
Taxonomy of an Application Model: Toward Building Large
Scale, Connected Vehicle Applications

Nam Ky Giang
University of British Columbia

Vancouver, BC, Canada

Victor C.M. Leung
University of British Columbia

Vancouver, BC, Canada

Rodger Lea
Lancaster University

Lancaster, United Kingdom

ABSTRACT
With the advent of advanced computing systems beyond personal
computing, such as mobile computing, cloud computing or recently,
vehicular ad-hoc network, it is crucial that we understand the ap-
plication development process of each type of these systems. Better
understanding of how applications are built in different environ-
ment allows us to design better application models and system sup-
ports for developers. This paper studies the taxonomy of application
models and defines its consisting aspects, namely application scope,
application abstraction level, application structure, communication
model and programming model. With the better understanding of
the application models in general, we lay out the requirements for
developing a class of large scale connected vehicle applications.
ACM Reference Format:
Nam Ky Giang, Victor C.M. Leung, and Rodger Lea. 2019. Taxonomy of
an Application Model: Toward Building Large Scale, Connected Vehicle
Applications. In 9th ACM Symposium on Design and Analysis of Intelligent
Vehicular Networks and Applications (DIVANet ’19), November 25–29, 2019,
Miami Beach, FL, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/
10.1145/3345838.3356001

1 INTRODUCTION
The process of developing applications has been practised since the
beginning of the computing era. As the computing systems evolved,
we see more classes of applications being built. For example, there
is a transitioning from desktop applications to mobile applications,
and to applications that run in large scale data centres. We also see
applications that run on small embedded devices, such as smart
watches, or personal activity trackers; or applications that run on
large scale wireless sensor networks.

Despite the long history of application development for many
types of systems, to date, we still see this process happens mostly
in an ad-hoc style. That is, to develop applications for a particular
class, we design the development process particularly for such a
class without connecting them with other classes of applications.
This leads to many different ways to develop different kinds of ap-
plications, most of them are application-specific, or domain-specific.
This process itself, is not reusable as new development processes
have to be designed specifically for any new type of applications.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DIVANet ’19, November 25–29, 2019, Miami Beach, FL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6907-7/19/11. . . $15.00
https://doi.org/10.1145/3345838.3356001

While there were many programming models designed for such
many different types of systems, the notion of application model
or a general skeleton that is applicable for all types of applica-
tions has not yet been defined. We believe the construction of
complex applications does not solely depend on the language as-
pect (programming model), but also on a range of other criteria,
such as application structure, abstraction level or communication
model. Certainly, some of these criteria were discussed and sur-
veyed amongmany existing programming models, it is still valuable
to properly define the notion of application model as a skeleton for
constructing different types of applications.

To fill this gap and to help us with our target class of large scale,
connected vehicle applications, we start designing such general
skeleton for any type of applications, which we call the taxonomy
of an application model. Our aim is not to have an exhaustive list of
items that constitute an application model, but rather, to produce a
comprehensive understanding of the application models that can
be extendable for any new type of applications.

With the developed taxonomy, we propose a set of requirements
for a class of large scale, connected vehicle applications. We en-
vision that, due to the proliferation of cheap computing devices,
more and more computing resources will be surrounding us in near
future. These resources can include computing devices running
on-board a smart, connected vehicle, road-side units or cell towers.
These entities are distributed in a large area such as across the
whole city, and are highly dynamic because of the mobile nature
of vehicles. Such complexities pose great challenges to the applica-
tion development process as the developers are overwhelmed by
the number of participating devices, their heterogeneity and their
dynamic nature.

Our main contributions are:

• Through the developed taxonomy, we contribute a better
understanding of the construction of applications in general.
We show that for most applications, the developers and the
users should pay attention to five aspects, namely, scope, ab-
straction level, organisation structure, communication model,
and programming model.

• Also based on the taxonomy, we show that, there are unique
requirements for developing large scale, connected vehicle
applications that are different from many other distributed
applications.

