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Abstract: 

Fine particulate matter (PM2.5) and surface ozone (O3) are major air pollutants in megacities 

such as Delhi, but the design of suitable mitigation strategies is challenging. Some strategies 

for reducing PM2.5 may have the notable side-effect of increasing O3. Here, we demonstrate a 

numerical framework for investigating the impacts of mitigation strategies on both PM2.5 and 25 

O3 in Delhi. We use Gaussian process emulation to generate a computationally efficient 

surrogate for a regional air quality model (WRF-Chem). This allows us to perform global 

sensitivity analysis to identify the major sources of air pollution, and to generate emission-

sector based pollutant response surfaces to inform mitigation policy development. Based on 

more than 100,000 emulation runs during the pre-monsoon period (peak O3 season), our global 30 

sensitivity analysis shows that local traffic emissions from Delhi city region and regional 

transport of pollutions emitted from the National Capital Region surrounding Delhi (NCR) are 

dominant factors influencing PM2.5 and O3 in Delhi. They together govern the O3 peak and 

PM2.5 concentration during daytime. Regional transport contributes about 80% of the PM2.5 

variation during the night. Reducing traffic emissions in Delhi alone (e.g., by 50%) would 35 

reduce PM2.5 by 15-20% but lead to a 20-25% increase in O3. However, we show that reducing 

NCR regional emissions by 25-30% at the same time would further reduce PM2.5 by 5-10% in 

Delhi and avoid the O3 increase. This study provides scientific evidence to support the need for 

joint coordination of controls on local and regional scales to achieve effective reduction in 

PM2.5 whilst minimizing the risk of O3 increase in Delhi.   40 
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1. Introduction 

Exposure to air pollutants increases morbidity and mortality (Huang et al., 2018a;WHO, 

2013). The urban air quality in India, especially in Delhi, is currently among the poorest in the 

world (WHO, 2013, 2016a, b). In addition to the local impacts, the Indian monsoon can 

transport air pollutants to remote oceanic regions, inject them into the stratosphere and 45 

redistribute them globally (Lelieveld et al., 2018). This makes the impact of Indian air pollution 

wide ranging regionally and globally and it has interactions with climate and ecosystems world-

wide (Menon et al., 2002;Gao et al., 2019). 

PM2.5 (particulate matter with an aerodynamic diameter of less than 2.5 µm) is a major air 

pollutant, causing increases in disease (Pope et al., 2009;Gao et al., 2015;Stafoggia et al., 2019) 50 

and reduced visibility (Mukherjee and Toohey, 2016;Wang and Chen, 2019;Khare et al., 2018). 

The population of India experiences high PM2.5 exposure, and this is responsible for ~1 million 

premature deaths per year (Conibear et al., 2018;Gao et al., 2018). Residential emissions are 

estimated to contribute ~50% of PM2.5 concentrations and to cause more than 0.5 million 

annual mortalities across India (Conibear et al., 2018). Previous studies reported an annual 55 

averaged PM2.5 loading of 110-140 µg/m3 in Delhi during 2015-2018, leading to ~10,000 

premature deaths per year in the city (Chen et al., 2019; Chowdhury and Dey, 2016; WHO, 

2016a). In Delhi, the traffic sector (~50%) and the domestic sector (~20%) are the major local 

contributors to PM2.5 (Marrapu et al., 2014). Efforts to control traffic emissions in Delhi in 

recent years by introducing an alternating ‘odd-even’ licence plate policy have led to reductions 60 

in PM2.5 of less than 10% (Chowdhury et al., 2017). This indicates that there is an urgent need 

for a coordinated plan to mitigate PM2.5 pollution (Chowdhury et al., 2017).  

Surface ozone (O3), another major air pollutant, is damaging to health and reduces crop 

yields (Ashworth et al., 2013;Lu et al., 2018;Kumar et al., 2018). The risks of respiratory and 
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cardiovascular diseases are increased from short-term exposure to high ambient O3 and from 65 

long-term exposure at low levels (WHO, 2013;Turner et al., 2016;Fleming et al., 2018). 

