistical approach to model the

relationship between life expectancy at birth (LEB) and the index of multiple depri-

vation (IMD) when these are provided over misaligned partitions of the study area.

One of the main advantages of our approach is that it allows combining information

from multiple data sources without coarsening their resolution to a common spa-

tial scale. The underpinning principle of our modelling framework is that spatially

aggregated data should be treated as the realization of an aggregated spatially con-

tinuous stochastic process. As a result of this, the proposed modelling paradigm

allows to carry out spatially continuous prediction. Also, we emphasize that spa-

tially continuous prediction allows us to examine the within areal unit variation that

is usually hidden in an aggregated estimate. Furthermore, we showed how the use of

non-exceedance probabilities can provide a way of measuring uncertainty in relation

to a predefined threshold in order to identify areas that need urgent intervention.

We also demonstrated that instead of having a static map at different thresholds,

Shiny App (Chang et al., 2019) provides a modern web-based technology that al-

lows the user to interactively move a slide bar to a different threshold and visual the

uncertainties. Therefore, we encourage the development of a web-based technology

for exceedance probability map, especially in public health disease mapping.

Area-level modelling can result in over or under-estimation of the association, a

phenomenon generally referred to as ecological bias. However, whilst a literal in-
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terpretation of our model is that the β parameter data measures the association

between IMD and LEB at a point, in practice it should be restricted to the smallest

spatial resolution for which data are available. Note also that the model does not

treat LEB and IMD symmetrically. The ordering of the two parts of Equation 3.12

matters, and was guided by our objective of using IMD to predict LEB, rather than

vice versa.

The method can be conveniently extended to more than one predictor and can be

handled using the multiple linear generalisation of the joint model-based geostastis-

tical approach that we developed.

On a final note on Chapter 2 and 3, both papers have emphasised the use of a spa-

tially continuous model for epidemiological research, either as a solution to a spatial

misalignment problem or as a method of making spatially continuous inferences in

as much as it respects our scientific knowledge of the problem.

5.3 Summary and future extensions of spatial-

temporal modelling of COPD emergency ad-

mission

In this paper, we analyse the monthly COPD emergency admission dataset in North

Lancashire and South Cumbria, 2012-2018. The spatio-temporal extension of the

method developed in Chapter 2 would have been used to analyse the data but after

accounting for the predictors, the residual is no longer spatio-temporally structured.

One of the lessons learnt from this analysis is that it is important to check both

of the need for the spatial random effects model and its appropriateness. Cox and
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Wong (2010) has shown that appreciable bias may arise from misspecification of a

random component.

This work has also demonstrated that exceedance probability is not only useful for

quantifying uncertainty but can also be used in public health settings, where the goal

is to identify areas where disease incidence exceeds a clinically relevant threshold.

In the future, we plan to apply our predictive model to a larger dataset, potentially

to COPD emergency admission dataset in the entire North West England.

5.4 Software development

The methodology developed in Chapter 2 has been implemented in the open-source

R package SDALGCP (Johnson et al., 2018). The package implements fitting and

spatial prediction of a standard geostatistical model for the analysis of spatially and

spatio-temporally aggregated disease count data. The package provides functions

to perform 1) parameter estimation for static spatial and spatio-temporal data, 2)

spatial and spatio-temporal prediction of disease risk both on a spatially discrete and

spatially continuous scale. SDALGCP contains a vignette, which explains the details

of the functions in the package; and gives a step by step tutorial on how to run

the models with examples. We also develop a web shiny application for visualising

uncertainty in the prediction that integrates nicely with the R package. The code

for the shiny app is made available on a GitHub repository https://github.com/

olatunjijohnson/SDALGCPApp. In the future, we plan to develop an R package for

a model-based geostatistical solution to spatially misalignment problems.
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Appendix

Appendix A for Paper 1

A.1 Proof of the Monte Carlo approximation

L(ψ) =
∫
Rn
f(η;ψ) f(y|η) f(η, y;ψ0)

f(η, y;ψ0) dη

=
∫
Rn

f(η;ψ) f(y|η)
f(η;ψ0) f(y|η) f(y, η;ψ0) dη

= f(y;ψ0)
∫
Rn

f(η;ψ)
f(η;ψ0) f(η|y) dη

= f(y;ψ0) Eη|y
[
f(η;ψ)
f(η;ψ0)

]

∝ Eη|y

[
f(η;ψ)
f(η;ψ0)

]
. (4)

