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Abstract 

Soybean is an important global crop for human and animal nutrition, but its 

production is affected by environmental stresses such as drought. Crops adapt to 

these stresses by producing and transporting multiple internal signals (such as 

phytohormones) between roots and shoots. Understanding the relationships 

between physiological (water potential and stomatal conductance), biochemical 

(phytohormones) and gene expression changes can inform cultivar selection and 

management approaches, offering opportunities to enhance water-limited yields. 

Soybean (Glycine max (L.) Merr., genotypes Williams 82 (W82), Jindou 21 (C12), 

Union (C08), Long Huang 1 (LH1) and Long Huang 2 (LH2)) were grown under soil 

drying conditions to investigate relationships between leaf xylem sap and leaf tissue 

ABA concentrations, stomatal conductance and leaf water potential among 

different genotypes. Stomatal conductance was better explained by variation in leaf 

xylem sap ABA concentration than leaf tissue ABA concentration or leaf water 

potential in most of the genotypes studied, which is physiologically important as 

stomatal closure limits soybean yields. Thus, limited ABA accumulation may be 

useful as a marker for breeding plants under drought conditions, assuming plants 

can access sufficient soil moisture at depth.  

The role of the ABA in root-shoot communication was investigated by exposing 

plants to a combination of soil drying and stem girdling (which disrupts basipetal 

phloem transport) to determine the dependence of ABA accumulation on tissue 

water relations. Shoot-sourced ABA was necessary to allow maximal root ABA 

accumulation, and maintain root-to-shoot ABA signalling, in response to soil drying. 

Shoot to root ABA translocation also maintained high stomatal conductance by 

preventing foliar ABA accumulation under well-watered conditions. However, 

decreased stomatal conductance (by 20%) of well-watered plants one day after 

girdling may involve other hormones, induced by wounding effects prior to any ABA 

(xylem or tissue) accumulation. 

Within 26 hours of girdling, root ACC concentrations increased 15-fold and leaf ABA, 

JA and SA concentrations increased 1.5-, 6- and 1.5-fold respectively. In contrast, 
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root GA3, GA4 and ABA concentrations decreased to 0.6-, 0.4- and 0.2-fold 

respectively. During this time (when there was limited soil drying), only leaf ABA 

and JA accumulation was highly negatively correlated with stomatal closure. 

Furthermore, leaf iP and SA concentrations were negatively and positively 

correlated respectively, and root ACC and ABA concentrations were negatively and 

positively correlated respectively, with soil moisture. Over the entire experiment in 

all plants, soil drying induced stomatal closure was negatively, positively and 

negatively correlated with foliar tZ, GA4 and ABA accumulations respectively, while 

root GA3, ABA and JA accumulations were negatively correlated with soil water 

content. Rapid leaf JA accumulation in response to girdling and soil-drying induced 

ABA accumulation in leaves and roots independently of girdling suggest that both 

hormones interact to stimulate stomatal closure. Girdling failed to disrupt the 

positive correlation between root and leaf ABA concentrations, but induced 

negative correlations between root and leaf JA and tZ concentrations, possibly due 

to carbohydrate depletion in the roots.  

Understanding the role of local hormone synthesis versus root-to-shoot signalling 

in regulating ABA and JA accumulation of each tissue can be facilitated by gene 

expression analysis via RNA-seq and qRT-PCR. The majority of the ABA biosynthesis, 

catabolism and signalling genes were upregulated in the roots of girdled plants prior 

any change in leaf and root water relations, and were sustained as the soil dries. 

Girdling upregulated the expression level of JA biosynthesis and signalling genes in 

both roots and leaves. Soil drying up-regulated the ABA biosynthesis and catabolism 

in roots and leaves, while up-regulating JA biosynthesis and signalling genes in roots 

and leaves of intact plants. Thus girdling more rapidly increases the number of up-

regulated genes in the selected (JA and ABA pathway) genes in roots than in leaves. 

Taken together, this thesis furthers our understanding of relationships between leaf 

and root phytohormonal communication in co-ordinating physiological responses 

to soil drying. Further studies of cross-talk between different hormones, including 

their intermediate metabolites, seems necessary to help understand how plants 

respond under drought conditions.   
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Chapter 1 – General Introduction 

 

1.1 Soybean (Glycine max) 

1.1.1 The importance of soybean  

The soybean genus Glycine comprises two subgenera, Soja and Glycine. The 

subgenus Soja contains cultivated soybean (Glycine max (L.) Merr.) and the wild 

soybean (Glycine soja) which is a wild ancestor of the cultivated soybean. Both Soja 

species are annual, but the subgenus Glycine consists of 25 perennial species, such 

as Glycine canescens from Australia (Newell and Hymowitz, 1983; Singh, 2006; Qiu 

and Chang, 2010). Soybean (Glycine max) originates from, and was domesticated 

in, China 5,000 years ago with about 23,000 different cultivars in all Asia, from 

where was introduced to the USA and South America. It is one of the major 

cultivated crops worldwide (along with maize, rice and wheat) as a source of protein 

for humans and as a high-quality animal feed (FAO, 2003; López-López et al., 2010). 

Soybean is grown for vegetable oil and meal to feed animals, and the seed 

comprises 40-42% protein content, 35% carbohydrate, 20% oils, and 5% ash 

(Robert, 1986; Zhang et al., 2010). Soybean is also the most cultivated oilseed crop 

worldwide, comprising around 6% of the total land under cultivation, with its 

acreage increasing year on year (Fig. 1.1; Goldsmith, 2008; Sulieman et al., 2015). 
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Figure 1.1. World yield data per area cultivated (a), total world production (b), total world 

area cultivated (c) of wheat (blue), soybean (red), rice (yellow) and maize (green), and 

production of the top 10 producers Data: (FAO, 2017).  

 

Soybean production is dominated by five countries (USA, Brazil, Argentina, China 

and India) which contribute more than 92% of the world soybean production (Fig. 

1.1d; Leff et al., 2004; Rodríguez-Navarro et al., 2011; FAO, 2017). The three highest 

producers (USA, Brazil and Argentina) have used different approaches for 

increasing soybean yield. The USA has used large amounts of nitrogen fertilisers for 

increasing the production and yield. Many years ago, Brazil and Argentina ceased 

using nitrogen fertilisers, and instead have used repeated rhizobial inoculations as 

seed treatments (Alves et al., 2003; Salvagiotti et al., 2008). Furthermore, world 
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soybean production has increased yearly by 4.6% in the last 30 years, reaching 

250M tonnes in 2017 (Fig. 1.1a; Masuda and Golsmith, 2009), outstripped only by 

maize (475M tonnes). The production per area cultivated (Fig. 1.1b) followed the 

same pattern as world production, while soybean yields have increased by 1000 kg 

ha-1 in the last 30 years. According to the area harvested, soybean production has 

increased more than other crops over the same period, by 125M hectares (Fig. 

1.1c).  

In South American countries, the expansion of the total cropped area (by about 63% 

over the last 50 years), has replaced native crops and pasture, and greater land use 

has increased soybean production at an annual rate of 6% (Wingeyer et al., 2015). 

In addition, Argentina, the world´s largest soybean exporter (46% in 2017/2018) has 

suffered fluctuating rainfall in the last 15 years, therefore soybean yields were 

affected by periods of drought (USDA Statistics, 2018). Potentially, soybean yields 

could be enhanced by improving tolerance to certain environmental stresses such 

as drought and salinity, which currently decrease yield by about 40% (Szilagyi, 2003; 

Le et al., 2012). 

1.1.2 Soybean production and drought stress 

Since global climate change has changed rainfall frequency dramatically over the 

last hundred years, certain climatic areas now experience longer drought seasons 

(Boyer, 1982; Hirt and Shinozaki, 2004; Solomon et al., 2007). Thus drought stress 

is the most devastating of the environmental stresses that could decrease soybean 

productivity (Szilagyi, 2003; Le et al., 2012). Plants respond to drought at 

physiological, biochemical, and molecular levels (Mochida et al., 2010; Tran et al., 
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2009). Understanding these complex responses may offer opportunities to improve 

crop management and genetics to enhance drought tolerance of soybean (Pathan 

et al., 2007).  

The damage that plants suffer during drought stress depends on many factors 

including genotype, development status, soil water depletion and the duration of 

the water deficit (Mahajan and Tuteja, 2005; Reddy et al., 2004). All these factors 

interact with each other to cause significant changes at the physiological, 

biochemical and molecular levels, which translates into a drop in crop performance. 

However, progress has been made in understanding mechanisms of plant drought 

tolerance through studying the aforementioned processes, especially physiological 

(water relations), metabolism (hormones) and genetic factors (gene expression) 

(Atkinson and Urwin, 2012; Cattivelli et al., 2008). Since phytohormones could 

change physiological behaviour, such as stomatal movement, an increased capacity 

to detect and quantify different plant hormones makes it possible to evaluate the 

physiological function of hormones throughout the plant in response to water 

stress (Peleg and Blumwald, 2011; Robert-Seilaniantz et al., 2011; Vanstraelen and 

Benková, 2012). 

Plants adapt to drought conditions by escaping, avoiding or tolerating drought 

(Levitt, 1980; Athar and Ashraf, 2009). Drought escape means that plants complete 

their life cycle, or time their phenological development, during periods of sufficient 

water supply, before water deficit becomes severe enough to cause damage (Blum, 

1988). Drought avoiding plants either maximise their water uptake from the root 

system and/or minimize their water loss by closing their stomata or restricting 
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growth, thereby maintaining their water status (Price et al., 2002). Drought tolerant 

plants maintain a certain level of physiological activity even under severe drought 

stress conditions, completing their life cycle while having an acceptable yield even 

though their water status is decreased (Tardieu and Tuberosa, 2010).  

The time, severity and duration of stress changes many aspects of plant physiology. 

Decreased soil water potential can restrict stomatal conductance, thereby limiting 

both photosynthesis and biomass accumulation (Ma et al., 2006; Vikram et al., 

2011). Whole plant water loss is related to the foliar area and stomatal 

conductance, with fine stomatal regulation over minutes or hours in response to 

re-watering. In some species, stomatal responses to soil drying are more sensitive 

than other physiological variables, and sensitive stomatal closure could (Chaves et 

al., 2003; Lei et al., 2006a) allow soybean to avoid leaf water deficit. 

1.2 Plant signalling models and molecular responses to soil drying 

1.2.1 Hydraulic signalling 

Hydraulic signalling, which is transmitted by changes in water potential gradients 

throughout different tissues, could regulate turgor and water status of guard cells 

to control water uptake and initiate stomatal closure, since a lower relative water 

content can lead to stomatal closure (Brodribb et al., 2003; Franks, 2013). Short-

term stomatal behaviour responds to changes in leaf water balance, explained by 

metabolic mediated response of the guard cells to a local hydraulic status (hydro-

active local feedback). On the other hand, equivalence of hydraulic supply and 



6 

 

hydraulic demand from the action of stomatal effectors, of the water potential 

gradient between epidermal cells, makes its explanation difficult (Buckley, 2005). 

Plant water potential and turgor often decrease as the soil dries, therefore turgor 

loss could suppress cell expansion and growth. Tissues can actively accumulate 

osmolytes to maintain a positive turgor and prevent damage to cellular integrity, 

since accumulating osmotically actives solutes can maintain a positive turgor over 

a wider water potential range preventing degradation in cell integrity (Melkonian 

et al., 1982; Setter, 2012). Thus physiological processes such as stomatal movement 

could be sustained by optimal cell turgor pressure, since the osmolytes 

accumulated into guard cells can be retained therefore maintaining guard cell 

turgor (Morgan, 1984; Blum, 1996). Thus stomatal conductance and leaf water 

potential are important factors in plant water relationships (Franks and Farquhar, 

1999; Sperry, 2000; Jongdee et al., 2002; Tang et al., 2015). 

Stomatal closure is induced by hydropassive or hydroactive mechanisms (Murata 

and Mori, 2014). Hydropassive stomatal closure occurs in conditions of low 

humidity and high air movement, where the cells surrounding the guard cells 

rapidly decrease turgidity due to the evaporation (Wang et al., 2001). The hydro-

active negative feedback that affect stomatal closure is produced by the desiccation 

of the entire plant (root and shoot), where solutes are actively expelled from the 

subsidiary cells in response to external/internal factors, decreasing their osmotic 

potential causing these cells to become more mouldable (Buckley, 2005; Kaiser and 

Legner, 2007). Factors that promote stomatal changes through the hydro-active 

route (opening or closing) are mediated biochemically, requiring an active feedback 
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response of guard cell´s water potential changes in water status in or near the 

epidermis under different stress conditions. Decreased soil water content, and so 

the availability of water for the plant, affects physiological processes such as 

stomatal behaviour (opening and closing) and plant water potential under drought 

stress conditions.  

1.2.2 Chemical signalling 

Chemical signalling comprises many phytohormones, of which ABA’s role as signal 

of soil drying has been highlighted (Fig. 1.2). Phytohormones play an essential role 

in plant development, conferring tolerance to biotic and abiotic stress (Catinot et 

al., 2008; Peleg and Blumwald, 2011). Many studies have focused on changes in 

their concentrations and their impact on subsequent signalling in response to the 

stress perceived. 

ABA is synthesised throughout the plant in response to decreased cellular turgor, 

but there has been considerable debate as to whether ABA is synthesised first in 

the roots or shoots, as with an earlier debate on which tissue first perceived (in 

terms of decreased water status) drying soil (cf. Kramer 1988; Passioura 1988). One 

school of thought is that ABA is primarily synthesized in the root in response to 

decreased root turgor, then transported in the xylem sap to the shoot where it 

accumulates in the leaf apoplast to initiate stomatal closure (Davies and Zhang, 

1991; Dodd, 2005; Wilkinson et al., 2012; Puertolas et al., 2013). An opposing 

paradigm is that this hormone is synthesized in the aerial parts of the plant (e.g. the 

leaves and the stem) in response to decreased turgor, and then is transported 
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towards the roots (McAdam et al., 2016a; Manzi et al., 2015), where it enhances 

root hydraulic conductance. 

 

Figure 1.2. Diagram of `root-sourced´ model for ABA biosynthesis and transport by Davies 

and Zhang, 1991 (A) and `leaf-sourced´ model for water status and ABA biosynthesis and 

transport by McAdam et al., 2016a (B) (redrawn from McAdam et al., 2016a). 

 

Phytohormones 

Abscisic Acid 

Among all the endogenous phytohormones that exist in plants, ABA is regarded as 

a primary chemical signal that initiates stomatal closure in response to soil drying 

(Wilkinson and Davies, 2002). ABA plays a key role in regulating crop vegetative and 

reproductive development, with higher concentrations accumulating within the 

plant during drought (Liu et al., 2005a). It is well-known that ABA concentrations 
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increase in response to drought conditions and its biosynthesis proceeds via a series 

of chemical reactions transforming carotenoid precursors into ABA (Schwartz et al., 

2003; Schroeder and Nambara 2006; Ikegami et al., 2009). ABA could affect plant 

biomass accumulation with stomatal movement regulating photosynthetic rates, 

and could inhibit shoot expansion during the early stages of drought stress 

(Trewavas and Jones 1991; Tardieu et al., 2010). However, growth analyses of ABA-

deficient mutants show that ABA is required to constrain ethylene production 

(Sharp et al. 2000), which may be synthesised in response to drying soil (Sobeih et 

al. 2004). 

Under drought stress, ABA accumulation causes rapid and gradual responses in 

different tissues. Rapid stomatal closure prevents plant desiccation, since the guard 

cells decrease in volume, closing the pore. With further soil drying, ABA is gradually 

accumulated in the leaf and is transported basipetally to the roots, to promote root 

growth to allow water uptake from deeper in the soil profile. Root ABA 

accumulation is necessary to maintain root growth of plants in drying soil (Sharp et 

al., 1994). Thus this long-distance transport between different organs within the 

plant has made this phytohormone a critical messenger regulating many 

physiological processes (Kuromori et al., 2010; Kuromori et al., 2014a; Zhang and 

Davies, 1990). In addition, a balance of ABA biosynthesis, catabolism and transport 

affects tissue ABA concentrations, which ultimately affect the ABA response 

(Finkelstein, 2013). The sensitivity of different tissues to ABA will determine the 

level of response to this phytohormone, where ABA signalling can be amplified by 

pH increases in xylem / apoplast, where anionic ABA is retained (Liu et al., 2004, 
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2005b; Merilo et al., 2015). So it is important to understand how ABA 

concentrations are governed in different tissues as the soil dries. 

It is crucial to understand how ABA promotes tolerance to abiotic stress and 

regulates certain key processes, from germination to senescence. For the presence 

of ABA to induce an action, biologically active ABA must accumulate at the site of 

perception (Seiler et al., 2014). In recent years, technological advances in 

sequencing have produced an immense collection of transcriptome data from 

plants under different abiotic stresses, (Huang et al., 2008; Cramer et al., 2011). 

Different transcriptional changes due to physiological and morphological 

adaptations to environmental stress are associated with an extensive complex of 

molecular mechanisms. Therefore, a greater understanding of each metabolic step 

in the synthesis and signalling of ABA that is affected under drought stress could 

lead to the development of drought-tolerant crops (Wang et al., 2006). 

Jasmonates 

Jasmonic acid (JA), one of the jasmonates, is formed from lipid derivatives produced 

from fatty acid oxidation, and regulates various responses, such as stomatal 

movement in plants under different environmental stresses, including water 

scarcity (Balbi and Devoto, 2008; Murata and Mori, 2014; Taiz and Zeiger, 2010; 

Wasternack, 2007). 

Jasmonate concentrations increase in a similar way to ABA as the soil dries, and 

promote stomatal closure (Evans, 2003; Munemasa et al., 2007; Acharya and 

Assmann, 2009), and may interact to effect stomatal closure (Muñoz-Espinosa et 
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al., 2015). For example, the aba2-2 mutant in Arabidopsis (which is constitutively 

ABA-deficient) showed impaired MeJA-induced stomatal closure (Hossain et al., 

2011), but is still unclear how that process occurs. Also, Arabidopsis mutants with 

impaired JA (aos), ABA (aba2) and ascorbate (vtc1) biosynthesis were all more 

sensitive than wild type to drought, with ABA a key player in regulating stomatal 

behaviour while JA controlled ascorbate levels (Brossa et al., 2011). Furthermore, 

the JA precursor 12-oxo-phytodienoic acid (OPDA) was involved in stomatal 

movement in conjunction with ABA (Savchenko et al., 2014; de Ollas and Dodd, 

2016), since OPDA uncouples the conversion to JA with 12-OPDAs genes having a 

drought-responsive regulator. With ABA, the hormone JA is involved in the 

promotion of stomatal closure, but at the same time, other studies have proposed 

that drought stress prevents the conversion of the precursor of 12-oxo-

phytodienoic acid (OPDA) to JA (Savchencko et al., 2014; Kazan, 2015; de Ollas and 

Dodd, 2016). Since OPDA could act individually or in conjunction with ABA to 

promote stomatal closure, this is another step that could lead to increased drought 

tolerance. Thus, whether both hormones (JA and ABA) regulate stomatal 

movement via a similar mechanism is of interest. 

Furthermore, using chemical inhibitors of JA (salicylhydroxamic acid, SHAM) and 

ABA (norflurazon, NFZ) biosynthesis, it was shown that a rapid and transient 

increase in JA was required for root ABA accumulation in citrus (Citrus paradisi × 

Poncirus trifoliate) experiencing severe drought (de Ollas et al., 2012). However, JA 

did not accumulate in shoots of drought stressed tomato and Brassica plants, which 

may cause by differences in the level of drought stress between the studies 
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(Savchenko et al., 2014). Alternatively, exogenous JA applications (spraying 0.5 mM 

JA) increased leaf fresh weight and relative water content of different Brassica 

species in combination with drought stress (Alam et al., 2014). Thus it might be that 

JA, and its intermediate metabolites (such as OPDA), could interact in conjunction 

with ABA to modulate stomatal behaviour, thereby avoiding water losses under 

drought conditions. Furthermore, how JA accumulation under short- or long-term 

drought stress treatments affects different plant physiological processes, such as 

growth inhibition or root morphogenesis under non-stress conditions, or whether 

JA-induced changes in these parameters confers drought acclimation, remains 

unknown (Rossato et al., 2002; Harb et al., 2010; Santino et al., 2013).  

Cytokinins 

Cytokinins (CKs) are adenine-derivative molecules with diverse active forms, such 

as zeatin, zeatin riboside, and isopentyladenine which are found in higher plants 

(Ioio et al., 2008; Aloni et al., 2005). Cytokinins influence many biological functions 

throughout the plant, such as plant cell division and growth.  The CKs are produced 

in meristematic areas in roots (Werner et al., 2003) and young shoot organs (Faiss 

et al., 1997; Schmülling, 2002), thereafter being transported via the xylem stream 

to the shoot (McKenzie et al., 1998; Emery and Atkins, 2002). CK levels are 

regulated by the feedback repression of isopentenyltransferase (IPT) gene 

expression in any tissue by the rates of CK synthesis, transport, and metabolism 

(Miyawaki et al., 2004). Shoot CK level was dependent on CK delivery from the 

roots, deduced by comparing shoot CK levels in plants almost lacking transpiration 

(protected from any air movement in sterile translucent 



13 

 

polycarbonate/polypropylene boxes), and those grown under normal (transpiring) 

conditions. In addition, rapid up-regulation of the IPT-related genes expression was 

established in response to nitrate addition to N-starved plants, which adds more 

relevance to the regulatory role of root-sourced CKs transported to the shoot 

(Miyawaki et al., 2004; Aloni et al., 2005).  Shoot CK synthesis may become more 

prominent during periods of stress (such as nitrogen deficiency), when roots cannot 

provide sufficient CKs (Miyawaki et al., 2004; Takei et al., 2004). 

Cytokinin concentrations generally decrease as the soil dries, but normally return 

to pre-stress levels after re-watering (Bano et al., 1993; Naqvi, 1995). Cytokinins 

enhance or have no effects on stomatal opening, depending on which CK and its 

concentration (Dodd, 2003). Historically, CKs have been considered ABA 

antagonists throughout the plant, therefore some drought-stress studies have 

emphasised the importance of ABA/CKs interactions in better explaining stomatal 

responses than ABA alone (Tran et al., 2007; Zwack and Rashotte, 2015). However, 

CK-deficient Arabidopsis lines (ipt1, 3, 5 and 7 mutants) maintained stomatal 

opening under well-watered conditions (Nishiyama et al., 2011), suggesting a 

limited role for shoot CK biosynthesis in mediating stomatal responses. 

Gibberellins 

Gibberellins (GA) are a large group of tetracyclic diterpenoid carboxylic acids, with 

more than one hundred different chemical structures, although only some are 

biologically active and could influence plant growth, seed germination and stem 

and root development (Sun and Gubler, 2004; Taiz and Zeiger, 2010; Yamaguchi, 

2008). Compared with other phytohormones, there is much less information on 
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how GA concentrations change as the soil dries (Pospíšilová, 2003; Yamaguchi, 

2008; Colebrook et al., 2014), and their role in mediating drought stress responses. 

There is also considerable evidence suggesting that stomatal aperture may be 

regulated through multiple signalling pathways or cross-talk between various plant 

hormones, including GA (Dodd, 2005; Coelho Filho et al., 2013). 

Although GA commonly acts as an ABA antagonist (Acharya and Assmann, 2009), 

certain GA-deficient Arabidopsis mutants (A70) had similar transpiration rates 

compared to wild-type plants during drought stress (Cramer et al., 1995), 

suggesting that GA had limited impacts on stomatal opening/closure. Transgenic 

tomato  plants (overexpressing the AtGAMT1 gene from Arabidopsis) with 

decreased foliar GA levels were tolerant to water-deficit,  maintaining higher leaf 

water status and lower stomatal conductance than control plants when grown in 

drying soil (Nir et al., 2014). The evidence for gibberellins regulating stomatal 

conductance is equivocal, and further work is required to establish their 

physiological significance in regulating stomatal responses to soil drying. 

Ethylene 

Ethylene, a gaseous plant hormone, is synthesized from the amino acid methionine 

to S-adenosyl-L-methionine (SAM) by the enzyme Met Adenosyltransferase. The 

following step, where it’s converted to 1-aminocyclopropane-1-carboxylic acid 

(ACC) by the enzyme ACC synthase (ACS), is a key rate-limiting step for ethylene 

production (Kende, 1993; Wang et al., 2002). Ethylene is involved in regulating seed 

germination, fruit ripening and leaf abscission.   
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Furthermore, soil drying induced both root ABA and ACC accumulation in plants 

with decreased xylem flow. Upon re-watering, some of these hormones were 

transported to the shoot via the xylem to act as a long-distance signal of drought, 

suggesting that ACC is involved in root-to-shoot signalling (Gómez-Cadenas et al., 

1996; Else and Jackson, 1998; Wilkinson and Davies, 2008). The ABA-deficient 

tomato mutant flc (which is impaired in the oxidation of ABA aldehyde to ABA), had 

increased ethylene production independently of plant water status (Sharp et al., 

2000; Sharp and LeNoble, 2002). Also, in ABA-deficient maize lines, the rate of 

ethylene production increased in the primary root as the soil dries (Spollen et al., 

2000; Voisin et al., 2006). Thus endogenous ABA is required to maintain root 

elongation at low substrate water potential by limiting ethylene production, while 

ethylene accumulation can antagonize ABA-induced stomatal closure (Tanaka et al., 

2005; Wilkinson and Davies, 2010). Thus ethylene opposes stomatal closure under 

environmental conditions that stimulate ABA accumulation. 

Salicylic acid 

Salicylic acid (SA) is an endogenous plant phenolic hormone (lipophilic 

monohydroxybenzoic acid) that enhances various regulatory functions in plants, 

such as seed germination and plant growth (Aftab et al., 2010; Hayat et al., 2010). 

High SA levels, which could be produced locally and transported systemically within 

the plant (Raskin, 1992; Meuwly et al., 1995), enhanced plant resistance to 

pathogen infection (Volt et al., 2009). SA and JA increases are pathogen- and insect- 

(or wounding) induced, with SA signalling combatting biotrophic agents and JA 

signalling protecting against injuries (Glazebrook, 2005). The SA and JA response 
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pathways negatively interact, with one pathway repressing the other, with JA-

induced by wounding inhibiting SA response (Doherty et al., 1988; Bostock and 

Stermer, 1989; Doares et al., 1995). 

Drought-induced increases of SA concentrations in planta (roots and shoots) are 

proposed to confer osmotic stress tolerance to salinity or drought. (Horváth et al., 

2007). Exogenous SA (1 mM) sprays improved drought tolerance by increasing 

photosynthetic rate, leaf water potential and chlorophyll content in tomatoes 

(Lycopersicon esculentum) and Artemisia annua L. (Hayat et al., 2008; Aftab et al., 

2010). In addition, similar increases in transpiration rate and stomatal conductance 

were found in soybean and maize when leaves were sprayed (0.1 mM) with SA 

solution (Khan et al., 2003). However, under drought stress, simulated by 

polyethylene glycol (PEG)-6000, Arabidopsis mutants (snc1 overexpressing SA level) 

stomatal conductance decreased in comparison to the wild type, suggesting greater 

drought tolerance (He et al., 2014), and also the transpiration rate decreased 

significantly in Phaseolus vulgaris and Commelina communis after exogenous SA 

application, likely reflecting stomatal closure (Larque-Saavedra, 1979). Thus SA 

changes could be involved drought responses, perhaps via cross-talk with other 

phytohormones such as JA.   

1.2.3 Molecular studies of ABA and JA pathway  

Plant functional genomics is among the most exploited techniques for determining 

gene function and the knowledge generated has been used to improve plant 

tolerance to drought stress (Shinozaki, 2007; Le et al., 2012). Functional genomics 

is based on the study of various gene functions, where the genome sequencing of 
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soybeans and the development of detailed genetic and physical maps have 

revolutionized genomic research in this crop (Yamaguchi-Shinozaki and Shinozaki, 

2006; Nakashima et al., 2007). An important advance was the development of the 

total soybean sequence (975 Mb) (http://www.phytozome.net/soybean), where it 

has been possible to develop the genetic maps essential for genomic research. 

Phytozome (first released in 2008) is a comparative hub for plant genome and gene 

family data and analysis, at the level of sequence, gene structure, gene family and 

genome organization (Goodstein et al., 2012).  