Oxidation of volatile organic compounds (VOCs) in the presence of nitrogen oxides (NOx) is 

the main source of surface ozone. Rapid economic development in India has greatly increased 

the emissions of these O3 precursors (Duncan et al., 2016), leading to significant increases in 

O3 especially during the pre-monsoon period (Ghude et al., 2008). Hourly maximum O3 70 

reaches as much as 140 ppbv during the pre-monsoon season in Delhi (Ghude et al., 2008), 

comparable to the most polluted regions in China (150 ppbv, Wang et al., 2017) and higher 

than the most polluted areas in the U.S. (110 ppbv, Lu et al., 2018). 

Mitigation of PM2.5 pollution may lead to an increase in surface ozone, because the 

dimming effect of aerosols and removal of hydroperoxy radicals are reduced, facilitating O3 75 

production (Huang et al., 2018b;Li et al., 2018;Hollaway et al., 2019). Furthermore, co-

reduction of NOx and PM2.5 emissions may increase O3 in cities where O3 production is in a 

VOC-limited photochemical regime (Ran et al., 2009;Xing et al., 2018;Xing et al., 2017). This 

has recently been reported in a number of Asian megacities, e.g. Shanghai (Silver et al., 2018), 

Beijing (Wu et al., 2015;Liu et al., 2017;Chen et al., 2018) and Guangzhou (Liu et al., 2013). 80 

Delhi and coastal cities in India, which are known to be VOC-limited (Sharma et al., 2017), 

may face increased O3 as a side-effect of emission controls focused on PM2.5. Therefore, studies 

of mitigation strategies that target both PM2.5 and O3 are urgently needed (Chen et al., 2018), 

particularly as urban air pollution in India has been much less well studied than in many other 

countries.  85 

To investigate the impacts of mitigation strategies with respect to both PM2.5 and O3, we 

demonstrate a framework for generating emission-sector based pollutant response surfaces 

using Gaussian process emulation (O’Hagan and West, 2009;O’Hagan, 2006). The response 
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surfaces describe that how the pollutants, i.e., PM2.5 and O3, will respond to the changes in 

emissions from different sectors. We conduct global sensitivity analysis to identify the 90 

dominant emission sectors controlling PM2.5 and O3, and then generate sector based response 

surfaces to quantify the impacts on PM2.5 and O3 of emission reductions. In contrast to simple 

sensitivity analysis varying one input at a time, this allows full exploration of the entire input 

space, accounting for the interactions between different inputs (Pisoni et al., 2018;Saltelli et al., 

1999). Conventionally, chemical transport models (CTMs) are used to calculate the impacts on 95 

pollutants concentrations of different mitigation scenarios. However, the computational 

expensive of CTMs makes them unsuitable for performing global sensitivity analysis or 

generating response surfaces, which usually require thousands of model runs. To overcome 

this difficulty, source-receptor relationships (Amann et al., 2011) or computational efficient 

surrogate models, trained on a limited number of CTM simulations, are used to replace the 100 

expensive CTM. These approaches have been used to perform sensitivity and uncertainty 

analysis of regional air quality models (Pisoni et al., 2018), assessment of regional air quality 

plans (Zhao et al., 2017;Xing et al., 2017;Pisoni et al., 2017;Thunis et al., 2016) and sensitivity 

and uncertainty analysis of global and climate simulations (Ryan et al., 2018;Lee et al., 

2016;Lee et al., 2012). Here, we use surrogate model to explore the sensitivity of PM2.5 and O3 105 

on sector-based emission controls in Delhi, for developing a mitigation strategy addressing 

both pollutants.  

In this study, we demonstrate the value of such a framework for supporting decision 

makers in determining better mitigation strategies. We give examples of its use in investigating 

impacts of mitigation scenarios on PM2.5 and O3 pollutions in Delhi, and demonstrate that 110 

regional joint coordination of emission controls over National Capital Region (NCR) of Delhi 

is essential for an effective reduction of PM2.5 whilst minimizing the risk of O3 increase. 
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2. Materials and Methods  

2.1 WRF-Chem Model Baseline Simulation  115 

WRF-Chem (v3.9.1) – an online, fully coupled chemistry transport model (Grell et al., 

2005) – has been widely used in previous studies of air quality across India (Marrapu et al., 