A.1.1 Likelihood and Derivatives

We can then approximate the likelihood function in (4) as

L(ψ) ≈ LN(ψ) = 1
N

N∑
j=1

f(η(j);ψ)
f(η(j);ψ0) . (5)

As N →∞, in the above equation, LN(ψ) converges to L(ψ). Hence the log of (5)

is given by

lN(ψ) = log
 1
N

N∑
j=1

f(η(j);ψ)
f(η(j);ψ0)

 , (6)

121



General discussion, conclusions and future work

Specifically, the gradient is given as

OlN(ψ) =
∑N
j=1[Of(η(j);ψ)] f(η(j);ψ)

f(η(j);ψ0)∑N
j=1

f(η(j);ψ)
f(η(j);ψ0)

,

and the Hessian as

O2lN(ψ) =
∑N
j=1[O2f(η(j);ψ)] f(η(j);ψ)

f(η(j);ψ0)∑N
j=1

f(η(j);ψ)
f(η(j);ψ0)

+

∑N
j=1[Of(η(j);ψ)− OlN(ψ)][Of(η(j);ψ)− OlN(ψ)]> f(η(j);ψ)

f(η(j);ψ0)∑N
j=1

f(η(j);ψ)
f(η(j);ψ0)

.

Expressions for Of(η(j);ψ) and O2f(η(j);ψ) can be found in Zhang (2002).
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A.2 Diagnostic Plots of SDA Model

Figure 1: The plots show the Autocorrelation plot of the process, S.
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A.3 Convergence, Mixing diagnostic and Plots of

LGCP Model
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Figure 2: Diagnosing convergence to a posterior mode: a plot of the log-target,

log{π(β, η, S|N)}+ c up to an additive constant, c
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(a) Lag 1 (b) Lag 5

(c) Lag 15

Figure 3: The maps show the autocorrrlation plot three different lags Fig a: Lag 1

; Fig b: Lag 5; Fig c: Lag 15.
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Figure 4: The plots show the trace plot of the posteriors of the parameters.
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A.4 Mixing diagnostic of BYM Model
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Figure 5: The plots show the trace plot of the posteriors of the fixed effect parame-

ters, and random effect parameters, that is β1, β2, σ2 and φ.
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A.5 Mixing diagnostic of EV Model
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Figure 6: The plots show the trace plot of the posteriors of the fixed effect parame-

ters, and random effect parameters, that is β1, β2, σ2 and φ.
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A.6 Simulation Plot
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Figure 7: Histogram of the Observed log-incidence from the data (Observed, left-

upper panel) and the first simulated log-incidence (Simulation 1, right-upper panel)

and the second simulated log-incidence (Simulation 2, left-lower panel), and the

third simulated log-incidence (Simulation 3, right-lower panel).
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Appendix for Paper 2

A.7 Derivation of the equations in Paper 2

Let LEBij denote the life expectancy at birth for males, if i = 1, and females,

if i = 2, at the j-th MSOA, henceforth MSOAj, for j = 1, . . . , n. Similarly, we

use IMDk to denote the IMD score for the k-th LSOA, henceforth LSOAk, for

k = 1, . . . ,m.

Define U(x) to be a spatially continuous Gaussian process, with stationary and

isotropic exponential covariance function, i.e.

Cov{U(x), U(x′)} = τ 2 exp{−‖x− x′‖/δ},

where τ 2 is the variance and δ is a scale parameter regulating the rate of decay of

the spatial correlation for increasing Euclidean distance ‖x − x′‖ between any two

locations x and x′.

We then model the cross-correlation in space between LEB and IMD through U(x)

as follows. Define the averaged spatial processes based on U(x) over LSOAs and

MSOAs as Uj =
∫
MSOAj

U(x) dx/|MSOAj| and U∗k =
∫
LSOAk

U(x) dx/|LSOAk|,

where |A| corresponds to the area in m2 of a spatial unit A. The proposed joint

model for LEBij and IMDk takes the form
LEBij = αi + βiUj + Tij for i = 1, 2; j = 1, . . . , n

IMDk = γ + U∗k + Vk for k = 1, . . . ,m

, (7)

where the βi parameters quantify the strength of the association between LEB and

IMD, whilst the αi and γ are intercept parameters. Also in (7), the Vk are i.i.d.

Johnson, O.O. page 130



General discussion, conclusions and future work

Gaussian variables with mean zero and variance ν2, whilst (T1j, T2j) are i.i.d. bi-

variate Gaussian variables with mean zero and covariance matrix

Ω =

ω
2
1 ω12

ω12 ω2
2

 .