Gene expression studies can indicate whether hormone-related genes are 

expressed at different stages of plant development, and in different tissues, when 

plants are under stress. Drought-responsive genes have been identified, such as the 

down-regulation of photosynthesis genes, hormonal changes and their function 

determined by overexpression and/or knockdown studies. Developing tolerant 

soybean genotypes requires an understanding of gene expression, biochemical and 

physiological responses, since drought responses depend on factors including plant 

genotype, developmental stage, frequency of drought events, and duration of 

water deficit (Cheong et al., 2002; Mahajan and Tuteja 2005; Cattivelli et al., 2008; 

Huang et al., 2008; Le et al., 2012; Gil-Quintana et al., 2013). 
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ABA pathway 

Biosynthesis of ABA in higher plants follows an indirect pathway that begins with 

isopentenyl pyrophosphate (IPP), the biological isoprene unit. Normally, the ABA 

biosynthesis pathway is studied from the conversion of zeaxanthin to trans-

violaxanthin, including a two-step epoxidation process that is catalysed by 

zeaxanthin epoxidase (ZEP/ABA1) (Fig. 1.3; Marin et al., 1996; Audran et al., 2001). 

After that, trans-violaxanthin is catalysed by 9-cis epoxycarotenoid dioxygenase 

(NCED), which produces a 15C compound by the oxidative cleavage of 9-cis-

violaxanthin and/or 9-cis-neoxanthin, named as xanthoxin. This reaction is the last 

step of ABA biosynthesis that occurs in the plastids and is considered rate-limiting 

for ABA biosynthesis (Tan et al., 2003). Thus, an upregulation of NCED expression 

in a detached or dehydrated leaf, especially the NCED3 gene, can be detected 

within 15–30 minutes (Qin and Zeevart, 2002; Tan et al., 2003; Yen et al., 2011). 

Moreover, NCED3 expression was increased in root tips, pericycle, and cortex cells 

at the base of lateral roots after these tissues had lost 15% of their fresh weight 

(Tan et al., 2003). Following xanthoxin production, it is exported to the cytosol and 

converted to abscisic aldehyde by short-chain dehydrogenase/reductase 

(SDR/ABA2), then oxidized to ABA by aldehyde oxidase (AAO/MoCo) (Cheng et al., 

2002; Gonzaléz-Guzmán et al., 2002; Seo et al., 2004). 

Vascular tissues have high activity of ABA biosynthetic enzymes (Kuromori et al., 

2014b). Bauer et al., (2013) showed that guard cells could be autonomous in ABA 

biosynthesis (by transforming the ABA-deficient mutant aba3-1 with guard cell-

specific expression of the MoCo sulfurase ABA3 that is involved in the last step of 
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ABA biosynthesis), ensuring that leaves of the plants did not wilt when exposed to 

dry air. Thus guard cells may regulate their own ABA levels.  

Compared with the ABA biosynthesis pathway, ABA catabolism is less complex. 

Abscisic acid can be hydroxylated in three different methyl groups such as C-7´, C-

8´, and C-9´ (Zhou et al., 2004), but the hydroxylation step does not reduce the 

biological activity of ABA. Of these hydroxylated products, only 8´-hydroxy ABA, 

which comes from the degradation of ABA by cytochrome p450 (CYP) can be 

transformed by cyclization to phaseic acid (PA) and then reduced to dihydrophaseic 

acid (DPA) (Miura et al., 2009), which is the last product of ABA catabolism without 

any potential activity. 

When soil drying increases ABA accumulation, the CYP family of genes is highly 

expressed to balance ABA biosynthesis and catabolism (Kushiro et al., 2004; Saito 

et al., 2004; Seiler et al., 2011). Apart from ABA biosynthesis and catabolism, 

glucosidation of ABA forms ABA glucosyl ester (ABA-GE), which can release active 

ABA in response to abiotic stresses (Lee et al., 2006; Wasilewska et al., 2008). 

Nevertheless, there is still some uncertainty as to which processes (biosynthesis, 

catabolism, or de/conjugation) primarily regulate ABA accumulation under stress. 

In the intracellular ABA signalling network that ultimately leads to stomatal closure, 

ABA-binding proteins, including PYR1 (PYRABACTIN-RESISTANCE1) have been 

identified (Santiago et al., 2009). PYR is one of the 14 homologues (PYL, 

PYRABACTIN RESISTANCE LIKE) present in Arabidopsis (Ma et al., 2009; Park et al., 

2009; Nishimura et. al., 2010). The PYR/PYL/RCAR–ABA receptor complex binds ABA 

and forms ternary complexes with PP2C, inhibiting the ability of PP2C (Protein 
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phosphatase 2C) to dephosphorylate SnRK2 (serine/threonine kinases) 

compounds. Activating SnRK2 acts as a positive regulator of ABA signalling (Fujita 

et al., 2009; Umezawa et al., 2009; Vlad et. al., 2009; Li et al., 2017). With increased 

ABA accumulation, the PYR/PYL–PP2C–SnRK2 complex activates a downstream 

cascade of ABA transcription factors, including the AREB/ABF (ABA-responsive cis-

element binding protein/ABA-responsive cis-element binding factor). The 

AREB/ABF transcription factors have a bZIP domain and four phosphorylation sites 

contained by SnRK2. After SNRK is phosphorylated, the ABA-response is expressed 

in ABA signalling under drought stress conditions. Moreover, the expression of 

transcription factors (ABF genes) and the accumulation of endogenous ABF proteins 

were dramatically induced by ABA (Wang et al., 2019). Thus ABA is one of the main 

molecules that makes use of that signal transduction during the drought stress 

response. Therefore, this transcription mediates a wide variety of genes involved in 

different processes, such as stomatal closure and metabolite (osmo-protectant) 

accumulation during water stress (Kuromori et al., 2014a; 2014b).  
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Figure. 1.3. ABA biosynthesis, catabolism, conjugation, de-conjugation, transport and 

signalling processes (redraw from Daszkowska-Golec, 2016). 

 

JA pathway 

Jasmonates (JAs), comprising JA and its derivatives, are lipid-derived signalling 

compounds (Fig. 1.4). Different branches of lipoxygenase pathway form JA from α-

linolenic acid (α-LeA) in chloroplast membranes by oxidative processes. A sequence 

of a hydroperoxide cyclase (LOX), a reductase and ß-oxidation of the carboxylic acid 

occurs. In the LOX pathway, only the AOS branch leads to JA formation (Vick and 

Zimmerman, 1983; Feussner and Wasternack, 2002). Some LOX gene family 

members, which are 13-LOXs, are involved in wound-induced JA formation. In 
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addition, an exclusive LOX gene (LOX6) was suggested to allow root JA accumulation 

in response to abiotic or wounding stresses (Grebner et al., 2013; Christensen et 

al., 2015).   

The enzyme of hydroperoxide cyclase undergoes a two-step reaction catalysed by, 

allene oxide synthase (AOS) and allene oxide cyclase (AOC) to 12-oxophytodienoic 

acid (OPDA). Also, the OPDA compound could be made by a spontaneous hydrolysis 

of the unstable epoxide to α- and γ-ketols and non-enzymatic cyclization (Brash et 

al., 1988), with all enzymes of OPDA formation located in chloroplasts. As 

mentioned before, expression of the LOX6 gene could lead to an increase in the 

basal level of OPDA (Grebner et al., 2013). 

In second half of the JA biosynthesis, OPDA is reduced by an OPDA reductase and 

then it is followed by enzymes of ß-oxidation, the acyl-CoAoxidase (ACX) and the 

multifunctional proteins (MFPs). These reactions are important in JA biosynthesis 

to confer stereochemistry of intermediates and products. The AOC catalyzed step 

establishes the enantiomeric of 7R and 7S forms, which leads to cis-(+)-7-iso-JA. In 

addition, the next step that conjugates the 7R and 7S forms is one of the most 

recognised bioactive JA compounds, an isoleucine (+)-7-iso-JA-Ile, which is required 

for JA perception and signalling (Fonseca et al., 2009). The majority of JA signalling 

is provided by homeostasis among different JA-Ile derivatives (Wasternack and 

Hause, 2013; Heitz et al., 2016). 

Jasmonic acid (JA) is also involved in facilitating signal transmission during stress 

(Kazan, 2015). In response to wounding, JA-Ile is rapidly synthesized in the plant 

tissue (Fonseca et al., 2009; Wasternack and Kombrink, 2019). JA responses are 
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restrained by (JAZ), which interacts with COI1 (CORONATINE INSENSITIVE1). The 

complex is involved in the co-reception of biologically active JA-Ile, where JAZ 

seems to have a strong affinity with bHLH transcription factor such as MYC2 (Cheng 

et al., 2011; Niu et al., 2011). The target of JAZ proteins and MYC2 is one of the best 

studied complex considered as a master regulator of the JA signaling pathway 

(Hadiarto and Tran, 2011; Woldemariam et al., 2011). To initiate transcription, 

MYC2 recruits the Mediator complex through physical interaction with the MED25 

subunit of the plant Mediator complex (Çevik et al., 2012; Chen et al., 2012). Thus 

JAZ proteins and the transcription factor MYC2 have key regulatory roles during 

stress adaptation, since they are recognized as the main signalling centres of JA 

(Kazan, 2013; 2015).  

Figure 1.4. JA biosynthesis, catabolism, perception and signal transduction pathway inplant 

stress response (redraw from Wasternack and Song, 2017). 



24 

 

1.3 Integrating signalling and molecular hormone pathways to induce 

physiological responses 

Maintaining a water potential gradient through the plant results in continued water 

movement from the soil to the plant. Root water potential must be lower than soil 

water potential to allow root water uptake (Serraj and Sinclair, 2002). Establishing 

and maintaining a well-developed root system has a high energy (carbohydrates 

consumption) requirement that could restrict yield (Bouman and Tuong, 2001; 

Blum, 2005). Furthermore, plant water use depends on leaf area and the stomatal 

conductance (Earl, 2003). By regulating water use, stomatal responses to soil drying 

could be used as a potential trait in selecting drought tolerant soybean genotypes 

(Vignes et al., 1986; Manavalan et al., 2009).  

Plant responses to different environmental variables are carried out through 

complex and well-coordinated mechanisms. The various genetic and metabolic 

regulations are under the control of a signalling network that begins with the 

perception of stress until the final response or effect, such as soil drying (stress) and 

stomatal closure (effect). ABA and JA can be synthesized in different tissues (roots 

and leaves) and propagate through the xylem and phloem vessels, activating a 

number of responses, such as stomatal closure and root growth, and therefore 

mediate stress tolerance (Bauer et al., 2013; Kuromori et al., 2014b; Nakashima et 

al., 2014; Yoshida et al., 2015). Thus different techniques have been used to study 

both root and shoot communication and hormone transport between tissues 

defining the root-to-shoot and shoot-to-root signalling. 
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Root-to-shoot signalling requires that a compound moves acropetally in the plant 

via apoplastic (via xylem) or symplastic pathways, and influences a target organ 

(such as leaves) by inducing physiological responses. Therefore, xylem sap 

composition in response to various stresses, such as drought, have been quantified. 

Xylem sap ABA increases have been correlated with stomatal closure in drying soil 

(Davies and Zhang, 1990; Dodd, 2003). However, other studies propose that foliar 

sourced-ABA (synthesised in response to turgor loss) is required for decreasing 

stomatal conductance (Christmann et al., 2007; McAdam et al., 2016b; Sussmilch 

et al., 2017). 

Girdling is a practice that removes phloem tissue from the stem, disrupting the 

transport of assimilates, nutrients and, for this study hormones, from the leaves to 

the roots, while allowing xylem transport (root-to-shoot). By blocking downward 

phloem translocation, girdling increases ABA concentrations in leaves of citrus 

(Rivas et al., 2011; Manzi et al., 2015). In addition, carotenoids and xanthophyll 

compounds followed the same trend as the ABA. Thus, when shoot-to-root 

communication is impeded, different compounds, including hormones, cannot be 

transported to the roots. This also prevents the root “recycling” of those hormones 

into the xylem which allows transport upward through the transpiration stream.  

Both ABA and JA have been described as long-distance signals of soil drying and 

wounding respectively, and both seem to accumulate in leaf and root tissues as the 

soil dries. Thus it makes sense to make a more detailed study of both hormones 

using different physiological, biochemical and molecular approaches, to better 

understand plant responses to soil drying.  
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Furthermore, since different analytical methods such as radioimmunoassay (RIA) or 

U-HPLC-MS have been used to quantify hormones, it is necessary to know which 

method is appropriate for the hormone analyses carried out in this thesis. Both 

techniques were compared for ABA analysis (Fig. 1.5) of samples from the 

experiment described in Chapter 4. Even if the absolute ABA concentrations 

differed between analytical methods, and were generally higher for RIA 

quantification, the values were highly correlated in both leaf (a, r2=0.87) and root 

(b, r2=0.89) tissues. Since U-HPLC-MS is a more expensive analytical technique, it 

was only employed in Chapter 4 whereas high throughput quantification of large 

numbers of samples by RIA was utilised in Chapters 2 and 3 of this thesis. 

Figure 1.5. Comparing RIA and U-HPLC-MS quantification of ABA concentrations in leaf (a) 

and root (b). Each point is an individual samples and regressions fitted where significant. 

1.4 Aims of the study 

This research aimed to understand relationships between physiological (water 

status and stomatal conductance), biochemical (phytohormones) and gene 

expression changes and regulation throughout the plant, in response to drying soil. 

Soybean was chosen as a model species due to its high importance for human and 

animal nutrition, and the wide range of possibilities (such as plant breeding or 

genetic modification) to increase yield production and quality. 
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Initially, different soybean genotypes were used to study the genotypic variation in 

water relations and ABA accumulation (Chapter 2) to determine the regulation of 

stomatal conductance in this species. Since xylem sap ABA concentration was highly 

correlated with stomatal conductance, the role of root-shoot communication in 

mediating physiological and biochemical responses was investigated by exposing 

plants to a factorial combination of soil drying and stem girdling (Chapter 3). Since 

girdling decreased stomatal conductance compared to intact plants, potentially 

prior to significant ABA accumulation, other hormonal responses were explored 

following the same treatments (Chapter 4). Since ABA and JA accumulation was 

highly correlated with stomatal closure and soil water content after withholding 

water, the role of local hormone synthesis versus shoot-to-shoot signalling were 

studied by measuring the expression of biosynthesis, catabolism and signalling 

genes within both hormone pathways (Chapter 5). 

The aims proposed for this thesis were: 

1. To determine genotypic variation of water relations and ABA accumulation 

of soybean as the soil dries. 

2. To study the role of ABA in root-shoot communication of soil drying by 

disrupting phloem transport via stem girdling just above the cotyledonary 

node. 

3. To determine whether stem girdling and soil drying affect multiple plant 

hormones, and their role in stomatal closure. 

4. To assess the co-ordination of root and shoot ABA and JA genes expression 

under girdling and drought conditions. 
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Chapter 2 - Genotypic variation in soybean stomatal conductance, 

water status and ABA accumulation upon soil drying 

 

2.1 Introduction 

Soybean production, as a predominantly rainfed crop, is normally affected by the 

variation in rainfall between different seasons and years, and is highly susceptible 

to drought (Pathan et al., 2014; Fried et al., 2019; da Silva et al., 2019). Crop 

improvement has become essential to mitigate these yield losses, with one of the 

breeder’s objectives to develop new genotypes that can withstand water scarcity 

and maintain high yields. In addition, genotypic variation can also be an effective 

tool for studying the regulation of crop stress responses (Alderfasi et al., 2001; King 

et al., 2009). Cultivar-specific responses to water stress reflect different underlying 

genetic, morphological, physiological, and biochemical mechanisms (Munns, 2002; 

Wang et al., 2003; Lei et al., 2006b) which contribute to avoiding yield losses. Early 

identification of genotypes capable of growing well when access to water is limited 

should be a breeder’s priority. However, there is considerable uncertainty over 

whether (and which) physiological traits should be included in screening for 

drought tolerance (Bruce et al., 2002; Manalavan et al., 2009). 

Roots can rapidly sense a decrease in soil moisture (Davies et al., 1990; Tardieu and 

Davies 1993; Battisti and Sentelhas 2017) and rapidly send signals to the shoot 

(Davies and Zhang 1991) to limit water loss by inducing stomatal closure. These 

signals and / or their relationships have been classified as hydraulic when tissue 
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water potential changes (Comstock, 2002; Christmann et al., 2007) and biochemical 

(Gowing et al., 1993; Schachatman and Goodger, 2008), highlighted by increased 

abscisic acid (ABA) accumulation triggering stomatal closure. Decreased leaf water 

potential and stomatal conductance are directly related to yield losses in soybean, 

since they affect cellular turgor and leaf expansion (Bunce, 1977) and 

photosynthetic activity (Gilbert et al., 2011). Different genotypes vary in their 

stomatal sensitivity to changes in soil water deficit (Hetherington and Woodward, 

2003; Liu et al., 2005c; Munns et al., 2010; He et al., 2016) and internal water 

relations (Hufstetler et al., 2007). Thus drought resistance mechanisms to maintain 

high productivity need to be investigated by characterizing variation in stomatal 

closure as the soil dries. 

ABA is produced in response to a loss of cellular turgor (McAdam and Brodribb, 

2016), with root tissues accumulating less ABA in response to dehydration (Zhang 

et al., 2018). In some species, stomatal conductance decreases in response to an 

increase or a re-distribution of ABA before any change in leaf water relations (Trejo 

and Davies, 1991; Ismail et al., 2002). Although two old soybean cultivars (released 

before 1980) showed greater ABA accumulation as the soil dried, they maintained 

a higher stomatal conductance at the same level of leaf ABA accumulation than two 

new cultivars (He et al., 2016). However, whether other soybean cultivars show 

genotypic variation in the relationships between ABA accumulation, stomatal 

conductance, leaf water potential and soil water content is still unknown.  

To assess these questions, new soybean genotypes or accessions should be 

contrasted with the physiological responses of the genomic reference Williams 82 
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(Bernard and Lindahl, 1972) to determine if there is genetic variation in response 

to different stresses. Lam et al., 2010 described the genotype Union (C08), which is 

popular in the USA, and Jindou 21 (C12) which is popular in China. C08 was 

described as a salt-susceptible genotype (Liu et al., 2019). In addition, Hossain et 

al., 2014 and 2015 described C08 and C012 as susceptible and tolerant genotypes 

to progressive soil drying respectively, since leaf water potential and stomatal 

conductance of C08 decreased faster than C12 as the soil dried. Furthermore, two 

other genotypes, Long Huang 1 (LH1) and Long Huang 2 (LH2), have been identified 

by farmers as drought tolerant (without being physiologically characterized) in the 

dry areas of northern China. Since new soybean cultivars had higher yields than old 

cultivars when water was withheld, and their stomata were seemingly less sensitive 

to closing stimuli (He et al., 2016),  it is necessary to investigate whether these 

classifications of differing stress sensitivity in soybean genotypes could be related 

to stomatal responses to soil drying.  

Soybean plants of different genotypes were exposed to well-watered and soil 

drying conditions, with the reference genotype Williams 82 included. Stomatal 

conductance and water relations was measured in the first and second trifoliate 

leaf to evaluate their relationship with endogenous xylem sap and leaf tissue ABA 

concentrations as the soil dries. It was hypothesized that genotypic differences in 

endogenous xylem sap ABA concentrations better explained variation in stomatal 

closure in response to drying soil than leaf water relations, based on previous 

observations in a single soybean cultivar (Liu et al., 2003a; 2005c). 
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2.2 Materials and methods 

2.2.1 Plant materials and experiment design 

Soybean (Glycine max (L.) Merr., genotypes Williams 82 (W82) (Bernard and 

Lindahl, 1972) and Jindou 21 (C12) and Union (C08) (Lam at al. 2010) and Long 

Huang 1 (LH1) and Long Huang 2 (LH2) (kindly supplied by Prof Hon-Ming Lam from 

Chinese University of Hong Kong)) seeds were sown directly in pots, which were 

filled with an organic loam (John Innes No. 2, J. Arthur Bowers, UK), and watered to 

the drip point. Holes (3 cm deep) were made in the soil surface using a bamboo 

stick, in which the seeds were gently placed and then covered with more substrate 

and then moistened. Two individual experiments were performed. Genotypes, pot 

volumes, daytime temperature (Tª), relative humidity (RH), supplementary light 

(PPFD) with maximum values measured at bench height with a quantum sensor, 

and photoperiod were as described in Table 2.1. Each environmental parameter 

was recorded hourly in the centre of the glasshouse using a Hortimax growing 

solutions Ektron II (Pijnacker, The Netherlands). 

Table 2.1. Experimental design and environmental conditions for each experiment.  

  

Genotypes  
Pot Volume 

(cm3) 
Tª (ºC) RH% 

PPFD               

(µmol m-2 s-1 ) 
Photoperiod 

Experiment 1 W82 - C12 - C08 762 28± 2 32-35 

1200-1400  
12 hours 

(0900-2100h) 
Experiment 2 W82 - LH1 - LH2 1000 26 ± 2 30-35 

 

A commercial liquid fertilizer Miracle-Gro (24:8:16 N:P:K) was applied once 

(according to the manufacturer´s instructions of 15ml in 4.5 liters of water) to the 
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plants at the appearance of the first trifoliate leaf. All the plants were irrigated with 

tap water to drained capacity at 1600h daily (by replacing evapotranspirational 

losses, determined gravimetrically). During expansion of the second trifoliate leaf, 

the plants of each genotype were randomized into two treatments (WW: well-

watered; Dr: droughted). Five plants from each treatment and genotype were 

harvested each day. Water was withheld on Day 0 when the experiment started.  

2.2.2 Physiological measurements 

Measurements were made on the first and second trifoliate leaf (when the second 

trifoliate leaf was completely expanded), numbering from the base of the plant, 

throughout the experiment. All the measurements were taken on each plant, only 

stomatal conductance (as the only non-destructive parameter) was measured on 

Day 0, since it was not possible to grow sufficient plants in the available glasshouse 

space to allow destructive sampling on all 6 days (including Day 0) of the 

experiments. First, the stomatal conductance (gs) was measured on the central 

leaflet of both trifoliate leaves with a porometer (Model AP4, Delta-T Devices, 

Burwell, UK). Two measurements of each leaflet were sequentially made on each 

plant and averaged. After measuring the stomatal conductance, the central leaflet 

of the second leaf was excised and collected in Eppendorf vials, which were 

immediately frozen in liquid nitrogen. Then the remaining two leaflets were excised 

at the petiole junction with the stem, to measure their leaf water potential (Ψleaf) 

with a Scholander-style pressure chamber (Soil Moisture Equipment Crop., Santa 

Barbara, CA, USA). 
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The entire first trifoliate leaf was excised at the petiole junction with the stem and 

Ψleaf was measured. For all water potential measurements, the chamber was 

gradually pressurized at 0.03 MPa s-1 until the meniscus of the sap appeared, at 

which time the pressure was recorded. After the first trifoliate Ψleaf was measured, 

xylem sap was collected at 0.3 MPa overpressure (Dodd, 2007) above the balancing 

pressure into Eppendorf vials and immediately frozen in liquid nitrogen. Both leaf 

tissue and xylem sap were stored at -80ºC for further analysis. 

After collecting xylem sap, the entire soil volume was removed from the pot, 

weighed and then placed in a drying oven until constant weight, to calculate 

gravimetric soil water content (θ) with the following relationship: 

Soil Water Content (θ) = (Fresh soil weight – Dry soil weight) / Dry soil weight 

ABA was determined using a radioimmunoassay using the monoclonal antibody 

MAC252 (Quarrie et al., 1988). Since Liu et al., (2003a) observed no cross-reaction 

of this antibody with other compounds when crude deionised water extracts or 

xylem sap were measured, no correction was made to the determined ABA 

concentrations. While the sap samples were measured without further purification, 

the leaf tissue samples were lyophilized and finely ground. Deionized water was 

added (1:25 weight ratio), the sample incubated on a shaker at 4°C overnight, then 

centrifuged to collect the aqueous extract. 

2.2.3 Statistical analysis 

Two experiments were done as described above, with the Williams 82 genotype 

grown in each as a widely used genotypic reference (Table 2.1). Two-way analysis 
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of variance (ANOVA) determined the effects of water treatment, genotype and 

their interaction (Fig. 2.1-2.4). Heterogeneous groups were separated by Tukey’s 

Honestly Significant Difference (HSD) test (P < 0.05) to discriminate differences 

between treatment x genotype combinations (Fig. 2.1-2.4). Analysis of covariance 

(ANCOVA) and regression analyses determined whether different genotypes 

affected relationships between plant and soil variables (Fig. 2.5-2.10). To determine 

variation in the responses of Williams 82 between two independent experiments, 

two-way analysis of covariance (ANCOVA) determined the effects of water 

treatment, experiment and their interaction (Table 2.2). 
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Table 2.2. Comparing relationships between stomatal conductance, soil water content, leaf 

water potential, leaf xylem sap ABA accumulation and leaf tissue ABA accumulation in two 

sequential experiments with Williams 82. Relationships are presented as independent 

variable versus dependent (x-) variable. ANCOVA determined each main effect (x-variable 

and experiment) and their interaction, with p-values reported. All data (Days 0 to 5) above 

are analysed, with statistical differences in the interaction term (indicated in bold text 

below) observed only when including Day 5. Repeating the analysis with data from Days 0 

to 4 resulted in no significant interaction terms, indicating comparable physiological 

responses in both experiments.  

 
ANCOVA  p-value  

  Experiment x-variable Exp.*x-var 

 

Days 

0-4 

Days 

0-5 

Days 

0-4 

Days 

0-5 

Days 

0-4 

Days 

0-5 

Stomatal Conductance vs Soil Water Content 1Leaf 0.920 0.685 <0.001 <0.001 0.132 0.016 

Stomatal Conductance vs Soil Water Content 2Leaf 0.312 0.792 <0.001 <0.001 0.495 0.019 

Stomatal Conductance vs Leaf Water Potential 1Leaf 0.081 0.184 <0.001 <0.001 0.218 0.514 

Stomatal Conductance vs Leaf Water Potential 2Leaf 0.701 0.824 <0.001 <0.001 0.715 0.741 

Leaf Water Potential vs Soil Water Content 1Leaf 0.089 0.760 <0.001 <0.001 0.401 0.216 

Leaf Water Potential vs Soil Water Content 2Leaf 0.070 0.805 <0.001 <0.001 0.616 0.010 

Stomatal Conductance vs Leaf xylem sap ABA 0.660 0.625 <0.001 <0.001 0.138 <0.001 

Stomatal Conductance vs Leaf tissue ABA 0.080 0.400 <0.001 <0.001 0.070 0.900 

Leaf Water Potential vs Leaf xylem sap ABA 0.320 0.281 <0.001 <0.001 0.073 <0.001 

Leaf Water Potential vs Leaf Tissue ABA 0.192 0.338 <0.001 <0.001 0.057 0.438 

Leaf xylem sap ABA vs Soil Water Content 0.802 0.002 <0.001 <0.001 0.866 0.002 

Leaf Tissue ABA vs Soil Water Content 0.327 0.194 <0.001 <0.001 0.248 0.980 

 

2.3 Results  

2.3.1 Soil water status 

In both experiments, soil water content of well-watered treatments remained 

between 0.8 and 1 g g-1 (Fig. 2.1). Withholding water for 5 days decreased soil water 
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content in all genotypes, with the reference genotype Williams 82 drying the soil 

more slowly in both experiments. In Experiment 1, genotype had no significant 

effect on soil water dynamics until Day 5, with greater drying in cultivars C12 and 

C08 (Fig. 2.1a).  

In Experiment 2, genotypes LH1 and LH2 (Fig. 2.1b) dried the soil more rapidly 

throughout the experiment. Only on Day 3 of both experiments did the genotypes 

show a different response to the soil drying treatments (significant treatment x 

genotype interactions), largely due to the higher values of Williams 82 indicating a 

slower rate of soil drying. 

In both experiments, Williams 82 dried the soil slower, since leaf area of the other 

genotypes was 10, 13, 22 and 12% higher in C12, C08, LH1 and LH2 respectively 

(Table 2.3).  
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Figure 2.1. Soil Water Content during Experiments 1 (a) and 2 (b), with water withheld from 

droughted plants on Day 0. Circles and triangles represent well-watered (WW) and 

droughted (Dr) plants respectively. The reference genotype W82 is represented in black 

(WW) and white (Dr) colors in both experiments. Symbols indicate mean ± s.e. (n=5). 

Different letters indicate significant differences (P < 0.05) according to the Tukey´s test on 

Days 3 (b) and 5 (a). Effects of watering treatment (Stress or St), genotype (Genotype or 

Gt) and their interaction are indicated thus: NS, non-significant; * P <0.05; ** P <0.01; *** 

P <0.001. 

