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Abstract 

 Forecasting customer flow is the key for retailers when making their daily operational 

decisions, but small retailers are often lack resources to obtain such forecasts. Instead of 

forecasting stores’ total customer flows, this research utilizes the newly emerging third-party 

mobile payment data to provide participating stores with a value-added service by forecasting 

their share of daily customer flows. These customer transactions using mobile payments can 

then be further utilized to derive retailers’ total customer flows indirectly, thereby overcoming 

the constraints small retailers face. We propose a third party mobile-payment platform centered 

daily mobile payments forecasting solution based on an extension of the newly developed 

Gradient Boosting Regression Tree (GBRT) method which can generate multi-step forecasting 

for many stores concurrently. Using empirical forecasting experiments with thousands of time 

series, we show that GBRT together with a strategy for multi-period ahead forecasting provides 

more accurate forecasts compared with established benchmarks. Pooling data from the 

platform across stores leads to benefits compared to analyzing the data individually, 

demonstrating the value of this machine learning application.  
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1. Introduction 

The increased availability of sources of ‘big data’ capturing consumer behaviour offers 

new opportunities for companies to understand, forecast and plan. Forecasting customer flow 

is one of the key factors to a successful retail business. With the aid of accurate customer flow 

forecasting, merchants can optimize their human resource and inventory planning, reduce 

operational cost and improve customer experience (Chapados et al., 2014; Mou et al., 2017). 

Large retail chains can employ professional forecasters, investing heavily in sophisticated 

customer flow monitoring and forecasting systems, and therefore have the ability to make 

accurate customer flow forecasting themselves. Small retailers, however, usually lack funds 

and expertise to obtain such forecasts and can only run their business by rule of thumb. Today, 

with the increased prevalence of third-party mobile payment services in China, it is now 

possible to help millions of small businesses improve their operations by providing 

professional customer flow forecasts based on third-party payment data with the potential 

added benefit arising from a shared data source. 

As the mobile wallet ecosystem is maturing, in-store mobile payments have taken off and 

are enjoying rapid growth in China. The Gross Market Value (GMV) of China’s mobile 

payment market reached 27 trillion Yuan (or 3.47 trillion Euro) in Q2 2017, soaring 95.4% 

from a year earlier and up 19.5% compared with the previous quarter2, and it is expected to 

continue to grow quickly in the next few years. This research is based on the data provided by 

one of leading electronic payment platform, which has the largest mobile payment market share 

in China, and has attracted millions of retailers to using the platform, accumulating a huge 

amount of user payment data.  

The third-party mobile payment platform collects data from both stores and customers (as 

shown in Fig.1). Stores who want to accept the mobile payment need to register their necessary 

information on the platform, e.g., location, product/service provided, and their licenses etc., 

and open an account on the platform which can connect with their bank accounts. Similarly, 

customers who want to use mobile payment also need to provide necessary personal 

information to open an account on the platform and download and install an application 

developed by the platform on their phone. Customers can use the application when seeking 

stores nearby, browsing store ratings and comments contributed by the other customers, as well 

as other store information. After choosing the target store, they visit the store for browsing and 
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purchase, then making payments through a two-dimensional code generated by the application 

on their phone; stores then scan the code to confirm the transaction. After the purchasing 

experience, customers may share their own shopping experiences on the platform. The 

payments will first be transferred from the user's bank account to the user's platform account, 

and then to the merchant's account on the platform. The platform acts in the role of third party 

in the transaction, but effectively collects all the mobile transactions data from its users.  

 

Figure 1. Mobile payment data collection process and customer flow forecasting 

Using these store mobile payment data, this research aims to forecast the daily mobile 

payment customer flows for all those retailers sharing the platform. Though the customer flow 

forecasting provided by the platform here is limited to in-store customers using mobile 

payments, it is still expected to be an important reference point for small retailers to optimize 

their operations. Mobile transactions are forming an increasing proportion of payments and for 

stores where these transactions contribute a major share of the store totals they will typically 

be able to estimate total transactions accurately. In the past, forecasting customer flows was the 

retailer's own challenge, either using their historical data or, more likely, by simple rules of 

thumb. With third-party mobile payment data available from stores the problem can be 

transformed where professional mobile payment customer flow predictions are centrally 

generated to registered retailers, and then the total customer flow predictions are derived 

automatically given each retailers’ own estimated share of their mobile payment customers, a 

solution which especially benefits the large number of small retailers (Fig. 2).  
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Figure 2. Customer flow forecasting individually vs. customer flow forecasting with third-

party mobile payment data 

 

For the individual retailer, a number of alternative methods are available from simple rules 

of thumb (e.g. tomorrows sales are forecast to be the same as on the same day last week) to 

more complex univariate time series such as ARIMA. However, univariate methods do not 

capture the common effects from related series which share common drivers such as seasonality, 

common trends, weather effects and macroeconomic indicators (Arunraj and Ahrens, 2015;van 

Donselaar et al., 2016), and other complex characteristics, such as cross-sectional temporal and 

spatial interactions. Duncan et al. (2001) discuss the many situations where such pooling 

methods are likely to be beneficial. In addition to there being common features affecting 

retailers in the same town or development, two more recommendations apply directly: use 

pooling where there is high volatility or outliers.  

In this research, we propose a novel pooled approach to capitalize on the commonalities 

in the data across the participating retailers: a Gradient Boosting Regression Tree (GBRT) 

based machine learning solution for customer flow forecasting with third-party mobile payment 

data. While machine learning (ML) methods have gained increasing currency, they have not 

been widely tested: where they have been tested their success has been moot. In the particular 

retail context we examine, the machine learning GBRT potentially provides evidence of its 

ability to outperform conventional univariate forecasting methods. Our solution provides 

multi-day ahead forecasts for a large number of stores concurrently. Its flexibility can include 

common drivers as well as coping with series of different lengths. We identify a set of important 

explanatory variables in forecasting customer flows through an efficient heuristic features 

selecting algorithm from a large candidate set, and propose a new strategy to generate multi-

step ahead forecasts. To our knowledge, this is the first paper to introduce a scalable customer 

flows forecasting solution based on third party mobile payment data. We show this GBRT 

solution, when tailored to the problem context, provides improved accuracy over conventional 
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univariate time series methods, as well as pooled regression and Random Forest based solutions, 

thereby adding a substantial piece of positive empirical evidence to the body of evidence on 

the forecasting accuracy of machine learning methods. It should therefore no longer be possible 

to claim that ML methods should not form a part of the armory of time series forecasting 

methods worth considering in any particular problem context.  

The outline of the paper is as follows. In Section two, we review related studies and 

introduce our innovations. In Section three we discuss associated methodological issues in our 

proposed solution. In Section four, we describe the data, introduce the experiments design and 

forecasting accuracy measures. We then present the empirical results in Section five. In the last 

section, we discuss the findings offering conclusions as to forecasting practice and further 

academic research. 

2. Related research 

 This research builds on four topics in the forecasting literature: customer flow forecasting, 

forecasting for many time series and the contribution made by ML methods, forecasting with 

a Gradient Boosting Tree, and multi-step ahead forecasting strategies.  

