Relationship between soil clay mineralogy and carbon protection capacity as influenced by temperature and moisture

Singh, Mandeep and Sarkar, Binoy and Biswas, Bhabananda and Bolan, Nanthi S. and Churchman, Gordon Jock (2017) Relationship between soil clay mineralogy and carbon protection capacity as influenced by temperature and moisture. Soil Biology and Biochemistry, 109. pp. 95-106. ISSN 0038-0717

Full text not available from this repository.

Abstract

Environmental conditions like temperature and moisture could affect the carbon protection capacity of various clay types in soils. Using dominantly kaolinitic-illitic, smectitic and allophanic soils, we conducted systematic incubation experiments over 42 days at different temperatures (4, 22 and 37 °C) and moisture contents (30, 60 and 90% of water holding capacity (available water)). The basal respiration was monitored to study the relative effect of moisture contents and temperature on the carbon protection capacities and mechanisms of the three clay types. The results indicated that carbon decomposition increased with increasing moisture and temperature. A two-component quadratic equation could explain the carbon mineralisation process. The highest C respiration was observed at 37 °C with a 60% moisture level in each of the soil types. Under these conditions, the smectitic soil recorded the highest carbon decomposition followed by the kaolinitic-illitic and allophanic soils. The study of the priming effect using 14C labelled malic acid confirmed the trend of the bulk respiration results. The allophanic soil showed the lowest amount of carbon mineralisation under all experimental conditions. A strong inverse correlation (R2 = 0.90 at p < 0.05) was observed between CO2 emission rate and total sesquioxides (Fe and Al oxides) content. As evidenced by the pore size distribution, micromorphologies and thermogravimetric analyses, the microporous structure and microaggregate formation in the allophanic soil enhanced carbon sequestration. This study indicated that soil carbon stabilisation was related more to the sesquioxides content than to the clay types or their relative specific surface areas.

Item Type:
Journal Article
Journal or Publication Title:
Soil Biology and Biochemistry
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1100/1111
Subjects:
?? CLAY MINERALSFE AND AL OXIDESPOROUS STRUCTUREPRIMING EFFECTSOIL CARBON MINERALISATIONTHERMOGRAVIMETRIC ANALYSISMICROBIOLOGYSOIL SCIENCE ??
ID Code:
140611
Deposited By:
Deposited On:
27 Jan 2020 14:45
Refereed?:
Yes
Published?:
Published
Last Modified:
18 Sep 2023 01:44