2014;Mohan and Gupta, 2018;Gupta and Mohan, 2015;Mohan and Bhati, 2011). The model 

has also been used to estimate the health burden (Conibear et al., 2018;Ghude et al., 2016) and 

reduction in crop yields (Ghude et al., 2014) from the exposure to PM2.5 and O3 over India.  120 

In this study, we focus on the hot and dry pre-monsoon period in Delhi, when average 

temperatures are around 32 oC and relative humidity (RH) is about 35% (Ojha et al., 2012). O3 

approaches its annual peak in pre-monsoon due to strong solar radiation (Ghude et al., 

2008;Ojha et al., 2012). During the pre-monsoon period, desert dust can contribute 

significantly to particulate matter in Delhi (Kumar et al., 2014b;Kumar et al., 2014a). Here, we 125 

perform WRF-Chem simulation for the period of 2–15 May 2015 (with two additional days for 

spin-up), when Delhi was not significantly influenced by dust storms according to MODIS 

observations (https://earthdata.nasa.gov/earth-observation-data/near-real-time/hazards-and-

disasters/dust-storms). Strong dust storms started to influence the Indo Gangetic Plain on 21-

24 April and 19 May 2015, respectively. This minimizes the uncertainties resulting from dust 130 

storm simulation and permits a stronger focus on anthropogenic emissions. Resuspended dust 

from road traffic is also a major contributor to PM2.5 in Delhi, and this is estimated and included 

in the emission inventory as described below. 

The model configuration follows the study of Marrapu et al. (2014), and the 

parameterizations used are listed in Table 1. Three nested domains are used, with coverage of 135 

https://earthdata.nasa.gov/earth-observation-data/near-real-time/hazards-and-disasters/dust-storms
https://earthdata.nasa.gov/earth-observation-data/near-real-time/hazards-and-disasters/dust-storms
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South Asia (45 km resolution), the Indo Gangetic Plain (15 km resolution), and the National 

Capital Region (5 km resolution), see Fig. 1. A test simulation with a fourth domain over Delhi 

at 1.67 km resolution suggests that a further increase in resolution does not substantially 

improve model performance (details in Text S1), and this is in line with results from a previous 

study (Mohan and Bhati, 2011). The Carbon Bond Mechanism version Z (CBMZ, Zaveri and 140 

Peters, 1999) coupled with the MOSAIC (Zaveri et al., 2008) aerosol module with four size 

bins is used to represent gaseous chemical reaction and aerosol chemical and dynamical 

processes. We neglect wet scavenging and cloud chemistry processes here, as the impact of 

these is likely to be negligible during the dry pre-monsoon period over India. No precipitation 

was recoded in Delhi during the simulation period.  145 

The initial and boundary conditions for chemical species are provided from MOZART-4 

global results (https://www.acom.ucar.edu/wrf-chem/mozart.shtml). Our baseline simulation 

is driven by European Centre for Medium-Range Weather Forecasts (ECMWF) meteorological 

data, as we find that this reproduces regional meteorology better than that from the National 

Centers for Environmental Prediction (NCEP) over India, consistent with a recent study 150 

(Chatani and Sharma, 2018). The ECMWF reanalysis dataset (ERA-Interim) assimilates 

observations with a number of nearly 107 per day (Dee et al., 2011), and is used for grid nudging, 

initial and boundary conditions for WRF-Chem at horizontal and temporal resolutions of 0.75o 

× 0.75o and 6 hours, respectively. The wind pattern and temperature over Delhi in May 2015 

is generally captured well in simulations driven by either meteorological dataset, but the model 155 

captures the variation in relative humidity much better (R=0.7) with ECMWF data than with 

NCEP data (R=0.4, negative bias of 20-40%). More detailed discussion is provided in Text S2.     