It is worth nothing that, our focus in this paper lays at the con-
structing of an application model in general, where we discuss
what constitute an application models and how they affect the de-
velopment process. While we also demonstrate how our developed
taxonomy can be used in designing an application model for con-
nected vehicle applications, a particular solution for this class of

https://doi.org/10.1145/3345838.3356001
https://doi.org/10.1145/3345838.3356001
https://doi.org/10.1145/3345838.3356001

Figure 1: An analysis of various application model

applications is out of scope of this paper and is the topic of our
current research.

2 APPLICATION MODEL TAXONOMY
We consider an application model to consist of five aspects, scope,
abstraction level, application structure, programming model and com-
munication model. This section describes these aspects and their
sub components in details. An overview of these aspects is shown
in Fig. 1.

2.1 Application Scope
The scope of an application defines the boundary of the application
and its external ecosystem. For example, a typical distributed ap-
plication is that of a traditional Internet application, which usually
consists of a client terminal and a server component that commu-
nicate with one another. Generally, we can perceive this scenario
to be one application that has two interconnecting components,
a client and a server. If we "zoom in" each of these components,
either the client or the server could also be seen as another utterly
independent application. These smaller applications can also be
further decomposed. The server component, for instance, could in-
clude a web server and a database; the client terminal could include
a user interface and a background running process.

Our observation is that different levels of application scope come
with different concerns from the developer; consequently, they need
different toolings and supports. For example, at the atomic com-
ponent level (we use the term atomic here to denote that such

component should not be decomposed further), most of the con-
cerns are how to derive efficient computing algorithms and how to
choose the suitable programming primitives and constructs. At a
higher level of scope, we start to employ different design patterns
to facilitate the inter-component interaction. One of the primary
considerations for such a level is whether to use object-oriented or
functional programming. Moving higher up the scope levels, we
start to think about the communication patterns among compo-
nents that are distributed across machines.

2.1.1 Component scope. Component scope is the most basic appli-
cation scope where the developers focus on the implementation of
algorithms and basic programming concerns such as the languages,
or the programming models (e.g. imperative, declarative or hybrid)
to solve the functionality problem of one component.

With this application scope, the main task the developers are
doing is purely implementing computation activities.

Examples of component scope applications are sorting, mapping
or reading sensor data.

2.1.2 Inter-Component scope. In this application scope, the com-
ponents themselves are usually well encapsulated and have well-
defined interfaces. Often, the interaction among those is object
method calls or function invocations. The task of the developers is
to combine the components to fulfil the applications’ requirements.

Primary concerns in this application scope usually are choos-
ing the right design patterns to maximise the efficiency of inter-
component interactions, choosing the right component organisa-
tion (e.g. flat vs hierarchical, see later sections), or to learn the
components’ interfaces.

Examples of applications in this scope are general computer ap-
plications, such as desktop apps, mobile apps. That is, most of these
applications are developed from many subcomponents, libraries.

2.1.3 Inter-Device scope. In this application scope, the components
themselves can be distributed on top of several physical devices.
Thus we have applications that run across different devices. Many
applications within this scope can also be deployed in a single
machine; however, desired features such as load balanced ability,
scalability, or availability motivate the distributed deployment of
the application’s components.

The main concern in this application scope is to coordinate the
interaction among the components across devices, for example, to
ensure the communication follows some strict orders or rules (e.g.
message delivery semantic that is exactly one or at most one).

Examples of inter-device application scope include a traditional
client-server application, a load-balanced web server, or a high
availability file storage system.

2.1.4 Inter-Context scope. In this application scope, not only the
components are deployed in a distributed fashion on top of many
devices, the context of each device is different from one another
and can interfere with the application’s logic. The running devices
in this scope are usually heterogeneous rather than homogeneous
as in inter-device scope applications. They come from all shapes
and sizes and operate in different conditions.

The main concerns of the developers when developing applica-
tions at this scope can be how to coordinate the inter-component
interactions and how to cater specifically to the physical context of
the underlying devices.

Example applications in this scope are Smart City, or Large Scale
Connected Vehicle applications, where the physical context (e.g. lo-
cation, network connection) of a computing device also participates
to the application’s logic.