Theorem A.7.1.

Cov{LEBij, IMDk} = βiτ
2

|MSOAj||LSOAk|
f(MSOAj, LSOAk; δ), (8)

where

f(MSOAj, LSOAk; δ) =
∫
MSOAj

∫
LSOAk

exp
{
−‖xj − xk‖

δ

}
dxj dxk. (9)

Proof.

Cov{LEBij, IMDk} = Cov{αi + βiUj + Tij, γ + U∗k + Vk}

= Cov{αi, γ}+ Cov{αi, U∗k}+ Cov{αi, Vk}+ Cov{βiUj, γ}

+ Cov{βiUj, U∗k}+ Cov{βiUj, Vk}+ Cov{Tij, γ}

+ Cov{Tij, U∗k}+ Cov{Tij, Vk}

= βiCov{Uj, U∗k}

= βiCov
{

1
|MSOAj|

∫
MSOAj

U(xj) dxj,
1

|LSOAk|

∫
LSOAk

U(xk) dxk
}

= βi
1

|MSOAj|

∫
MSOAj

1
|LSOAk|

∫
LSOAk

Cov {U(xj), U(xk)} dxjdxk

= βi
1

|MSOAj|
1

|LSOAk|

∫
MSOAj

∫
LSOAk

τ 2 exp
{
−‖xj − xk‖

δ

}
dxjdxk

= βiτ
2

|MSOAj||LSOAk|

∫
MSOAj

∫
LSOAk

exp
{
−‖xj − xk‖

δ

}
dxjdxk

= βiτ
2

|MSOAj||LSOAk|
f(MSOAj, LSOAk; δ),

where Cov{αi, γ} = 0, Cov{αi, U∗k} = 0, Cov{αi, Vk}, Cov{βiUj, γ} = 0, Cov{βiUj, Vk} =

0, Cov{Tij, γ} = 0, Cov{Tij, U∗k} = 0, and Cov{Tij, Vk} = 0.
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Theorem A.7.2. Let ΣLSOA be the spatial covariance matrix of the IMD at LSOA-

level. The (k, k′) entry for ΣLSOA is

(ΣLSOA)kk′ = τ 2

|LSOAk||LSOAk′|
f(LSOAk, LSOAk′ ; δ) (10)

Proof. The (k, k′) entry for ΣLSOA is

Cov{IMDk, IMDk′} = Cov{γ + U∗k + Vk, γ + U∗k′ + Vk′}

= Cov{γ, γ}+ Cov{γ, U∗k′}+ Cov{γ, Vk′}+ Cov{U∗k , γ}

+ Cov{U∗k , U∗k′}+ Cov{U∗k , Vk′}+ Cov{Vk, γ}

+ Cov{Vk, U∗k′}+ Cov{Vk, Vk′}

= Cov{U∗k , U∗k′}

= Cov
{

1
|LSOAk|

∫
LSOAk

U(xk) dxk,
1

|LSOA′k|

∫
LSOA′

k

U(x′k) dx′k
}

= 1
|LSOAk|

∫
LSOAk

1
|LSOA′k|

∫
LSOA′

k

Cov {U(xk), U(x′k)} dxkdx′k

= 1
|LSOAk|

1
|LSOA′k|

∫
LSOAk

∫
LSOA′

k

τ 2 exp
{
−‖xk − xk

′‖
δ

}
dxkdx

′
k

= τ 2

|LSOAk||LSOAk′|

∫
LSOAk

∫
LSOA′

k

exp
{
−‖xk − xk

′‖
δ

}
dxkdx

′
k

= τ 2

|LSOAk||LSOAk′|
f(LSOAk, LSOAk′ ; δ),

where Cov{γ, γ} = 0, Cov{γ, U∗k′} = 0, Cov{γ, Vk′}, Cov{U∗k , γ} = 0, Cov{U∗k , Vk′} =

0, Cov{Vk, γ} = 0, Cov{Vk, U∗k′} = 0, and Cov{Vk, Vk′} = 0.

Lemma A.7.3. Suppose a multivariate Guassian random vector X is partitioned

into two component X = (X1, X2)T , where X1 has q1 components and X2 has q2

components. Then the joint distribution of X1 and X2 has mean vector

X =

X1

X2

 ∼ N


µ1

µ2

 ,
Σ11 Σ12

Σ21 Σ22


 ,

where µi has length qi : i = 1, 2 and Σij is a qi × qj matrix for i, j = 1, 2. Then the

conditional distribution of X1 given X2 = x2 follows a Gaussian distribution with
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mean

E[X1|X2] = µ1 +Σ12Σ
−1
22 (x2 − µ2)

and variance

V[X1|X2] = Σ11 −Σ12Σ
−1
22 Σ21.