The high-resolution Fire Inventory from NCAR (FINN, Wiedinmyer et al., 2011) is 

adopted to provide biomass burning emissions. Interactive biogenic emissions are included 
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using the Model of Emissions of Gases and Aerosols from Nature (MEGAN, Guenther et al., 160 

2006). The global Emission Database for Global Atmospheric Research with Task Force on 

Hemispheric Transport of Air Pollution (EDGAR-HTAP, Janssens-Maenhout et al., 2015) 

version 2.2 (year 2010) at 0.1° × 0.1° resolution is used to represent anthropogenic emissions 

apart from over Delhi, where they are represented by a high-resolution monthly inventory for  

2015 developed under the System of Air Quality Forecasting and Research (SAFAR) project 165 

(Sahu et al., 2011;Sahu et al., 2015). In the absence of a diurnal variation in emissions specific 

to Delhi, we adopt diurnal variations from Europe in this study (Denier van der Gon et al., 

2011). The SAFAR inventory provides emission fluxes of PM10, PM2.5, black carbon, organic 

carbon, NOx, CO, SO2 and NMVOC (non-methane volatile organic compounds) from five 

sectors, including power (POW), industry (IND), domestic or residential (DOM), traffic (TRA) 170 

and wind blow dust from roads (WBD). Wind blow dust includes dust resuspended from 

vehicle movement on paved and unpaved roads (Sahu et al., 2011), and is therefore closely 

related to traffic emissions, and we combine this into the traffic sector for our study.  

The NMVOC emissions are speciated according to the EDGAR (v4.3.2) global inventory 

(Huang et al., 2017), and are then lumped for the CBMZ chemistry scheme. The speciation 175 

mapping is detailed in Table 2 and described below, and a toolkit has been developed to 

perform this mapping. Emissions of alcohols and ethers are split 20%:80% between methanol 

and ethanol by mass and then converted to molar emissions with a fractionation based on 

Murrells et al. (2009). Emissions of paraffin carbon (PAR) are calculated by converting mass 

emissions from each VOC group to molar emissions and then multiplying by the number of 180 

paraffin carbons in order to conserve carbon. Hexanes and higher alkanes are converted to 

molar emissions of hexane and then multiplied by six to give PAR emissions. Other alkenes 

are mapped to molar emissions of butane, and this is then apportioned between terminal olefin 

carbons (OLET), internal olefin carbons (OLEI) and PAR on a molar ratio of 1:1:4 following 
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(Zaveri and Peters, 1999). Ketones are split 60%:40% by mass between acetone (KET) and 185 

methyl-ethyl ketone (MEK), then converted to molar emissions with fractions based on 

(Murrells et al., 2009). As MEK is not included in the CBMZ mechanism, we apportion molar 

emissions of MEK equally between KET and PAR. 

2.2 Observational Network 

Air quality and meteorological monitoring networks are operated in Delhi under the 190 

SAFAR project coordinated by IITM (Ministry of Earth Sciences, Government of India). 

Measurements of PM2.5, O3 and NOx during the May 2015 simulation period are available from 

six monitoring stations in Delhi: C V Raman (CVR), Delhi University (DEU), Indira Ghandi 

International Airport Terminal-3 (AIR), Ayanagar (AYA), NCMRWF (NCM) and Pusa (PUS). 

The instruments are calibrated and measurements are quality controlled in the SAFAR project 195 

(http://safar.tropmet.res.in); more details are given in previous studies (Sahu et al., 2011;Beig 

et al., 2013;Aslam et al., 2017). Site locations are shown in Fig. 2 and measured variables are 

given in Table S1.  

2.3 Global Sensitivity Analysis of Urban Air Pollution  

We perform global sensitivity analysis (GSA) (Iooss and Lemaître, 2015) to quantify the 200 

sensitivity of modelled outputs (PM2.5 and O3 for this study) to changes in the model inputs, 

which for this study are emissions from the different emission sectors. One-at-a-time sensitivity 

analysis is a common way of calculating model sensitivity and involves varying a single model 

input while the other inputs are fixed at nominal values, e.g., Wild (2007). While one-at-a-time 

approach is relatively easy to implement, it assumes that the model response to different inputs 205 

is independent and this can lead to biased results (Saltelli et al., 1999;Pisoni et al., 

2018;Carslaw et al., 2013). GSA overcomes the problems of the one-at-a-time approach by 

averaging over the other inputs rather than fixing them at specific values. This allows 
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calculation of first-order sensitivity indices (SIs) for each variable, corresponding to the ith 

input variable and the jth output point, is given by the Eq. 1 (Ryan et al., 2018).  210 

SIi,j =
Var[E(yj | xi)]