2.1. Customer flow forecasting 

 Customer flow is the number of customers visiting a store during a period of time. It is 

also named as store traffic or foot traffic in the existing literature. So far the subject of customer 

flow forecasting has received very limited research focus; this is mainly due to the difficulties 

in obtaining customer flow data (Abrishami et al., 2017). To collect large scale and reliable 

customer flow data, a comprehensive system with sensors is often required. In existing 

researches, security gates (Veeling, 2014), digital cameras linked with human facial recognition 

system (Cortez et al., 2016), and wireless access points (Abrishami et al., 2017) have been used 

to count people entering or exiting. While these systems can record customer flow accurately, 

they need extra investments and a bounded space, which limits the application for small 

retailers. Traditionally, the number of transactions collected by POS machines is often adopted 

as a proxy for store traffic (Walters and Mackenzie, 1988; Walters and Rinne, 1986; Williams 

et al., 2014), as POS machines have been widely adopted by retailers. Nowadays, the third-

party mobile payment data provides a new way to track customer flows, which is costless and 

has higher availability compared with traditional approaches. Moreover, the data is collected 

from an online platform instead of from individual retailers; this makes it possible to provide 
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millions of small retailers on the platform with professional customer flow forecasts without 

extra cost. The issue we resolve is whether stores could obtain more accurate customer flow 

forecasting from using the shared platform than from relying only on their own data and which 

methods are most effective. 

2.2. Forecasting methods for many time series 

Platform centered customer flow forecasting with third-party payment data is a many time 

series forecasting problem, a common problem for many organizational forecasters (Fildes and 

Petropoulos, 2015). The modeling strategies for many time series can be classified into two 

categories: modeling each time series individually or modeling the group of time series in a 

pooled fashion. Various forecasting approaches have been applied to this problem: linear 

regression (Chuang et al., 2016; Lam et al., 1998), univariate time series models (Cortez et al., 

2016), and a number of ML methods such as Random Forest Regression (Abrishami et al., 

2017), Support Vector Regression (Abrishami et al., 2017; Cortez et al., 2016) and Neural 

networks (Veeling, 2014).  

Modeling at individual level can fully consider each time series’ characteristics, such as 

seasonality and trend and in recent years many increasingly complex individual methods have 

been proposed under the heading machine learning, aiming to capture more complex patterns 

(Aye et al., 2015; Au et al., 2008; Wong & Guo, 2010). But such innovations have led some 

researcher to argue from their reading of the research literature that simple models often beat 

complex models in time series forecasting (Green & Armstrong, 2015). The famous M3 

competition, now followed by M4, have reached the more specific conclusion that complex 

machine learning models cannot improve forecasting accuracy on their own (Makridakis & 

Hibon, 2000; Crone, Hibon, & Nikolopoulos, 2011; Makridakis et al., 2018a, 2018b, 2019). In 

Makridakis et al. (2018a) for example the authors considered 8 ML methods including neural 

nets and regression trees and argued that the results showed for the a sub-set of the M3 data, 

the ML methods all performed worse than the benchmark statistical methods. Our own reading 

of Makridakis et al. (2019) suggests that ML approaches can certainly do well, even when 

applied over a wide range of heterogeneous data series. Other studies, typically on more 

homogeneous data than those in the M-Competitions, have also been more positive with Gur 

Ali et al. (2009) finding that regression trees outperformed an exponential smoothing 

benchmark (for 168 retail series) but only in periods where the SKUs were promoted. One 

important reason for the mixed results is that data modelling at individual level usually faces 
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the problem of scarce observations, where complex models are easy to overfit, leading to 

relatively poor forecasts, while simple models are not affected by this problem. Modeling time 

series individually through simple methods often works well. But such simple approaches 

cannot capture data features common in practice such as common seasonal patterns (Chen and 

Boylan, 2008; Zotteri et al., 2005), promotional effects (Gur Ali et al., 2009), nonlinear trends 

and other complex characteristics, such as cross-sectional temporal and spatial interactions: 

this is especially true for short time series with high noise (Duncan et al., 2001).  

The alternative to modeling the time series individually is through pooling the many time 

series together: this clearly enhances the data available for modelling and has the potential to 

capture cross time series common patterns, thereby improving the robustness of the estimated 

parameters (Dekker et al., 2004; Zotteri and Kalchschmidt, 2007). When the number of time 

series are large, simple linear models would suffer the problem of underfitting in this situation, 

so pooled data can potentially benefit from more complex methods, both in terms of their 

inclusion of analogous time series and also the non-linear patterns included in machine learning 

approaches. It is therefore an open question whether pooled complex methods offer 

improvements in accuracy.  

There is some evidence that machine learning methods, such as Neural Networks (NN) 

and Support Vector Machines (SVM), can generate more accurate forecasts with pooled data 

than individual forecasting methods (Gür Ali et al., 2009). But traditional NN or SVM models 

cannot yet fit big data efficiently, and have therefore only been applied on a small scale (Gür 

Ali and Yaman, 2013; Bandara et al., 2019). With the rapid development of machine learning 

algorithms, such as random forest, gradient boosting trees and deep learning neural networks, 

recent years have seen their application to many large-scale time series forecasting problems 

in areas, such as transportation (Yao et al., 2018), environment (Li et al., 2016), product demand 

forecasting and electricity prices (Hartmann et al., 2015; Lago et al., 2018). The results, have 

shown the superior forecasting power of complex models with pooled data.  

Most of the existing research has aimed at forecasting the customer flow for a single store. 

An exception is Abrishami et al. (2017), who test flow forecasting models on over 100 stores, 

but they model customer flows for each store individually. Compared with the existing 

literature on forecasting multiple time series literature, this research concerns the customer 

flow data from stores in various categories and locations, and it focuses on multiple step ahead 

daily forecasting of data which contain more complex seasonal patterns than the yearly or 

monthly forecasting in the M4 competition. To consider both store specific characteristics and 
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possible cross time series patterns, we have extracted a unique set of features and developed a 

heuristic algorithm for feature selection. Our research also provides further evidences that 

complex models working with pooled data observed in a common environment can deliver 

improved forecasts above individual forecasting approaches.  

2.3. Forecasting with Gradient Boosting Regression Tree  

Boosting theory was developed by Valiant (1984). The main idea behind this algorithm is 

that many weak classifiers though better than random guessing, could create a strong classifier 

when used in combination. Gradient boosting was first introduced by Friedman (2001) and was 

motivated as being a gradient descent method in function space, capable of fitting generic 

nonparametric predictive models. The Gradient Boosting Regression Tree (GBRT) is one of 

most popular gradient boosting algorithms, which uses a regression tree as the base weak 

learner.  

GBRT has empirically proven itself to be highly effective for a vast array of classification, 

ranking and regression problems. It is one of the most preferred choices in data analytics 

competitions such as Kaggle and KDD Cup. Recent studies have applied the GBRT in the 

domain of insurance loss (Guelman, 2012; Xia et al., 2017), bankruptcy (Zięba et al., 2016), 

travel time (Zhang and Haghani, 2015 who consider only a few series), and protein solvent 

accessibility (Fan et al., 2016). But GBRT has not so far been applied in forecasting for many 

time series. This paper is the first research that systematically introduces a GBRT based 

solution to this problem. The solution is an integration of data processing procedures, including 

data cleaning, transformation, feature extraction and selection, hyper-parameter tuning, model 

training, and forecasts generation. There are various innovations in our solution tailored for 

customer flow forecasting, including the time series transformation methods for different 

forecasting strategies, a set of features specially designed for GBRT that summarize time series’ 

local dynamics and global static characteristics, an efficient heuristic features selecting 

algorithm, and new strategies to generate multi-step ahead time series forecasts as we now 

discuss. 