Theorem A.7.4. [LEB1, LEB2 | IMD; θ] is a multivariate Gaussian with mean

α⊕ 1n×1 + C>Σ−1
LSOA(IMD − γ1m×1), (11)

and covariance

ΣLEB − C>Σ−1
LSOAC, (12)

where: α = (α1, α2)>; ⊕ is the Kronecker product; C = (C1, C2)> with Ci being the

cross-covariance between LEBi and IMD whose entries are given by Equation (8);

finally,

ΣLEB =

 β2
1ΣMSOA + w2

1In β1β2ΣMSOA + w12In

β1β2ΣMSOA + w12In β2
2ΣMSOA + w2

2In

 .

Proof. According to Lemma A.7.3, let X = (LEB1, LEB2, IMD)T be partitioned

into two parts such that X = ((LEB1, LEB2), IMD)T . Therefore, if the joint

distribution of (LEB1, LEB2) and IMD is

X =

(LEB1, LEB2)

IMD

 ∼ N


α⊕ 1n×1

γ1m×1

 ,
ΣLEB C>

C ΣLSOA


 ,

then the conditional distribution of (LEB1, LEB2) given IMD follows a Gaussian

distribution with mean

α⊕ 1n×1 + C>Σ−1
LSOA(IMD − γ1m×1),

and covariance

ΣLEB − C>Σ−1
LSOAC,
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where: α = (α1, α2)>; ⊕ is the Kronecker product; C = (C1, C2)> with Ci being the

cross-covariance between LEBi and IMD whose entries are given by Equation (8);

finally,

ΣLEB = Cov

LEB1

LEB2



=

 Var(LEB1) Cov(LEB2, LEB1)

Cov(LEB1, LEB2) Var(LEB2)



=

 β2
1ΣMSOA + w2

1In β1β2ΣMSOA + w12In

β1β2ΣMSOA + w12In β2
2ΣMSOA + w2

2In

 .

Lemma A.7.5. The answer to any predictive problem is a preditive distribution.

The predictive distribution in its general form is usually the conditional distribution

of the predictive target given the observed data. LEB∗ = (LEB1(x1), . . . ,

LEB1(xq), LEB2(x1), . . . , LEB2(xq))> be the predictive target and LEB be the vec-

tor of observed data, then the predictive distribution is formally expressed as [LEB∗|LEB]

Theorem A.7.6. Let LEB∗ = (LEB1(x1), . . . , LEB1(xq), LEB2(x1), . . . , LEB2(xq))>;

the predictive distribution for LEB∗, i.e. its conditional distribution given the data,

is multivariate Gaussian with mean

α⊕ 1q×1 +D>Σ−1
LEB(LEB − α⊕ 1n×1), (13)

and covariance matrix

ΣLEB∗ −D>Σ−1
LEBD. (14)

Proof. According the Lemma A.7.5, the predictive distribution is given as [LEB∗|LEB].

And using the properties of conditional distribution in Lemma A.7.3, the [LEB∗|LEB]
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is follows a multivariate Gaussian with mean

α⊕ 1q×1 +D>Σ−1
LEB(LEB − α⊕ 1n×1), (15)

and covariance matrix

ΣLEB∗ −D>Σ−1
LEBD, (16)

where the (h, h′)-th element of ΣLEB∗ is given by (ΣLEB∗)hh′ = τ 2 exp{−‖xh −

xh′‖/δ}. Also,

D =

D1

D2


where Di is the n× q matrix whose h-th column is (d1(xh), . . . , dn(xh)), and

dj(xh) = β2
i τ

2 ∫
MSOAj

exp {−‖xh − x‖/δ} dx.
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A.8 Map of the Observed IMD and LEB

Figure 8: Map of the observed female life expectancy at birth (LEB)
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Figure 9: Map of the observed male life expectancy at birth (LEB)

Figure 10: Map of the observed index of multiple deprivation (IMD).
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A.9 Map of the Liverpool, MSOA, LSOA and Ward

Figure 11: Maps of Liverpool wards with MSOA boundaries overlayed. Red lines

are the ward boundaries while black lines are the MSOA boundaries
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Figure 12: Maps of Liverpool wards with LSOA boundaries overlayed. Red lines are

the ward boundaries while black lines are the LSOA boundaries
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