2.2 Abstraction Level
We define the abstraction aspect of an application model as the level
of flexibility in expressing the application’s logic. This definition
is not to be confused with the abstraction level of programming
models, which is often used to denote the flexibility or transparency
when the developers want to tap into low-level system concerns (e.g.
working with memory, controlling networking stack). For example,
TinyDB [10], a query processor forWireless Sensor Network (WSN),
provides a very high level of abstraction in terms of programming
model [9] (it abstracts away the technical details of a WSN). How-
ever, with regard to our definition of application’s abstraction level,
it has the lowest level of abstraction (it provides the most flexible
way to express an application logic, i.e. through queries, but the
users are also required to master its query language).

Generally, applications with a higher level of abstraction are
easier to operate, but functionality is limited. Meanwhile, the ones
with a lower level of abstraction are more flexible (i.e. they allow
users to do many different tasks, even ones that are not foreseen
by the developers) but are more difficult to operate.

We define five abstraction levels, from the highest level of abstrac-
tion to the lowest as follows: Goal-based, Rule-based, Component
Cooperation, Data Processing and Data Querying applications.

2.2.1 Goal-based. Goal-based applications offer the easiest way to
interact with the application state and its data, normally through
just a push of a button. Most of the applications we see today, such
as mobile or desktop apps belong to this level of abstraction.

An example application is the thermostat, which allows the user
to key in their desired room temperature. The application itself
coordinates its components (e.g. by turning on and off ventilation
fans) so that the desired temperature is met. A complete solution
to this example is presented in [11] where the application depends
on a semantic reasoning process to coordinate the components to
achieve the users’ predefined goal. Since the application is very
easy to use, its functionality is limited to the features that are hard
coded by the developers (e.g. we cannot express the requirement
such that when temperature drops below 20 degree Celsius for 10
minutes, start the ventilation fan).

2.2.2 Rule-based. Applications at this level of abstraction are slightly
more flexible than the previous one and require a certain level of
involvement from the users’ perspective.

In this level of abstraction, the users are allowed to specify the
requirements through a set of rules rather than a specific goal. A
set of logic skills is required to make use of the applications. If This
Then That (IFTTT) 1 is a typical example of this level of abstraction.
When the user installs the IFTTT application, they can express
their application requirements through a set of simple rules in the
form of if this then that. For example, if the time is night time, dim
the light and reduce the temperature.

2.2.3 Component Cooperation. At this level of abstraction, the
components of an application are exposed to the users so that the
users can control their cooperation within the application. The
applications at this level are much more flexible; consequently, the
users can leverage them to achieve many different tasks, sometimes
out of the imagination of the developers.

This level of abstraction strikes a balance between the users
and the developers’ involvement. The developers do have a set of
criteria to define the usage of their applications; however, they also
give the users the power to change the applications’ behaviours
the way they want.

Examples of applications in this case are visual programming,
such as the Microsoft Flow 2, Max 3 or Node-RED 4.

Since the purpose of these programs are for expert users to
construct their applications (applications that make applications),
the notion of application developers and users, in this case, becomes
system developers and domain experts.

2.2.4 Data Processing. Data processing is the next level down the
application abstraction scale, where the main purpose of an appli-
cation is to modify or transform its data.

At this level, the users are given with some data processing prim-
itives (e.g. min, max, stdev) and should know how to use these
primitives for their needs. The detail implementation of these prim-
itives is the responsibility of the developers.

1http://ifttt.com
2https://flow.microsoft.com/
3https://cycling74.com/products/max/
4https://nodered.org

Some examples in this scenario are the spreadsheet application
or the awk command in Linux operating system. The spreadsheet
application allows users to do many processing tasks on their data.
It naturally requires the users to be proficient at the tasks they are
completing (e.g. using the max function to find a maximum). Awk
command in most Linux distributions is a powerful tool for pro-
cessing text files. It is one example of an end user applications that
require specific skills to master the operation of such applications
to carry out the user’s needs.