 

Table 2.3. Total leaf area (cm2) of well-watered and droughted plants after 5 days of 

withholding water. Values are the mean ± s.e. (n=5). Different letters indicate significant 

differences (P < 0.05) according to the Tukey´s test, within an experiment (lower case and 

upper case letters represent Experiments 1 and 2 respectively). P-values from 2 way 

ANOVA of the effects of watering treatment (Stress or St), genotype (Genotype or Gt) and 

their interaction are indicated.  

 
Experiment 1 Experiment 2 

 
W82 C12 C08 W82 LH1 LH2 

Well-Watered 
191.7 ± 22.5 

ab 

179. ± 16.2 

ab 

237.5 ± 5.7   

a 

223.8 ± 21.7 

AB 

245.9 ± 16.9 

A 

211 ± 10.9 

ABC 

Drought 

146.7 ± 14.1 

b 

161.3 ± 8.5 

b 

167.2 ± 15.4 

b 

142.8 ± 22.6 

C 

182.5 ± 9.5 

ABC 

161.3 ± 9.2 

BC 

P-values from 

two-way ANOVA 

Stress 

Genotype 

St * Gt 

<0.0012 

0.0571 

0.2314  

            <0.001 

             0.1395 

             0.6631  
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2.3.2 Effect of genotype and soil drying on plant responses  

Stomatal conductance (gs) was measured in the first and second trifoliate leaf in 

each experiment (Fig. 2.2). In Experiment 1, gs of the first trifoliate leaf of well-

watered leaf plants remained between 300 and 500 mmol m-2 s-1 (Fig. 2.2a). Soil 

drying significantly decreased gs on Day 2, and gs continued to decline to 20 mmol 

m-2 s-1 as a minimum value in C08 on Day 5. Genotype C12 maintained a higher gs in 

both treatments on Days 1-3, then declined abruptly in the droughted treatment 

on Days 4 and 5. This decline resulted in a significant stress x genotype interaction 

from Day 4, with C12 having higher stomatal sensitivity to drying soil (Fig. 2.2a). 

Similar stomatal responses were seen in the second trifoliate leaf (Fig. 2.2b), with a 

significant stress x genotype interaction detected from Day 3. Again, C12 had the 

highest gs in well-watered plants, with C08 having the lowest gs in the drought 

treatments between Days 2 and 4. Generally, these differences could not be 

statistically attributed to differences in the rate of soil drying (cf. Fig 2.1a). 

In Experiment 2, gs of well-watered plants remained between 300 and 400 mmol 

m-2 s-1 in both first and second trifoliate leaves (Fig 2.2c, d), with limited genotypic 

differences. Soil drying decreased gs from Day 2, with gs declining to 30 mmol m-2 s-

1 for all the genotypes by Day 5 (Fig. 2.2c). The rate of stomatal closure differed 

between genotypes, with Williams 82 maintaining a higher gs on Days 2 and 3. Thus 

there was a significant genotype x treatment interaction on Day 3 (first trifoliate 

leaf) and Days 2 and 3 (second trifoliate leaf). Stomatal conductance of genotypes 

LH1 and LH2 was similar in both treatments. In this experiment, the less sensitive 



39 

 

stomatal response of Williams 82 was attributed to a slower rate of soil drying (cf. 

Fig. 2.1b). 

 

Figure 2.2. Stomatal conductance during Experiments 1 (a, b) and 2 (c, d) in the first (a, c) 

and second (b, d) trifoliate leaves, with water withheld from droughted plants on Day 0. 

Measurements on Day 0 were done before imposing stress treatment. Circles and triangles 

represent well-watered (WW) and droughted (Dr) plants respectively. The reference 

genotype W82 is represented in black (WW) and white (Dr) colors in both experiments. 

Symbols indicate mean ± s.e. (n=5). Different letters indicate significant differences (P < 

0.05) according to the Tukey´s test on Day 5. Effects of watering treatment (Stress or St), 

genotype (Genotype or Gt) and their interaction are indicated thus: NS, non-significant; * 

P <0.05; ** P <0.01; *** P <0.001. 
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Soil drying decreased leaf water potential (Ψleaf) in both trifoliate leaves in both 

experiments, within 1 or 2 days of withholding water (Fig. 2.3). After withholding 

water in Experiment 1, Williams 82 had a higher Ψleaf than the other genotypes on 

Days 4 and 5 (Fig. 2.3a) and Days 3-5 (Fig. 2.3b) in the first and second trifoliate leaf 

respectively. On Day 5, C12 had a higher Ψleaf than C08 by 0.1 MPa in the first and 

0.2 MPa in the second trifoliate leaf respectively (Fig. 2.3a, b). Genotypic 

differences in the sensitivity of Ψleaf to soil drying (significant genotype x treatment 

interaction) occurred in the second leaf on Days 3-5, likely due to a more rapid 

decline in Ψleaf in C08 than Williams 82.  

In Experiment 2, LH1 and LH2 had similar response in both trifoliate leaves for well-

watered plants throughout the experiment (Fig. 2.3c, d). Williams 82 had a higher 

Ψleaf than the other genotypes on Day 3-5 (Fig. 2.3c) and Days 2-5 (Fig. 2.3d) in the 

first and second trifoliate leaf respectively. Both LH1 and LH2 showed an 

accelerated decline in Ψleaf with soil drying, reaching values 0.4-0.5 MPa lower than 

Williams 82 on Day 5. Genotypic differences in the sensitivity of Ψleaf to soil drying 

(significant genotype x treatment interaction) occurred on Day 5 (first leaf – Fig. 

2.3c) and on Days 3 and 5 (second leaf – Fig. 2.3d). Again, the relative insensitivity 

of Williams 82 Ψleaf to soil drying likely explained this variation.  
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Figure 2.3. Leaf water potential during Experiments 1 (a, b) and 2 (c, d) in the first (a, c) and 

second (b, d) trifoliate leaves, with water withheld from droughted plants on Day 0. Circles 

and triangles represent well-watered (WW) and droughted (Dr) plants respectively. The 

reference genotype W82 is represented in black (WW) and white (Dr) colors in both 

experiments. Symbols indicate mean ± s.e. (n=5). Different letters indicate significant 

differences (P < 0.05) according to the Tukey´s test on Day 5. Effects of watering treatment 

(Stress or St), genotype (Genotype or Gt) and their interaction are indicated thus: NS, non-

significant; * P <0.05; ** P <0.01; *** P <0.001. 
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Leaf xylem sap ABA ( [X-ABA]leaf ) and leaf tissue ABA concentrations ( [ABA]leaf ) 

increased in both experiments after withholding water (Fig. 2.4). In Experiment 1, 

in the first trifoliate leaf, [X-ABA]leaf of well-watered plants averaged 91, 82 and 112 

nM for Williams 82, C12 and C08 respectively throughout the experiment (Fig. 

2.4a). [X-ABA]leaf of droughted plants increased to 1841, 1161 and 2496 nM in 

Williams 82, C12 and C08 respectively by the end of the experiment, representing 

20-, 14.5- and 22.3-fold increases compared to well-watered plants. Genotypic 

differences in the sensitivity of [X-ABA]leaf to soil drying (significant genotype x 

stress treatment interaction) occurred from Day 3, likely since C08 had higher [X-

ABA]leaf values in drying soil. In the second trifoliate leaf, [ABA]leaf of well-watered 

plants averaged 928, 839 and 887 ng g-1 DW for Williams 82, C12 and C08 

respectively throughout the experiment (Fig. 2.4b). [ABA]leaf of droughted plants 

increased to 3436, 3835 and 4167 ng g-1 DW in Williams 82, C12 and C08 

respectively by the end of the experiment, representing 3.8-, 4.8- and 5.1-fold 

increases compared to well-watered plants. As occurred in the first leaf, genotypic 

differences in the sensitivity of [ABA]leaf to soil drying (significant genotype x stress 

treatment interaction) occurred from Day 2, likely since C08 had higher [X-ABA]leaf 

values in drying soil. Thus genotypic differences in the magnitude of ABA 

accumulation were consistent between different leaves, and irrespective of 

whether leaf tissue or xylem sap ABA concentrations were measured. 

In Experiment 2, all genotypes had a similar xylem sap ABA concentration (120 nM) 

in well-watered plants (Fig. 2.4c). [X-ABA]leaf of droughted plants increased to 834, 

1104 and 902 nM in Williams 82, LH1 and LH2 respectively by the end of the 
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experiment, representing 6.9-, 9.1- and 7.5-fold increases compared to well-

watered plants. Genotypic differences in the sensitivity of [X-ABA]leaf to soil drying 

(significant genotype x stress treatment interaction) occurred on Days 2, 3 and 5, 

likely since LH1 had higher [X-ABA]leaf values. In the second trifoliate leaf, [ABA]leaf 

of well-watered plants averaged 1170, 835 and 1100 ng g-1 DW for Williams 82, C12 

and C08 throughout the experiment (Fig. 2.4d). [ABA]leaf of droughted plants 

increased to 2843, 3554 and 4554 ng g-1 DW in Williams 82, LH1 and LH2 

respectively by the end of the experiment, representing 2.4-, 4.3- and 4.1-fold 

increases compared to well-watered plants. In contrast to the first leaf, genotypic 

differences in the sensitivity of [ABA]leaf to soil drying (significant genotype x stress 

treatment interaction) in the second leaf occurred from Day 3, likely since LH2 had 

higher [ABA]leaf values. Although LH1 had the highest xylem ABA concentrations in 

response to drying soil, LH2 had the highest foliar ABA accumulation. 
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Figure 2.4. Leaf xylem sap ABA concentration (a, c) and leaf tissue ABA concentration (b, d) 

during Experiments 1 (a, b) and 2 (c, d) in the first (a, c) and second (b, d) trifoliate leaves, 

with water withheld from droughted plants on Day 0. Circles and triangles represent well-

watered (WW) and droughted (Dr) plants respectively. The reference genotype W82 is 

represented in black (WW) and white (Dr) colors in both experiments. Symbols indicate 

mean ± s.e. (n=5). Different letters indicate significant differences (P < 0.05) according to 

the Tukey´s test on Day 5. Effects of watering treatment (Stress or St), genotype (Genotype 

or Gt) and their interaction are indicated thus: NS, non-significant; * P <0.05; ** P <0.01; 

*** P <0.001. 
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Overall, leaf xylem sap and leaf tissue ABA concentration measurements had a 

similar ability to discriminate significant genotype and stress effects in response to 

soil drying, as both ABA measurements increased at the same time. Furthermore, 

the relative magnitude of drought-induced changes in [X-ABA]leaf was greater than 

the changes in [ABA]leaf, by 3- to 5- fold in Experiment 1 and 2- to 3-fold in 

Experiment 2. Ultimately, it is important to understand whether either ABA 

measurement can explain more of the variation in stomatal response, and the 

potential regulation of ABA status by variation in soil or plant water status. 

2.3.3 Effect of soil drying on different variables  

Stomatal conductance decreased as the soil water content decreased (Fig. 2.5). In 

Experiments 1 and 2, all genotypes had the same relationship between stomatal 

conductance and soil water content in the first (Fig. 2.5a, c) and the second (Fig. 

2.5b, d) trifoliate leaves, as indicated by no significant genotype x soil water content 

interactions.  
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Figure 2.5. Relationships between stomatal conductance and soil water content during 

Experiments 1 (a, b) and 2 (c, d) in the first (a, c) and second (b, d) trifoliate leaves. Filled 

circles represent W82 in both experiments as a reference. Hollow circles and filled triangles 

represent C12 and C08 respectively, and LH1 and LH2 respectively in each experiment. Each 

symbol is an individual plant and regression lines were fitted to all genotypes (per 

experiment and trifoliate leaf) where P < 0.05. p-values determined by ANCOVA for each 

main effect (x-variable and genotype) and their interaction are reported. 

 

Leaf water potential decreased as the soil water content decreased (Fig. 2.6). As 

with stomatal conductance, all genotypes had the same relationship between leaf 

water potential and soil water content in the first (Fig. 2.6a, c) and the second (Fig. 

2.6b, d) trifoliate leaves in both experiments, as indicated by no significant 

genotype x soil water content interactions.   
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Figure 2.6. Relationships between leaf water potential and soil water content during 

Experiments 1 (a, b) and 2 (c, d) in the first (a, c) and second (b, d) trifoliate leaves. Filled 

circles represent W82 in both experiments as a reference. Hollow circles and filled triangles 

represent C12 and C08 respectively, and LH1 and LH2 respectively in each experiment. Each 

symbol is an individual plant and regression lines were fitted to all genotypes (per 

experiment and trifoliate leaf) where P < 0.05. p-values determined by ANCOVA for each 

main effect (x-variable and genotype) and their interaction are reported. 

 

There was genotypic variation in leaf xylem sap [ABA] and leaf tissue [ABA] 

responses to soil drying (as indicated by significant genotype x soil water content 

interactions (Fig. 2.7). In Experiment 1, leaf xylem sap [ABA] of the C12 genotype 

was less sensitive to changes in soil water content (Fig. 2.7a), while C08 showed 

enhanced foliar ABA accumulation (Fig. 2.7b). In Experiment 2, all genotypes had 

the same relationship between leaf xylem sap [ABA] and soil water content, as 
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indicated by no significant genotype x soil water content interaction (Fig. 2.7c). In 

the second trifoliate leaf, LH2 had higher ABA concentrations once soil water 

content declined below 0.4 g g-1 (Fig. 2.7d). Generally, leaf tissue [ABA] has greater 

genotypic variation upon soil drying, as in the C12, C08 and LH2 genotypes. On the 

other hand, W82 and LH1, variation in soil water content better explained leaf 

xylem sap [ABA] than leaf tissue [ABA].  

 

 

Figure 2.7. Relationships between leaf xylem sap ABA concentration (a, c), leaf tissue ABA 

concentration (b, d) and soil water content during Experiments 1 (a, b) and 2 (c, d) in the 

first (a, c) and second (b, d) trifoliate leaves. Filled circles represent W82 in both 

experiments as a reference. Hollow circles and filled triangles represent C12 and C08 

respectively, and LH1 and LH2 respectively in each experiment. Each symbol is an individual 

plant and regression lines were fitted to all genotypes (c), solid line = W82, long dash = C12 

and LH1 and dotted line = C08 and LH2 (a, b and d) where P < 0.05. p-values determined by 

ANCOVA for each main effect (x-variable and genotype) and their interaction are reported. 
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2.3.4 Relationships between stomatal conductance, leaf water potential and ABA 

status  

Stomatal conductance decreased as leaf xylem sap [ABA] and leaf tissue [ABA] 

increased in all genotypes (Fig. 2.8). In the first trifoliate leaf, C12 genotype differed 

from W82 and C08 in the relationship between gs and leaf xylem sap [ABA] and in 

the second trifoliate leaf C08 differed from C12 in the  relationship between gs and 

leaf tissue [ABA]in Experiment 1 (Fig. 8a and b respectively). Stomatal conductance 

of the C12 and C08 genotypes was less sensitive to leaf tissue [ABA] (Fig. 2.8b). In 

Experiment 2, all genotypes had the same relationship between gs and leaf xylem 

sap [ABA] in the first trifoliate leaf, as indicated by no significant genotype x [ABA] 

interaction (Fig. 2.8c). In the second trifoliate leaf, LH2 genotype differed from W82 

genotype in the relationship between gs and leaf tissue [ABA] (Fig. 2.8d). Generally, 

stomatal conductance was marginally better explained by variation in leaf xylem 

sap [ABA] than leaf tissue [ABA], as indicated by higher r2 values in the correlations.  
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Figure 2.8. Relationships between leaf stomatal conductance and leaf xylem sap ABA 

accumulation (a, c) and leaf tissue ABA accumulation (b, d) during Experiments 1 (a, b) and 

2 (c, d) in the first (a, c) and second (b, d) trifoliate leaves. Filled circles represent W82 in 

both experiments as a reference. Hollow circles and filled triangles represent C12 and C08 

respectively, and LH1 and LH2 respectively in each experiment. Each symbol is an individual 

plant and regression lines were fitted to all genotypes (c), solid line = W82, long dash = C12 

and LH1 and dotted line = C08 and LH2 (a, b and d) where P < 0.05. p-values determined by 

ANCOVA for each main effect ([ABA] and genotype) and their interaction are reported. 

 

The same pattern as mentioned above occurs in the relationships between first leaf 

xylem sap [ABA], second leaf tissue [ABA] and Ψleaf in Experiments 1 and 2 (Fig. 2.9). 

In the first trifoliate leaf, C12 genotype differed from W82 and C08 in the 

relationship between leaf xylem sap [ABA] and Ψleaf, but in the second trifoliate leaf 
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C08 differed from W82 and C12 genotype in the  relationship between leaf tissue 

[ABA] and Ψleaf in Experiment 1 (Fig. 2.9a and b respectively). Leaf tissue [ABA] was 

more sensitive to changes in Ψleaf in the C08 genotype (Fig. 2.9b). In Experiment 2, 

all genotypes had the same relationship between leaf xylem sap [ABA] and Ψleaf, as 

indicated by no significant genotype x Ψleaf interaction (Fig. 2.9c). In the second 

trifoliate leaf, LH2 genotype was slightly different from LH1 in the relationship 

between leaf tissue [ABA] and Ψleaf (Fig. 2.9d). In Experiment 1, variation in Ψleaf 

better explained changes in leaf xylem sap [ABA] than leaf tissue [ABA] in the W82 

genotype, whereas Ψleaf of C12 and C08 was more closely related to leaf tissue 

[ABA]. In Experiment 2, Ψleaf of LH1 and LH2 was more closely related to leaf tissue 

leaf xylem sap [ABA] than leaf tissue [ABA]. Generally, xylem sap [ABA] of the first 

trifoliate leaf was more tightly correlated with Ψleaf than leaf tissue [ABA] of the 

second trifoliate leaf was correlated with Ψleaf.   
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Figure 2.9. Relationships between leaf xylem sap ABA accumulation, leaf tissue ABA 

accumulation and leaf water potential during Experiments 1 (a, b) and 2 (c, d) in the first 

(a, c) and second (b, d) trifoliate leaves. Filled circles represent W82 in both experiments 

as a reference. Hollow circles and filled triangles represent C12 and C08 respectively, and 

LH1 and LH2 respectively in each experiment. Each symbol is an individual plant and 

regression lines were fitted to all genotypes (c), solid line = W82, long dash = C12 and LH1 

and dotted line = C08 and LH2 (a, b and d) where P < 0.05. p-values determined by ANCOVA 

for each main effect (x-variable and genotype) and their interaction are reported. 

 

In addition, gs decreased as the leaf water potential decreased (Fig. 2.10). In both 

experiments, all genotypes had the same relationship between gs and Ψleaf in the 

first trifoliate leaf, as indicated by no significant genotype x Ψleaf interactions in both 

experiments (Fig. 2.10a, c). In contrast, the second trifoliate leaf showed genotypic 

variation in sensitivity of gs to Ψleaf (significant genotype x leaf water potential 
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interaction) (Fig. 2.10b, d). In Experiment 1, C08 genotype differed from W82 and 

C12 in the relationship between gs and Ψleaf (Fig. 2.10b). While in Experiment 2, LH1 

and LH2 genotype differed from W82 in the relationship between gs and Ψleaf (Fig. 

2.10d). Generally, gs of the second trifoliate leaf (rather than the first) was highly 

affected by genotypic variation in Ψleaf. 

 

 

Figure 2.10. Relationships between leaf stomatal conductance and leaf water potential 

during Experiments 1 (a, b) and 2 (c, d) in the first (a, c) and second (b, d) trifoliate leaves. 

Filled circles represent W82 in both experiments as a reference. Hollow circles and filled 

triangles represent C12 and C08 respectively, and LH1 and LH2 respectively in each 

experiment. Each symbol is an individual plant and regression lines were fitted to all 

genotypes (c), solid line = W82, long dash = C12 and LH1 and dotted line = C08 and LH2 (a, 

b and d) where P < 0.05. p-values determined by ANCOVA for each main effect (x-variable 

and genotype) and their interaction are reported. 
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2.4 Discussion 

Drought tolerance in soybean has been emphasized by breeders with different 

strategies (such as yield, WUE and root morphology) to avoid yield losses (Fried et 

al., 2019), while ABA relations have not been extensively investigated in this 

species. However, the numbers of cultivated and wild soybean genotypes make 

physiological screening for drought tolerance a labour-intensive exercise. 

Since these experiments selected several genotypes with unknown drought 

tolerance, it was impractical to include all genotypes in a single experiment. Thus 

Williams 82 was selected as a reference genotype in two independent experiments 

conducted sequentially in the same growing space under similar environmental 

conditions (Table 2.1). Such an experimental strategy would be invalidated if the 

reference genotype showed contrasting physiological responses in independent 

experiments, suggesting a genotype x environment interaction commonly observed 

in breeder’s trials. Nevertheless, correlating plant and soil variables between the 2 

sets of Williams 82 data showed no significant experiment x x-variable interactions 

when Days 0 to 4 were considered in the analysis (Table 2.2), indicating comparable 

physiological responses of Williams 82 in both experiments. Only when the soil 

drying was prolonged (Days 0 to 5) did half the statistical analyses show significant 

experiment x x-variable interactions. This consistent response of Williams 82 to soil 

drying in both experiments (Table 2.2) validates the experimental strategy, yet it 

was not known whether this old genotype (released in 1972) is more or less 

sensitive to water deficit than more recently released varieties.  
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A recent study with two old and two new Chinese soybean cultivars indicated that 

stomatal conductance of the newer cultivars was more sensitive to soil drying (He 

et al. 2016), with stomatal closure initiated at higher soil moisture values. In 

contrast, leaf relative water content of the newer cultivars declined at much lower 

soil moisture values than the older cultivars, with stomatal closure occurring at 

higher soil moisture values than changes in leaf water status. This disparity suggests 

that stomatal closure in soybean was mediated by non-hydraulic factors, with leaf 

ABA accumulation increased at higher soil moisture values by a difference of 10% 

decline in soil water content. 

In this study, Williams 82 dried the soil more slowly than the more modern 

genotypes (Fig. 2.1), even if significant genotypic differences were only detected on 

Day 5 in Experiment 1 (comparing against the C08 and C12 genotypes) and 

throughout Experiment 2 (comparing against the LH1 and LH2 genotypes). These 

genotypic differences were likely due to the lower leaf area of Williams 82 (Table 

2.3) causing a slower rate of soil drying.  

These responses could reflect lower sensitivity of Williams 82 to drought, since its 

stomatal conductance and leaf water potential were higher than the other 

genotypes in both experiments (Fig. 2.2 and 2.3). These responses were 

accentuated in the second trifoliate leaf, with higher values after two days 

(Experiment 1 - Fig. 2.3b and Experiment 2 – Fig. 2.3d) causing significant genotype 

x treatment interactions. However, in both experiments, all genotypes and both 

trifoliate leaves showed no variation in the relationships between the stomatal 

conductance or leaf water potential and soil water content (Fig. 2.5 and 2.6). Thus 
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all genotypes showed a similar sensitivity of stomatal conductance to soil drying 

(Fig 2.5), as indicated by no significant genotype x soil water content interactions. 

Temporal differences in stomatal responses of the genotypes as the soil dried (Fig. 

2.2) were simply due to differences in the rate of soil drying (Fig. 2.1). Similarly, all 

genotypes showed a similar sensitivity of leaf water potential to soil drying (Fig 2.6), 

and minimal differences (only in Experiment 2) in the sensitivity of stomatal 

conductance to leaf water potential (Fig 2.10), suggesting that changes in leaf water 

status were the most parsimonious explanation for stomatal closure (cf. Liu et al., 

2003a). However, such correlations do not indicate causality, and maintaining leaf 

water status as the soil dried via root pressurisation did not prevent drought-

induced stomatal closure (Gollan et al., 1986). 

Different signals causing stomatal closure have been described as hydraulic or 

biochemical, where it is supposed that a hydraulic signal (loss of leaf turgor) should 

stimulate ABA biosynthesis (Pierce and Raschke, 1980; Christmann et al., 2007). On 

the other hand, previous studies suggest that ABA may be important in mediating 

stomatal closure of soybean before any decrease in leaf turgor (Liu et al., 2003a; 

2005c), so it is worth understanding whether leaf xylem sap or leaf tissue ABA 

measurement can explain better the stomatal responses. Under progressive soil 

drying conditions, leaf xylem sap [ABA] of some genotypes showed a lower fold-

changed response than leaf tissue [ABA] (Fig. 2.4; 2.7), suggesting that the capacity 

to redistribute ABA between tissues is genotype-dependent. Taken together, leaf 

xylem sap ABA concentration better explained (higher regression values) variation 

in stomatal conductance than variation in foliar ABA accumulation when comparing 



57 

 

the two leaves analysed. This occurred since much of the ABA in the leaf was likely 

compartmentalised in mesophyll tissues, where it was inaccessible to the guard 

cells (Wilkinson et al., 1997).  

In conclusion, stomatal conductance was better explained by variation in [X-ABA]leaf 

than [ABA]leaf, since the results suggest that leaf xylem sap ABA is highly correlated 

with stomatal conductance in all the genotypes studied (Fig. 2.8), which is 

physiologically important as stomatal closure limits soybean yields (Bunce, 1977). 

Since ABA in xylem sap can be derived from both root/apoplastic sources (Zhang 

and Davies, 1990) and leaf/symplastic sources (Borel and Simmoneau, 2002), the 

importance of root-to-shoot and shoot-to-root signalling in regulating xylem sap 

ABA concentration should be investigated.  
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Chapter 3 - Stem girdling uncouples soybean stomatal conductance 

from leaf water potential by enhancing leaf xylem ABA concentration  

 

3.1 Introduction 

Soybean is one of the most important crops in the world, but its production is often 

limited by drought (Doss et al., 1974; Eck et al., 1987; Liu et al., 2003b; Pardo et al., 

2015). Soil water deficits developing during critical stages of reproductive 

development can limit seed set, induce pod abortion and decrease individual seed 

dry weight, thereby decreasing soybean yield (Liu et al., 2003b; Pardo et al., 2015). 

Understanding the physiological and molecular responses to drought offers 

opportunities to enhance soybean drought tolerance by overexpressing key 

regulatory genes, including those that determine plant hormone status (Manavalan 

et al., 2009). Plant hormones control multiple physiological and developmental 

processes that determine crop yields (Morgan and King, 1984; Li et al., 2013). 

Abscisic acid (ABA) is a key phytohormone involved in regulating plant water status 

by controlling stomatal aperture (Tardieu et al., 1996; Schurr and Schulze, 1996; 

Wilkinson and Davies, 2002) and leaf and root hydraulic conductance (Pantin et al., 

2013; Dodd, 2013).  

During water deficit, ABA concentrations increase throughout the plant, partially 

closing the stomata which acts to maintain leaf water status (Liu et al., 2003a; 

2005c), but there has been considerable debate as to which organ (roots versus 

shoots) is the first to perceive soil drying (cf. Kramer, 1988; Passioura, 1988). It was 
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proposed that ABA is primarily synthesized in the root, then transported in the 

xylem sap to the shoot where it accumulates in the leaf apoplast to initiate stomatal 

closure (Davies and Zhang, 1991), thus reducing transpiration. Root ABA 

concentration increases as soil water content and root water potential decreases 

(Zhang and Davies, 1989a; Puertolas et al., 2013), suggesting that soil drying 

increases root ABA biosynthesis. Root ABA concentrations are linearly related to 

the concentrations of ABA detected in xylem sap, suggesting that roots are an 

important source of xylem ABA (Liang et al., 1997). Moreover, the concentrations 

of ABA found in the leaf xylem sap are sufficient to close the stomata of species 

such as maize (Zhang and Davies, 1991) and pea (Rothwell et al., 2015), as 

determined by experiments that measure the transpiration of detached leaves 

supplied with synthetic ABA via the xylem. Nevertheless, in some species, xylem sap 

ABA concentrations are insufficient to explain stomatal closure (Munns and King, 

1988) and adding osmotica to the roots caused shoot ABA accumulation prior to 

any root ABA accumulation (Christmann et al., 2005). Such observations have 

challenged the concept of root-to-shoot ABA signalling and prompted the search 

for other xylem-borne antitranspirants. 