2.4. Multi-step ahead time series forecasting 

An additional methodological issue is the requirement for multiple step ahead forecasting: 

this is more difficult than one-step, since it usually results in the accumulation of errors and 

increased uncertainty (Sorjamaa et al., 2007). So far three basic strategies have been proposed 
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in the literature to tackle the multi-step ahead forecasting task, including the Recursive (or 

Iterative) strategy, the Direct (or Independent) strategy and the Multi-Input Multi-Output 

(MIMO) (or Joint) strategy. The Recursive strategy is the most intuitive strategy which iterates 

H times a one-step ahead forecasting model to obtain H-step ahead forecasts. After estimating 

the next (future) value in the series, the result is fed back as an input into the subsequent forecast. 

The Direct strategy estimates H forecasting models, each returning a forecast for the i-th 

(i=1...H) horizon but always relying on the real observed data as inputs. The MIMO strategy, 

originally proposed by Kline (2004), replaces the H models of the Direct approach with one 

multi-output model: this aims to preserve the stochastic dependency, between the predicted 

values, that characterizes the time series. Some variants have also been proposed by combining 

the basic strategies. For example, Sorjamaa and Lendasse (2006) proposed a combination of 

the Direct and Recursive strategies called DirRec, in which a different model is used at each 

step but the approximations from previous steps are introduced into the input set. Similarly, 

Ben Taieb et al. (2010) proposed another combination strategy, named DIRMO, which aims to 

preserve the most appealing aspects of both the Direct and MIMO strategies.  

The empirical researches on Recursive and Direct strategies have shown contradictory 

results as to which strategy has better forecasting performance. For example, researches from 

Birattari et al. (1999) and Weigend et al. (1992) provide experimental evidences in favor of the 

Recursive strategy against the Direct strategy. In contrast, Sorjamaa and Lendasse (2006) and 

Hamza et al. (2009) find that the Direct strategy is better than the Recursive strategy. 

Concerning MIMO, several recent studies (Bontempi, 2008; Bontempi and Taieb, 2011; Taieb 

et al., 2012; Xiong et al., 2014) have consistently shown that MIMO outperforms both the 

Recursive and Direct strategies on the data used in artificial Neural Network and computational 

intelligence forecasting competitions, NN3 and NN5 .  

One restriction of the MIMO strategy is it is only applicable with models which could 

generate multiple outputs. For example, the implementation modeling technique using MIMO 

in most existing studies is lazy learning, a K-Nearest Neighbor (KNN) based local modeling 

technique with flexibility when constructing the required multiple input-output modeling 

structure. But most of the existing computational intelligence methods including gradient 

boosting trees, cannot use the MIMO strategy straightforwardly for multi-step-ahead prediction 

due to their inherent single-output structure. In this research, we design a pseudo MIMO 

approach, which uses single output models to generate multi-step forecasts concurrently. In 

addition, this paper is the first providing an experimental comparison of the different multi-
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step ahead forecasting strategies with GBRT when forecasting many time series.  

2.5 Summary 

This research is innovative in four respects: 

(1) It is a novel application in retailing to the practical problem of customer flow 

forecasting using newly emerging mobile payment ‘big’ data. 

(2) It identifies a set of important predictors for forecasting daily mobile payment customer 

flows, and explores the benefit of complex models using data pooling for forecasting many 

time series. 

(3) It develops a general solution for forecasting many time series based on GBRT. 

(4) It proposes a new strategy to generate multi-step ahead forecasts and provides 

experimental comparisons on various forecasting strategies for generating multiple steps 

ahead forecasts when using complex models with pooled data.  

In addition it provided empirical evidence of the strong performance of a machine learning 

algorithm in demand forecasting, when evaluated over multiple series based on extensive out-

of-sample data. 

3. Methodology 

We propose a scalable solution based on GBRT to predict mobile payment customer flows 

for a large number of stores concurrently. The main modules of our solution are shown in Figure 

3.  

 

Figure 3. Flowchart for customer flow forecasting 
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Raw customer mobile payments are first aggregated into store specific daily mobile 

payment customer flow time series. After removing outliers and imputing missing values, the 

resulting time series are then transformed into a pool of forecasting strategy specific regression 

matrixes. Global and local features are extracted from the matrix and then important features 

are selected. After a parameter tuning procedure, GBRT models are trained to generate multi-

day ahead forecasts. In the following subsections we focus on transforming the time series into 

a regression matrix format to make them suitable for applying our regression (GBRT) approach, 

the proposed method of feature extraction and the training module implementation. 

3.1. Time series transformation for one-step ahead forecasting 

Considering a pool of n time series  
T

1, , n X X ,  ,...,
ii iS iTx xX , [1, , ]i n where 

all the time series in the pool have the same end time, T, but not necessary have the same start 

time S. To forecast , +1i Tx for all the time series, we need first train a GBRT model based on 

previous observations in . As GBRT is inherently a regression model, we need transform 

into a regression matrix and define dependent and independent variables. For different 

forecasting tasks and strategies, we need to transform original customer flow time series into 

regression matrixes with different structures to facilitate the following training and forecasting 

processes.  

 

 

Figure 4. Regression matrix for one-step ahead forecasting 

 

To transform a one-step ahead time series forecasting problem into a regression problem, 

it is straightforward to transform a time series into a Hankel matrix (Fig. 4), which has W 

columns and Ki=T-W-Si+2 rows. The last column of X on the right is used as predicted 
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variables for training and the other columns are used to construct predictors. The last row of 

the X is used to generate the one-step ahead forecast. As customer flows usually exhibit 

weekly cycles, we set the window width W to be multiples of seven days, and the optimal W 

is selected by our feature selection algorithm. We pool the matrixes from all the time series 

together to train the forecasting model, not training the n models for each time series 

individually. Pooling addresses the data availability issue by leveraging analogous customer 

flow time series to learn common patterns (Frees and Miller, 2004). Pooling observations 

across a group of similar time series is expected to lead to smaller variance than the individual 

forecasts, with fewer parameters to be estimated, adapting more rapidly to any structural 

changes in time series with robustness in the presence of outlier observations (Duncan et al., 

2001). 

One problem of constructing Hankel matrix X is the time series length T-Si+1 need to be 

larger than window width W, so that we can obtain K rows of observation from this time series. 

When the length of one time series is less than W, we supplement it to length W with its mean 

of observed values. 

3.2. Time series transformation for H-step ahead forecasting 

In this research, we focus on three strategies to generate H-step ahead forecasts.  

Recursive strategy 

The Recursive strategy trains first a one-step model f 

1 1 1( , , )t t t L tx f x x      , 

where L is the number of lags used as predictors. After generating one-step ahead forecasts, it 

constructs explanatory features for the next step with the newly generated forecasts, and then 

generates the next step of forecasts with the same model, until all H steps of forecasts are 

generated. The forecasts for horizon h can be expressed by 

1

1 1 1

1

ˆ ( , , ) 1

ˆˆ ˆ ˆ( , , , , , ) {2, , }

ˆ ˆ ˆ( , , ) { 1, , }

T T L

T h T h T T T L

T h T h L

f x x h

x f x x x x h L

f x x h L H

 

     

   

 


 


 

         (1) 

Therefore the regression matrix structure for the recursive strategy is the same as that for one 

step forecasting.  

Direct strategy 

The Direct strategy needs to build an individual model for each h, h=1…H, forecasting 



 
 

~13 ~ 
 

horizon; the prediction for horizon h is given by 

1
ˆ ( , , )T h h T T Lx f x x   . 