Var(yj)
×100%                                (1) 

where xi is the ith element of the input; and yj is the jth element of the output. The ‘E(•)’ and 

‘Var(•)’ denote the mathematical function that calculate the expectation and variance, 

respectively. The simplest way of computing SIi,j is by brute force, but this is also the most 

computationally intensive (Ryan et al., 2018). 215 

The extended Fourier Amplitude Sensitivity Test (eFAST), first developed by Saltelli et 

al. (1999), is a commonly used approach to perform GSA and calculate SIs and is adopted in 

this study because of its high efficiency. A basic overview and detailed equations of the eFAST 

method are given in the section 2.2.2 of Ryan et al. (2018). A challenge to using eFAST is that 

it typically requires thousands of model runs. To overcome this, we employ a computationally 220 

cheaper surrogate model in place of our expensive simulation model WRF-Chem. A surrogate 

model is a simple model (usually statistical) which can map the inputs to the outputs of the 

simulation model with sufficiently good accuracy given the same inputs. In this study, we 

choose a type of surrogate model called a Gaussian process emulator, which works like a 

function for multi-dimensional interpolation and has been used extensively in many areas of 225 

applied science (Carslaw et al., 2013;Koehler and Owen, 1996;Queipo et al., 2005;Vanuytrecht 

and Willems, 2014;vu et al., 2015;Degroote et al., 2012) and uncertainty assessment of 

atmospheric models (Lee et al., 2016;Lee et al., 2012;Lee et al., 2011). Gaussian process 

emulators typically require a relatively small number of runs of the computational-expensive 

model to generate; this is in contrast to other surrogate modelling approaches, such as neural 230 

networks, which typically require thousands of model runs to train them. For a basic overview 
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of a Gaussian process emulator see O’Hagan (2006), detailed introduction and equations are 

also given in the section 2.3 of Ryan et al. (2018). Before using the emulator in place of the 

WRF-Chem model to carry out the thousands of model runs required for GSA, we train the 

emulator using a relatively small number of WRF-Chem model runs. Following previous 235 

studies (Carslaw et al., 2013;Lee et al., 2016), a Maximin Latin hypercube space-filling design 

is employed to select the designs of training runs for WRF-Chem. Latin hypercube sampling 

is a statistical method for generating a near-random sample of parameter values from 

a multidimensional distribution (Shields and Zhang, 2016). Here, we search through 100,000 

Latin hypercube random designs to find the optimal one where the parameter space is filled 240 

most effectively. This ensures that the sets of inputs chosen cover as large a fraction of the 

input space as possible. Full details (including R codes) of how to generate the Gaussian 

process emulator, eFAST method and GSA can be found in Ryan et al. (2018). 

In this study, we focus on a limited number of the emission sectors to demonstrate the 

effectiveness of the approach: domestic/residential emissions in Delhi (DOM), traffic 245 

emissions in Delhi (TRA, including WBD), power and industry in Delhi (POW+IND) and total 

emissions in the National Capital Region outside Delhi (NCR). NCR represents the 

contribution of regional transport to pollution in Delhi. According to the SAFAR emission 

inventory, the total PM2.5 emissions of DOM, TRA, POW+IND and NCR are about 1.8, 6.1, 

3.1 and 8.5 Gg/month in May 2015, respectively. The Gaussian process emulator is trained 250 

using 20 executions of the WRF-Chem model, with emission scaling drawn from a variation 

range of 0-200% for each of the four specified sectors (Table S2). Emulation of the impacts of 

mitigation scenarios on PM2.5 and O3 can be performed in minutes on a laptop, in contrast to 

simulations with WRF-Chem which require a few days on a high-performance computing 

cluster. The accuracy of the emulator as a surrogate of WRF-Chem model is evaluated using a 255 

‘leave-one-out’ cross-validation (Bastos and O’Hagan, 2009). This involves training the 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Multidimensional_distribution
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emulator using 19 out of the 20 sets of inputs/outputs from the WRF-Chem model runs and 

then evaluating the emulator against the 20th simulation. This process is carried out for each of 

the 20 sets of inputs/outputs. Given that the output space is multi-dimensional (i.e. modelled 