A further challenge to the concept of root-to-shoot ABA signalling comes from 

experiments that have suppressed shoot-to-root ABA transport by girdling (removal 

of stem phloem tissue at the root-shoot junction). Using this technique, different 

studies have demonstrated the importance of shoot-sourced ABA in explaining root 

ABA accumulation in response to water stress induced by chilling (Vernieri et al., 

2001) or drought (Liang et al., 1997; Ikegami et al., 2009; Manzi et al., 2015). In 



60 

 

contrast, stem girdling had minimal effects on root ABA accumulation in both 

Xanthium and tomato, with dehydrated roots of stem-girdled plants showing 80% 

of the root ABA accumulation (averaged across both species) of intact plants 

(Cornish and Zeevaart, 1985), indicating root-autonomous ABA biosynthesis. These 

contrasting results demonstrate the need to further investigate the origin of the 

ABA accumulated in roots in response to drought.  

Furthermore, the impact of obstructing the phloem flow on shoot ABA 

accumulation remains unclear. Early studies show that petiole girdling can 

stimulate ABA accumulation in leaf laminae and trigger stomatal closure (Setter et 

al., 1980; Setter and Brun, 1981), while others show that stem girdling has no 

significant effect on leaf ABA accumulation (Vernieri et al., 2001; Manzi et al., 2015). 

In contrast, stem girdling stimulated pronounced (50% increase) foliar ABA 

accumulation in young vegetative tissues while ABA concentrations of mature 

leaves almost halved (Rivas et al., 2011), indicating that the effect of girdling on ABA 

accumulation may intensify with distance from the wound site. This may be related 

to basipetal gradients in foliar ABA concentration (Mitchell et al., 2016) and xylem 

ABA concentration (Soar et al., 2004), which seem important in regulating stomatal 

responses. Root xylem ABA concentrations explained more of the variation in 

drought-induced stomatal closure than bulk leaf ABA concentration in soybean (Liu 

et al., 2003a; b) and other species (Zhang and Davies, 1990). Nevertheless, the 

impact of stem girdling on leaf xylem ABA concentration has not yet been 

investigated. 

 



61 

 

To assess these questions, soybean plants were exposed to a factorial combination 

of soil drying and stem girdling. Stomatal conductance was measured daily and 

water relations / xylem ABA concentration measured in different parts of the plant 

(roots, shoots, leaves) to evaluate the dependence of ABA accumulation on tissue 

water relations. It was hypothesised that shoot to root ABA transport determines 

ABA distribution in the plant and thus stomatal responses to soil drying.  

3.2 Materials and methods 

3.2.1 Plant materials and experiment design 

Soybean (Glycine max L. Merr. cv. Siverka) seeds were germinated in the dark on 

moistened filter paper for 3 days, then sown in pots which fitted perfectly inside a 

Scholander-type pressure chamber (Soil Moisture Equipment Crop., Santa Barbara, 

CA, USA). Pots were 6.5 cm in diameter and 23 cm in length (762 cm3 in volume), 

with a steel mesh (0.7 mm aperture) base to allow drainage. Pots were filled with 

an organic loam (John Innes No. 2, J. Arthur Bowers, UK), watered to the drip point 

and then seedlings of uniform development (radical length 30-50 mm) 

transplanted. 

Plants were grown in a naturally lit greenhouse with an average daytime 

temperature of 27 ± 2°C, with a relative humidity of 30-40% and supplementary 

lighting providing a PPFD at bench height of 250-400 µmol m-2 s-1 for a 13 h 

photoperiod (0700-2000h). A commercial liquid fertilizer Miracle-Gro (24:8:16 

N:P:K) was applied once to the plants at the appearance of the first trifoliate leaf. 

All the plants were irrigated to drained capacity at 1600h daily (by replacing 
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evapotranspirational losses, determined gravimetrically). During expansion of the 

third trifoliate leaf, the plants were randomized into 4 groups, comprising the 

treatments applied: soil drying (WW: well-watered; DR: droughted) and girdling 

(NG: intact plants; G: Girdled plants) respectively. Five plants from each treatment 

were harvested each day. Girdling was achieved surgically (at 1400h on Day 0), 

when the third trifoliate leaf was completely expanded, by excising 10 mm of 

phloem tissue from the stem (at 100-110 mm above the soil surface) with a sharp 

razor blade. Plants were girdled between the cotyledonary node and the second 

node, where the unifoliate leaf was located. At this time, the cotyledons had either 

naturally abscised or were excised, to prevent them influencing root hormone 

concentrations (Waadt et al., 2014). Water was withheld from half of the girdled 

and non-girdled plants after the girdling was complete on Day 0. Thus 20 hours 

elapsed between girdling and stomatal conductance measurements on the 

following day (Day 1).  

3.2.2 Physiological measurements 

Measurements were made on the third trifoliate leaf (when it was completely 

expanded) throughout the experiment. Stomatal conductance (gs) was measured 

daily at 1000h (except on Day 0 that was at 1200h) on the central leaflet of the third 

trifoliate leaf with a porometer (Model AP4, Delta-T Devices, Burwell, UK). Two 

measurements were sequentially made on each plant and averaged. 

Leaf, shoot and root water potential were measured with a Scholander-style 

pressure chamber (Soil Moisture Equipment Crop., Santa Barbara, CA, USA). After 

measuring stomatal conductance, the leaf was excised at the petiole junction with 
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the stem, then leaf water potential measured. Then the shoot was de-topped 6-7 

cm from the stem base (in the middle of the girdled tissue to avoid phloem 

contamination of xylem sap samples) and placed in the pressure chamber to 

measure shoot water potential. Finally the entire pot was sealed in the chamber 

with sufficient stem protruding to measure root water potential. For all water 

potential measurements, the chamber was gradually pressurized at 0.03 MPa s-1 

until the meniscus of the sap appeared, at which time the pressure was recorded. 

Once the water potential of each organ was measured, xylem sap was collected at 

0.3 MPa overpressure (Dodd, 2007) above the balancing pressure. Xylem sap was 

collected in Eppendorf vials and immediately frozen in liquid nitrogen, and stored 

at -80°C for further analysis. On the last day of harvest, when the soil volume was 

extracted from the pot, 15-20 mg (dry weight – determined retrospectively) of the 

root system was removed from the middle of the pot, briefly washed (to remove 

adhering soil debris), then frozen in liquid nitrogen. After measuring root water 

potential (and collecting root samples on the last day of the experiment), the entire 

soil volume was removed from the pot, weighed and then placed in a drying oven 

until constant weight, to calculate gravimetric soil water content (θ) with the 

following relationship: 

Soil Water Content (θ) = (Fresh soil weight – Dry soil weight) / Dry soil weight 

ABA was determined using a radioimmunoassay using the monoclonal antibody 

MAC252 (Quarrie et al., 1988). While the sap samples were measured without 

further purification, the root tissue samples were lyophilized and finely ground. 
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Deionized water was added (1:50 weight ratio), the sample incubated on a shaker 

at 4°C overnight, then centrifuged to collect the aqueous extract. 

3.2.3 Statistical analysis 

The experiment was repeated twice with qualitatively similar results, thus data 

from a single experiment are presented. Two-way analysis of variance (ANOVA) 

determined the effects of water treatment, girdling and their interaction. 

Heterogeneous groups were separated by Tukey’s Honestly Significant Difference 

(HSD) test (P < 0.05) to discriminate differences between treatment x girdling 

combinations. Analysis of covariance (ANCOVA) and regression analyses 

determined whether girdling affected relationships between plant and soil 

variables (eg. Fig. 3.6; 3.7 and Table 3.1; 3.2 respectively).  

3.3 Results  

3.3.1 Soil water status 

Soil water content of both well-watered treatments remained around 1 g g-1 during 

the experiment (Fig. 3.1). Withholding water for 5 days decreased soil water 

content similarly, by circa 60% compared to well-watered plants, in both droughted 

treatments. Girdling had no significant effect on soil water dynamics during the 

experiment, even if droughted–girdled plants dried the soil slightly slower. 
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Figure 3.1. Soil Water Content during the experiment, with water withheld from droughted 

plants, and girdling on Day 0. Measurements on Day 0 were done before imposing 

treatments. Filled circles and filled triangles represent well-watered intact and girdled 

plants (WW and WW-G) respectively, while hollow circles and hollow triangles represent 

droughted intact and girdled plants (Dr and Dr-G) respectively. Symbols indicate mean ± 

s.e. (n=5). Effects of watering treatment (Stress or St), girdling (Girdled or G) and their 

interaction are indicated thus: NS, non-significant; * P <0.05; ** P <0.01; *** P <0.001. 

 

3.3.2 Effect of girdling and soil drying on plant responses  

Stomatal conductance (gs) of well-watered, intact plants remained between 130 

and 150 mmol m-2 s-1 during the experiment, unlike the other treatments (Fig. 3.2). 

One day after girdling, gs decreased by 15% (averaged across both water 

treatments). Girdling significantly decreased gs of well-watered plants 4 days after 

girdling, and was almost half that of well-watered intact plants at the end of the 

experiment. Soil drying decreased gs within 2 days of withholding water, and gs 

steadily decreased during the experiment in both girdled and intact plants. Towards 

the end of the experiment, the effects of girdling on stomatal conductance 

depended on soil water status (significant girdling x treatment interaction), since 
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girdling substantially decreased gs of well-watered plants but had no significant 

effect on plants in drying soil. 

 

Figure 3.2. Stomatal conductance during the experiment, with water withheld from 

droughted plants, and girdling on Day 0. Measurements on Day 0 were done before 

imposing treatments. Filled circles and filled triangles represent well-watered intact and 

girdled plants (WW and WW-G) respectively, while hollow circles and hollow triangles 

represent droughted intact and girdled plants (Dr and Dr-G) respectively. Vertical bars 

indicate mean ± s.e. (n=5). Effects of watering treatment (Stress or St), girdling (Girdled or 

G) and their interaction are indicated thus: NS, non-significant; * P <0.05; ** P <0.01; *** 

P <0.001. 

 

Soil drying decreased water potential of all tissues (Fig. 3.3). Soil drying decreased 

leaf water potential (Ψleaf) throughout the experiment, such that Ψleaf was 0.1 MPa 

and 0.2 MPa lower than well-watered plants for girdled and intact plants 

respectively (Fig. 3.3a). Girdling increased Ψleaf by 0.12 MPa (averaged across both 

water treatments) on Day 3 and increased Ψleaf of plants grown in drying soil on Day 

5. On Day 5, the effects of girdling on Ψleaf depended on soil water status (significant 
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girdling x treatment interaction) since girdling had no effect on Ψleaf of well-watered 

plants but significantly increased Ψleaf of plants in drying soil. 

Similarly, the effects of girdling on shoot water potential (Ψshoot) on Day 5 depended 

on soil water status, even though girdling had no significant effect throughout the 

experiment. Soil drying decreased Ψshoot by 0.15 MPa (intact plants) and 0.08 MPa 

(girdled plants) during the experiment.  

Root water potential (Ψroot) did not differ between the two groups of well-watered 

plants throughout the experiment. Soil drying significantly decreased Ψroot on Days 

2, 4 and 5 after withholding water. At the end of the experiment, soil drying 

decreased Ψroot to -0.22 and -0.11 MPa in intact and girdled plants respectively (Fig. 

3.3c). On the last two days of the experiment, the effect of soil drying on Ψroot 

depended on girdling (significant girdling x treatment interaction) such that girdling 

decreased the Ψroot of well-watered plants (by 0.04 MPa) but increased the Ψroot of 

plants in drying soil (by 0.07 MPa). Taken together, soil drying decreased Ψ 

throughout the plant, but girdling mitigated this effect in all tissues, especially on 

the last day of measurements. 
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Figure 3.3. Leaf (a), Shoot (b) and Root (c) Water Potential during the experiment, with 

water withheld from droughted plants, and girdling on Day 0. Filled circles and filled 

triangles represent well-watered intact and girdled plants (WW and WW-G) respectively, 

while hollow circles and hollow triangles represent droughted intact and girdled plants (Dr 

and Dr-G) respectively. Vertical bars indicate mean ± s.e. (n=5). Effects of watering 

treatment (Stress or St), girdling (Girdled or G) and their interaction are indicated thus: NS, 

non-significant; * P <0.05; ** P <0.01; *** P <0.001. 
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In well-watered intact plants, xylem sap ABA concentrations were stable 

throughout the experiment, averaging 126, 260 and 242 nM in samples collected 

from the roots, shoots and leaves respectively (Fig. 3.4). In well-watered plants, 

girdling increased leaf xylem sap ABA concentration (by 60% averaged over Days 3-

5 of the experiment) (Fig. 3.4a), had no effect on shoot xylem ABA concentration 

(Fig. 3.4b) and decreased root xylem sap ABA concentration (by 66% averaged over 

the entire experiment) (Fig. 3.4c) compared with well-watered intact plants. 

Girdling decreased root xylem ABA concentration within two days.  

In intact plants, soil drying increased root, shoot and leaf xylem ABA concentrations 

within 3-4 days of withholding water, with significant differences from well-

watered plants first detected in root xylem ABA concentration. By the end of the 

experiment, soil drying increased root and shoot xylem ABA concentrations by 2.3-

fold and in the leaf by 3-fold compared to well-watered intact plants. Girdling 

attenuated this soil-drying induced increase throughout the plant, such that at the 

end of the experiment, root, shoot and leaf xylem ABA concentrations were 84, 42 

and 30% lower than in intact plants exposed to soil drying. Indeed, on Day 5, girdling 

resulted in well-watered plants and those exposed to drying soil having statistically 

similar xylem ABA concentrations throughout the plant. 
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Figure 3.4. Leaf (a), Shoot (b) and Root (c) xylem sap ABA concentration during the 

experiment, with water withheld from droughted plants, and girdling on Day 0. Filled circles 

and filled triangles represent well-watered intact and girdled plants (WW and WW-G) 

respectively, while hollow circles and hollow triangles represent droughted intact and 

girdled plants (Dr and Dr-G) respectively. Vertical bars indicate mean ± s.e. (n=5). Effects of 

watering treatment (Stress or St), girdling (Girdled or G) and their interaction are indicated 

thus: NS, non-significant; * P <0.05; ** P <0.01; *** P <0.001. 
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Girdling decreased root ABA concentration by nearly 80% (compared to intact 

plants) within 20 hours (Day 1), a disparity that was maintained in well-watered 

plants on Day 3 (Fig. 3.5). In intact plants, 3 days of soil drying increased root ABA 

concentration by 4-fold compared to well-watered plants, but the magnitude of this 

increase was attenuated in girdled plants (3-fold increase). Thus well-watered 

intact plants and girdled plants exposed to drying soil had statistically similar root 

ABA concentrations on Day 3. Significant drought-induced root ABA accumulation 

occurred in intact plants also on Day 5, while in girdled plants an increase in root 

ABA concentration of well-watered plants resulted in no statistical differences from 

those exposed to soil drying. By Day 5, only intact plants exposed to soil drying had 

higher root ABA concentrations than the other treatments.  Thus girdling decreased 

root ABA concentration of well-watered plants shortly after treatment (Days 1, 3), 

and attenuated drought-induced root ABA accumulation.  

 

Figure 3.5. Root tissue ABA concentration of well-watered intact plants (WW), well-

watered girdled plants (WW-G), droughted intact plants (Dr) and droughted girdled plants 

(Dr-G) during the experiment. Vertical bars indicate mean ± s.e. (n=5). Different letters 

indicate significant differences (P < 0.05) according to the Tukey´s test on each day. Effects 

of watering treatment (Stress or St), girdling (Girdled or G) and their interaction are 

indicated thus: NS, non-significant; * P <0.05; ** P <0.01; *** P <0.001. 
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3.3.3 Relationship of stomatal conductance to different variables 

Stomatal conductance decreased as leaf water potential decreased in intact plants 

(Table 3.1), although girdling attenuated stomatal sensitivity to leaf water potential 

(significant girdling x Ψleaf interaction - Fig. 3.6a). In contrast, girdling did not affect 

the relationships between stomatal conductance and either leaf xylem ABA 

concentration (Fig. 3.6b) or soil water content (Fig. 3.6c). Stomatal conductance of 

individual well-watered plants varied 3-fold (with the lowest values in girdled 

plants), but was not related to soil water content, while soil drying below 0.6 g g-1 

significantly decreased gs. Thus girdling altered stomatal response to leaf water 

potential (Table 3.1), but not other putative regulatory variables.  

 

 Girdled plants Intact plants All plants 

 p-value r2 p-value r2 p-value r2 

gs vs Ψleaf 0.348 0.03 <0.001 0.70   

gs vs Leaf xylem [ABA] 0.001 0.28 0.001 0.28 <0.001 0.34 

gs vs θ 0.001 0.24 <0.001 0.64 <0.001 0.38 

Table 3.1. Linear regression values (p-value and r2) for the relationships between stomatal 

conductance (gs) and leaf water potential (Ψleaf), leaf xylem sap [ABA] and soil water 

content (θ) in girdled plants, intact plants and all plants. Each column represents all values 

from girdled plants, intact plants and all plants. Where a significant girdling x x-variable 

interaction exists (indicating that girdling affects the relationship), it is inappropriate to 

pool data for “all plants”.  
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Figure 3.6. Relationships between stomatal conductance and leaf water potential (a), leaf 

xylem sap [ABA] (b) and soil water content (c). Filled circles and filled triangles represent 

well-watered intact and girdled plants (WW and WW-G) respectively, while hollow circles 

and hollow triangles represent droughted intact and girdled plants (Dr and Dr-G), 

respectively. Each symbol is an individual plant and regression lines were fitted to intact 

plants (a) and all data (b, c) where P<0.05. p-values determined by ANCOVA for each main 

effect (x-variable and girdling) and their interaction are reported.  



74 

 

3.3.4 Effect of soil drying on xylem ABA concentration  

Girdling resulted in no significant relationships between tissue water status and 

xylem ABA concentrations of those tissues (Table 3.2). Although leaf xylem ABA 

concentration was not significantly related to leaf water potential in intact plants, 

shoot and root xylem ABA concentrations significantly increased as shoot and root 

water potentials decreased (Table 3.2). In all tissues, xylem ABA concentration 

increased as the soil water content decreased in intact plants (Table 3.2; Fig. 3.7). 

Although girdling did not significantly affect the relationships between leaf and 

shoot xylem ABA concentrations and soil water content (Fig. 3.7a, b), it attenuated 

the sensitivity of root xylem ABA concentration to the soil water content (significant 

girdling x soil water content interaction). Thus soil drying increased root xylem sap 

[ABA] to a greater extent (4.6-fold) in intact plants than girdled plants (Fig. 3.7c).  

 

 Girdled plants Intact plants All plants 

 p-value r2 p-value r2 p-value r2 

Leaf xylem [ABA] vs θ  0.043 0.12 <0.001 0.37 <0.001 0.17 

Shoot xylem [ABA] vs θ 0.045 0.11 <0.001 0.42 <0.001 0.25 

Root xylem [ABA] vs θ <0.001 0. 28 <0.001 0.41   

Leaf xylem [ABA] vs Ψleaf  0.952 0.00 0.155 0.06 0.408 0.01 

Shoot xylem [ABA] vs Ψshoot 0.854 0.00 0.045 0.12 0.106 0.04 

Root xylem [ABA] vs Ψroot 0.309 0.03 <0.001 0.34 0.004 0.12 

Table 3.2. Linear regression values (p-value and r2) for the relationships between leaf xylem 

sap [ABA], shoot xylem sap [ABA], root xylem sap [ABA] and soil water content (θ) and leaf 

/ shoot / root water potential (Ψleaf / Ψshoot / Ψroot). Each column represents all values from 

girdled plants, intact plants and all plants. Where a significant girdling x x-variable 

interaction exists (indicating that girdling affects the relationship), it is inappropriate to 

pool data for “all plants”.  
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Figure 3.7. Relationships between leaf xylem sap [ABA] (a), shoot xylem sap [ABA] (b), root 

xylem sap [ABA] (c) and soil water content. Filled circles and filled triangles represent well-

watered intact and girdled plants (WW and WW-G) respectively, while hollow circles and 

hollow triangles represent droughted intact and girdled plants (Dr and Dr-G), respectively. 

Each symbol is an individual plant and regression lines (dashed lines = intact plants; dotted 

lines = girdled plants) were fitted where P<0.05. p-values determined by ANCOVA for each 

main effect (x-variable and girdling) and their interaction are reported.   
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3.4 Discussion  

Recent studies emphasise the importance of foliar [ABA] in regulating stomatal 

conductance (Bauer et al., 2013; McAdam and Brodribb, 2018). Increased foliar ABA 

levels have been correlated with decreased leaf water status (Sack et al., 2018, 

Pierce and Raschke, 1980, McAdam and Brodribb, 2016). Our results show a 

unifying relationship between gs and leaf xylem [ABA] irrespective of whether the 

plants were girdled (Fig. 3.6b), whereas gs was only correlated with Ψleaf in intact 

plants (Fig. 3.6a), suggesting that foliar [ABA] regulates stomatal aperture 

regardless leaf water status when shoot to root ABA transport is interrupted. 

Similarly, frequent measurements of both variables as the soil dries demonstrated 

that leaf xylem ABA concentration increases prior to any change in Ψleaf (Liu et al., 

2005c) and better explained early stomatal closure (than leaf ABA levels) during the 

initial stages of soil drying (Liu et al., 2003a, b). Moreover, girdling increased Ψleaf in 

both drying soil (Fig. 3.3a) and under well-watered conditions (Setter et al., 1980; 

Mitchell et al., 2016), while promoting ABA accumulation and stomatal closure, 

suggesting that ABA-mediated stomatal closure acted to maintain Ψleaf. Indeed, in 

other species, soil drying induced stomatal closure can be associated with increased 

Ψleaf  (Kudoyarova et al., 2007; Visentin et al., 2016) suggesting that Ψleaf, can be 

regulated by stomatal response. Taken together, these studies suggest that leaf 

ABA accumulation is not always associated with decreased leaf water status but in 

some situations can also be determined by ABA transport to and from the leaf.   
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Since ABA is an important stomatal regulator, it is necessary to understand where 

in the plant it is produced. By compromising communication between the aerial 

part of the plant and the roots via the phloem, stem girdling attenuated (Day 3) or 

eliminated (Day 5) root ABA accumulation in response to drying soil (Fig. 3.5). 

Similarly, girdled citrus plants showed attenuated root ABA accumulation following 

an initial (3 day) soil drying cycle, but following a 3 day recovery (re-watered soil) 

period, no drought-induced ABA accumulation during a subsequent drying cycle 

(Manzi et al., 2015). Furthermore, stem girdling attenuated root hormone export 

to the shoot via the xylem as the soil dried (Fig. 3.7c). Drying soil increased xylem 

sap ABA concentrations irrespective of sampling position in intact plants, but 

girdling attenuated the increase in xylem ABA concentration as the soil dried (Fig. 

3.4). This suggests that root ABA export partially depends on shoot-to-root ABA 

transport in the phloem (Slovik et al., 1995). Recycling of ABA between phloem and 

xylem in the roots made a variable contribution to the root-to-shoot ABA signal 

depending on soil water status, comprising 45 and 72% of root ABA export under 

salinized and non-salinized conditions respectively (Wolf et al., 1990). The 

remaining contribution originated from de novo root ABA biosynthesis, which was 

accentuated when roots were exposed to salinity. Taken together, de novo ABA 

synthesis in the roots makes a variable contribution to root ABA accumulation and 

xylem export, with clear impacts during the early stages of soil drying seemingly 

being abolished following more intense (Fig. 3.5) or repeated (Manzi et al., 2015) 

soil drying, as time since girdling increased.  
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Similarly, girdling eliminated root ABA accumulation in bean plants exposed to 

chilling temperatures (Vernieri et al., 2001) and when citrus plants were repeatedly 

exposed to soil drying (Manzi et al., 2015), with girdling attenuating root ABA 

accumulation during an initial drying cycle. This temporal response was initially 

interpreted as being due to a limited supply of (unspecified) ABA precursors from 

the shoot (Ren et al., 2007; Manzi et al., 2015), but further studies in citrus did not 

find a direct relationship between carotenoid abundance and root ABA biosynthesis 

(Manzi et al., 2016). The physiological significance of species differences in the 

ability of roots for de novo ABA synthesis in response to soil drying requires 

additional experiments to determine its local (eg. root hydraulic conductance) and 

long-distance (eg. stomatal conductance) physiological effects.  

Leaf xylem ABA concentration increased even in well-watered, girdled plants (Fig. 

3.4a) despite no significant root ABA export (Fig. 3.4c). It is therefore important to 

distinguish whether elevated leaf xylem ABA concentrations reflect in situ leaf ABA 

synthesis. Xylem sap collected by pressurising detached leaves (as conducted here) 

comes from both apoplastic and symplastic sources (Hartung et al., 1988; Borel and 

Simonneau, 2002). Collecting large sap volumes (relative to apoplastic volume) 

from small leaves (which is often necessary to ensure sufficient sap volume for ABA 

analysis) increases the contribution of symplastic (membrane-filtered) sap, 

ensuring that leaf xylem sap ABA concentrations are closely related to leaf tissue 

ABA concentrations (Borel and Simonneau, 2002). Thus the higher shoot and leaf 

xylem ABA concentrations (Fig. 3.4) likely reflect relative tissue ABA concentrations, 

since leaves have much higher ABA concentrations than roots (Liang et al., 1997; 
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Liu et al., 2005c; Manzi et al., 2015). Thus phloem transport of ABA to the roots not 

only determines root ABA accumulation (Manzi et al., 2015; McAdam et al., 2016b) 

but also leaf xylem ABA concentration, suggesting that much of the ABA in the 

xylem sap is actually shoot-sourced.   

Alternatively, increased shoot ABA levels in well-watered girdled plants may 

represent a wound response (Hildmann et al., 1992), even though wounding more 

commonly elicits the synthesis of  other signalling hormones as jasmonic acid (JA) 

and its precursor the oxylipin 12-OPDA (Savchenko et al., 2014). Since both xylem-

borne ABA and JA act as antitranspirants (De Ollas et al., 2018), synthesis of 

jasmonates in response to girdling may explain the lower stomatal conductance 

occurring one day after girdling (Fig. 3.2), likely prior to any xylem ABA 

accumulation (Fig. 3.3). Nevertheless, the sustained decrease in gs of well-watered 

girdled plants after Day 3 coincides with increased leaf xylem ABA concentration 

(cf. Fig. 3.2, 3.4a). Moreover, the consistent relationship between leaf xylem ABA 

concentration and stomatal conductance independent of girdling (Fig. 3.6b) 

suggests that hormonal synthesis induced by girdling had no long-term influence 

on the regulation of stomatal conductance.  

In conclusion, shoot-sourced ABA was necessary to allow root accumulation in 

response to soil drying (Fig. 3.5), and maintain root-to-shoot ABA signalling in 

response to soil drying (Fig. 3.7c) in soybean. Shoot to root ABA translocation also 

maintained high stomatal conductance by preventing increases in foliar ABA 

concentration under well-watered conditions.  
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 Chapter 4 – Soil drying and girdling affect multiple plant hormones  

 

4.1 Introduction 

Phytohormones mediate plant growth, development and physiological responses 

to various internal and external stimuli, especially by functioning as chemical 

messengers to communicate cellular activities (Wolters and Jurgens, 2009; Peleg 

and Blumwald, 2011; Wani et al., 2016). They play key roles in coordinating various 

signal transduction pathways in response to various abiotic stresses (Davies et al., 

1994; Kazan, 2015). Many studies have focused on how crop plants generate, 

transport and regulate short- and long-distance chemical signals, thereby affecting 

hormone concentrations at their site(s) of action (Dodd, 2005; Wilkinson et al., 

2012). Those phytohormones include cytokinins (CK), gibberellins (GA), auxins 

(IAA), abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). 

While some studies have independently considered the impacts of soil drying 

(Acharya and Assmann, 2009) and girdling (Rivas et al., 2011; Kong et al. 2012) on 

endogenous phytohormone concentrations, this study combined both treatments 

to evaluate the impact of shoot-to-root phytohormone transport on root and shoot 

phytohormone concentrations. 

Girdling obstructs the downward phloem transport (shoot-to-root), therefore it 

could be used to test the relationships between plant water relations and foliar and 

root hormone concentrations. There is some evidence that interrupting phloem 

transport may diminish stomatal conductance and reduce leaf hydraulic 
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conductance (Sellin et al., 2013). Some hormones (such as ABA and JA) tend to 

accumulate above the girdling site (Lopez et al., 2015). Furthermore, girdling may 

alter endogenous hormone interactions, such as changes in ABA and CK 

concentrations affecting leaf senescence (Dai and Dong, 2011)  

Soil-drying induced changes in phytohormone signalling can mediate changes in 

root and shoot biomass, and leaf water status and leaf gas exchange (Pospisilova, 

2003; Albacete et al., 2008; Valluru et al., 2016). Although much attention has 

focused on drought-induced ABA synthesis as a key signalling component 

(Shinozaki and Yamaguchi-Shinozaki, 1997; 2007), soil drying changes the 

concentrations of other hormones (such as ABA, CKs, auxins) that may also be 

involved in regulating physiological responses (Masia et al., 1994; Alvarez et al., 

2008). How these other hormones affect root and shoot functioning, and the role 

of long-distance signalling in regulating their concentrations throughout the plant, 

in particular under soil drying, are still unclear.  