For horizon h, only inputs at least h steps before the target time period can be used to construct 

explanatory features. The regression matrix designed for the direct strategy is shown in Fig 5. 

The last H columns are used as predicted variables, and the last row is used to generate forecast 

for horizon 1 to H. To forecast ˆ
T hx  , we need first train a model with column W+h-1 as the 

dependent variable. This strategy needs to learn H models to generate 1 to H ahead forecasts, 

therefore demands more computational time. 

 

Figure 5. Regression matrix for Direct strategy 

Pseudo MIMO strategy 

MIMO strategy was initially proposed by Kline (2004), which has so far been limited to 

models that could generate multiple outputs, e.g. lazy learning (Taieb et al., 2012), multi-output 

Support Vector Regression (Bao et al., 2014), multi-output Neural Networks (Kline, 2004). But 

the existing GBRT algorithms do not support multiple outputs (we leave this as future work). 

Instead, we design a pseudo MIMO strategy which can use single-output models to generate 

multi-output forecasts. To do so, we transform a time series into a special regression matrix 

structure, which is shown in Fig.6. Similar to the regression matrices designed for one-step 

forecasting, the last column of the matrix is used as the predicted dependent variable(s), with 

the last H rows used to generate forecasts for horizon 1 to H concurrently, while the other rows 

are used for training. The matrix is separated into n= (T-Si-W+2)/H slots with the same width 

H. In each slot, there are H predicted variables representing horizon 1 to H. Those H predicted 

variables have exactly the same candidate predictors, but they may have different seasonal and 

calendar event indicators that will be introduced in the next subsection. In this way, we can 

train one model but this generates H-step ahead forecasts without requiring iterations. 
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Pseudo MIMO does not accumulate errors across the forecasting horizon which is the main 

problem arising from using the Recursive strategy, and it can learn the commonality over the  

H forecasting horizons which Direct strategy cannot. Also, pseudo MIMO is more 

computational efficient compared with the other two strategies, as the size of its training set is 

nearly the same as that of Recursive strategy but it generate H forecasts concurrently without 

iterations.  

 

Figure 6. Regression matrix for MIMO strategy 

3.3. Feature extraction 

After the transformation, the next step is to extract a set of features from the regression 

matrix. The data enriched environment by pooling enables us to consider a large set of features 

capturing the dynamic characteristics of the time series in both the short and long term. First, 

a number of the lags in each row of the X are used as candidate predictors directly, these lags 

reflect the dynamics of the most recent customer flows. Second, a set of indicators which 

summarize time series’ local dynamics and global static characteristics are also calculated to 

be candidates. The details of these candidate features are summarized in the Table 1. 

MM_1~MM_w are moving medians over last 1 to w weeks, which may capture the short term 

temporal trends in recent weeks. Similarly, M20_1~M20_w (or M80_1~M80_w) are moving 

20 (or 80) percentiles over last 1 to w weeks, different measures which also aim 
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Table 1. Candidate features for mobile payment customer flow forecasting 

Features Description Type Characteristics 

Lag_1~Lag_L Lags 1 to L ( L=min(21,W) )  Numeric Lags 

MM_1~MM_w Moving medians over last 1 to w=W/7 

weeks 

Numeric Local dynamics 

M20_1~M20_w Moving 20 percentile over last 1 to 

w=W/7 weeks 

Numeric Local dynamics 

M80_1~M80_w Moving  80 percentile over last 1 to 

w=W/7 weeks 

Numeric Local dynamics 

MSD_1~MSD_w Moving standard deviation over last 1 

to w=W/7 weeks 

Numeric Local dynamics 

DW_1~DW_6 The ratio between the mean of the flow 

in the day of the week (Monday to 

Saturday) and the global mean 

Numeric Global summaries 

City The city of the store located Categorical Store specific 

Category The category in which the store 

belongs (e.g., grocery, fast food, 

bakers, etc.) 

Categorical Store specific 

Store ID Store identification Categorical Store specific 

Comments Number of comments towards the 

store on the platform 

Numeric Store specific 

Avr-payments Average payments for each purchase Numeric Store specific 

Day of Week From Monday to Sunday Categorical Seasonality 

Holiday Including New Year, Spring festival, 

Qingming day, Labor’s day, Mid-

autumn day, National day 

Binary Calendar events 

Holiday_eve The day before a holiday Binary Calendar events 

Holiday_after The day after a holiday Binary Calendar events 

    

Temperature The average temperature during the 

day 

Numeric Weather 

Wind strength The maximum wind strength during 

the day 

Numeric Weather 

Precipitation Five levels, from rainstorm (or 

blizzard) to drizzle (or slight snow) 

Categorical Weather 

 

to capture any short term temporal trends. We use moving standard deviation over last 1 to w 

weeks, named as MSD_1~MSD_w, to capture the extent of variations in recent customer flows. 

DW_1~DW_6 are indicators of store specific day of week effects, calculated by the ratios 
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between the means in each day of the week (Monday to Saturday) and the global mean of the 

store cross time. These global summaries are specially designed for GBRT, as they should help 

the tree splitting process to pool time series with similar characteristics together. In addition, 

as customer flows are often affected by seasons, calendar events, weather, and other store 

specific characteristics (e.g., location, category, and customer rating): we also include a set of 

features capturing these factors.  

3.4. Feature selection 

 Considering the scale of the daily mobile payments data and the high dimensional of 

candidate feature space, it is computational infeasible for searching the best subset of features. 

Instead we design a sub-optimal heuristic algorithm for feature selection which mainly consists 

of three parts. First, (i) with a pre-set of core features included (such as Day of Week and 

calendar events) and a maximum estimation window W, the optimal number of lags (L) is 

determined; (ii) then the optimal window width w is determined to construct local indicators 

capturing the local dynamics; and (iii) finally, the best subset is selected from outside factors. 

The first two parts are based on a forward selection process, and the third part is based on an 

individual evaluation. The detail of the selection process is described in Algorithm 1.  

3.5. Model training 

 The forecasting model selected in our solution is Gradient Boosting Regression Tree 

(GBRT) which has empirically proven to be highly effective in a number of applications as we 

discussed in section 2. The GBRT algorithm iteratively constructs K different weak learners 

which consist of regression trees of fixed size from the training set 

  
1

ˆ ,
K

i k i k

k

y f x f


    (2) 

where   f x is the space of regression trees. Each tree contains a continuous score on 

each of the leaves. For a given example, it uses the decision rules in the trees to classify it into 

the leaves and calculates the final prediction by summing up the score in the corresponding 

leaves. To learn the set of functions used in the model, GBRT minimizes the following 

regularized objective, 

      ˆ ,i i k

i k

L l y y f     .  (3). 

Here l is a differentiable convex loss function that measures the difference between the 
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prediction and the target. The second term  kf penalize the complexity of the model (i.e., 

the regression tree functions), which helps to smooth the final learnt weights to avoid over-

fitting. The tree ensemble model in Eq. (2) includes functions as parameters and cannot be 

optimized using traditional optimization methods in Euclidean space. Instead, the model is  

 

Algorithm 1. 

Input: training dataset; candidate variables 

Output: selected features 

1) Build candidate feature set with the maximum window width W=8 weeks; 

2) Extract last four weeks of data from training set as an evaluation set for feature 

selection; 

3) Manual selection of a core feature set, which includes global summaries 

(DW_1~DW_6), seasonality (Day of Week), and calendar events (Holiday, 

Holiday_eve, and Holiday_after).  