2.2.5 Data Querying. Lastly, data query-based applications pro-
vide the most flexibility to address the application’s requirements.
With this level of abstraction, the users have full control over what
they want with the application by issuing queries to access and
manipulate the application data and state. Examples of this are
traditional database systems and their query languages, such as
SQL. To illustrate the flexibility, most of the web-based or enterprise
applications can be constructed from a single database layer where
users can issue queries and manipulate the business data directly
from the database. Another example is TinyDB [10], a query pro-
cessing system for Wireless Sensor Networks that allows access to
sensing data and a range of data aggregation operations. TinyDB
itself could be seen as an application for WSNs, which allows users
to interact with the networks via issuing queries.

Data query-based applications provide the most flexibility for
users to express their requirements. However, the users have to
master the query language for their needs.

2.3 Application Structure
Unlike the scope, or abstraction level of an application model, the
application structure aspect taps into more details about how the
developers designed an application. Generally, subcomponents of
an application can be organised into either a flat or hierarchical
structure. While a hybrid one does exist, as we shall explain, it has
inherent drawbacks.

2.3.1 Flat Structure. Flat structures usually need a dedicated coor-
dination mechanism to facilitate the interaction among subcompo-
nents, such as a service registry that holds information about the
components. Flat structures can be further categorised into peer
to peer and role-based structure. In peer to peer structure, applica-
tion’s components are generally homogeneous, the only difference
among them is the data they hold. On the other hand, applications
with the role-based structure are more heterogeneous in terms of
their sub-component composition. Accordingly, these subcompo-
nents are different from one another and are bound together in one
program by dedicated coordination mechanism.

Examples of a flat structure include peer-to-peer applications,
such as torrent file sharing, or blockchain-based smart contracts. In
these types of applications, special component discovery services
are usually required for inter-component interaction. That is, in
torrent file sharing applications, it is the torrent trackers that fa-
cilitate this interaction, in blockchain-based applications, it is the
DNS Seed nodes.

Example applications with role-based structure include micro-
service (components play the role of different services), client-server

(client components or server components), or map-reduce (mappers
and reducers) applications.

2.3.2 Hierarchical Structure. Hierarchical structures can be self-
coordinated, meaning the components themselves can discover and
interact with one another without a dedicated service.

Examples are domain name systems, applications that rely on
MQTT message broker topic naming scheme.

These component structures have their pros and cons and are
chosen based on the application’s characteristics. An essential as-
pect of evaluating these two organisational models is communi-
cation among components. In flat architecture, the components
usually communicate with one another either directly or via a com-
munication broker. In hierarchical architecture, inter-component
communication is usually narrowed to parent-child communication.
Thus, two components A and B can only communicate if they share
a common ancestor component. However, there is no need for a
dedicated coordination entity in the hierarchical structure as the
components can interact via their direct parent or children.

Hybrid structures are possible and do exist [7] to take advantages
of both worlds. However, when the components in a hierarchical
structure communicate directly with one another, their parents
might have difficulty keeping track of the state of their children.

Applications based on Akka actor system 5 or recently React
programming model 6 are examples of the hybrid structure.

2.4 Communication Model
Two popular communication models for applications are message
passing and shared memory models [1]. While these models are
from communication patterns in distributed systems, it also applies
to non-distributed applications. For example, method calls among
components within a non-distributed application represent the
message passing communicationmodel. Meanwhile, global-variable
scope represents the shared memory model.

2.4.1 Message Passing Communication. While message passing
is a well-known communication model in many distributed appli-
cations, large scale applications at inter-context scope exhibit a
different communication cardinality that we do not see before. For
example, we have point-to-point (1-1) or point-to-multipoint (1-*,
*-1, as in broadcast or aggregate) communication cardinality among
the components. Due to the context scope, sometimes it is irrele-
vant for a component to broadcast itself to the whole ecosystem. In
such cases, bounded group communication among a small set of
components that share the same context might be necessary. Thus,
we have another category of communication cardinality beyond
the unbounded one, which is bounded group communication.

2.4.2 Shared Medium Communication. In shared medium commu-
nication models, application’s subcomponents communicate via
a shared data medium where one component writes data to the
medium, and the others read from the same location. This is some-
times referred to as implicit rather than explicit communication as
communication is a side effect of the actual data sharing process [1].
Shared medium communication is also regarded as the control-flow
hidden interaction model [4]. This is because the control flow is not
5https://akka.io
6https://reactjs.org

visible, nor easily to be grasped as the components do not interact
directly with one another.