Soil drying limits leaf gas exchange by causing changes in stomatal opening and 

closure (Dodd, 2003; Schachtman and Goodger, 2008), in response to a balance of 

hormonal concentrations. Other plant hormones such as cytokinins, ethylene, 

auxins and gibberellins can alter stomatal response independently, and in concert, 

with ABA (Dodd 2003; Acharya and Assmann, 2009). However, many of these studies 

have determined stomatal responses to exogenous hormone applications to the 

leaves, instead of correlating stomatal conductance with endogenous hormone 

concentrations following soil drying (Anderson et al., 1994; Dodd, 2003; Iqbal et al., 

2011).  
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In Chapter 3, girdling increased shoot ABA concentrations and decreased root ABA 

concentrations of well-watered plants, which could represent a wound response 

(Hildmann et al., 1992). While the continued decrease in stomatal conductance of 

well-watered girdled plants coincides with increased foliar ABA concentrations 

(Castro et al., 2019), the synthesis of other signalling hormones such as jasmonic 

acid (JA) (Savchenko et al., 2014; De Ollas and Dodd, 2016; Per et al., 2018) could 

influence ABA concentration and / or be involved in rapid stomatal closure within 

one day of girdling. Since both phytohormones can act as antitranspirants (De Ollas 

et al., 2018), synthesis of jasmonic acid in response to the girdling may explain 

stomatal closure, independently of the response of the soil drying. Furthermore, JA 

accumulation could stimulate foliar ABA production (Savchenko et al., 2014; Forster 

et al., 2019) to cause stomatal closure. However, whether interactions and 

signalling of other phytohormones (such as cytokinins, ethylene and JA) play direct 

or indirect roles in modulating hormone concentrations and stomatal regulation 

during a period of drought (Mahouachi et al., 2007; Arbona et al., 2010; De Ollas et 

al., 2013) remains unclear.  

Determining whether many hormones may interact to induce stomatal closure first 

requires the ability to measure multiple hormones in a single same sample using 

liquid or gas chromatography in combination with mass spectrometry (Albacete et 

al., 2008). Since some experiments suggest that other antitranspirants (than ABA) 

are needed to induce stomatal closure (eg. Munns and King 1988), this chapter 

aimed to determine whether stomatal responses to girdling and soil drying were 
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influenced by multiple plant hormones, and how these treatments affected root 

and shoot hormone balance. 

4.2 Materials and methods 

4.2.1 Plant materials and experimental design 

Soybean (Glycine max L. Merr. cv. Siverka) seeds were sown directly in pots as 

described in Section 3.2.1. Soil, environmental conditions and the time of daily 

irrigation were as described in Experiment 1 in Section 2.2.1.   

During expansion of the third trifoliate leaf, plants were randomized into 4 groups, 

comprising a factorial combination of the treatments applied: soil drying (WW: 

well-watered; DR: droughted) and girdling (NG: intact plants; G: Girdled plants) 

respectively. Measurements were made 0, 1, 2, 4, 24, 26, 48 and 96 hours after 

girdling and withholding water. Three to five plants from each treatment were 

harvested 0, 1, 2, 4, 24 and 26 hours after girdling and five plants per treatment at 

48 and 96 hours. Girdling was achieved surgically at 0800h on Day 0, when the third 

trifoliate leaf was completely expanded, by excising 10 mm of phloem tissue from 

the stem (at 100-110 mm above the soil surface) with a sharp razor blade. Plants 

were girdled between the cotyledonary node and the second node, where the 

unifoliate leaf was located. At this time, the cotyledons had either naturally 

abscised or were excised, to prevent them influencing root hormone 

concentrations (Waadt et al., 2014). Water was withheld from half of the girdled 

and non-girdled plants after the girdling was completed.  
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4.2.2 Physiological measurements 

Measurements were made on the third trifoliate leaf of each plant throughout the 

experiment, once the girdling was achieved. Stomatal conductance (gs) was 

measured on the central leaflet with a porometer (Model AP4, Delta-T Devices, 

Burwell, UK). Two measurements were sequentially made on each plant and 

averaged. 

After measuring stomatal conductance, the entire leaf was excised and collected in 

Eppendorf vials, which were immediately frozen in liquid nitrogen. The shoot was 

de-topped 6-7 cm from the stem base (in the middle of the girdled stem) and placed 

in the pressure chamber to measure shoot water potential (Ψshoot). The chamber 

was gradually pressurized at 0.03 MPa s-1 until the meniscus of the sap appeared, 

at which time the pressure was recorded. After measuring Ψshoot, root water 

potential (Ψroot) was measured with the entire pot sealed in the chamber with 

sufficient stem protruding including the other half of the girdled tissue.  

After measuring root water potential, root tissue samples (80-100 mg dry weight – 

determined retrospectively) were collected from the middle of the pot. Samples 

were removed, briefly washed (to remove adhering soil debris) and then frozen in 

liquid nitrogen. Plant tissues were stored at -80°C for further analysis. Soil water 

content was calculated as described in Section 2.2.2. 
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4.2.3 Multi-hormone analysis 

Phytohormones including cytokinins (trans-zeatin, tZ, zeatin riboside, ZR, and 

isopentenyl adenine, iP), gibberellic acids (GA1, 3, and 4), indole-3-acetic acid (IAA), 

abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), and the ethylene precursor 

1-aminocyclopropane-1-carboxylic aid (ACC) were analysed in leaf and root tissues 

according to Albacete et al. (2008) with some modifications. Analyses were 

conducted by Dr Albacete at CEBAS-CSIC, Murcia, Spain. Freeze-dried leaf and root 

material (50 mg dry weight, DW) was extracted overnight at -20°C using a 

methanol/water/formic acid solution (15/4/1 by volume, pH 2.5). Then, 10 μL of 

internal standard mix, composed of deuterated phytohormones ([2H5]tZ, [2H5]tZR, 

[2H6]iP, [2H2]GA1, [2H2]GA3, [2H2]GA4, [2H5]IAA, [2H6]ABA, [2H4]SA, [2H6]JA, [2H4]ACC, 

Olchemim Ltd, Olomouc, Czech Republic) at a concentration of 1 μg·mL−1 each, was 

added to the extraction homogenate. Solids were then separated by centrifugation 

(20, 000 g) for 15 mins, and extracted again for 30 mins at 4°C in an additional 0.5 

mL of the same extraction solution. The pooled supernatants were filtered through 

a Sep-Pak Plus C18 cartridge (SepPak Plus, Waters, USA) to remove interfering lipids 

and plant pigments, and evaporated at 40ºC under a vacuum either to near dryness 

or until organic solvent was removed. Any remaining residue was dissolved in 1 mL 

methanol/water (20/80, v/v) in an ultrasonic bath. The dissolved samples were 

filtered through 13 mm diameter Millex filters with 0.22 μm pore diameter nylon 

membrane (Millipore, Bedford, MA, USA).  

Ten μL of filtered extract were injected into a U-HPLC-MS system comprising an 

Accela Series U-HPLC (ThermoFisher Scientific, Waltham, MA, USA) coupled to an 
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Exactive mass spectrometer (ThermoFisher Scientific, Waltham, MA, USA) using a 

heated electrospray ionisation (HESI) interface. Xcalibur software version 2.2 

(ThermoFisher Scientific, Waltham, MA, USA) was used to obtain mass spectra. To 

quantify the plant hormones, calibration curves were constructed for each analyzed 

component (1, 10, 50, and 100 μg·L−1) and corrected for 10 μg·L−1 deuterated 

internal standards. Recovery percentages ranged between 92 and 95%. 

4.2.4 Statistical analysis 

The experiment was a replicate of the one conducted in Chapter 3. Two-way 

analysis of variance (ANOVA) determined the effects of water treatment, girdling 

and their interaction (Fig. 4.1, 4.2). Analysis of covariance (ANCOVA) and regression 

analyses determined whether girdling affected relationships between 

phytohormones, water status and soil variables (Fig. 4.3-4.9).  

Statistical analyses were conducted on all phytohormones that could be detected 

in at least 50% of analysed samples. Appropriate logarithmic transformations were 

applied to improve normality of residuals and are indicated where used. 

Pearson’s correlations were used to explore correlations between leaf and root        

phytohormone concentrations, plant water status and soil water content. The 

variables were log-transformed to improve normality of model residuals. Shoot and 

root water potentials were log-transformed from absolute (MPa) values. In scatter 

plots, Pearson’s r coefficients were represented, with a trend line fitted when the 

p-values were statistically significant (* P < 0.05; ** P < 0.01; *** P <0.001 - Tables 

4.1-5). 
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4.3 Results  

4.3.1 Effect of girdling on plant water relations   

Soil water content, Ψroot and Ψshoot of well-watered plants was reasonably 

consistent throughout the experiment, remaining between 0.7 and 0.85 g g-1 for 

soil moisture, between -0.09 and -0.07 MPa for Ψroot and between -0.7 and -0.6 

MPa for Ψshoot (Fig. 4.1a, c, d). While girdling had no significant effect on soil water 

content in well-watered plants, it increased Ψroot from 48 h (by 0.03 MPa) and Ψshoot 

from 96 h (by 0.035 MPa) compared to intact droughted plants. After withholding 

water, soil moisture declined to 0.58 g g-1 after 48 h and 0.25 g g-1 after 96 h (Fig. 

4.1a), again with no significant effect of girdling. Soil drying did not significantly 

decrease Ψroot until 48 h. At this time, Ψroot was 0.02 MPa lower than in well-

watered plants and by 96 h, Ψroot was 0.29 MPa lower than in well-watered plants. 

Girdling attenuated the soil drying induced decline in Ψroot, increasing Ψroot by 0.05 

MPa at 96 h (Fig. 4.1d). Soil drying decreased Ψshoot by 0.08 MPa at 48 h and by 0.29 

MPa at 96 h compared to well-watered plants. Girdling attenuated the soil drying 

induced decline in Ψshoot, increasing Ψshoot by 0.04 MPa at 96 h (Fig. 4.1c). While soil 

drying substantially decreased soil moisture and tissue water potentials, girdling 

also measurably enhanced water status of plants exposed to drying soil. 

Girdling significantly decreased gs of well-watered plants within 24 hours, and gs of 

these plants was half that of well-watered intact plants at 96 hours (Fig. 4.1b). After 

48 hours of withholding water, gs had declined similarly in both droughted 

treatments, and was 63% of well-watered plants. At the end of the experiment, soil 

drying had further decreased gs, with a much greater response in intact plants, as 
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indicated by a significant stress x girdling interaction. Thus girdling caused stomatal 

closure of well-watered plants, but had no effect on the severity of soil-drying 

induced stomatal closure. 

 

 

Figure 4.1. Soil water content (a), stomatal conductance in the third trifoliate leaf (b), shoot 

(c) and root (d) water potential at 0, 1, 2, 4, 24, 26, 48 and 96 hours after girdling. 

Measurements at 0 hours were done before girdling was applied. Filled and hollow symbols 

represent well-watered and droughted plants respectively, with intact and girdled plants 

indicated by circles and triangles respectively. Symbols indicate mean ± s.e. (n=5).Effects of 

soil drying (Stress), girdling treatment (Girdled) and their interaction (St x G) are indicated 

thus: NS, non-significant; * P <0.05; ** P <0.01; *** P <0.001. Since soil drying had no 

statistically significant effect on soil moisture within the first 26 h, the Stress and interaction 

factors are not analysed during this period, and are represented by the letter “X”.  
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4.3.2 Plant hormone concentrations 

Since soil water contents and plant water potentials did not significantly differ 

during the first 26 h of measurements (Fig 4.1), samples were pooled across 

watering treatments for data collected from 0 and 1 hours (0 h), 2 and 4 h (4 hours) 

and 24 and 26 h (26 h) in Figure 4.2, with effects of girdling separated. There were 

no systematic differences in hormone concentrations between the data collected 

1-2 h apart (data not shown). At 48 and 96 h after imposing the treatments, samples 

were separated as well-watered intact (WW), droughted intact (Dr), well-watered 

girdled (WW-G) and droughted girdled (Dr-G) plants (Fig. 4.2). Tissue ZR and GA1, 

root iP and leaf ACC concentrations were not included in the data analysis since 

they were not detected in over 50% of samples analyzed. In contrast, tZ, GA3, GA4, 

ABA, JA and SA were detected over 50% of the tissue samples analyzed. 

Although root iP concentrations could not routinely be quantified, soil drying 

significantly increased leaf iP concentrations of intact plants after 48 h, 

approximately doubling them (compared to well-watered plants) by the end of the 

experiment. Independently of soil drying, girdling decreased leaf iP concentrations 

throughout the experiment, with significant decreases noted within 4 h. The lowest 

iP concentrations (23% of well-watered intact plants) were detected 48 h after 

girdling well-watered plants, and 96 h after girdling the plants exposed to drying 

soil. Girdling suppressed drought-induced foliar iP accumulation, especially at the 

end of the experiment (Fig. 4.2a).  

Although leaf ACC concentrations could not routinely be quantified, soil drying 

significantly decreased root ACC concentrations of intact plants by 25% after 48 
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hours, but there was no significant effect by the end of the experiment.  Girdling 

transiently increased root ACC concentrations within the first 26 hours of the 

experiment, by 5.5-fold compared to intact plants after 4 hours and 10.8-fold after 

26 hours. Thereafter, root ACC concentrations approximately halved in well-

watered girdled plants for the remainder of the experiment compared to well-

watered intact plants. In contrast, root ACC concentrations of droughted girdled 

plants increased by 2.8-fold compared to droughted intact plants by the end of the 

experiment. Thus, girdling increased drought-induced root ACC accumulation from 

48 h (Fig. 4.2h), while over the same time, soil drying decreased root [ACC] of intact 

plants. 

Soil drying and girdling did not affect root tZ concentrations throughout the 

experiment (Fig. 4.2i). In contrast, soil drying significantly increased leaf tZ 

concentrations of intact plants by 28% at the end of the experiment. Girdling 

significantly decreased leaf tZ concentrations by about 40% within the first 26 hours 

of the experiment, but these effects did not persist during the rest of the 

experiment. In addition, girdling had limited effects on drought-induced foliar tZ 

accumulation (Fig. 4.2b). Thus girdling transiently suppressed foliar tZ 

concentration, while prolonged soil drying increased leaf tZ concentration.  

Soil drying significantly increased root gibberellin (GA3 and GA4) concentrations of 

intact plants by 18- and 2-fold respectively by the end of the experiment (Fig. 4.2 j, 

k). Independently of soil drying, girdling significantly decreased root GA3 and GA4 

concentrations within 26 hours by 98% and 82% respectively at the end of the 

experiment. Girdling suppressed drought-induced root GA3 and GA4 accumulation, 
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especially at the end of the experiment. Thus root GA concentration seemed to 

depend on shoot-to-root gibberellin transport.  

In contrast, soil drying only significantly decreased leaf GA4 by 50% compared with 

well-watered intact plants at the end of the experiment (Fig. 4.2d). In addition, 

girdling decreased leaf GA3 concentrations by approximately 90% compared to 

intact plants within the first 26 h (Fig. 4.2c). Also, girdling significantly decreased 

(approximately halved) leaf GA4 concentrations compared to well-watered intact 

plants at the end of the experiment (Fig. 4.2d), while girdling had no significant 

effect on these drought-induced changes in the leaves (Fig. 4.2 c, d). 

Compared to well-watered intact plants, 48 h of soil drying significantly increased 

root ABA concentration by 6-fold in droughted intact plants, but not droughted 

girdled plants (Fig. 4.2l). After 96 h of soil drying, root ABA concentrations increased 

irrespectively of girdling, but root ABA concentrations were 46% higher in intact 

than girdled plants. In addition, leaf ABA concentrations significantly increased 

from 48 h (Fig. 4.2e), again with a greater response in intact than girdled plants. 

Girdling transiently decreased root ABA concentrations of well-watered plants by 

18% and 60% at 26 and 48 h respectively, but significantly increased leaf ABA 

concentrations by 1.63-fold at 26 h, reaching a maximum difference of 1.9-fold at 

96 h.  Girdling affected soil drying induced leaf ABA accumulation only at 48 h (as 

indicated by a significant stress x girdling interaction), with no discernible effect of 

soil drying in girdled plants. Soil drying induced root ABA accumulation depended 

on girdling at both 48 h and 96 h (as indicated by significant stress x girdling 
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interactions), with girdling attenuating root ABA accumulation. These changes were 

broadly consistent with those determined in Chapter 3. 

Soil drying significantly increased root JA concentrations in intact plants by 11.5- 

and 4-fold at 48 and 96 h respectively (Fig. 4.2m). Changes in leaf JA concentrations 

were more modest, with significant increases of 1.4- and 1.5-fold at 48 and 96 h 

respectively (Fig. 4.2f). Girdling transiently increased leaf JA concentrations within 

4 to 26 hours (by 6-fold compared to intact plants), but this effect has reversed (48 

h) or disappeared after 96 h (Fig 4.2f). In contrast, girdling significantly increased 

root JA concentrations of well-watered plants by 1.75-fold from 48 h (Fig. 4.2m). 

Girdling affected JA accumulation in response to drying soil, after 96 h in the leaves 

(Fig 4.2f) and 48 h in the roots (Fig. 4.2m), as indicated by significant stress x girdling 

interactions. In both tissues, girdling attenuated the soil-drying induced increase in 

JA accumulation.  

Although soil drying significantly increased root SA concentrations by 26% 

compared to well-watered plants by the end of the experiment (Fig. 4.2n), leaf SA 

concentrations were not affected (Fig. 4.2g). While girdling did not affect root SA 

concentrations throughout the experiment, leaf SA concentrations steadily 

increased from 26 h, with 2.4-fold higher SA concentrations in well-watered girdled 

plants than well-watered intact plants by the end of the experiment. Soil drying 

attenuated this girdling-induced increase in leaf SA concentration at 48 h (as 

indicated by a significant soil drying x girdling interaction), but had no effect at 96 

h. Thus girdling stimulated foliar SA accumulation, while prolonged soil drying 

enhanced root SA accumulation.  
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Figure 4.2. Phytohormone concentrations detected in leaf (a-g) and root (h-n) tissue of 

well-watered intact plants (WW), well-watered girdled plants (WW-G), droughted intact 

plants (Dr) and droughted girdled plants (Dr-G) at 0, 4, 26, 48 and 96 hours after girdling. 

Vertical bars indicate mean ± s.e. (n=3-5). Effects of soil drying (Stress), girdling treatment 

(Girdled) and their interaction (St x G) are indicated thus: NS, non-significant; * P <0.05; ** 

P <0.01; *** P <0.001. Since soil drying had no statistically significant effect on soil moisture 

within the first 26 h, the Stress and interaction factors are not analysed during this period, 

and are represented by the letter “X”. Different letters indicate significant differences (P < 

0.05) according to the Tukey´s test at 48 and 96 h. 
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4.3.3 Correlations between phytohormones, water status and soil water content 

within 26 hours of girdling  

Since girdling decreased gs (but not Ψshoot and soil water content as shown before) 

within 24 hours, correlations between soil water content, plant water status and 

root (Table 4.1) and leaf (Table 4.2) phytohormone concentrations were 

determined during this time.  

Table 4.1. Pearson's r correlation coefficients and trend lines between logarithmic values 

of root tissue phytohormone concentrations, root water potential (WProot) and soil water 

content (SWC). Significance of p-values reported thus: * P < 0.05; ** P < 0.01; *** P < 0.001. 

Significant correlations involving WProot and SWC are highlighted with a red square. 
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Table 4.2. Pearson's r correlation coefficients and trend lines between logarithmic values 

of leaf tissue phytohormone concentrations, stomatal conductance (gs), shoot water 

potential (WPshoot) and soil water content (SWC). Significance of p-values reported thus: 

* P < 0.05; ** P < 0.01; *** P < 0.001. Significant correlations involving gs, WPshoot and 

SWC are highlighted with a red square. 

 

 

Soil moisture was significantly (P < 0.05) positively correlated with root ABA 

concentration but significantly (P < 0.05) negatively correlated with root ACC 

concentration. Root water potential was significantly (P < 0.05) positively correlated 

with soil water content, but it was not significantly correlated with any of the root 

phytohormone concentrations. 

Soil water content was significantly (P < 0.05) positively correlated with leaf iP 

concentration but significantly (P < 0.05) negatively correlated with leaf SA 
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concentration and Ψshoot. Shoot water potential was not significantly correlated 

with the concentration of any phytohormone. Stomatal conductance was 

significantly (P < 0.05), negatively correlated with leaf ABA and JA concentration. 

Within the first 26 hours girdling affected the relationships between root ACC and 

ABA concentrations and soil water content (Fig. 4.3). Within the first 26 hours of 

the experiment, root ACC concentrations increased as soil moisture declined across 

a relatively restricted range (0.80-0.96 g g-1). Although girdling did not affect the 

sensitivity of root ACC accumulation (P=0.58 for soil drying x girdling interaction), 

average root ACC concentrations were 2.8-fold higher in girdled plants (Fig. 4.3a). 

In contrast, girdling significantly (P=0.012) decreased root ABA concentrations (Fig. 

4.3b) by 1.27-fold. Girdling affected the relationship between root ABA 

concentration and soil moisture (P=0.022 for soil drying x girdling interaction), with 

root ABA concentrations increasing with soil drying in intact plants, but decreasing 

in girdled plants. Thus limited soil drying affected both root ABA and ACC 

concentrations, as did girdling. 

 

 

 



98 

 

 

Figure 4.3. Relationships between root ACC (a) and ABA (b) concentration and soil water 

content during the first 26 hours of the experiment. Filled and hollow circles represent 

intact and girdled plants respectively. Each symbol is an individual plant and regression 

lines (P<0.05) were fitted to all data (a) where there was no significant girdling x SWC 

interaction and intact and girdled plants (b) where there was a significant girdling and x-

variable interaction. p-values determined by ANCOVA for each main effect (soil water 

content and girdling) and their interaction are reported in each panel. 

 

Furthermore, girdling affected the relationships between shoot water potential, 

the phythormones iP and SA and soil water content (Fig. 4.4). Shoot water potential 

tended to increase (P=0.058) as soil water content decreased within a restricted 

range, but there was no significant effect of girdling, and girdling did not affect the 

relationship between Ψshoot and soil water content as indicated by no significant 

girdled x soil water content interaction (Fig. 4.4a). Leaf iP concentrations decreased 

as the soil dried, but there was no significant effect of girdling, which did not affect 

the relationship between leaf [iP] and soil water content as indicated by no 

significant girdled x soil water content interaction (Fig. 4.4b). In addition, leaf SA 

increased as the soil dries, but there was no significant effect of girdling, which did 

not affect the relationship between leaf [SA] and soil water content as indicated by 

no significant girdled x soil water content interactions (Fig. 4.4c). Thus limited soil 
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drying increased Ψshoot and foliar SA concentrations, but decreased foliar iP 

concentrations.  

 

 
 

Figure 4.4. Relationships between shoot water potential (a), leaf iP (b) and SA (c) 

concentrations and soil water content during the first 26 hours of the experiment. Filled 

and hollow circles represent intact and girdled plants respectively. Each symbol is an 

individual plant and regression lines (P < 0.05) were fitted to all data when there was no 

significant girdling x SWC interaction. p-values determined by ANCOVA for each main effect 

(soil water content and girdling) and their interaction are reported in each panel. 

 

Although there was limited soil drying within the first 26 hours of the experiment, 

stomatal conductance declined as leaf ABA (Fig 4.5a) and JA (Fig 4.5b) 

concentrations increased. Although girdling had no significant effects, and did not 

affect these relationships (as indicated by no significant girdled x leaf [hormone] 

interactions), higher hormone concentrations generally occurred in girdled plants. 
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Both ABA and JA explained a similar proportion (r2 = 0.49 for ABA, r2 = 0.45 for 

ABA) of the variation in stomatal conductance. 

 

Figure 4.5. Relationships between stomatal conductance and lead ABA (a) and JA (b) 

concentrations during the first 26 hours of the experiment. Filled and hollow circles 

represent intact and girdled plants respectively. Each symbol is an individual plant and 

regression lines (P < 0.05) were fitted to all data when there was no significant girdling x 

[Hormone] interaction. p-values determined by ANCOVA for each main effect (x-variable 

and girdling) and their interaction are reported in each panel. 

 

4.3.4 Correlations between phytohormones, water status and soil water content 

during the entire experiment 

Although soil drying had limited effects on plant water relations during the first 26 

hours of the experiment, it is also necessary to understand correlations between 

root and leaf hormone concentrations and water status variables throughout the 

entire experiment (Table 4.3, 4.4).   
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Table 4.3. Pearson's r correlation coefficients and trend lines between logarithmic values 

of root tissue phytohormone concentrations, root water potential (WProot) and soil water 

content (SWC). Significance of p-values reported thus: * P < 0.05; ** P < 0.01; *** P < 0.001. 

Significant correlations involving WProot and SWC are highlighted with a red square. 
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Table 4.4. Pearson's r correlation coefficients and trend lines between logarithmic values 

of leaf tissue phytohormone concentrations, stomatal conductance (gs), shoot water 

potential (WPshoot) and soil water content (SWC). Significance of p-values reported thus: 

* P < 0.05; ** P < 0.01; *** P < 0.001. Significant correlations involving gs, WPshoot and 

SWC are highlighted with a red square. 

 

 

Soil moisture was significantly (P < 0.001) negatively correlated with root GA3, ABA 

and JA concentrations but significantly (P < 0.001) positively correlated with Ψroot. 

Root water potential was significantly (P < 0.05) positively correlated with root ACC 

concentration and significantly (P < 0.001) negatively correlated with root GA3, ABA 

and JA concentrations. 
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Soil water content was significantly (P < 0.001) negatively correlated with leaf tZ 

and ABA concentration but significantly (P < 0.05) positively correlated with leaf 

GA4 concentration and also significantly (P < 0.001) positively correlated with the 

stomatal conductance and Ψshoot. Shoot water potential was significantly (P < 

0.001), positively correlated with ABA concentration but significantly (P < 0.001), 

negatively correlated with the stomatal conductance. Stomatal conductance was 

significantly (P < 0.001) negatively correlated with leaf tZ and ABA concentration 

but significantly (P < 0.01) positively correlated with leaf GA4 concentration. 

Soil drying affected relationships between Ψroot, soil water content and root [GA3], 

[ABA] and [JA] (Fig. 4.6). Root water potential declined as the soil dried, 

independently of girdling (Fig. 4.6a). Root GA3 concentrations increased as the soil 

dried in intact plants, but were not affected in girdled plants (Fig. 4.6b). Root ABA 

concentrations increased as the soil dried, although more sensitively in intact plants 

as indicated by a significant (P<0.001) girdled x soil water content interaction (Fig. 

4.6c). Root JA concentrations increased as the soil dried, although to a greater 

extent in intact than girdled plants (Fig. 4.6d). Moreover, root JA concentrations 

seemed maximal at intermediate soil water contents (0.4-0.6 g g-1) but declined 

with further soil drying (to 0.2 g g-1). Thus soil drying stimulated root accumulation 

of multiple hormones (ABA, GA3 and JA), but this was attenuated in girdled plants.  
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Figure 4.6. Relationship between root water potential (a), GA3 (b), ABA (c) and JA (d) 

concentrations and soil water content during the experiment. Filled circles and triangles 

represent well-watered intact and girdled plants respectively, and hollow circles and 

triangles represent drought intact and girdled plants respectively. Each symbol is an 

individual plant and regression lines (P<0.05) were fitted to all data (a) where there was no 

significant girdling x SWC interaction and to intact and girdled plants (b, c, d) where there 

was a significant girdling and x-variable interaction. p-values determined by ANCOVA for 

each main effect (soil water content and girdling) and their interaction are reported in each 

panel. 