4) Select the optimal number of lags L by one-dimensional searching in the range 

of 1 to 21. Specifically, train 21 GBRT models: jth model uses features including 

1 to j lags together with features in the core feature set, optimal L is given by the 

model provide most accurate forecasts on the evaluation set. Updating core 

feature set by adding the optimal number of lags. 

5) Selecting the optimal window width w for building local indicators (row 2-5 in 

Table 1) by one-dimensional searching in the range of 1 to 8 weeks. Specifically, 

training 8 GBRT models, jth model uses 1 to j weeks of flows to build local 

indicators, training the model together with features in the core feature set; 

optimal w is given by the model providing most accurate forecasts on the 

evaluation set. Update core feature set by adding the local indicators built with 

the optimal window width. 

6) Evaluating the value of the other candidate features one by one by comparing the 

forecasting accuracy on evaluation set when using or discarding the target 

features, and adding the feature into core feature set if it improves the forecasts. 

7) Return the core feature set. 

 

trained in an additive manner. Formally, let
( )ˆ t

iy be the prediction of the i-th instance at the t-th 

iteration, ft is then added to minimize the following objective 

        1ˆ,
t t

i i t i t

i

L l y y f f


   x .               (4). 
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This means ft is added to improve the model most according to Eq. (4). Boosting algorithms 

vary in how they quantify lack of fit and select settings for the next iteration. In this research, 

we adopt a second-order approximation boosting algorithm, named as XGboost, which can 

quickly optimize the objective in the general setting (Chen and Guestrin, 2016), 

 

          1 21
ˆ,

2

t t

i i i t i i t i t

i

L l y y g f x h f x f
 

   
 

         (5) 

where  

  1
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ˆ
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g l y y


   and  

  1

12

ˆ
ˆ,t

i

t

i i iy
h l y y


   are the first and second order gradient 

statistics of the loss function. XGBoost is available as an open source package which has been 

widely recognized in a number of machine learning and data mining challenges.  

XGBoost has more than twenty tunable parameters that affect its learning performance. 

We follow the parameter tuning guide in the XGBoost manual and select six parameters for 

tuning. 

Max depth: the maximum depth of a tree; 

Gamma: the minimum loss reduction required to make a split; 

Subsample: denotes the fraction of observations to be randomly samples for each tree; 

Colsample by tree: the fraction of columns to be randomly samples for each tree; 

Lambda: L2 regularization term on weights (analogous to Ridge regression); 

Alpha: L1 regularization term on weights (analogous to Lasso regression). 

Similar to our feature selection algorithm, we extract the last four weeks of data from the 

training dataset as an evaluation set for parameter tuning. The steps to be performed are: 

choosing a relatively high learning rate; and determining the optimum number of trees for this 

learning rate; then tuning tree-specific parameters (max depth, gamma, subsample, colsample 

by tree) for decided the learning rate and the number of trees, and then tuning the regularization 

parameters (lambda, alpha). In the last step we lower the learning rate and decide the optimal 

parameters. 

4. Experiments design 

4.1. Data 

 To investigate the forecasting accuracy of different methods on daily mobile payment 

customer flows, we conduct a series numerical experiments on a randomly selected 2000 stores 

sample including 19.6 million platform payments log from July 2015 to October 2016. In 
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addition, we also obtain descriptive information on each store, e.g. store ID, location, category, 

and rating. We aggregate user payments according to store ID and date to form store specific 

daily customer flows. Table 2 presents the statistical summaries on daily customer flows in 

various store categories.  

Table 2. Descriptive statistics of the daily mobile payment customer flows 

No. Category 
Number 

of stores 

Average length 

of history (days) 
Mean of daily 

payments 

Median of 

daily payments 

1 Convenience 

Store 
207 284.88  98.88  72 

2 Supermarket             372 266.34  187.49  120 

3 Pharmacy             4 161.75  60.12  57 

4 Baking  272 296.30  87.43  73 

5 Restaurant 127 264.09  73.86  63 

6 Fast Food 839 333.42  105.93  81 

7 Cafe 179 276.97  92.41  75 

Figure 7 depicts the average daily mobile payment customer flows over the selected stores. 

It is easy to observe that the average customer flow has an upwards trend: this may be mainly 

due to the increasing number of users making payments through their mobiles. We can also 

observe that customer flow exhibits strong weekly cycles, and has different patterns during 

holidays (vertical shadows on the Figure 7).  

 

Figure 7. Average daily mobile payment customer flow over 2000 stores 

Figure 8 shows a sample of daily mobile payment customer flows at individual store level. 

Customer flows are in general non-stationary, with different weekly cycles and length of history. 

Some of them exhibit trend (of various forms), have very limited historical information, and 

contain outliers and breaks. We identify and remove outliers with the ‘tsoutliers’ function in 

the ‘forecast’ R package v.8.4 (Hyndman and Khandakar, 2008). Breaks are treated as missing 
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values that are imputed with a self-designed K nearest neighbor (KNN) algorithm considering 

both day of week effects and local trends (see Appendix A for more detail). Those imputed 

values are only used to construct predictors, and are neglected when appearing as dependent 

variables in the following training and test processes. 

 

Figure 8. A sample of customer flows over time 

4.2 Training and test set definition 

We separate the data into three subsets, one for model training and two for forecasting 

accuracy evaluation. The training set spans 401 days, from July 1, 2015 to August 8, 2016. Two 

test sets each consists of six weeks of customer flow data. The first spans from August 9, 2016 

to September 19, 2016, and the second from September 20 to October 31, 2016 which contains 

seven days of holiday (October 1 to 7 are the Chinese National days). We estimate the models 

and generate forecasting with a rolling scheme. For every two weeks, we extend the estimation 

window forward throughout the remaining sample period.  

4.3. Forecasting evaluation metrics 

We use four error measures to compare the forecasting performance of the models. The 

first is sMAPE, symmetric Mean Absolute Percentage Error, which measures the difference 

between the prediction and the actual outcome. sMAPE has also been adopted by NN3, NN5 

competitions; it is here defined as:  
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where ˆ
ihx  is the forecasts customer flow of store i in horizon h, and ihx  is the observed 

customer flow of store i in day h. The second is Median Absolute Percentage Error (MdAPE), 

which is here defined as:  
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Compared with sMAPE, MdAPE is more robust to potential outliers. The last criterion we used 

is based on relative errors. The Average Relative Mean Absolute Error (AvgRelMAE) is 

proposed by Davydenko and Fildes (2013) for measuring forecasting accuracy at a 

disaggregate level (e.g. Store sales, SKU-level demand). It is a geometric mean of the ratio of 

the MAE between the candidate model and the benchmark model. 
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where N is the number of stores in the sample, ˆb

ihx  is the baseline statistical forecast for series 

i, ˆ f

ihx  is the candidate model f evaluated for series i. The AvgRelMAE has the advantages of 

being scale independent and robust to outliers, with a straightforward interpretation: a value 

smaller than one indicates an improvement by the candidate model over the benchmark. 

In order to measure the forecasting error bias, the Mean Percentage Error (MPE), that is 

defined here as the mean of ratios of total error to total customer flows in the test periods per 

store, i.e., 
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is used as the final criterion. 