O3 and PM2.5 varied spatially and in time), the validation of the emulator by comparing 10,000 260 

(random-samples varied spatially and in time) of emulator output values against the 

corresponding output values of the WRF-Chem model. The emulator validation plot is shown 

in Fig. 3. Modelled and emulated O3 and PM2.5 lie very close to the 1:1 line with R2 values of 

more than 95% as shown in Fig. 3, indicating that the emulation provides an accurate 

representation of the input-output relationship of the WRF-Chem model. 265 

2.4 Response Surfaces 

Response surfaces are useful for investigating the relationship between model inputs and 

outputs, in this case between sectoral emissions and modelled pollutant concentrations. They 

have been widely applied for air quality studies and policy making (EPA, 2006b, a;Zhao et al., 

2017;Xing et al., 2017). Here, we analyse the responses of PM2.5 and O3 to changes in emissions 270 

from each sector of between 0% and 200%. The computationally efficient Gaussian process 

emulation enables us to generate response surfaces without the computational burden of a large 

number of runs of the WRF-chem model.  

2.5 Outline of Analysis 

We use the WRF-Chem model to simulate the hourly concentrations of O3 and PM2.5 over 275 

the Delhi region during 2-15 May 2015 and evaluate the results against observations. We 

perform a simple sensitivity analysis to investigate the contributions of biomass burning and 

biogenic emissions to PM2.5 and O3 in Delhi. We then conduct a global sensitivity analysis, 

using the eFAST method (see section 2.3) along with Gaussian process emulation, to determine 

the sensitivity of modelled O3 and PM2.5 concentrations to changes in the dominant 280 
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anthropogenic emission sectors. Finally, we generate response surfaces to identify appropriate 

mitigation strategies for reducing PM2.5 while minimizing the risks from O3 increase.   

 

3. Results and Discussion  

3.1 Model Performance  285 

The WRF-Chem model captures the general magnitude and variation in PM2.5 well (Fig. 

4a), with mean bias and error of about -3.5% and 11%, respectively, and an index of agreement 

(Willmott et al., 2012) of 75%. The frequency distributions of modelled PM2.5 are also similar 

to the observations, with differences in mean and median concentrations of less than 10%, 

although high concentration spikes are missed by the model (Fig. S1). The modelled PM2.5 290 

peaks around 09:00 local time (LT) because the rush hour enhances traffic emissions before 

the planetary boundary layer (PBL) height has increased (Fig. 4a). This is also seen in the 

modelled results at DEU (Fig. S2), which is closer to a motorway and shows a more intense 

PM2.5 peak in the morning rush hour. PM2.5 is overestimated during the morning rush hour 

(around 09:00 am) and underestimated during the early morning (03:00-05:00 LT, Fig. 4a and 295 

Fig. S2). This may suggest that there is an earlier rush hour or more traffic activity at night in 

Delhi than in European cities, since we adopted European diurnal emission patterns in this 

study in the absence of local information. Detailed studies of traffic emissions and their 

variation in Delhi would help improve these model simulations. 

The modelled chemical composition of PM2.5 is shown in Fig. S3. Secondary inorganic 300 

aerosol (SIA), including sulphate, nitrate and ammonium, only contributes ~25% of aerosol 

mass in our simulation. In the absence of particle inorganic composition measurements during 

the simulation period, we compare our results with a previous modelling study of Delhi during 

the post-monsoon season (Marrapu et al., 2014), which also shows a ~25% contribution of SIA 
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to PM2.5 loading, in line with our results. Furthermore, our results are also consistent with an 305 

observational study, which reported the mass fraction of organic matter (usually calculated as 

1.4 times OC) and elemental carbon (usually equivalent to black carbon in modelling studies, 

Chen et al., 2016b) in PM2.5 of ~20% and ~6% in Delhi during May 2015, respectively (Sharma 

et al., 2018). 

The model well captures the peak O3 with a bias of less than 5%, although it 310 

underestimates O3 during night-time (Fig. 4b). In general, the diurnal pattern and magnitude of 

O3 are captured by WRF-Chem (Fig. 4b), with normalized mean bias and error of about -20% 

and 35%, respectively, and an index of agreement of 65%.  The underestimation during night-

time is likely to be because NOx is overestimated by a factor of 2-3 at night (Fig. S4), and the 

excess NO depletes O3. This is indicated by the frequency distribution of O3 and NOx (Fig. 315 

S5), where the median values of observed O3 and NOx are matched well by the model. 