 

Soil drying also affected relationships between shoot water potential, stomatal 

conductance and leaf tZ, GA4 and ABA concentrations (Fig. 4.7). Thus Ψshoot 

decreased as the soil dried independently of girdled or intact plants, although a 
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significance girdled x soil water content interaction was detected (Fig. 4.7a), likely 

due to high Ψshoot values of well-watered girdled plants. Stomatal conductance 

decreased as the soil dried and shoot water potential declined respectively, but 

girdling did not affect these relationships (Fig. 4.7b, f). Leaf tZ concentrations 

increased as the soil dried, with a more sensitive response in girdled plants (as 

indicated by a significant girdled x soil water content interaction) as leaf tZ 

concentrations were lower in well-watered girdled plants (Fig. 4.7c). Leaf GA4 

concentrations decreased as the soil dried, independent of girdling (Fig. 4.7d). Leaf 

ABA concentrations increased as the soil water dried, more sensitively in intact 

plants (Fig. 4.7e). The magnitude of these changes in leaf phytohormone 

concentrations with soil drying were 3.8-fold for ABA, 1.3-fold for tZ and 0.6-fold 

for GA4, with soil water content explaining 86%, 49% and 18% of the variation in 

ABA, tZ and GA4 concentrations respectively.  
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Figure 4.7. Relationship between shoot water potential (a), stomatal conductance (b), leaf 

tZ (c), GA4 (d) and ABA (e) concentrations and soil water content, and stomatal 

conductance and shoot water potential (f) during the experiment. Filled circles and 

triangles represent well-watered intact and girdled plants respectively, and hollow circles 

and triangles represent drought intact and girdled plants respectively. Each symbol is an 

individual plant and regression lines (P < 0.05) were fitted to intact and girdled plants (a, c, 

e) where there was a significant girdling and x-variable interaction and all data (b, d) 

whenthere was no significant girdling and x-variable interaction. p-values determined by 

ANCOVA for each main effect (x-variable and girdling) and their interaction are reported in 

each panel. 
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Stomatal conductance was correlated with leaf tZ, GA4 and ABA concentrations 

(Fig. 4.8). Irrespective of girdling, gs declined as leaf tZ concentrations increased, 

even if leaf [tZ] explained relatively little of the variation in gs (r2=0.33) (Fig. 4.8a). 

Irrespective of girdling, gs declined as leaf GA4 concentrations decreased, even if 

leaf [GA4] explained relatively little of the variation in gs (r2=0.27) (Fig. 4.8b). 

Irrespective of girdling, gs declined as leaf ABA concentrations increased, with leaf 

[ABA] explaining much of the variation in gs (r2=0.66) (Fig. 4.8c). Thus leaf ABA 

concentration was better correlated with gs than was shoot water potential 

(r2=0.51).  
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Figure 4.8. Relationship between stomatal conductance and leaf tZ (a), GA4 (b) and ABA (c) 

concentrations during the experiment. Filled circles and triangles represent well-watered 

intact and girdled plants respectively, and hollow circles and triangles represent drought 

intact and girdled plants respectively. Each symbol is an individual plant and regression 

lines (P < 0.05) were fitted to all data when there was no significant girdling x [Hormone] 

interaction. p-values determined by ANCOVA for each main effect (x-variable and girdling) 

and their interaction are reported in each panel. 
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4.3.5 Correlations between leaf and root phytohormones during the experiment 

Table 4.5. Pearson's r correlation coefficients and trend lines between logarithmic values 

of leaf and root tissue phytohormone concentrations. Significance of p- values reported 

thus: * P < 0.05; ** P < 0.01; *** P < 0.001. Significant correlations between leaf and root 

phytohormone concentrations are highlighted with a red square. 

 

 

Finally, the possible inter-dependency of leaf and root hormone concentrations and 

their relationships between intact and girdled plants were analysed (Table 4.5 and 

Fig. 4.9). Leaf tZ concentrations were negatively correlated with root tZ 

concentrations, but only in girdled plants. In intact plants, leaf tZ concentrations 

were not correlated with root tZ concentrations (Fig. 4.9a). Likewise, leaf JA 

concentrations were negatively correlated with root JA concentrations, but only in 
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girdled plants. In intact plants, leaf JA concentrations were not correlated with root 

JA concentrations (Fig. 4.9b). Furthermore, leaf ABA concentrations were positively 

correlated with root ABA concentrations irrespective of girdling (Fig. 4.9c), although 

this relationship was more sensitive in intact plants due to the leaf ABA 

accumulation in well-watered girdled plants. Thus girdling affected the co-

ordination of root and leaf phytohormone concentrations.  

 

 

Figure 4.9. Relationships between the logarithm of root and leaf tZ (a), JA (b) and ABA (c) 

concentrations during the experiment. Filled and hollow circles represent intact and girdled 

plants respectively. Each symbol is an individual plant and regression lines (P < 0.05) were 

fitted to intact and girdled plants where there was a significant girdling and x [Hormone] 

interaction. p-values determined by ANCOVA for each main effect (x-variable and girdling) 

and their interaction are reported in each panel. 
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4.4 Discussion 

Girdling decreased stomatal conductance within the first 26 hours, which might be 

caused by multiple changes in leaf hormone concentrations (iP, tZ, GA3, ABA, JA 

and SA- Fig. 4.2a-g) since shoot and root water potential was similar in intact and 

girdled plants during this time (Fig. 4.1c, d). Higher foliar SA and JA concentrations 

during this time (Fig. 4.2f, g) could reflect an early wounding response (Arbona and 

Gómez-Cadenas 2008; de Ollas et al., 2013) that may induce partial stomatal 

closure but only JA accumulation was correlated with stomatal closure (Fig. 4.5b). 

As mentioned before, within 26 h of girdling, before any significant impact of soil 

drying on gs was detected, plant-to-plant variation in stomatal conductance was 

significantly inversely correlated with both foliar ABA and JA concentrations (Table 

4.2; Fig. 4.5). Since girdling increased leaf JA concentrations drastically within 2 h, 

this signal could interact with and/or stimulate ABA synthesis, leading to stomatal 

closure. Although girdled plants had higher leaf hormone concentrations (Fig. 4.2), 

girdling did not affect stomatal sensitivity to these hormones, as indicated by no 

significant stomatal conductance x [Hormone] interactions (Fig. 4.5). Thus girdling-

induced stomatal closure was most probably caused by elevated foliar hormone 

(JA, SA, ABA) accumulation, without changing stomatal sensitivity to those 

hormones. Furthermore, leaf concentrations of several hormones (iP, tZ and GA3) 

known to promote stomatal opening (Dodd, 2003) were decreased during this time, 

even though their concentrations were not correlated with gs. Thus girdling induces 

multiple changes in foliar phytohormone concentrations that could induce stomatal 

closure.  
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Furthermore, girdling induced several changes in root phytohormone 

concentrations within 26 hours, with ACC concentrations increasing while GA3 and 

GA4 concentrations decreased (Fig. 4.2h-n). Of these, root ACC accumulation may 

enhance root-to-shoot ACC signalling to alter stomatal conductance by 

antagonising the action of ABA (Jackson, 2002; Tanaka et al., 2005; Wilkinson et al., 

2012) or directly inducing stomatal closure (Gunderson and Taylor, 1991; Jackson, 

2002; Acharya and Assman, 2009). Since ACC was not detected in leaf samples, it 

remains unclear whether root-to-shoot ACC signalling was involved in stomatal 

regulation. In addition, the decrease of root GA3 and GA4 concentrations may also 

diminish root-to-shoot gibberellin transport, which may explain the massive (6-

fold) decreases in foliar GA3 concentrations within 26 hours of girdling.  Further 

work should evaluate xylem sap composition of girdled plants within 26 hours of 

girdling, to determine whether root-to-shoot signalling may be involved in 

regulating stomatal conductance, potentially independently of the changes in foliar 

hormone accumulation discussed earlier. Although changes in root hormone status 

can alter root-to-shoot signalling (Dodd 2005), reciprocal grafting studies with 

hormone-deficient mutants can show relatively limited impacts of changes in root 

hormone status on tissue concentrations (e.g. for ABA – Li et al. 2018), but further 

studies are needed with a wider range of hormone-deficient mutants. 

Hormonal regulation of stomatal conductance differed between the first 26 hours 

of the experiment (when there was limited soil drying) and during the entire 

experiment. Overall, stomatal conductance was significantly correlated with leaf tZ 

(negatively), GA4 (positively) and ABA (negatively) concentrations (Table 4.4). Soil 
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drying increased tZ and ABA concentrations independently of girdling (indicated by 

no Stress x Girdled interaction), while GA4 only decreased in intact plants by the 

end of the experiment (Fig. 4.2b, d, e). Soil-drying induced accumulation of [tZ] (Fig. 

4.2b) may promote stomatal opening by decreasing stomatal sensitivity to ABA 

(Wilkinson and Davies, 2002; Hansen and Dorffling, 2003). In the absence of any 

consistent treatment effects on foliar GA accumulation, stomatal conductance may 

be regulated by the relative magnitude and effects of ABA/cytokinin balance.  

Over the entire experiment, root GA3, ABA and JA concentrations were highly 

significantly correlated with soil water content (Table 4.3). While GA3 

concentrations decreased, ABA and JA concentrations increased as the soil dries 

(Zhang and Davies, 1989b; Pandey et al., 2004; Puértolas et al., 2013; de Ollas et al., 

2018), which together could regulate root growth. Girdled plants showed less GA3 

and JA accumulation in the roots as the soil dries, reflecting the importance of 

shoot-to-root GA3 and JA transport (Fig. 4.6b, d). For ABA, the correlation between 

soil water content and root ABA concentration might reflect localised ABA 

biosynthesis (Speirs et al., 2013) or import of ABA from the shoots (McAdam et al. 

2016b). Both mechanisms may operate simultaneously, since roots of girdled plants 

still accumulated some ABA as the soil dried, although much less than in intact 

plants (Fig. 4.6c). While the simplest explanation for decreased root ABA 

accumulation in girdled plants is the disruption of basipetal ABA transport (Manzi 

et al., 2015), alternatively this may reflect enhanced root ABA export via the xylem 

or re-distribution of ABA within the roots to promote root growth.  
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Leaf tZ, GA4 and ABA concentrations were also significantly correlated with soil 

water content (Table 4.4). Soil drying decreased leaf GA4 concentration by the end 

of the experiment, while both leaf tZ and ABA concentrations increased as the soil 

dried, with girdling decreasing ABA accumulation compared to intact plants 

respectively (Fig. 4.7c, e). For ABA, the lower leaf ABA concentrations of girdled 

plants after prolonged soil drying might reflect decreased root export via the xylem 

and/or decreased foliar ABA synthesis as Ψleaf was higher (Castro et at., 2019), with 

these effects overcoming the girdling-induced foliar ABA accumulation caused by 

disrupting basipetal shoot-to-root ABA transport. Similar explanations could apply 

to the regulation of foliar tZ concentrations, but in this case girdling did not affect 

soil-drying induced tZ accumulation, suggesting a more prominent role for root tZ 

export in foliar tZ homeostasis, as proposed for plants exposed to changes in 

substrate N status (Sakakibara et al., 1998).  

Overall, leaf and root ABA concentrations were the only hormones that were highly 

significantly correlated with each water relations parameter (stomatal 

conductance, shoot and root water potential and soil water content) during the 

entire experiment. Those results suggest the importance of shoot-to-root and root-

to-shoot ABA signalling in modulating both root and leaf hormone concentrations 

under drought conditions (Castro et at., 2019).  

Finally, girdling altered correlations between root and leaf concentrations of tZ, 

ABA and JA during the entire experiment (Table 4.5; Fig. 4.9). Stability of leaf tZ and 

JA concentrations despite fluctuations in root hormone concentrations in intact 

plants suggests a limited role for root-to-shoot hormone signalling. However, in 
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girdled plants, leaf tZ and JA concentrations decreased as the root concentrations 

increased, which cannot be accounted by altered shoot-to-root hormone transport. 

Instead, this independence of root and shoot tZ and JA concentrations suggests 

local regulation of hormone biosynthesis in each tissue. However, girdling did not 

drastically affect ABA homeostasis, since soil drying increased leaf and root ABA 

concentrations in both intact and girdled plants, highlighting the importance of 

root-to-shoot ABA signalling and local synthesis. Rapid shoot JA accumulation in 

response to girdling (wounding) could trigger stomatal closure followed by 

increased ABA levels (Pinheiro et at., 2011). Furthermore, as the soil dries leaf JA 

concentrations of girdled plants decrease, while ABA concentrations increase 

independently of girdling. Nevertheless, soil drying still significantly increased foliar 

JA concentrations in intact plants, perhaps mediated by root-to-shoot JA signalling 

(as soil drying increased root JA concentrations of intact plants to a much greater 

extent than in the leaves). These changes could directly or indirectly interact with 

ABA accumulation (mediated by biosynthesis, catabolism and signalling) to 

stimulate stomatal closure, thereby avoiding plant desiccation (de Ollas and Dodd, 

2016; Per et at., 2018).  

In conclusion, root-to-shoot ABA and JA (Fig. 4.2) communication (Fig. 4.9b, c) 

seems important in regulating stomatal closure when girdling and drought 

conditions are applied (Table 4.3, 4.4). To further understand how the endogenous 

concentrations of these hormones are regulated, analysing the expression of genes 

involved in the biosynthesis, catabolism and signalling of both phytohormones may 
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be useful in determining relationships between transcription and the final hormone 

concentrations in leaf and root tissues (Chapter 5).   
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Chapter 5 – Co-ordination of root and shoot gene expression under 

girdling and drought conditions 

 

5.1 Introduction 

The previous chapter demonstrated the potential importance of changes in ABA 

and JA concentrations in roots and leaves for regulating stomatal conductance 

under drought and girdling conditions. Although ABA is primarily considered as a 

drought stress hormone, JA is associated with wounding responses, while both 

hormones can induce stomatal closure (Murata et al., 2015). The physiological 

role(s) of both hormones (ABA and JA) in mediating drought and wounding 

responses have been studied using different mutants in their synthesis or 

degradation pathways (Iuchi et al., 2001; Zhang et al., 2006; Forster et al., 2019). 

De novo ABA biosynthesis originates from the carotenoids pathway by multi-

enzymatic reactions, where the first committed step is regarded as the epoxidation 

of zeaxanthin and the ultimate step catalyses the conversion of ABA-aldehyde to 

ABA, as described in Chapter 1. Within this pathway, a key rate-limiting step in ABA 

biosynthesis is catalysed by expression of multiple NCED (9-cis-epoxycarotenoid 

dioxygenase) genes, with NCED2 and NCED3 highly expressed in roots and leaves, 

where NCED3 is considered the major contributor to in planta ABA increments in 

Arabidopsis (Tan et al., 2003; Sussmilch et al., 2017; Ma et al., 2018). In contrast, 

ABA degradation seems less complex, as fewer enzymatic steps are involved (Figure 

1.3), where the CYP genes family encodes an ABA 8′-hydroxylase which is 
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considered one of the primary catabolism genes in the pathway (Zheng et al., 2012). 

Tissue de- and re-hydration decreases and increases CYP genes gradually and 

rapidly within the plant (Yang and Zeevart, 2006; Ma et al., 2018).  

There is increasing evidence that transcriptional expression of either ABA 

biosynthesis or catabolism genes plays an important role in ABA homeostasis. 

Tissue ABA concentrations are regulated by simultaneous changes in NCED3 and 

CYP gene expression during plant desiccation, where the expression of NCED3 goes 

up and CYP goes down (Liu et al., 2014). Thus, a balance between both biosynthesis 

and catabolism gene expression is regulated by feedback loops regulating ABA 

status in leaves and roots, to elicit stomatal closure and maintain root growth 

respectively under drought conditions (Zhang et al., 2006; Ma et al., 2018). 

Following ABA accumulation, intracellular ABA signalling may alter hormone 

perception mechanisms within different tissues (Shinozaki and Yamaguchi-

Shinozaki, 1997; Jia et al., 2002; Chaves et al., 2003).  

ABA triggers a unique response by binding to its immediate protein receptors 

(PYR/PYL) to activate different signalling pathways (Miyakawa et al., 2013). After 

being received from the membrane transporters (ABCG genes family) in the 

presence of ABA, ABA-bound PYR/PYL complex inactivates PP2C protein activity, 

which negatively regulates ABA signalling (Boursiac et al., 2013; Merilo et al., 2015). 

Then, formation of a second complex comprising PYR/PYL, ABA and PP2C, will 

phosphorylate the critical components in the ABA signalling pathway, SnRK2 and 

ABF proteins (Raghavendra et al., 2010; Wang et al., 2019). Thus such gene 

expression and accumulation of ABF proteins are induced by ABA signalling, where 
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those ABFs induce the expression of PP2C forming a loop that regulates ABA 

signalling (Fig. 5.1). 

 

Figure 5.1. Model of ABA signalling pathway where ABFs and PP2C play a role in the 

feedback regulation of ABA homeostasis (redrawn from Wang et al., 2019).  

 

While ABA is a key hormone under water deficit, JA increases largely in response to 

wounding. Biosynthesis of jasmonates starts when α-linolenic acid is released from 

plastid membranes and ceases with the production of jasmonoyl-CoA (Figure 1.4). 

An important intermediate within JA biosynthesis is the production of 12-oxo-

phytodienoic acid (OPDA), which seems to have additional biological functions, 

such as limiting transpiration (Dave and Graham, 2012; Roberts, 2016). The enzyme 

encoded by JAR1 catalyses the important reaction of conjugating the amino acid 

isoleucine to JA to form the main bioactive jasmonate, JA-isoleucine (Staswick and 

Tiryaki, 2004). In contrast to ABA, the methyl esterification of jasmonate and its 
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conjugation to the amino acid isoleucine is important in allowing biological activity 

leading to stomatal closure (Staswick and Tiryaki, 2004; De Ollas et al., 2018). 

Furthermore, in response to wounding, JA levels can rapidly increase (within 

minutes to an hour - as shown in Chapter 4) to elicit physiological responses 

(Reymond et al., 2000; Glauser et al., 2008). Furthermore, feedback loops within 

the JA biosynthesis pathway, where many enzyme steps are positively regulated by 

their products thereby amplifying jasmonate concentration, lead to rapid increases 

in JA concentrations (Stratmann, 2003; Banerjee and Bose, 2011). Members of the 

CYP94 gene family (CYP94B3, CYP94C1) have been identified to hydroxylate JA-Ile 

and to carboxylate 12-OH-JA-Ile (CYP94C1) (Koo et al., 2011; Heitz et al., 2012), 

which hydroxylation and carboxylation contribute to JA catabolism. There is, 

however, a complex sustainment of JA-Ile homeostasis, in which hydroxylation and 

carboxylation remove the active JA-Ile (Heitz et al., 2016).  

JA also triggers a unique response between its immediate protein receptor COI1 to 

activate different signalling pathways (Yin et al., 2016). The primary receptor of the 

JA signalling pathway is COI1, with JAZ proteins inhibiting jasmonate effects 

downstream of gene expression of JA responses (Pauwels and Goossens, 2011). 

Thus, the interaction between JA-Ile, COI1 and JAZ proteins releases MYC2 

transcription factors, to initiate the expression of JA-responsive genes. This basic 

mechanism is conserved in different crops (Sheard et al., 2010), where the 

transcription factor MYC2, which is central to jasmonate signalling, will act via JAZ 

proteins controlled by COI1 interacting with MYC2 activity and finally JA-responsive 

genes (Fig. 5.2). 
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Figure 5.2. Model of JA signalling pathway where JAZ and MYC2 play a key role in the 

regulation of JA responses (redrawn from Mach, 2018).  

 

Hormonal changes in response to girdling and soil drying (Chapter 4) could be 

attributed to local biosynthesis and/or degradation or long-distance signalling of 

these hormones. Therefore analysing gene expression within each hormone 

pathway, by RNA-sequencing and further qRT-PCR validation (Arbona et al., 2010), 

would lead to a better understanding between the transcription level and the final 

hormone balance in each tissue and time. Moreover, measuring the expression of 

genes involved in downstream signal transduction of those hormones may provide 

some clues as the biological impact of those hormones.  
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5.2 Materials and methods 

5.2.1 Plant materials and experimental design 

Soybean (Glycine max L. Merr. Williams 82) seeds were sown, prepared and grown 

as described in Experiment 2, in Section 2.2.1. During expansion of the third 

trifoliate leaf, plants were randomized into 4 groups, comprising the treatments 

applied: soil drying (WW: well-watered; DR: droughted) and girdling (NG: intact 

plants; G: Girdled plants) respectively. As in previous chapters, since significant 

treatment effects were detected in the first 3 days, measurements were made from 

Days 0 to 3 after girdling. Leaf and root tissue of five plants per treatment were 

harvested from Days 1 to 3. Girdling was achieved surgically at 0800h on Day 0 

when the third trifoliate leaf was completely expanded as described in Section 

3.2.1. Water was withheld from half the girdled and non-girdled plants after the 

girdling was complete on Day 0.  

5.2.2 Physiological measurements 

Measurements were made on the third trifoliate leaf throughout the experiment, 

once the girdling was achieved. Each measurement comprised a different leaflet, 

described as left, central and right when viewed from the petiole junction. Stomatal 

conductance (gs) was measured daily at 1000h, on the right leaflet with a porometer 

(Model AP4, Delta-T Devices, Burwell, UK). Two measurements were sequentially 

made on each plant and averaged. After measuring stomatal conductance, leaf 

discs (8 mm diameter) were punched from the left leaflet and immediately 

mounted on clean sample holders and wrapped in aluminum foil to prevent water 
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loss. Once all leaf discs had been collected, they were unwrapped and introduced 

into C52 chambers (Wescor Inc, Logan, UT, USA), for 2 hours of incubation. Then 

voltages were read by a microvolt meter (Model HR-33T, Wescor Inc, Logan, UT, 

USA) and converted into water potentials (Ψ) based on calibration with salt 

solutions of known osmotic potential. Once stomatal conductance and leaf water 

potential (Ψleaf) were measured, the remaining central leaflet was collected in 

Eppendorf vials and immediately frozen in liquid nitrogen. The whole root system 

was removed from the pot, briefly washed and collected in Eppendorf vials, then 

frozen in liquid nitrogen. Both tissues (leaf and root) from Days 1 to 3 were stored 

at -80 ºC for further transcriptomic and gene expression analyses. Soil water 

content was calculated as described in Section 2.2.2. 

5.2.3 RNA extraction, sequencing and library construction 

Leaf and root tissue, harvested 3 days after withholding water, were used for RNA-

Seq analysis. Leaf and root tissues were ground in liquid nitrogen, with around 100 

mg frozen/ground tissue used for total RNAs using a Plant RNeasy Mini Kit (Qiagen, 

Germany) according to the manufacturer’s instructions. RNA samples from three 

individual leaves and roots of each treatment were pooled together in equal 

amounts to generate one mixed sample. RNA was precipitated with ethanol, 

dissolved in diethylpyrocarbonate (DEPC)-treated water and stored at -80ºC. All 

RNA samples were examined for protein contamination (as indicated by the 

A260/A280 ratio) and reagent contamination (indicated by the A260/A230 ratio) 

with a Nanodrop ND1000 spectrophotometer (NanoDrop). 
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Total RNA purity and degradation were examined on a 1% agarose gel before 

proceeding. The mRNA was purified from 6 mg of total RNA using oligo(dT) 

magnetic beads. Following purification, the mRNA was fragmented into small 

pieces using divalent cations under an elevated temperature (94ºC), and the 

cleaved RNA fragments were used for first-strand cDNA synthesis using reverse 

transcriptase and random primers. DNA polymerase I and RNase H were used to 

synthesize second-strand cDNA. Subsequently, short fragments were purified using 

a QiaQuick PCR extraction kit and resolved with elution buffer for end repair and 

poly(A) addition. Those fragments with a suitable range of lengths selected based 

on the results of agarose gel electrophoresis were used as templates for library 

amplification. The library quality was confirmed by the Agilent 2100 Bioanalyzer 

and Agilent High Sensitivity DNA Kit.  

5.2.4 Analysis of RNA sequencing 

The resulting cDNA library constructed from leaf and root RNA samples were used 

for paired-end (2 x 150 bp) sequencing on an Illumina HiSeq 4000 platform by 

Annoroad Gene Technology Co. Ltd (Beijing, China). Three replicates for each 

sample were trimmed to obtain clean reads for subsequent analysis. Raw image 

data generated by sequencing were transformed by base calling into sequence 

data, which are called raw data/raw reads, and were stored in fastq format (Liu et 

al., 2015). 

The soybean reference genome annotation file (Glycine max Wm82.a2.v1) was 

downloaded from the Phytozome website 

(https://phytozome.jgi.doe.gov/pz/portal.html). Mapping of clean reads and 



125 

 

subsequent bioinformatic analysis were as described previously. Significant 

changes in differentially expressed genes (DEGs) were determined as log2FC >2 and 

q-value (false discovery rate, FDR <5%). Gene Ontology (GO) analysis 

(http://geneontology.org/) and Kyoto Encyclopaedia of Genes and Genomes 

(KEGG; http://www.kegg.jp/) enrichment classification were carried out using the 

DEG data set.  

5.2.5 Quantitative Real-Time PCR 

For qRT-PCR, total RNA (~5 μg) from leaves and roots from Days 1 to 3 were reverse-

transcribed into cDNA by using the Superscript First-Strand Synthesis System 

(Invitrogen, USA) following the manufacturer’s instructions. 

Transcript levels of selected genes were measured by CFX384 Touch™ Real-Time 

PCR Detection System (ThermoFisher Scientific China, Inc., Shanghai) with 

TransStart® Tip Green qPCR SuperMix (Transgen) according to manufacturer’s 

protocols in a 12-μL reaction. ACT11 (cytoskeletal structural protein) was used as 

an internal standard (Neves-Borges et al., 2012). The primers were designed 

according to significant changes in DEGs (fold-change in KEGG pathway, Fig. 5.5) 

originated from the RNA-sequencing to confirm their specificity. Primers selected 

and used for qRT-PCR are listed in Table 5.1. Relative expression of each gene was 

normalized against the internal reference gene (ACT11), and calculated according 

to the 2−ΔΔCT method as previously described (Schmittgen and Livak, 2008). 

Graphical representation for up- and down-regulation of each gene and time were 

represented as mean fold values relative to the expression level of each droughted 

and girdled comparison.    
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5.2.6 Statistical analysis 

Two replicate experiments were conducted simultaneously, ensuring sufficient 

tissue to allow different assays, such as multi-hormone analysis (not presented here 

as data not yet available - but see Chapter 4). Day 3 samples of both experiments 

were analyzed comparing the expression of some selected genes by qRT-PCR (data 

not shown). Once it was seen that both experiments had similar responses 

(including plant water relations), samples from one experiment were chosen for the 

RNA-sequencing. Two-way analysis of variance (ANOVA) determined the effects of 

water treatment, girdling and their interaction on soil water content, stomatal 

conductance and leaf water potential (Fig. 5.3). Heterogeneous groups were 

separated by Tukey’s Honestly Significant Difference (HSD) test (P < 0.05) to 

discriminate differences between treatment x girdling combinations (Fig. 5.6-5.11).  

5.3 Results 

5.3.1 Effect of girdling and soil drying on plant water relations   

Soil water content and Ψleaf of well-watered plants was, as observed in previous 

chapters, consistent throughout the experiment, remaining between 0.85 and 0.9 

g g-1 for soil moisture and between -0.8 and -0.65 MPa for Ψleaf (Fig. 5.3a, c). Girdling 

had no significant effect on soil water content and Ψleaf. Withholding water 

decreased soil moisture to 0.72 g g-1 at Day 2 and 0.65 g g-1 at Day 3 (Fig. 5.3a). Soil 

drying did not significantly decrease Ψleaf until Day 2, when it was 0.4 MPa lower 

than in well-watered plants, and on Day 3 when it was 0.7 MPa lower (Fig. 5.3c). 
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Thus soil drying decreased soil water content and leaf water potential, but girdling 

had no significant effect during the experiment. 

Girdling significantly decreased gs of well-watered plants from Day 1 (Fig. 5.3b), and 

gs of these plants remained 30% lower than intact plants on Day 3. After 

withholding water, gs declined similarly in both droughted intact and girdled plants, 

approximately halving gs compared to well-watered intact plants by the end of the 

experiment. Thus soil drying decreased gs at the same rate independently of 

girdling, while girdling caused partial stomatal closure of well-watered plants.  
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Figure 5.3. Soil water content (a), stomatal conductance (b), leaf water potential (c) during 

the experiment, with water withheld from droughted and girdled plants on Day 0. 

Measurements on Day 0 were done before imposing treatments. Filled and hollow symbols 

represent well-watered and droughted plants respectively, with intact and girdled plants 

indicated by circles and triangles respectively. Symbols indicate mean ± s.e. (n=5).Effects of 

soil drying (Stress), girdling treatment (Girdled) and their interaction (St x G) are indicated 

thus: NS, non-significant; * P <0.05; ** P <0.01; *** P <0.001.  