 To evaluate whether the forecast error differences in models that may appear are due to 

randomness, we employ the non-parametric Friedman test and the post-hoc Nemenyi test 

(Demšar, 2006; Koning et al., 2005). We use the implementation of the tests available in the 

tsutils R package (Kourentzes, 2019). 
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4.4. Benchmark models 

To compare the forecasting accuracy of our proposed methods, seven models have been 

selected to be benchmarks. We include both simple methods such as ‘naïve’ random walk and 

more complicated methods that incorporate some of the features in our novel approach. The 

benchmarks include some that we would expect be hard to beat as well as some that would be 

easy to employ in practice. These models are explained in detail as the following.  

(1) Last Week. The forecasts are the observed values for the same day of week in the last 

observable week. 

(2) Naive. The forecasts are the observed values for the last observable day. 

(3) ETS. An automated ETS algorithm of Hyndman & Khandakar (2008), using ets 

functions in the ‘Forecast’ R package v.8.4 using its default settings.  

(4) Theta. A decomposition technique proposed by Assimakopoulos and Nikolopoulos 

(2000), which was the top performer in M3-Competition. It is implemented with the ‘thetaf’ 

function in the ‘Forecast’ R package using its default settings. 

(5) ARIMA. The automatic ARIMA function (‘auto.arima’) implemented in the ‘Forecast’ 

R package is used to identify and estimate the model using its default settings.  

(6) Pooled regression. Using the same predictors selected by GBRT, estimated with 

penalized L-1 regression which is named Lasso by Tibshirani (2011). It is implemented using 

the ‘glmnet’ package v.2.0-16 in R. The optimal value of the penalty parameter is determined 

by 10-fold cross-validation.  

(7) Random Forest (RF): first proposed by Breiman (2001). Random Forest is based on 

decision trees and combined with aggregation and bootstrap ideas, first proposed by Breiman 

(2001). Random Forest has widely been used in applications, see Ziegler and König (2014) for 

recent surveys. In this research, we adopt a fast implementation of random forest, the ‘Ranger’ 

package v.0.11.2 in R (Wright and Ziegler, 2017), which is particularly suited for high 

dimensional data. 

(8) GBRT. Implemented with the ‘Xgboost’ package v. 0.82.1 in R (Chen and Guestrin, 

2016).  

5. Results 

 The training set contains 543888 observations and more than one hundred features. Both 

feature selection and hyper-parameter tuning processes require significant computing 
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capability. To facilitate our experiments, we run all the algorithms programmed with R on a 

workstation with two Intel Xeon E5-2630 processors and 128 Gigabyte of memory.  

5.1. Feature selection 

 As described in the Algorithm 1, we extract the last eight weeks of data from the training 

set as the evaluation set for feature selection using Xgboost. We first search for the optimum 

number of lags in a range of 1 to 21 days. We use one-step ahead forecasts, evaluated by 

sMAPE, as the criterion for the selection. The Nemenyi test results for the rank of models with 

various lags are reported on the left side of Figure 9. It shows that the lag of 15 days has the 

lowest value of mean rank over 86772 observations3, but no difference is seen with that of 7 

days lag at the 5% significance level. To keep the model as simple as possible, we select 7 days 

as the optimum number of lags for the following experiments. Then we build local dynamics 

using window width from 1 to 8 weeks, and search the optimum window width in the similar 

way. We finally select 28 days (4 weeks) of window width for building local summaries of the 

dynamics (the right side of the Fig. 9). 

 

Figure 9. Nemenyi test results for rank of models with various lags and window widths for 

constructing local summaries at 5% significance level. The critical distance for the Nemenyi 

test is 0.106 and 0.036 respectively.  

After the selection of lags and the window width for building local summaries, we then 

evaluate the value of the remaining candidate features one by one. Figure 10 depicts the 

                                                             
3 We did not evaluate the rank at store level because of the unbalanced observations for each store in the validation 
periods.  
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Nemenyi test results on the models containing different feature sets, each feature sets consist 

of the core feature set, selected lags and dynamic lag summaries, and the feature under tested. 

The features which could significantly improve the forecasts over the baseline, which do not 

include any features under selected, are retained in the model. We find that only ‘Temperature’ 

decreases the sMAPE significantly, so all the other features in Figure 10 are dropped. 

 

Figure 10. Nemenyi test results for rank of models using different feature sets at the 5% 

significance level. The critical distance is 0.039.  

 

XGboost can provide estimates of feature importance from a trained model. Importance is 

calculated for a single decision tree by the amount that each attribute split point improves the 

performance measure, weighted by the number of observations the node is responsible for. The 

feature importance is then averaged across all of the decision trees within the model4. We report 

the feature importance ranking from the model with selected features on the training set in 

Figure 11. We can find that the most important features are Lag 1, the median/ 20 percentile 

20/ 80 percentile of flows in last week, the global day of week ratios, and day of week indicators. 

Perhaps surprisingly, the only weather variable turns out to have limited impact on improving 

accuracy. This may be due to the nature of the sample of stores which is mainly composed of 

commodity stores and restaurants: their customer flows are less affected by the weather in 

Chinese cities. 

                                                             
4 Though the feature importance could also be used to select features, it is easy to be affected by overfitting. 
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Figure 11. Rank of feature importance on selected features 

5.2. Parameter tuning  

The parameters tuning results for XGboost are depicted in Figure 12. We first choose 0.02 

as the learning rate, and 1000 as the rounds of training. Except for max-depth, the out-of-sample 

forecasts are in general not sensitive to the value of these hyper-parameters. The optimal value 

for alpha, colsample, depth of trees, gamma, lambda, and subsample are selected as 0, 0.5, 10, 

0.2, 0.7, and 0.8 respectively for the following experiments. After the tuning, we then reduce 

the learning rate to be 0.01, and find that the optimal rounds of training are around 2500.  

Random forests implemented in the Ranger package for time series regression has four 

tunable parameters, i.e., number of trees, number of variables to possibly split at each node, 

minimal node size, and fraction of observations to sample. Similar to the tuning results on 

XGboost, we also use a grid searching algorithm for tuning random forests, and the last four 

weeks of training data is used for evaluation. The optimal values for the four parameters are 

600 (for the number of trees), 10 (the number of variables to split at each node), 5 (minimal 

node size) and 0.9 (the fraction of observations to sample).  

As Lasso is a much more efficient algorithm than XGboost and Ranger. For each rolling 

periods, we determine the optimal values of the penalty parameter by 10-fold cross-validation 

separately. The Cross-validation plot for the first rolling period is illustrated in Fig.B1 in 

Appendix B  
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Figure 12. Nemenyi test results for the rank of models trained with different value of hyper-

parameters at 5% significance level on. The critical distance is 0.044, 0.025, 0.025, 0.025, 

0.034, and 0.025 for max-depth, gamma, subsample, colsample, lambda, and alpha 

respectively.  

5.3. One-day ahead forecasts 

The one-day ahead forecasting accuracies from all the benchmark models are shown in the 

Table 3. The ‘Last Week’ forecasts are used as the baseline for calculating AvgRealMAE. In 

both test sets, time series models which model customer flows for each store individually 

perform worse than regression tree based pooled models, i.e., RF and GBRT. The GBRT 

realized by the XGboost algorithm provides the most accurate forecasts on both test sets and 
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all three accuracy metrics. But pooled regressions are in general inferior to several time series 

models, e.g., ETS and ARIMA. The results provide the evidence that data pooling can provide 

more accurate forecasts than the time series models, but here only when using more complex 

methods. The MPEs of the tree models are both negative but the values are small, indicating 

that the overall forecasts from these models are only slightly biased towards the pessimistic. 