Examples of shared medium communication models include
applications that are based on tuple space or publish/subscribe
model.

It is worth noting that the shared medium communication mod-
els do not usually require a dedicated coordination entity to facili-
tate the interaction among components. This is because the shared
medium itself becomes the coordination entity that glue together
the applications’ subcomponents. In contrast, message passing com-
munication models do require a dedicated coordination entity to
dictate to where each component should direct the message.

2.5 Programming Model
The last aspect of constructing an application model according
to our definition, is its programming model. This is the most in-
volved aspect of the application development process. Generally,
researchers categorised programming models into declarative or
imperative languages.

Sometimes, a hybrid category is introduced [12] in which, the
language to develop application components is imperative while the
language to develop the interaction among components is declara-
tive. Surprisingly, if we apply the definition of application scope
in this thesis, this view is no longer suitable. That is if we see the
scope of the application to be inter-component scope, the compo-
nents’ internal implementations become irrelevant, the application
is, therefore, developed with declarative languages only. A simi-
lar argument could be applied to the component scope, where the
declarative interaction among components is irrelevant.

Another related concept is the notion of node-level and system-
level programming, which is borrowed from the WSN research. In
programming WSN, node-level programming refers to the practice
of developing applications for individual nodes while system-level
programming refers to developing the collective sensing system
as a whole. Imperative language tends to do well in node-level
programming while declarative is more suitable for system-level
programming [3].

It is generally perceived that imperative language is usually more
suitable for expressing the functional aspect of an application while
declarative is used to express the non-functional logic [12] [2]. For
example, to execute a sensor reading from one device, imperative
language is used to call system procedures and deliver the data
packages. However, to specify logic such as execute this sensor
reading only from 9 AM to 5 PM every Sunday, it is more concise
for the developer to specify this using a annotation approach than
an imperative one.

Thus, we define another notion of hybrid programming model
to denote a mix of annotations within the imperative or declarative
code. Aspect Oriented Programming [5] is an example of hybrid,
annotation-based programming model.

3 TOWARD BUILDING LARGE SCALE,
CONNECTED VEHICLE APPLICATIONS

This section analyses the defined aspects of application models
and gives the recommended requirements for designing an applica-
tion model for our large scale connected vehicular applications. A
summary of our recommendations is highlighted in Fig. 2.

3.1 Application Scope
Due to the large-scale distribution of computing resources, their
physical location, or more generally their physical context, becomes
an important factor in this class of applications. Thus, we say that
our class of applications falls into the inter-context application
scope.

For example, in [8], the authors deployed a smart city applica-
tion where cameras are mounted on city’s garbage trucks, and the
captured video streams are used to identify the road markers that
need to be repainted. In this application, the city might only want
to do the road marker classification in specific regions within the
city. Since the garbage trucks are mobile entities, the developers
have to program the application so that the software components
are enabled or disabled appropriately based on the cars’ current lo-
cation. Furthermore, when leveraging video streams from vehicles’
onboard cameras to do the image classification, process those video
streams is a computation and communication intensive task. It can
require the application to exploit a wide range of road-side units or
mobile base stations.

In these scenarios, we see the critical role of the physical context
of the computing elements to the correctness of the application
logic. We also see how the application developers might use it in
their applications.

Therefore, to develop such class of applications, we argue that
the application model should provide developers with the ability
to express their application requirements based on the physical
context of the underlying connected vehicle.

At the same time, we also found that there is another separation
of concerns when building inter-context scope applications, which
are not present when building typical applications. The first concern
is how to implement the application logic (component-scope), and
the second is how the system can be deployed across different
physical contexts (inter-context scope).

The application does not only run on a single vehicle but across
cloud servers, road-side units and connected vehicles under vari-
ous contexts. This involves writing components that encapsulate
functionality, can be easily distributed and can communicate with
other required components in various ways. The second concern
is the need for the inter-context application developer to specify
how the system as a whole decides where groups of application
components should be split, run, and how do they communicate
with each other.