 

5.3.2 Differential expression genes analysis and KEGG hormone pathway 

The RNA-sequencing microarray analysis identified how many genes were up- and 

down-regulated (DEGs) 3 days after water was withheld and girdling was applied 

(Fig. 5.4). Soil drying up-regulated 3240 and 989 genes, and down-regulated 3900 

and 286 genes in leaves and roots of intact plants, respectively. Girdling suppressed 

the number of genes up- (from 3240 to 498) and down- (from 3900 to 945) 
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regulated in leaves in response to soil drying. In contrast, girdling increased the 

number of genes up- (from 989 to 1056) and down- (from 286 to 1599) regulated 

in the roots in response to soil drying. Thus soil drying had greater effects on 

differential gene expression in the leaves than roots, with girdling seemingly 

decreasing the number of DEGs in the leaves while increasing the number of DEGs 

in the roots in response to soil drying. 

In well-watered plants, girdling up-regulated 2097 and 7851 genes, and down-

regulated 1621 and 11688 genes, in leaves and roots respectively. In addition, 

droughted girdled plants increased the number of up-regulated genes in leaves 

(from 2097 to 3545) but decreased the number of up-regulated genes in roots (from 

7851 to 6676) compared to well-watered girdled plants. Similarly, soil drying 

increased the number of down-regulated genes in leaves of girdled plants (from 

1621 to 2579) and decreased the number of down-regulated genes in roots (from 

11688 to 10561) of girdled plants. Thus, girdling increased the number of DEGs in 

roots compared to leaves, independently of soil moisture.  
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Figure 5.4.  Number of differentially expressed genes (DEGs) up- and down-regulated 

(>Log2Fold-Change) in each comparison between leaf and root tissues of well-watered 

intact plants (WW), well-watered girdled plants (WW-G), droughted intact plants (Dr) and 

droughted girdled plants (Dr-G), 3 days after imposing treatments on Day 0.  

 

Since changes in hormone concentrations, specifically ABA and JA, were involved in 

regulating stomatal conductance after applying both soil drying and girdling 

treatments (Chapter 4), the KEGG annotation pathways, from the RNA-sequencing, 

of the biosynthesis, catabolism and signalling of both hormones are shown (Fig. 

5.5). Specific orthology (KOx) and enzymatic (EC x.x.x) steps followed for selecting 

the genes that were identified as DEGs are highlighted as red squares. For each step 

in the hormone pathways, (at least) one DEG that was up- or down-regulated 

(log2Fold-changed >1; p-value adjusted <0.01) in the RNA-sequencing was selected 

for qRT-PCR validation. Thus, the primer used of each gene for each KO or EC step 

is shown (Table 5.1).  
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Figure 5.5. ABA (a) and JA (b) biosynthesis and catabolism pathways, and their signal 

transduction pathways (c) in plants mapped by KEGG annotation. Red squares indicate the 

orthologue and enzyme step of the specific route followed to identify each gene involved 

in the biosynthesis, catabolism and signalling from the RNA-sequencing microarray.  
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Table 5.1. List of genes analysed and used for qRT-PCR of ABA and JA biosynthesis, catabolism and signalling pathways. 



133 

 

5.3.3 Soil drying and girdling effects on ABA biosynthesis, catabolism and 

signalling related genes 

Soil drying did not affect leaf and root gene expression in the ABA biosynthesis and 

catabolism pathways of intact and girdled plants on Day 1 (Fig. 5.6-7a, d). After two 

days of soil drying, the roots of intact plants up-regulated NCED3 (2) while the roots 

of girdled plants significantly up-regulated CrtZ, both NCED3s (1 and 2) and NSY (1), 

compared to their respective well-watered control plants. At this time, the roots of 

both intact and girdled plants down-regulated the NSY (2) gene compared to their 

respective well-watered controls (Fig. 5.6-7e). After three days of soil drying, the 

roots of both intact and girdled plants up-regulated NCED3s (1 and 2) and NSY (1), 

while the SDR and SDR/ABA2 genes were up-regulated only in intact plants (Fig. 5.6-

7f). Thus continued soil drying upregulated some genes in the ABA biosynthesis 

pathway in roots of both intact and girdled plants. 

After two days of soil drying, the leaves of intact plants significantly up-regulated 

SDR, SDR/ABA2 and CYP (2) genes, while both NCED3s were significantly down-

regulated compared to well-watered intact plants. Soil drying up-regulated NCED3 

(1 and 2) and SDR in leaves of girdled plants compared to well-watered girdled 

plants (Fig. 5.6-7b). After three days of soil drying, leaves of intact plants up-

regulated LUT5, NCED3s (1 and 2), NSY (1 and 2), SDR, SDR/ABA2, AAO3 (2), 

MoCo/ABA3, CYP (1 and 2). In contrast, leaves of girdled plants down-regulated 

LUT5, NCED3 (1), NSY (2), AAO3 (1 and 2), MoCo/ABA3 and CYP (1 and 2) (Fig. 5.6-

7c). Thus, ABA biosynthesis and catabolism genes are up-regulated in leaves of both 

intact plants and are attenuated in girdled plants as the soil dries. 
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Compared to intact plants, girdling up-regulated LUT5, ZEP/ABA1, ZEP/VDE, NCED3 

(1 and 2), SDR, SDR/ABA2, AAO3 (1 and 2), MoCo/ABA3 and CYP (2) genes in the 

roots after one day (Fig. 5.6-7d). Two days after girdling, the roots up-regulated 

LUT5, ZEP/ABA1, ZEP/VDE, SDR, AAO3 (1 and 2), MoCo/ABA3 and CYP (2) genes in 

well-watered plants, and up-regulated ZEP/ABA1, ZEP/VDE, NCED3 (1 and 2), NSY 

(1), SDR, AAO3 (1 and 2) and CYP (2) genes in droughted plants (Fig. 5.6-7e). Three 

days after girdling, all analysed genes were up-regulated, except for NSY (1), which 

was down-regulated in well-watered plants and not changed in droughted plants 

(Fig. 5.6-7f). Thus girdling upregulates most of the genes in the ABA biosynthesis 

(and metabolism) pathways. 

Furthermore, girdling up-regulated SDR, MoCo/ABA3 and CYP (1) genes in the 

leaves after one day (Fig. 5.6-7a). Two days after girdling, the leaves down-

regulated NCED3s (1 and 2) genes in well-watered plants, while these genes were 

up-regulated and NSYs (1 and 2) and CYP (2) were down-regulated in droughted 

plants (Fig. 5.6-7b). Three days after girdling, all analysed genes were upregulated, 

except for CrtZ, ZEP/ABA1, NSY (1) and SDR genes in well-watered plants, and for 

LUT5, NCED3 (1), NSY (1), SDR and MoCo/ABA3 genes which were downregulated 

in droughted plants (Fig.5.6-7c). Thus girdling tended to have opposing effects on 

gene expression in the ABA biosynthesis and metabolism pathways in well-watered 

and droughted plants. 

Expression of root and leaf ABA signalling genes did not change after one day, 

independently of soil moisture (Fig. 5.8a, d). In roots of girdled plants, soil drying 

just up-regulated the PYL2 gene on Day 2 (Fig. 5.8e) and the PYL2 and PP2C genes 
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on Day 3, while in roots of intact plants, soil drying down-regulated the PYL2 and 

PP2C genes on Day 3 (Fig. 5.8f). Two days of soil drying up-regulated PYL2, PP2C 3 

and ABF/ABRE genes in leaves of intact plants, while down-regulating the PP2C 3, 

SnRK2 and ABF/ABI5 genes in leaves of girdled plants (Fig. 5.8b). Three days of soil 

drying up-regulated all analysed ABA signalling genes in leaves of intact plants, 

except for PP2C that was down-regulated. In contrast, all analysed signalling genes, 

except for PP2C and ABF/ABI5 that did not change, were down-regulated in leaves 

of girdled plants (Fig. 5.8c). Thus soil drying had greater effects on the expression 

of ABA signalling genes in leaves than roots of intact plants, while droughted girdled 

plants up-regulated ABA signalling genes in the roots after 3 days. 

One day after girdling was applied, the roots up-regulated all analysed ABA 

signalling genes, except for PP2C that was down-regulated (Fig. 5.8d). All these 

genes remained up-regulated in droughted girdled plants on Day 2, while there was 

no change in PYL2 and ABF/ABI5 gene expression in well-watered girdled plants 

(Fig. 5.8e). The same pattern was observed three days after girdling was applied, 

with all analysed genes up-regulated in roots of droughted plants, while in well-

watered plants just PP2C 3 remain unchanged (Fig. 5.8f). In leaves, girdling up-

regulated the ABF/ABI5 gene on Day 1, while down-regulating the PP2C 3 gene 

(Fig.5.8a). After two days, girdling up-regulated all analysed genes, except for PP2C 

and SnRK2 3, in leaves of well-watered plants. After three days, girdling up-

regulated all analysed genes in leaves of well-watered plants, while PP2C 3 was up-

regulated and ABF/ABRE down-regulated in leaves of droughted plants (Fig.5.8c). 

Thus, girdling up-regulated ABA signalling genes in the roots throughout the 
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experiment irrespective of soil moisture status, while in the leaves ABA signalling 

genes were more expressed in well-watered plants. 

Thus, girdling clearly increased gene expression in the ABA biosynthesis, catabolism 

and signalling pathways in the roots compared to the leaves, before any 

physiological or molecular effects of soil drying were detected. Between Days 2 and 

3, the interaction between girdling and drought stress stimulated the expression of 

ABA biosynthesis genes in the roots, with different patterns of gene regulation (up- 

and down-) between root and leaf tissues. In girdled plants, soil drying seemed to 

induce a faster and prolonged (ABA biosynthesis) gene expression response in the 

roots than in the leaves. 
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Figure 5.6. Real-time quantitative PCR expression level of ABA biosynthesis genes in leaf (a-c) and root (d-f) tissue of well-watered intact plants (WW), well-watered girdled 

plants (WW-G), droughted intact plants (Dr) and droughted girdled plants (Dr-G) from Days 1 to 3 after treatments. Vertical bars indicate relative expression level mean ± s.e. 

(n=6) compared to well-watered intact plants (WW). Different letters indicate significant differences (P < 0.05) according to the Tukey´s test on each gene. Relative expression 

for the analysed genes of ABA biosynthesis under drought (red) and girdling (blue) effects. Gradient colours indicate log2 fold-change by down-regulated (-), no-change in (0) 

and up-regulated (+) gene expression of each comparison. 
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Figure 5.7. Real-time quantitative PCR expression level of ABA biosynthesis and catabolism genes in leaf (a-c) and root (d-f) tissue of well-watered intact plants (WW), well-

watered girdled plants (WW-G), droughted intact plants (Dr) and droughted girdled plants (Dr-G) from Days 1 to 3 after treatments. Vertical bars indicate relative expression 

level mean ± s.e. (n=6) compared to well-watered intact plants (WW). Different letters indicate significant differences (P < 0.05) according to the Tukey´s test on each gene. 

Relative expression for the analysed genes of ABA biosynthesis and catabolism under drought (red) and girdling (blue) effects. Gradient colours indicate log2 fold-change by 

down-regulated (-), no-change in (0) and up-regulated (+) gene expression of each comparison. 
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Figure 5.8. Real-time quantitative PCR expression level of ABA signalling genes in leaf (a-c) and root (d-f) tissue of well-watered intact plants (WW), well-watered girdled 

plants (WW-G), droughted intact plants (Dr) and droughted girdled plants (Dr-G) from Days 1 to 3 after treatments. Vertical bars indicate relative expression level mean ± s.e. 

(n=6) compared to well-watered intact plants (WW). Different letters indicate significant differences (P < 0.05) according to the Tukey´s test on each gene. Relative expression 

for the analysed genes of ABA signalling under drought (red) and girdling (blue) effects. Gradient colours indicate log2 fold-change by down-regulated (-), no-change in (0) 

and up-regulated (+) gene expression of each comparison.
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5.3.4 Soil drying and girdling effects on JA biosynthesis, catabolism and signalling 

related genes  

Soil drying did not affect leaf and root gene expression in the JA biosynthesis 

pathway of intact and girdled plants on Day 1 (Fig. 5.9-10a, d). Two days of soil 

drying up-regulated α-linolenic acid (2), 13(S)-HpOTrE, 12-OPDA (3), OPCL1 and 

Jasmonate (2) genes in the roots of intact plants, while none of these genes were 

affected in girdled plants (Fig. 5.9-10e). Three days of soil drying up-regulated α-

linolenic acid (2), 12-OPDA (1 and 2), OPCL1 and both Jasmonate (1 and 2) genes in 

the roots of intact plants, while the 12,13-EOTrE and 12-OPDA (2) genes were 

down-regulated in the roots of girdled plants (Fig. 5.9-10f). Thus soil drying up-

regulated gene expression in the JA biosynthesis pathway in roots of intact plants, 

while opposing effects occurred in roots of girdled plants. 

Two days of soil drying up-regulated α-linolenic acid (2), 12,13-EOTrE and 12-OPDAs 

(2 and 3) genes in leaves of intact plants, and up-regulated α-linolenic acid (1) and 

12-OPDA (1) genes in girdled plants (Fig. 5.9-10b). Three days of soil drying caused 

intact and girdled plants to show opposite responses in gene expression in the JA 

biosynthesis pathways. In intact plants, soil drying up-regulated most of the 

analysed genes except for α-linolenic acid (1), 13(S)-HpOTrE, 12,13-EOTrE, 3-Oxo-

OPC8-CoA and Jasmonate (1) which showed no response, while in girdled plants 

most of the genes were down-regulated except for α-linolenic acid (2), 13(S)-

HpOTrE, OPC8-CoA and 3-Oxo-OPC8-CoA genes (Fig. 5.9-10c). Thus soil drying up-

regulated genes in the JA biosynthesis pathway in leaves of intact plants, while 



141 

 

girdled plants showed more variable foliar gene expression (up- and down-

regulation on Days 1 and 2 respectively).  

Compared to intact plants, girdling up-regulated α-linolenic acid (1), 13(S)-HpOTrE, 

12-OPDA (4), OPC8-CoA, MFP2 and Jasmonate (2) genes in roots of well-watered 

plants but down-regulated the 12-OPDA (2) gene within one day (Fig. 5.9-10d). 

After two days, girdling up-regulated almost all analysed genes (except for the 

12,13-EOTrE and 12-OPDAs (1 and 2) genes that didn´t change) in roots of well-

watered plants and down-regulated the 3-Oxo-OPC8-CoA gene. Girdling up-

regulated α-linolenic acid (1 and 2), 12-OPDA (4), OPC8-CoA, MFP2 and Jasmonate 

(1) genes in roots of droughted plants and down-regulated the 12,13-EOTrE, 12-

OPDA (1) and 3-Oxo-OPC8-CoA genes (Fig. 5.9-10e). Three days after girdling, all 

genes except the α-linolenic acid (1) gene (that did not change) remained up-

regulated in roots of well-watered plants, while girdling didn’t change α-linolenic 

acid (1 and 2), 13(S)-HpOTrE, 12,13-EOTrE and 12-OPDAs (1 and 2) gene expression 

in droughted plants (Fig. 5.7-8f). Throughout the experiment, girdling affected more 

of the analysed JA-biosynthesis genes in roots of well-watered plants than those 

exposed to drying soil.  

Within one day, girdling up-regulated almost all analysed genes in the leaves, 

except the α-linolenic acid (1), 13(S)-HpOTrE, OPC8-CoA and MFP2 genes that did 

not change (Fig. 5.9-10a). Two days after girdling, only the 12-OPDA (3) gene was 

up-regulated and the α-linolenic acid (1), 12,13-EOTrE and 12-OPDA (1) genes were 

down-regulated in leaves of well-watered plants, while only the α-linolenic acid (2) 

and 12,13-EOTrE genes were down-regulated in leaves of droughted plants (Fig. 
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5.9-10b). Three days after girdling, all analysed genes were up-regulated in leaves 

of well-watered plants except the α-linolenic acid (1) gene that did not change, 

while only the 12-OPDA (4) gene was downregulated in leaves of droughted plants 

(Fig. 5.9-10c). Thus girdling increased foliar gene expression in the JA biosynthesis 

pathway to a greater extent in well-watered plants than those exposed to drying 

soil.  

Soil drying had no effect on root and leaf JA signalling genes on Day 1 (Fig. 5.11a, 

d). In the roots, two days of soil drying up-regulated MYC2 (2) in intact plants, and 

up-regulated JAZ and down-regulated MYC2 (2) in girdled plants (Fig. 5.11e). Three 

days of soil drying up-regulated MYC2 (2) in roots of intact plants, but had no 

significant effect in roots of girdled plants (Fig. 5.11f). In the leaves, soil drying up-

regulated JAR (1) and MYC2 (2) genes in intact plants after two days, while there 

was no change in girdled plants (Fig. 5.11b). After three days, soil drying up-

regulated JAR (1 and 2), COI1 and MYC2 (2) in intact plants, while JAZ was up-

regulated and COI1 down-regulated in girdled plants (Fig. 5.11c). Thus, continued 

soil drying up-regulated some genes in the JA signalling pathway in roots and leaves 

of both intact and girdled plants. 

Compared to intact plants, girdling up-regulated JAR (1 and 2), COI1 and MYC2 (2) 

genes in the roots within one day (Fig. 5.11-d). After two days, girdling up-regulated 

all analysed genes in the roots of well-watered plants except JAZ that did not 

change, while JAR (2) and COI1 were up-regulated and MYC2 (2) down-regulated in 

roots of droughted plants (Fig. 5.11e). After three days, girdling caused all analysed 

genes to be highly expressed in the roots, independently of soil moisture (Fig. 
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5.11f). In the leaves, girdling up-regulated JAR1 (2) and MYC2 (2) after one day (Fig. 

5.11a). After two days, girdling had no effect in well-watered plants while JAR1 (1) 

and MYC2 (2) were down-regulated in droughted plants (Fig. 5.11b). After three 

days, girdling up-regulated JAR1 (2) and MYC2 (2) in leaves of well-watered plants, 

while JAZ and down-regulated COI1 were up-regulated in leaves of droughted 

plants (Fig. 5.11c). Independently of soil moisture, girdling highly up-regulated JA 

signalling genes in the roots, but attenuated the expression of JA signalling genes in 

the leaves. 

Taken together, girdling clearly increased the expression of JA biosynthesis and 

signalling genes in roots and leaves within one day. Three days after girdling, 

expression of these genes was attenuated in the leaves, but still promoted in the 

roots. By the end of the experiment, soil drying induced a greater response in intact 

plants than girdled plants in both tissues Combining both girdling and soil drying 

treatments may lead to more changes in the analysed genes in roots than in leaves, 

promoting  root-to-shoot co-ordination. 
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Figure 5.9. Real-time quantitative PCR expression level of JA biosynthesis genes in leaf (a-c) and root (d-f) tissue of well-watered intact plants (WW), well-watered girdled 

plants (WW-G), droughted intact plants (Dr) and droughted girdled plants (Dr-G) from Days 1 to 3 after treatments. Vertical bars indicate relative expression level mean ± s.e. 

(n=6) compared to well-watered intact plants (WW). Different letters indicate significant differences (P < 0.05) according to the Tukey´s test on each gene. Relative expression 

for the analysed genes of JA biosynthesis under drought (red) and girdling (blue) effects. Gradient colours indicate log2 fold-change by down-regulated (-), no-change in (0) 

and up-regulated (+) gene expression of each comparison. 
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Figure 5.10. Real-time quantitative PCR expression level of JA biosynthesis genes in leaf (a-c) and root (d-f) tissue of well-watered intact plants (WW), well-watered girdled 

plants (WW-G), droughted intact plants (Dr) and droughted girdled plants (Dr-G) from Days 1 to 3 after treatments. Vertical bars indicate relative expression level mean ± s.e. 

(n=6) compared to well-watered intact plants (WW). Different letters indicate significant differences (P < 0.05) according to the Tukey´s test on each gene. Relative expression 

for the analysed genes of JA biosynthesis under drought (red) and girdling (blue) effects. Gradient colours indicate log2 fold-change by down-regulated (-), no-change in (0) 

and up-regulated (+) gene expression of each comparison. 
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Figure 5.11. Real-time quantitative PCR expression level of JA catabolism and signalling genes in leaf (a-c) and root (d-f) tissue of well-watered intact plants (WW), well-

watered girdled plants (WW-G), droughted intact plants (Dr) and droughted girdled plants (Dr-G) from Days 1 to 3 after treatments. Vertical bars indicate relative expression 

level mean ± s.e. (n=6) compared to well-watered intact plants (WW). Different letters indicate significant differences (P < 0.05) according to the Tukey´s test on each gene. 

Relative expression for the analysed genes of JA signalling under drought (red) and girdling (blue) effects. Gradient colours indicate log2 fold-change by down-regulated (-), 

no-change in (0) and up-regulated (+) gene expression of each comparison. 
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5.4 Discussion 

Soil drying decreased gs independently of girdling, while girdling caused partial 

stomatal closure of well-watered plants without affecting leaf water potential and 

soil water content (Fig. 5.3). Girdling increased the DEGs (up- and down-regulated) 

in roots of well-watered and droughted plants 3 days after the treatments were 

imposed (Fig. 5.4), which could reflect the importance of root gene expression in 

stimulating root-to-shoot signalling. 

Foliar ABA and JA accumulation of girdled plants, perhaps in response to enhanced 

expression of ABA and JA biosynthesis genes,  caused partial stomatal closure 

within 26 hours, and further closure (Fig. 4.2f-g, m-n) as the soil dries (Murata et 

al., 2015; de Ollas et al., 2018). Alternatively, upregulation of ABA and JA 

biosynthesis genes in the roots, and subsequent root-to-shoot hormone transport 

could explain foliar hormone accumulation and hence stomatal closure.  

ABA genes response to girdling 

Girdling upregulated more genes in the ABA biosynthesis pathway in roots than in 

leaves within 26 hours, prior to any stomatal closure or leaf water potential 

decreases caused by soil drying (Fig. 5.3; Fig. 5.6-7a, d). At this time, the rate-

limiting NCEDs and CYP genes in the biosynthesis and catabolism pathway 

respectively were expressed (Zheng et al., 2012; Ji et al., 2014; Sussmilch et al., 

2017). Two days after girdling, more ABA-related genes were upregulated in the 

roots than in the leaves (Fig. 5.6-8b, e), but the NCED genes were only upregulated 

in roots of droughted girdled plants. This suggests that up-regulating the first steps 
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(NCED genes) of ABA biosynthesis is critical in determining ABA status, since at the 

end of the experiment both roots and leaves up-regulated the majority of the genes 

selected (Okamoto et al., 2009; Boursiac et al., 2013). By the end of the experiment, 

roots of both well-watered and droughted girdled plants had the highest expression 

level in the ABA biosynthesis and catabolism pathways. In contrast, well-watered 

girdled plants had increased foliar expression level of these genes only on Day 3, 

suggesting that root ABA synthesis (and transport to the shoot), in addition to the 

disruption of basipetal shoot-to-root ABA signalling caused by girdling, can allow 

foliar ABA accumulation prior to ABA biosynthesis. 

In addition, root and leaf expression of ABA biosynthesis genes in well-watered 

girdled plants was almost completely up-regulated compared to well-watered 

intact plants, while under drought conditions only roots showed higher expression 

in girdled plants. Thus girdling induced a higher and prolonged gene expression of 

the ABA signalling pathway in roots compared to leaves. 

Biological activity of any hormone accumulation is suggested by measuring 

expression of signalling-related genes, where most of these genes were up-

regulated in roots of girdled plants throughout the entire experiment (Fig. 5.8; 

Zheng et al., 2012; Ji et al., 2014). Expression of these signalling genes also 

increased in the leaves of both intact and girdled well-watered plants (Windsor and 

Zeevaart, 1997; Priest et al., 2006). Thus girdling stimulated ABA synthesis and 

perception-related genes in roots, suggesting that shoot-to-root signalling 

ordinarily suppresses ABA biosynthesis and response in roots of intact plants.  
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ABA genes response to soil drying 

As the soil dries, expression of ABA biosynthesis genes in roots of intact plants was 

attenuated after an initial increase, whereas leaves up-regulated more genes in the 

last steps of the synthesis (SDR-related genes) and catabolism (CYP (2)) pathways. 

While NCED genes were more promoted in both roots and leaves of droughted 

girdled plants than in intact plants, SDR genes were more expressed in leaves of 

intact plants than in girdled plants exposed to drying soil (Windsor and Zeevaart, 

1997; Priest et al., 2006; Ma et al., 2018). Thus, by the end of the experiment, based 

on relative changes in gene expression, leaves may be the main organ to synthesise 

and degrade ABA compared to roots (Manzi et al., 2015; Castro et al., 2019). In 

contrast, withholding water to girdled plants down-regulated ABA synthesis and 

catabolism genes in leaves, which may explain decreased foliar ABA accumulation 

compared to intact plants (Fig. 4.2e). In the roots, soil drying up-regulated NCED 

genes (Shinozaki and Yamaguchi-Shinozaki, 1997; Jia et al., 2002) in girdled plants, 

stimulating root tissue ABA accumulation between Day 2 and 3, consistent with the 

root ABA accumulation seen in Chapter 3 (Castro et al., 2019) and Chapter 4 (Fig. 

4.2l).  

For intact plants, leaf gene expression in the ABA signalling pathway was higher 

than root gene expression three days after withholding water (Fig. 5.8). However, 

in roots of droughted girdled plants, PYL2 and PP2C 3 genes were up-regulated, 

suggesting that the relationship between PYR/PYL receptors and class A PP2C 

enhanced ABA perception, which could promote root growth in regions with low 
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water potential as in the Arabidopsis ABA-hypersensitive pp2c quadruple mutant 

(Antoni et al., 2013; Merilo et al., 2013; Yin et al., 2016). 

JA genes response to girdling 

Girdling increased the expression of JA biosynthesis and catabolism genes similarly 

in roots and leaves within 26 hours of treatments. Moreover, girdling induced 

higher expression of 12-OPDAs and Jasmonate (1 and 2) genes in leaves compared 

to roots (Fig. 5.9-11a, d; Koo et al., 2009; Wasternack and Song, 2017), consistent 

with  leaf and root JA accumulation seen in Chapter 4 (Fig. 4.2f, m). Two days after 

girdling, all genes selected in the JA biosynthesis pathway were up-regulated in the 

roots, while leaves did not show any difference in expression level compared to 

intact plants (Fig. 5.9-10b, e). At this time, the lower leaf [JA] of girdled plants (Fig. 

4.2f) could suggest that stimulation of root JA biosynthesis was not accompanied 

by increased root-to-shoot JA signalling. At the end of the experiment, girdling still 

promoted JA biosynthesis and catabolism genes in roots and leaves of well-watered 

plants, and in roots of plants exposed to drying soil (Fig. 5.9-10d, f). Furthermore, 

roots of girdled plants up-regulated both JAR1 genes selected (which promote 

synthesis of the active form JA-Ile) during the entire experiment, while leaves just 

up-regulated JAR1 (2) on Day 1 and 3 (Fig. 5.11). This highlights a similar paradigm 

of systemic JA signalling (eg. JA production in wounded tissues is transported to, 

and sensed by, distal leaves -Schilmiller and Howe, 2005) at least within 26 hours 

of girdling, whereas girdled roots were unable to decrease gene expression due to 

the lack of communication with the shoot, and a possible subsequent cross-talk 

with ABA receptors (PYR/PYL) (Aleman et al., 2016).  
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Roots of girdled plants up-regulated JA signalling genes throughout the experiment 

compared to intact plants, and in comparison to leaves of droughted girdled plants 

(Fig. 5.11). Leaves up-regulated MYC2 genes on Days 1 and 3 which realised JA 

signalling, while from Day 2 both MYC2 genes were up-regulated in roots of girdled 

plants. In addition, soil drying down- and up-regulated the COI1 and JAZ genes 

respectively in leaves on Day 3, suggesting an increase in transcription factor (JAZ) 

response would enhance the JA response (Fonseca et al., 2009; Pauwels and 

Goossens, 2011; Roberts et al., 2016). Thus in well-watered girdled plants, roots 

were still promoting JA hormone and signalling genes, while leaves of droughted 

plants had down-regulated expression of JA synthesis genes, but were still 

responding to JA perception (up-regulation of signalling genes), which may cause a 

consistent stomatal closure response independently of girdling. 