 

Table 3.  One-day ahead forecasts 

 Test set 1 Test set 2 Test set 1&2 

 sMAPE MdAPE 
AvgRel

MAE 
MPE sMAPE MdAPE 

AvgRel

MAE 
MPE sMAPE MdAPE 

AvgRel

MAE 
MPE 

Last Week 0.130  0.082  1.000  6.330  0.150  0.103  1.000  -0.781  0.138  0.091  1.000  -0.973  

Naive 0.120  0.080  0.943  4.322  0.112  0.077  0.776  0.062  0.115  0.079  0.833  0.033  

ETS 0.103  0.066  0.789  2.309  0.099  0.069  0.674  -2.734  0.099  0.067  0.713  -2.360  

Theta 0.106  0.069  0.831  5.093  0.100  0.069  0.689  -0.838  0.102  0.068  0.741  -0.186  

ARIMA 0.105  0.071  0.819  2.324  0.108  0.078  0.731  -2.788  0.105  0.074  0.758  -2.457  

Lasso 0.114  0.076  0.865  0.678  0.109  0.078  0.726  -0.047  0.110  0.077  0.777  0.083  

RF 0.104  0.064  0.745  -5.463  0.096  0.067  0.637  -5.684  0.097  0.065  0.674  -5.326  

GBRT 0.097  0.057  0.676  -4.314  0.088  0.061  0.583  -3.826  0.090  0.058  0.614  -3.713  

N.B. The best performance is shaded. 
 

In Fig. 13, the Nemenyi test intervals for all eight models on store level accuracy measures 

over the whole test periods are displayed. For all the measures, the intervals of the GBRT has 

no any overlap with other models, and hence, GBRT performs significantly better than the 

others.  

 

 
Figure 13. Nemenyi test results at 5% significance level on store level one-step ahead 

forecasts over the whole test periods. The critical distance for the Nemenyi test is 0.234.  
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Fig. 14 shows the boxplots on the store level accuracy differences between GBRT and time 

series models. We can find that more than three quarters of stores could have obtained more 

accurate forecasts using the GBRT compared to the time series models. This result show that 

most of the stores could benefit from the platform customer flow forecasting as pooling 

customer flow information from many stores improves their individual forecasting accuracy 

and robustness. 

 

 
Figure 14. The store level one-step ahead forecasting accuracy differences between GBRT 

and five time series models over the whole test periods. 

5.4. H-step ahead forecasting 

 We generate 1-14 days ahead customer flow forecasts for each store by means of three 

strategies for pooled models. Such a horizon is long enough to help the retailers in their 

operational planning decisions. As time series models are not designed to implement Direct or 

MIMO strategies, we only compare the forecasts among Pooled regression, Random Forest, 

and GBRT. Again, the Last Week forecasts work as the baseline for calculating AvgRelMAE. 

The forecasting results are reported in Table 5. 

Contrasting with the one-step ahead results, for multiple-step forecasting, benchmark 

models have different forecasting performance on the two test sets with different strategies. 

GBRT together with pseudo MIMO provide the most accurate forecasts on almost all the test 

sets and accuracy metrics, except for sMAPE on test set 1 where GBRT-Direct and GBRT-
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Recursive shows a little higher accuracy (but the Nemenyi test on store level ranks still indicate 

pseudo MIMO is the best performed model in test set 1). Random forest (RF) together with 

pseudo MIMO also provide the better forecasts than with other multi-horizon strategies. The 

results show the importance of using the right strategy to generate multi-step ahead forecasting 

when using complex models on pooled data.  

 

Table 5. 1-14 days ahead forecasts 

 Test set 1 Test set 2 Test set 1&2 

 sMAPE MdAPE 
AvgRel

MAE 
MPE sMAPE MdAPE 

AvgRel

MAE 
MPE sMAPE MdAPE 

AvgRel

MAE 
MPE 

Last Week 0.135  0.086  1.000  1.245  0.150  0.102  1.000  -0.380  0.141  0.092  1.000  -2.179  

Naive 0.154  0.102  1.138  -2.182  0.159  0.111  1.033  -5.901  0.155  0.105  1.082  -6.203  

ETS 0.128  0.082  0.939  0.426  0.124  0.086  0.816  -2.713  0.125  0.083  0.874  -3.912  

Theta 0.132  0.085  0.992  4.612  0.126  0.087  0.840  0.200  0.128  0.085  0.913  -0.316  

ARIMA 0.136  0.091  1.009  1.031  0.135  0.097  0.891  -2.648  0.134  0.094  0.948  -3.652  

Lasso-Recursive 0.140  0.096  1.052  6.609  0.129  0.096  0.850  1.480  0.133  0.095  0.940  0.659  

RF-Recursive 0.145  0.100  1.093  8.639  0.139  0.101  0.924  3.428  0.140  0.100  0.994  1.919  

GBRT-Recursive 0.113  0.073  0.827  4.690  0.114  0.079  0.758  -1.105  0.112  0.076  0.794  -2.027  

Lasso-Direct 0.131  0.085  0.980  9.229  0.126  0.091  0.835  2.764  0.127  0.088  0.898  1.731  

RF-Direct 0.128  0.086  0.944  -3.236  0.126  0.092  0.835  -8.080  0.126  0.089  0.881  -8.663  

GBRT-Direct 0.113  0.072  0.814  -0.273  0.105  0.073  0.699  -3.659  0.107  0.072  0.753  -4.425  

Lasso-pMIMO 0.138  0.095  1.013  3.077  0.123  0.088  0.810  0.782  0.128  0.091  0.901  0.803  

RF-pMIMO 0.124  0.078  0.882  -4.343  0.113  0.082  0.749  -8.174  0.116  0.081  0.809  -6.539  

GBRT-pMIMO 0.116  0.068  0.793  -3.770  0.101  0.069  0.663  -5.496  0.106  0.069  0.723  -4.666  

N.B. The best performance is shaded; pMIMO is an abbreviation of pseudo MIMO.  

 

 

 

Figure 15. Nemenyi test results at 5% significance level on store level 1-14 days ahead 
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forecasts over the whole test periods. The critical distance for the Nemenyi test is 0.443.  

Fig. 15 shows the store level Nemenyi test intervals calculated based on the whole test 

periods for all 14 models on three accuracy measures. For all the measures, GBRT together 

with pMIMO shows significantly better performance than all the others, and the GBRT together 

with the Direct strategy is average ranked second, which is also significantly out-performing 

the third ranking method, i.e., Random forest with pMIMO. 

 

 

Figure 16. The boxplots on the 1-14 days ahead store level forecasting accuracy difference 

between GBRT-pMIMO and five time series models over the whole test periods. 

 

Fig. 16 shows the boxplots of the store level accuracy difference between GBRT and time 

series models over the whole test periods for multiple steps ahead forecasting. We find similar 

results to those for one step ahead where, for more than three quarters of stores, we have 

obtained more accurate forecasts across all measures using the GBRT-pMIMO compared to the 

time series models.  
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Figure 17. The forecasting accuracy comparisons across 1-14 horizons on three 

strategies with GBRT over six rolling test periods. 

To obtain a deeper understanding on the performance of the three forecasting strategies, in 

Figure 17, we depict the forecasting accuracy comparisons measured by sMAPE across 1-14 

horizons on the three strategies with GBRT over six rolling test periods. It is clear that pMIMO 

performs well in most time periods, exhibiting robust forecasting results. Recursive has similar 

performance to Direct in general, but a large error on Weeks 9~10 makes the Recursive strategy 

accumulate the error subsequently. This is mainly due to a switch between holidays and 

working days during the period. This indicates that Recursive strategy is sensitive to outliers. 