In essence, the developer needs to adopt an inter-context pro-
gramming mindset, one that involves specifying context-dependent
constraints such as location, computing and network environment,
replication and cardinality requirements. The system can then use
dynamic information from the physical environment such as the
quality of network communications, current location, current traffic

Figure 2: Analysed important design requirements for building large scale, connected vehicle applications

situation and other factors to decide what application components
are deployed where.

3.2 Abstraction Level
Due to the large scale of the system, our connected vehicle applica-
tions exhibit a substantial level of complexity. Thus, the application
model should find a suitable balance between flexibility and expres-
siveness.

Clearly, we can design an application model at its highest level of
abstraction - goal-based - for our applications. For example, define
a goal (e.g. average traffic speed in a road segment to be greater
than 15 km/h) and all the vehicles, road-side units, and the cloud
servers cooperate together to achieve such a goal. The scale of our
applications sometimes makes this approach unfeasible.

On the other hand, if we choose to design an application model
with the lowest level of abstraction (i.e. data-querying), the cost of
implementing any large scale, connected vehicle solution might be
prohibitively high.

Meanwhile, the distributed nature of our application class re-
quires an application model that promotes application decomposi-
tion capability. This makes some abstraction levels, such as rule-
based or data-processing inadequate.

To this end, we found that component cooperation seems to
be the appropriate abstraction level for our large scale, connected
vehicle applications. As per our analysis, it provides a reasonable
balance between flexibility and expressiveness. Naturally, it also
fosters the development of large scale distributed applications.

On top of this, an essential requirement to develop an application
model based on the component-cooperation level of abstraction is

that the communication and computation aspects of one application
should be well defined and separated [2].

That is, although our applications, which are distributed system
applications in general, can be programmed using many existing
models and techniques in distributed systems such asMobile Agents
[17], TupleSpaces [6], RPC-based Middleware such as Jini, CORBA,
or RESTful web services. It has been shown that these approaches,
which rely mostly on the extensions of the sequential programming
paradigm, are ill-suited to meet the challenges of large scale and
massively distributed computing systems [14]. The problem of
these models and techniques when being applied into such complex
applications is that the communication primitives which bind sub-
systems together are usually mixed within the computation parts.

A typical scenario is when the developers work on the computa-
tion code, they have to decide how to carry out the communication
at the same time. For example, in Mobile Agent or Tuple Space-
based implementations such as LIME [13], it could be to decide
the target agent or tuple space to send the data to after finishing a
computation activity. In another implementation such as RESTful
web service, it could be to decide which API endpoints to invoke
on the remote services.

This mixture of communication and computation aspects usually
hinders large scale and complex distributed applications to be built
due to the lack of modularity and reusability, as well as the need
to cope with complex nature of communication (asynchronous,
heterogeneous, volatile). In such a setting, the developers should
pay attention to the high-level application logic, which is how
software components are glued together to solve a problem, rather
than to work on each one.

Therefore, to design for the component-cooperation level of
application abstraction, communication and computation should
be well defined and separated.

3.3 Application Structure
For applications that operate at large scale and more dynamic sce-
nario, hierarchical structure poses some limitations in terms of
scalability and flexibility.

This is because, in large scale, connected vehicle scenarios, the
components of one application tend to be arbitrarily distributed,
their operations are dynamic and more likely unpredictable. Thus,
they need amore flexible communication pattern that can be quickly
adapt to their dynamic nature. A hierarchical structure depends on
the parent-child relationship among components. This means such
relationships have to be established first before any interaction
can be made. Furthermore, interaction among components always
needs to go through their common ancestor, which could be very
high up the hierarchy. At large scale deployment with thousands
of devices and tens of hierarchical layers, this can quickly become
unmanageable.

For our class of applications, we advocate for a flat structure
where inter-component interaction is more flexible and fast to adapt
to changes (e.g. see also [15]). As discussed in earlier sections, an im-
portant drawback of flat structures is that a dedicated coordination
layer is required to facilitate this inter-component interaction.