JA genes response to soil drying 

After withholding water for two days, roots of intact plants had up-regulated the 

first steps of JA biosynthesis, such as 12-OPDAs genes, consistent with root JA 

accumulation at this time (Fig. 4.2m). Gene expression in roots may have been 

systemically regulated, since soil drying induced a greater response in roots of 

intact plants than girdled plants on Days 2 and 3 respectively (Fig. 5.9-10d, f; Dave 

and Graham, 2012). Since roots of girdled plants did not up-regulate JA biosynthesis 

and catabolism genes, this would explain their limited root JA accumulation in 

response to drying soil.  

Similarly, as the soil dries, intact plants systemically up-regulated JA biosynthesis 

and catabolism genes in the leaves throughout the experiment, consistent with leaf 
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JA accumulation (Fig. 4.2f). In contrast, leaves of girdled plants down-regulated the 

majority of the genes selected in the JA biosynthesis pathway (Fig. 5.9-10a, c), 

explaining their limited leaf JA accumulation by the end of the experiment. Thus 

leaves of intact plants accumulated 1.5-fold higher JA levels than well-watered 

plants in response to soil drying (Fig. 4.2f) which is qualitatively similar to previous 

soil drying experiments in tomato (de Ollas et al., 2018), while leaves of girdled 

plants did not accumulate JA. 

Leaves and roots showed similar trends in JA biosynthesis, catabolism and signalling 

genes in intact plants, with increased expression as the soil dries (Fig. 5.11). While 

roots of girdled plants up-regulated the transcription factor (JAZ) on Day 2, leaves 

up.regulated it on Day 3. The majority of JA signalling genes were not changed in 

girdled plants as the soil dries, as with similar up-regulated gene expression of both 

well-watered and droughted plants (Pauwels and Goossens, 2011; Roberts et al., 

2016). 

In conclusion, ABA and JA accumulation were related to the expression of 

biosynthesis, catabolism and signalling genes of both hormones. Combining both 

girdling and soil drying treatments caused quicker changes in root (up-regulation) 

than leaf (down-regulation) expression of JA-related genes (Day 1). Higher foliar up-

regulation of JA biosynthesis genes increased leaf JA accumulation in distal leaves 

concurrent with stomatal closure within 24 hours. Meanwhile, increased 

expression of ABA biosynthesis genes, throughout the experiment, may regulate 

ABA accumulation in both tissues as the soil dries independently of girdling. 

Increased expression of ABA biosynthesis genes in girdled plants (relative to intact 
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plants) was inconsistent with their lower drought-induced ABA accumulation, 

suggesting important roles for root-to-shoot transport and/or ABA catabolism in 

fine regulation of tissue ABA concentrations. Thus local hormone biosynthesis (as 

indicated by changes in tissue gene expressions - Yin et al., 2016) or/and long-

distance hormone transport may decrease and/or increase JA and ABA 

concentrations in different tissues.   
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Chapter 6 – General Discussion 

 

6.1 Stomatal conductance was better explained by xylem sap ABA concentration 

than leaf water status as the soil dries 

Stomatal conductance is one of the most important physiological parameters to 

consider for breeding drought-tolerant genotypes, since stomatal closure could 

restrict photosynthesis thereby limiting soybean yields (Bunce, 1977). Alternatively, 

prompt stomatal closure following exposure to drying soil early in vegetative 

development could conserve water, making more water available to the plant 

during the critical grain filling stages (Tardieu, 2013). Therefore it is necessary to 

understand the regulation of stomatal conductance. Different signals could cause 

stomatal closure, even though there are considerable interactions between 

signalling systems (eg. Tardieu and Davies 1992; Pantin et al., 2013). Whereas loss 

of leaf turgor (a hydraulic signal) can stimulate a biochemical (ABA accumulation) 

signal (Pierce and Raschke, 1980; Buckley, 2005; Christmann et al., 2007), some 

studies have shown that a putatively root-sourced biochemical signal can mediate 

stomatal closure prior to any change in leaf water relations (Davies and Zhang, 

1991; Liu et al., 2003a; 2005c). Whether there is genotypic variation in such 

stomatal regulation within a crop species, and soybean is particular, has attracted 

little attention.  

In Chapter 2, several soybean (Williams 82, C08, C12, LH1 and LH2) genotypes were 

allowed to dry the soil. The rate of soil drying differed between genotypes (Fig. 2.1), 
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with Williams 82 drying the soil slower due to its lower leaf area (Table 2.3). Thus 

Williams 82 maintained higher stomatal conductance and leaf water potential 

values than the other genotypes as it was exposed to higher soil water availability 

(Fig. 2.2 and 2.3). Nevertheless, all genotypes presented the same relationship 

between stomatal conductance or leaf water potential and soil moisture (Fig. 2.5 

and 2.6; Hossain et al., 2014), suggesting limited variation in plant water relations 

responses to drying soil. However, genotypic variation was observed in the 

relationship between stomatal conductance and leaf water potential of the second 

trifoliate leaf (Fig. 2.10b, d; Gilbert et al., 2011), where C08, LH1 and LH2 were more 

sensitive to Ψleaf than W82 and C12. In contrast, in the first trifoliate leaf, there was 

a common relationship across all genotypes between stomatal conductance and 

leaf water potential (Fig. 2.10a, c). Thus leaf age may affect stomatal responses to 

leaf water status (Oosterhuis et al., 1987). Overall, there were no genotypic 

differences in stomatal responses to soil water availability, and limited genotypic 

differences in stomatal responses to leaf water potential.   

However, there was pronounced genotypic variation in ABA relations only in 

Experiment 1, with C12 showing lower [ABA] as the soil dries (Fig. 2.7). Also, the 

relationship between stomatal conductance and leaf xylem sap [ABA] differed 

between genotypes, with C12 more sensitive than W82 and C08 (Fig. 2.8). In 

addition, the relationship between leaf xylem sap [ABA] and leaf water potential 

differed between genotypes, with C12 less sensitive to leaf water potential changes 

(Fig. 2.9). To summarise, the C12 genotype had lower xylem sap [ABA] as the soil 

dried (Fig. 2.7a) or Ψleaf declined (Fig. 2.9a), but its stomata were more sensitive to 
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ABA (Fig. 2.8a). Thus genotypes may differ in regulation of stomatal closure, being 

sensitive to very small (soil drying-induced) increases in ABA concentration or 

controlling their stomata by redistributing existing ABA, as with two different 

cultivars (Cacahuate-72 and Michoacan-12A3) of Phaseolus vulgaris L. This study 

suggested that genotypic differences in the timing of stomatal closure may be 

caused by different `root-sourced signal strength promoting differences in xylem 

ABA and bulk leaf ABA concentration during soil drying (Trejo and Davies, 1991). 

In contrast, all genotypes studied showed variation in the relationship between leaf 

tissue [ABA] and soil water content, with C08 and LH2 accumulating higher leaf 

[ABA] as the soil dries (Fig. 2.7). In addition, the relationship between leaf tissue 

[ABA] and stomatal conductance differed between genotypes, with C12 and LH1 

more sensitive than W82 and LH2 (Fig. 2.8). Furthermore, all genotypes presented 

genotypic variation in the relationship between leaf tissue [ABA] and leaf water 

potential, where C08 and LH2 were more sensitive than W82, C12 and LH1 (Fig. 

2.9). Also, genotypic differences in leaf tissue [ABA] were observed a day earlier 

than the differences in xylem sap [ABA] under progressive soil drying conditions 

(Fig. 2.4). This suggests there are greater genotypic differences in leaf tissue [ABA] 

than genotypic variation in Ψleaf at this time (Fig. 2.3-2.4). Thus ABA accumulation 

slightly better explained (higher r2 values) variation in stomatal conductance than 

Ψleaf in the same leaf as the soil dries (Fig. 2.8, 2.10).  

Furthermore, in all genotypes, [X-ABA]leaf was better correlated with gs (Fig. 2.8a, c) 

than was [ABA]leaf (Fig. 2.8b, d), even if the experimental design required 

measurements in leaves of different ages. This suggests that the stomata could 
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discriminate between root-sourced and leaf-sourced ABA, accentuating the need 

for an effective mechanism of metabolizing or compartmentalizing the ABA that 

arrives via the xylem (Zhang and Davies, 1989a; Davies and Zhang, 1991). 

Two paradigms arise for describing how ABA is moved throughout the plant. One 

idea is that the leaf synthesises ABA (leaf-sourced paradigm) in response to 

decreased cellular turgor to regulate stomatal conductance, and that some of this 

ABA is transported to the roots (Bauer et al., 2013; McAdam and Brodribb, 2016; 

Sack et al., 2018). Alternatively, roots are the first organs to lose turgor during soil 

drying, generating a root-to-shoot signal to the leaves to initiate stomatal closure 

(root-sourced paradigm). Since ABA is a key regulator of stomatal movement, 

different studies have aimed to determine where it is produced and transported 

within the plant. To discriminate these potential sources of ABA appearing in the 

xylem, girdling (which disrupts shoot-to-root ABA transport) were conducted.  

6.2 Shoot to root ABA transport has a predominant role in regulating stomatal 

responses to girdling and soil drying  

To better understand the physiological importance of the different long-distance 

ABA signalling paradigms, girdling was applied to eliminate shoot-to-root ABA 

transport, altering plant physiology such as stomatal conductance, root tissue 

[ABA], and leaf, shoot and root xylem sap [ABA] (Fig. 3.2-3.5). There was a unifying 

relationship between stomatal conductance and leaf xylem [ABA] independently of 

whether the plants were girdled (Fig. 3.6b), while stomatal conductance and leaf 

water potential were only correlated in intact plants (Fig. 3.6a). Thus it is difficult to 

sustain the argument that leaf water potential is the primary regulator of stomatal 
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responses, and that leaf water status requires a “second messenger” (ABA) to exert 

a physiological effect. Moreover, there are examples in the literature where higher 

stomatal conductance is associated with lower leaf water potential, presumably 

because high transpiration rates decrease leaf water status (Jones 1983; 

Kudoyarova et al., 2007)  

In addition, leaf, shoot and root xylem sap ABA concentration was better correlated 

with soil water content than tissue water status (Table 3.2), suggesting that ABA 

accumulation promotes stomatal closure prior to any change in Ψleaf as the soil dries 

(Fig. 3.6c; Liu et al., 2005c), and such ABA accumulation acts to maintain Ψleaf (Fig. 

3.3a; Mitchell et al., 2016). It is important to determine whether shoot xylem ABA 

concentration regulates foliar ABA accumulation, since stomatal closure in some 

species required a xylem ABA concentration 100 times higher than that occurring 

in droughted plants (Munns and King, 1988).  

Girdling attenuated root ABA accumulation throughout the experiment 

independently of soil moisture (Fig. 3.5; Manzi et al., 2015), although the roots of 

droughted girdled plants still accumulated higher ABA concentrations than the 

roots of well-watered girdled plants on Day 3, suggesting that both local ABA 

synthesis and shoot-to-root signalling regulated root [ABA] (Davies and Zhang, 

1991). However it is not clear whether the reduced ability of roots for de novo ABA 

synthesis in response to soil drying is due to a limited supply of an ABA precursor 

from the shoot, since there was no direct correlation between carotenoid 

abundance and root ABA accumulation in some studies (Ren et al., 2007; Manzi et 

al., 2016).  
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Girdling attenuated root tissue and shoot xylem ABA concentration as the soil dries, 

while both these variables increased continuously in intact plants (Fig. 3.4). 

Furthermore, girdling attenuated shoot hormone export to the root, thus 

enhancing ABA accumulation in the aerial parts as the soil dries (Fig. 3.7). This 

suggests that ABA recycles between shoot and root via the phloem, thus the shoots 

make a variable contribution to root-to-shoot ABA signalling (Wolf et al., 1990; 

Slovik et al., 1995).  

Girdling decreased stomatal conductance while increasing leaf xylem [ABA] 

independent of soil moisture (cf. Fig. 3.2, Fig. 3.4a). Thus ABA transported from the 

shoot to the roots via the phloem will not only determine root ABA accumulation 

but also leaf xylem [ABA], since leaves had much higher [ABA] than roots (Liu et al., 

2005c; Manzi et al., 2015; McAdam et al., 2016b). Thus export of shoot-sourced 

ABA attenuates foliar [ABA] accumulation and was necessary to maximise root 

accumulation in response to soil drying. In addition, the consistent response 

between leaf xylem [ABA] and stomatal conductance in both well-watered and 

droughted girdled plants (Fig. 3.6b) suggests that girdling had no long-term 

influence on ABA-induced stomatal closure. Nevertheless, girdling may induce a 

short-term wounding response and the phytohormonal impacts of this were 

investigated next (Chapter 4).  

6.3 Multiple plant hormones are involved in stomatal responses to soil drying and 

girdling   

Stomatal closure in response to girdling on Day 1 (Chapter 3) was again observed 

within 26 hours in Chapter 4. This closure was independent of shoot and root water 
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status and soil water content (these were equivalent in girdled and intact plants - 

Fig. 4.1a, c, d), and may represent an early wounding response caused by changes 

in leaf hormone concentrations such as iP, tZ, GA3, ABA, JA and SA (Fig. 4.2a-g). 

Girdling increased leaf and shoot xylem [ABA] levels of well-watered plants in 

Chapter 3 by 2.5-fold (Fig. 3.4) and leaf tissue [ABA] by 2-fold in Chapter 4 (Fig. 

4.2e), as well as in citrus leaves after water stress treatment was imposed (Manzi 

et al., 2015). 

Furthermore, girdling drastically increased leaf JA concentrations by 5.5- and 6-fold, 

after 4 and 26 hours respectively, in Chapter 4 (Fig. 4.2f). Mechanically wounding 

the stem caused stomatal closure of unwounded leaves, just as in other studies 

where stomatal closure occurred in mechanically wounded leaves and also in 

unwounded distal leaves in Arabidopsis within 2h (Foster et al., 2019). 

Both ABA and JA accumulation were significantly inversely correlated with stomatal 

conductance (Table 4.2), suggesting both hormones could act as antitranspirants 

(Arbona and Gómez-Cadenas 2008; Savchenko et al., 2014; de Ollas et al., 2018). 

However, girdling did not alter stomatal sensitivity to these hormones (Fig. 4.5). 

Nevertheless, the sustained decrease in gs of well-watered girdled plants after Day 

3 coincides with increased leaf xylem ABA concentration observed in Chapter 3 (Fig. 

3.2, 3.4a). Moreover, girdling had no long-term influence on ABA-mediated 

stomatal closure since the relationship between leaf xylem ABA concentration and 

stomatal conductance was consistent independent of girdling (Fig. 3.6b). Thus 

stomatal closure in the first 26 hours could be a response to rapid leaf JA 

accumulation caused by wounding, which could stimulate ABA synthesis for further 
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sustained stomatal closure (Pinheiro et at., 2011; de Ollas and Dodd, 2016; Per et 

at., 2018).   

 Girdling induced some changes in root ACC hormone concentrations within 26 h 

(Fig. 4.2h), with substantial (10-fold) root [ACC] accumulation possibly affecting 

root-to-shoot ACC signalling (Jackson, 2002; Acharya and Assman, 2009), which 

may antagonize ABA-mediated stomatal closure (Wilkinson et al., 2012). However, 

since ACC was not detected in leaf samples, it is not certain whether the precursor 

of ethylene (ACC) was involved in the root-to-shoot signalling. Further 

measurements of leaf ethylene evolution may also prove instructive. 

Hormone relations during the first 26 hours of the experiment differed from those 

occurring during the entire experiment. Overall, leaf tZ, GA4 and ABA 

concentrations were correlated with both stomatal conductance and soil water 

content (Table 4.4), but as the soil dries only tZ and ABA accumulation were 

correlated with stomatal closure (Fig. 4.2b, e). Thus in the absence of any treatment 

effect (soil drying or girdling) on leaf GA accumulation, the relative magnitude of 

ABA/cytokinin levels may play a role in stomatal movement since tZ antagonises 

ABA-induced stomatal closure (Wilkinson and Davies, 2002; Hansen and Dörffling, 

2003).  Furthermore, girdling seems to enhance [tZ] and decrease [ABA] compared 

to intact plants, since changes in leaf tZ and ABA concentrations were observed as 

the soil dried (Fig. 4.2c, e). Thus leaf tZ and ABA accumulation may be regulated by 

shoot-to-root transport, as discussed in Chapter 3.  

On the other hand, soil drying increased root GA3 and JA concentrations (Fig. 4.6b, 

d), making it important to distinguish the contributions of local hormone synthesis 
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versus shoot-to-root transport as the soil dries. At the same time, girdling affected 

the correlation between root and leaf concentrations of tZ, ABA and JA during the 

entire experiment (Table 4.5; Fig. 4.9). Well-watered girdled plants had higher leaf 

ABA and JA concentrations (Fig. 4.9b, c). Both girdled and non-girdled plants 

increased leaf and root ABA concentrations, suggesting that co-ordination of root 

and shoot ABA concentrations was not perturbed by girdling. However, leaf JA 

concentrations decreased drastically as root JA concentrations increased in girdled 

plants (Fig. 4.9b), suggesting local regulation of JA status in the absence of shoot-

to-root signalling.   

Roots of girdled plants were still capable of accumulating ABA as the soil dried by 

the end of the experiment (Fig. 4l), suggesting that localised root ABA biosynthesis 

occurred (Speirs et al., 2013). This could enhance root ABA export via xylem to the 

shoot contributing to stomatal closure (Davies and Zhang, 1990) or re-distribute 

ABA within the roots to locally promote root growth (Sharp et al., 2004). Therefore 

of all the different plant hormones studied in this thesis, leaf and root tissue ABA 

concentrations seem to act as a key regulator of plant water balance.  

While the experiments of Chapter 4 go some way to exploring the phytohormonal 

complexity of plant responses to girdling and soil drying, they do not provide direct 

evidence of hormone biosynthesis, which was sought in Chapter 5 by measuring 

gene expression. While multiple genes involved in hormone synthesis were 

measured, Chapter 5 focused on ABA and JA because of their putative physiological 

significance at different times during the experiment (Hildmann et al., 1992), and 
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their contrasting co-ordination of root and leaf hormone concentrations (Fig. 4.9 b, 

c). 

6.4 Girdling upregulated ABA and JA gene expression pathways within one day 

and ABA gene expression is maintained in roots and leaves as the soil dries  

Most selected genes in the ABA biosynthesis, catabolism and signalling pathways 

were up-regulated in roots of girdled plants before any changes in soil water 

content were detected (Fig. 5.4-6a, d). At the same time, only two genes in the last 

part of the ABA biosynthesis (SDR, MoCo/ABA3), one catabolism gene (CYP(1)) and 

one transcription factor (ABF/ABI 5) were upregulated in the leaves. Compared to 

the hormone concentrations (Fig. 4.2e, l), root [ABA] decreased and leaf [ABA] 

increased in girdled plants within 24 hours. In addition, two stimuli could occur in 

leaves to promote ABA concentration at the same time. By up-regulating the last 

steps of the ABA biosynthesis and catabolism pathway (Fig. 5.6), these girdled 

plants could increase foliar ABA concentration. A secondary response is a long-

distance effect where roots contribute to foliar ABA accumulation by enhanced 

root-to-shoot ABA signalling (Davies and Zhang, 1991; Zhang et al., 2012).  

By the end of the experiment, those root-expressed genes remained up-regulated 

in both well-watered and droughted girdled plants (Fig. 5.4-6f), suggesting 

enhanced root-to-shoot signalling as the soil dries (Fig. 3.7). At this point, almost all 

genes of the ABA biosynthesis pathway were up-regulated in leaves of well-watered 

girdled plants (Fig. 5.4-6c), suggesting that girdling stimulated foliar ABA 

accumulation (Fig. 4.2e) even though basipetal phloem transport was impeded 

(Zheng et al., 2012; Ji et al., 2014). At this time, both roots and leaves of intact 



164 
 

droughted plants upregulated some key genes in ABA biosynthesis such as NCED 

(1), NSY (1), SDR and MoCo/ABA3 compared with girdled plants under drought 

(Shinozaki and Yamaguchi-Shinozaki, 1997; Jia et al., 2002). This girdling-mediated 

difference in gene expression may explain why girdled plants had lower root and 

leaf ABA accumulation at the end of the experiment (Fig. 4.2e, l). 

With prolonged soil drying, intact plants up-regulated ABA biosynthesis and 

catabolism genes similarly in leaves and roots at the end of the experiment, 

although signalling genes were highly expressed in leaves, likely triggering further 

stomatal closure. This suggests that roots and leaves both play an important role in 

ABA homeostasis, making it difficult to distinguish directions of root-shoot 

communication as both tissues seem important (Okamoto et al., 2009; Boursiac et 

al., 2013). Girdled plants had high root expression of the key biosynthesis (NCEDs) 

and signalling (PP2C) genes, while foliar gene expression was attenuated in 

droughted plants compared with well-watered plants. Again, this suggests that 

roots of girdled plants perceive a soil drying stimulus (Shinozaki and Yamaguchi-

Shinozaki, 1997; Jia et al., 2002) that may be important in ABA homeostasis in vivo. 

On the first day after girdling, JA genes throughout the whole pathway were up-

regulated in both leaves and roots, highlighting the up-regulation of 12-OPDAs 

genes in leaves and JAR1 expression in roots (promoting synthesis of the JA-Ile 

molecule), either of which could induce stomatal closure (Fonseca et al., 2009; Dave 

and Graham, 2012; de Ollas et al., 2018). Increased leaf JA concentrations while 

root JA concentrations did not change on the first day of the experiment (Fig 4.2f, 

m) belied that both tissues detected a wound response based on gene expression 
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changes (in response to long-distance signals as the sampled roots and leaves were 

distal to the girdling position) and that the roots exported jasmonates to the leaves. 

Thereafter, leaf JA biosynthesis genes of girdled plants, independently of soil 

moisture, were down-regulated on Day 2, while only well-watered girdled plants 

genes were up-regulated on Day 3. Thus JA biosynthesis was upregulated in both 

intact and girdled droughted plants. In contrast, roots of girdled plants (both well-

watered and droughted) progressively increased the number of upregulated genes 

day by day. Thus fluctuations in gene expression closely matched fluctuations in 

hormone accumulation.  

As the soil dries, intact plants up-regulated more JA-related genes in the leaves than 

the roots, while there was not much difference in gene expression level between 

roots of girdled plants at different soil moisture status. It seems that leaves down-

regulated JA synthesis but were still responding to JA, as the JA signalling genes 

COI1 and JAZ were down- and up-regulated respectively in girdled plants. Girdling-

induced foliar JA accumulation within 26 hours, but this was not sustained by 48 

hours (Fig 4.2f), suggesting that initial JA production could be followed by leaf JA 

homeostasis, where JA production in wounded tissues is transported to, and sensed 

by, distal leaves (Schilmiller and Howe, 2005). In addition, although both tissues up-

regulated JA-related genes throughout the whole biosynthesis pathway, changes in 

signalling pathway genes suggest that only the leaves respond to hormone 

accumulation changes, while roots do not perceive feedback signalling from the 

upper part of the plant, as they could not stop up-regulating genes due to a lack of 

communication between both organs. 
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Within one day, girdling clearly increased root and leaf gene expression of the JA 

biosynthesis pathway. Thereafter, as the soil dries, expression of JA biosynthesis 

genes in the leaves declined (Fig. 5.7-9a, b, c) while there was moderate (1.8-fold) 

foliar JA accumulation compared with the 6-fold accumulation observed at 26h (Fig. 

4.2f). Thus suggests that even though phloem communication was interrupted 

(thus preventing shoot-to-root JA transport), root expression of JA biosynthesis 

genes ultimately lead to increased root-to-shoot JA signalling and some foliar JA 

accumulation.   

In intact plants, foliar expression of ABA biosynthesis genes increased through the 

experiment (Figure 5.4-6a, b, c), coincident with exaggerated (45-fold) foliar ABA 

accumulation on Day 3 (Fig. 4.2e), appearing to leave little role for root-to-shoot 

ABA signalling in modulating foliar ABA homeostasis. In contrast, ABA biosynthesis 

genes were down-regulated in leaves of droughted girdled plants in comparison 

with droughted intact plants, consistent with their lower ABA concentration. Thus 

the relative importance of local hormone biosynthesis versus root-to-shoot 

signalling in regulating leaf hormone levels varies between hormones.  

Soil drying up-regulated ABA biosynthesis genes in the roots during the entire 

experiment, highlighting the first biosynthesis steps in the plastid (e.g. NCEDs) (Fig. 

5.4-6d, e, f) coincident with increased root ABA concentrations as the soil dries (Fig. 

4.2l). Interestingly, girdled droughted plants had similar gene expression patterns 

as intact plants, since both had no fold-change difference in the expression level in 

response to soil drying. At the same time, leaf JA biosynthesis genes expression 

increased within 24 hours of girdling (Fig. 5.7-9), coinciding with higher foliar JA 
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concentrations (Fig. 4.2f). Thereafter expression of JA biosynthesis genes decreased 

in the leaves coincident with lower leaf JA concentrations by the end of the 

experiment, while roots increased both genes expression and hormone 

accumulation over the same time. Thus gene expression and hormone 

concentrations of each tissue followed a similar tendency both analysis throughout 

the experiment where it could be possible to describe that ABA acts as a long-

distance signalling hormone and JA acts as a tissue-dependent hormone.  

 6.5 Closing remarks  

This thesis evaluated the role of leaves and roots in mediating ABA transport and 

signalling to elicit soil-drying induced stomatal closure in one of the major 

cultivated crops: soybean. Understanding the relationships between physiological 

(water potential and stomatal conductance), biochemical (phytohormones) and 

gene expression changes can inform genotype selection and offers opportunities to 

enhance water-limited yields.  

ABA was a good predictor of water availability, as its leaf xylem sap concentration 

was highly correlated with stomatal conductance (more so than leaf water status) 

across different genotypes. Two contrasting paradigms of root-shoot 

communication provided a theoretical basis to test the relative importance of long-

distance transport in regulating hormone concentrations in each tissue (Davies and 

Zhang, 1991; McAdam et al., 2016a). Several girdling experiments that impeded 

shoot-to-root hormone transport revealed decreased root ABA accumulation in 

girdled plants, suggesting an important role of shoot-to-root ABA transport in 

soybean. As the soil dried, the roots of girdled plants showed increased expression 
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of ABA biosynthesis genes and ABA accumulation, although less than in intact 

plants. Thus root ABA concentrations are determined by both local and long-

distance processes. 

Furthermore, since girdling wounded the stem tissue and disrupted basipetal 

phloem transport, other hormones such as JA accumulated in the leaves, while 

others (iP and tZ, GA3) decreased. These changes may also be involved in regulating 

stomatal closure within one day of girdling. Such hormone perturbations were 

transient (except for iP which persisted throughout the experiment) and 

disappeared 48 h after girdling, by which time their antitranspirant effect was likely 

replaced by ABA accumulation. These observations suggest considerable hormonal 

cross-talk in regulating each others accumulation and activity. For example, JA 

accumulation could induce ABA accumulation in roots (de Ollas et al., 2013), 

thereby affecting stomatal closure assuming that some of this ABA is exported from 

the roots. The physiological significance of such hormone interactions can best be 

tested by evaluating the stomatal responses of double mutants (eg. deficient in 

both ABA and JA production) to soil drying and/or girdling. 

The same pattern was found in the genes expression, where roots and leaves 

increased and decreased respectively ABA-related genes, but this time, both ABA 

and JA hormone biosynthesis was stimulated in roots although the phloem 

communication was interrupted. Thus the plant regulates gene expression in both 

leaf and root tissues to fine-tune hormone movement throughout the plant to elicit 

physiological responses. 
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Since roots upregulated ABA-related genes coincident with root tissue ABA 

accumulation, while leaves down-regulated ABA biosynthesis genes in comparison 

with well-watered girdled plants, the root-to-shoot paradigm seems more 

plausible. Nevertheless, decreased root ABA accumulation of girdled plants is 

consistent with a shoot-sourced model. The disparity between gene expression and 

hormone levels makes it difficult to favour a specific signalling paradigm.   

Further work is needed to establish whether precursors and derivatives of both 

hormones, such as ABA-GE, OPDAs and JA-Ile may directly affect stomatal 

behaviour by measuring their concentrations in roots, xylem sap and leaves, to 

observe the export and/or import from different tissues. Manipulating 

phytohormone signalling by using mutants and/or transgenics could be combined 

with transcriptomic analysis to determine whether hormone accumulation and/or 

perception are affected. Finally, possible cross-talk of ABA with other hormones as 

cytokinins or gibberellins could improve our understanding of physiological 

responses such as stomatal behaviour. 
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