Another finding is that on all six rolling test periods, pseudo MIMO performs not as well as 

Recursive and Direct for shorter horizons (usually horizon 1 and 2 ), but perform well for longer 
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time horizons. This means that it is possible to combine the forecasts on different horizons from 

different strategies to improve the forecasting accuracy further.  

6. Implication for practice: prediction of total customer flows 

An important implication for practice from the daily mobile payment customer flow 

forecasting method presented here is it can be utilized to further derive total customer flows. 

Total customer flows can be decomposed into customer flows using mobile payment and 

customer flows using other payment methods. The latter part is unobservable and therefore 

unpredictable by the third party mobile payment platform. But the shares of the two parts in 

total customer flows can be estimated by retailers, either judgmentally or through their own 

private transaction data. Given the estimated share of mobile payment customers, the total 

customer flows can be derived simply by multiplying the forecasts of mobile payment customer 

flows with the reciprocal of the estimated share.  

Compared to the problem of accurate forecasting of total customer flows directly, for small 

retailers, the short term estimation of the share of mobile payment customers is a much easier 

task. This is due to the fact that the share is usually stable in the short term and less likely to be 

affected by a number of the exogenous variables, e.g., weather, day of week effects, or holidays, 

etc. Though the share of mobile payment customers is changing over time from a longer 

perspective, increasing in fact, it is not a strict assumption that the share of the mobile payments 

is stable in very short term forecasting, and retailers could also adjust their estimation of the 

share over time. The key point is that an individual retailer could make use of the mobile 

payment customer flow forecasts generated from this large data base for their customer flow 

predictions without experiencing extra costs. 

7. Conclusions 

Mobile payment data collected by third-party payment platforms is one of newly emerging 

source of big data and this has the potential to help millions of small retailers to improve their 

operational decision. We propose a GBRT based machine learning solution for forecasting 

stores’ daily mobile payment customer flows, which is a novel pooled approach to capitalize 

on the commonalities in the data across the participating retailers.  

We find that daily mobile payment customer flow forecasting based on a large pool of 

stores that includes a variety of categories, can generate more accurate forecasts than the 

forecasts generated by methods based on each store individually (as shown in Tables 4 and 6). 
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This is an interesting result because it shows that stores could obtain more accurate customer 

flow forecasting from participating on the shared platform than relying on the forecasts derived 

using only their own data. We also find that customer flows on the last observed day, 

median/percentile 20/percentile 80 of flows in last observed week, and the global day of week 

ratios are the most important features to forecast customer flows: weather appeared relatively 

unimportant, perhaps a feature of the stores’ location. 

Second, we demonstrate the benefits of complex models and data pooling in forecasting 

many time series. For the many time series forecasting problem, the data is often lacking at the 

individual time series level but is generally rich after pooling the data together. If each time 

series is modeled individually, simple models tend to perform better and are more robust 

because complex models can easily over-fit. When pooling time series together, simple 

methods may well fail to capture the complex patterns in the complete database leading to 

under-fitting, so complex methods are able to deliver improved accuracy. Our results show that 

the linear model with Lasso regression cannot beat the time series model under data pooling, 

but the complex tree methods (both GBRT & RF) perform very well. Overall, the 

improvements in accuracy demonstrated in Tables 3 and 5 are substantial over the naïve 

forecasts (probably those most used in practice) – and there are consistent gains from pooling 

across time series. 

The third contribution we make is on the methodological side, where we develop a 

forecasting solution based on a newly developed GBRT algorithm named XGboost for 

forecasting customer flows. Customer flows aggregated from mobile payments are 

characterized by highly volatility and skewness (as we see in section 4), multiple seasonal 

cycles, and high heterogeneity typical of ‘big data’; these factors make customer flow 

forecasting a difficult problem for forecasters. Using a sample of 2000 stores and with two 

extensive out-of-sample test sets with a range of methods evaluated on three error measures, 

we find that when using the right forecasting strategy, the proposed solution performs well for 

both one-step and multi-step ahead forecasting tasks, compared to traditional time series 

models, pooled regression, and the popular Random Forest. It is worth mentioning that our 

forecasting solution is not limited to the customer flow forecasting problem focused on in this 

paper. It could be applied to many forecasting problems where a large number of disparate time 

series must be forecast. 

Fourth, by comparing the performance of various forecasting strategies for generating 

multi-step ahead forecasts, we find that the Recursive strategy performs well over a stationary 
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period, especially when forecasting for short horizons, but it fails to provide robust forecasts 

when there are breaks in the forecasting period. The Direct strategy is in general a more robust 

method compared with Recursive and it also works well for short horizons. The proposed 

pseudo MIMO is also a robust strategy for multi-step ahead forecasting; it provides the most 

accurate forecasts on almost all the test sets and metrics beating the other two strategies. But it 

does not work as well as Direct or Recursive over short horizons, therefore further 

improvements could be achieved by combining the forecasts from different strategies over 

different horizons.  

An overarching theme of the analysis has been to demonstrate the potential of ML methods 

in a realistic context. Our results offer unambiguous evidence that in particular problem 

contexts adopting such complex methods as GBRT can lead to valuable gains in accuracy. 

Further research could apply our approach to many practical forecasting scenarios, e.g., 

retail demand at item level (Huang et al., 2014; Ma et al., 2016), and evaluating its forecasting 

performance over different data sets that share demand features in common. Also, we call for 

researches using more newly developed complex models, e.g., deep neural networks 

(Krizhevsky et al., 2012) and deep forests (Zhou and Feng, 2017), to explore the benefit of 

complex models in forecasting many time series. One limitation of this research is our multi-

step ahead forecasting experimental results are all based on the features selected and parameters 

tuned for one-step ahead forecasting, otherwise too much computing time would be required 

for such a big data forecasting problem (especially for the Direct strategy). We expect that 

further research could overcome the computing capability limitations to investigate the value 

of feature selection and parameter tuning specially designed for different multi-step ahead 

strategies. 
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Appendix A. Missing values imputing algorithm for customer flow time series 

Algorithm A1. 

Input: X (a customer flow time series with missing value), K (number of nearest 

neighbor) and w (a penalty parameter) 

Output: Y (the imputed time series) 

Define M as the set of missing values, O as the set of observations in the X; 

For each element i in the M, do  

Calculate Di , which is a vector of distances defined as the date difference between Mi 

and all the elements in the O; 

Calculate Si , which is a vector of boolean indicating whether the date of each element 

in the O is in the same day of week with that of Mi; 

Let Pi=1/(Di+(1-Si)*w), and then normalize Pi to be a probability vector (w is a penalty 

parameter to be set by user, the larger w is set the more likely the observation on the same 

day of week is sampled. We set w=7 in the experiments); 

Sampling K observations randomly from O with probability Pi, impute Mi with the mean 

of K observations (K is set as 10 in the experiments). 

End of the loop 

Return the imputed time series. 

Appendix B. Cross-validation plot for Lasso 

 

Figure B1 Cross-validation plot for Lasso. It includes the cross-validation curve (red dotted line), and 

upper and lower standard deviation curves along the regularization parameter Lambda sequence (error 

bars). Two selected Lambda’s are indicated by the vertical dotted lines. One is the value that gives 
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minimum mean cross-validated error. The other gives the most regularized model such that error is 

within one standard error of the minimum. We use the first value of Lambda in the experiments. 
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