This requirement has several distinguishing challenges. First,
the replication of components in a vehicular network is context-
dependent. That is, each application component in such environ-
ment could be deployed in many participating vehicles, road-side
units, yielding many instances or replications of such component.
While these component instances are identical in terms of logic or
even data, their physical context makes them distinct entities. Sec-
ond, since each instance of an application component is a distinct
entity, the component composition out of these instances is also
non interchangeable.

To illustrate this, let us take an example from the popular class
of Internet applications. In traditional Internet applications, while
there could be multiple instances of each component, they are
usually load-balanced and seen as a single entity from other com-
ponents’ point of view (e.g. a web client sees a cluster of load-
balanced web servers as a single entry point; a web server sees a
load-balanced database cluster as a single database entry point).

In our connected vehicle applications, due to the large scale
deployment of the computing elements, there are many possible
compositions of the software components’ instances. Each com-
position might serve at a particular location of the city, and each
component instance sees one another as an independent peer. There-
fore, these compositions are non interchangeable. In essence, they
should be non-overlapped (no shared instances between combina-
tions), and the supporting system has to derive as many of these
non-overlapped compositions as possible to extend the coverage of
the application.

Thus, even though our applications should use a flat structure,
the actual application model has to take into account the context-
dependent replication of application components and their compo-
sitions.

3.4 Communication Model
For large scale connected vehicle applications that span a wide
area and consists of independent software components and various
devices, shared memory communication model has its inherent
limitations.

Firstly, each of the application’s components individually has to
conform to the shared medium protocol and the shared medium
location. This means the implementation of each component is influ-
enced by its deployment environment, which reduces its reusability.
Second, the shared medium could quickly become a bottleneck for
the inter-component interaction at large scale deployment. Third,
the application’s control flow is not visible in shared mediummodel
[4], at large scale deployment, this inherently affects the design
capability and maintainability of the application model.

Thus, toward our large scale, connected vehicle applications,
message passing is recommended as the ultimate communication
model [4].

Going further into the message passing communication model,
we also found that, large scale applications exhibit a different style
of communication cardinality. In particular, due to the context-
dependent replication of application components, communication
cardinality here tend to be bounded (i.e. 1-N, N-1, N-M) instead
of unbound ones (i.e. 1-*, *-1). This is because of the large scale
deployment of vehicles and road-side units that makes the system-
wide broadcast or aggregation communication irrelevant to many
participating entities (e.g. components only care about data sent
from other ones that are close to them).

This means there has to be more support for application-level
group communication. Coordinating these group communication
is then the central requirement of an application platform for con-
nected vehicles. One of the example of such requirement is the
application of vehicle platooning [16].

3.5 Programming Model
As we discussed earlier, imperative programming models are more
suitable for expressing the functional aspect of the application’s
components. That is, imperative programming is more suitable for
component-scope applications. Meanwhile, declarative program-
ming is more suitable for expressing the overall components’ be-
haviour and their interaction within a larger application. This is due
to the concise of declarative language that is suitable for expressing
complex inter-component interactions, which otherwise would be
difficult to implement and hard to understand using an imperative
programming model.

Toward developing large scale connected vehicle applications,
we found that the close bonding with the physical world of the
computing devices (e.g. vehicles with on-board processors, road-
side units) makes their physical context a particular concern that
affects the application’s logic. By referencing to the aspect-oriented
programming model, we can say that in our class applications, the
physical context of the underlying devices could act as a cross-
cutting concern with regard to the component’s functionality.

4 CONCLUSION
In this paper, we developed a taxonomy of application models that
consists of five aspects, which we argue are the most common

and important aspects when designing any development process
and model for any type of applications. Our general recommenda-
tions was not designed to be exhaustive, but has been shown to be
extendable with different classes of applications. To support our
research into the development of large scale, connected vehicle ap-
plications, this taxonomy helps us to narrow down the design space
and provides us the skeleton to develop our application platform.

5 ACKNOWLEDGEMENTS
This work has been partially funded by NSERC (IPS application
ID 486401) and the EU H2020 BigClout project (Grant Agreement
NÂř723139)

REFERENCES
[1] F. Arbab. The IWIMmodel for coordination of concurrent activities. Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 1061:34–56, 1996.

[2] F. Arbab. What do you mean, coordination. Bulletin of the Dutch Association for
Theoretical Computer Science (NVTI), (March ’98):11–22, 1998.

[3] F. Arbab, I. Herman, and P. Spilling. An Overview of Manifold and its Implemen-
tation. Concurrency: Practice and Experience, 5(1):23 – 70, 1993.

[4] D. Arellanes and K.-k. Lau. Analysis and Classification of Service Interactions
for the Scalability of the Internet of Things. 2018 IEEE International Congress on
Internet of Things (ICIOT), pages 80–87, 2018.

[5] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming: Introduction.
Commun. ACM, 44(10):29–32, Oct. 2001.

[6] D. Gelernter and A. Bernstein. Distributed communication via global buffer.
Proceedings of the first ACM SIGACT-SIGOPS symposium on Principles of distributed

computing, pages 10–18, 1982.
[7] K. Hong, D. Lillethun, B. Ottenwälder, and B. Koldehofe. Mobile Fog : A Pro-

gramming Model for Large Scale Applications on the Internet of Things. In The
second ACM SIGCOMM f (MCC ’13), pages 15–20, 2013.

[8] M. Kawano, T. Yonezawa, T. Tanimura, N. K. Giang, M. Broadbent, R. Lea, and
J. Nakazawa. CityFlow: Supporting Spatial-Temporal Edge Computing for Urban
Machine Learning Applications. Urb-IoT 2018 - 3rd EAI International Conference
on IoT in Urban Space, 2018.

[9] L. Lopes, F. Martins, and J. Barros. Programming Wireless Sensor Networks.
Middleware for Network Eccentric and Mobile Applications, pages 25–41, 2009.

[10] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB: an ac-
quisitional query processing system for sensor networks. ACM Transactions on
Database Systems, 30(1):122–173, 2005.

[11] S. Mayer, E. Wilde, and F. Michahelles. A Connective Fabric for Bridging Internet
of Things Silos. In 2015 IEEE International Conference on the Internet of Things,
volume 0, pages 148–154, 2015.

[12] L. Mottola and G. P. Picco. Programming wireless sensor networks: fundamental
concepts and state of the art. ACM Computing Surveys, 43(3):1–51, 2011.

[13] A. M. Y. L. Murphy, P. Milano, and G.-c. Roman. LIME : A Coordination Model
and Middleware Supporting Mobility of Hosts and Agents. ACM Transactions on
Software Engineering and Methodology, 15(3):279–328, 2006.

[14] G. A. Papadopoulos and F. Arbab. Coordination Models and Languages. Advances
in Computers, 46(C):329–400, 1998.

[15] C. Qiu, F. R. Yu, F. Xu, H. Yao, and C. Zhao. Blockchain-based distributed software-
defined vehicular networks via deep q-learning. In Proceedings of the 8th ACM
Symposium on Design and Analysis of Intelligent Vehicular Networks and Applica-
tions, DIVANet’18, pages 8–14, New York, NY, USA, 2018. ACM.

[16] B. Ribeiro, F. Gonçalves, V. Hapanchak, O. Gama, S. Barros, P. Araújo, A. Costa,
M. J. a. Nicolau, B. Dias, J. Macedo, and A. Santos. Plasa - platooning service
architecture. In Proceedings of the 8th ACM Symposium on Design and Analysis of
Intelligent Vehicular Networks and Applications, DIVANet’18, pages 80–87, New
York, NY, USA, 2018. ACM.

[17] R. Silveira and S. Filho. The Mobile Agents Paradigm. Technical report, 1998.

	Abstract
	1 Introduction
	2 Application Model Taxonomy
	2.1 Application Scope
	2.2 Abstraction Level
	2.3 Application Structure
	2.4 Communication Model
	2.5 Programming Model

	3 Toward Building Large Scale, Connected Vehicle Applications
	3.1 Application Scope
	3.2 Abstraction Level
	3.3 Application Structure
	3.4 Communication Model
	3.5 Programming Model

	4 Conclusion
	5 Acknowledgements
	References