However, the higher peaks of modelled NOx concentration lower the modelled O3 levels, 

indicating that Delhi is in VOC-limited photochemical regime. Similar results are found at 

AYA (Fig. S6). The larger underestimation of O3 at NCM (Fig. S5d, industrial environment 

site) suggests that NOx emission from the industry sector may be overestimated.  320 

3.2 Impacts of Biogenic and Biomass Burning Emissions 

Before exploring the importance of the four selected anthropogenic emission sectors on 

PM2.5 and O3 in Delhi during simulation period, we investigate the contributions from other 

factors (biomass burning and biogenic emissions). We turn off these sources in the WRF-Chem 

simulation and find that there is a negligible contribution from biogenic emissions to PM2.5 325 

concentrations over Delhi in this season (Fig. 4c and 4d). It is worth noting that biogenic 

emissions may contribute to secondary organic aerosol (SOA) in Delhi, but the formation of 

SOA is not represented well by the CBMZ-MOSAIC chemistry-aerosol mechanisms used in 
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this study. However, this weakness is not expected to have a major influence on our pre-

monsoon results; as described above, the difference of organic matter fraction between 330 

simulation and observation (Sharma et al., 2018) in May 2015 is less than 5%. About 10% of 

PM2.5 in Delhi is derived from biomass burning during the simulation period. Crop burning in 

Haryana and Punjab states is a major source of this (Jethva et al., 2018;Cusworth et al., 2018). 

In contrast, there is a negligible contribution from biomass burning to O3. However, there is a 

15-20% contribution to O3 from biogenic emission of VOCs, highlighting that O3 production 335 

in Delhi is strongly VOC-limited.  

3.3 Effect of the Diurnal Variation in Emissions 

In order to investigate the competing influences of meteorology and human activities on 

the diurnal patterns of PM2.5 and O3 over Delhi, we test the effect of removing the diurnal 

variation in anthropogenic emissions (‘noDiurnal’, see Fig. 4c and 4d). Modelled PM2.5 340 

concentrations are very similar to the ‘baseline’ run during daytime when the PBL is well 

developed, with differences of less than 5%. This suggests that meteorological processes such 

as vertical mixing, advection and transport are the dominant factors controlling PM2.5 in the 

daytime. In contrast, freshly emitted pollutants are trapped at night when the PBL is shallow, 

and concentrations are very sensitive to the emission flux, so that the diurnal pattern of 345 

emissions is the dominant factor at night. The PM2.5 concentration is almost doubled in the 

early morning (03:00-09:00 LT, Fig. 4c) when the PBL is shallow and emissions in the 

‘noDiurnal’ case are higher. There is also a large increase in NOx in the early morning (Fig. 

S4), which leads to greater depletion of O3 (Fig. 4d). However, the concentration of O3 is about 

20-25% higher during the ozone peak hour in the afternoon in the ‘noDiurnal’ case, as the 350 

daytime NOx emissions are less (Fig. S4). This sensitivity test also highlights the VOC-limited 

nature of O3 production in Delhi. 
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3.4 Sensitivity Analysis of Pollutants in Delhi  

The importance of each anthropogenic emission sector to pollutant concentrations in Delhi 

is investigated using global sensitivity analysis and indicated by global sensitivity indices (SIs), 355 

as shown in Fig. 5. The sensitivity index is a measure of the contribution of the variation in 

pollutants from one emission sector to the total variation across all four sectors considered here. 

A larger SI indicates a larger influence from the corresponding sector to the modelled average 

surface PM2.5 or O3 over Delhi City Region (marked in Fig. 2) in this study.  

The PM2.5 concentration is most sensitive to emissions from the NCR region surrounding 360 

Delhi, with a sensitivity index higher than 50% most of time (Fig. 5a) and reaching 80-90% 

and ~60% during 03:00-07:00 LT and 12:00-17:00 LT, respectively. During the rush hours in 

the morning and evening, the sensitivity to NCR emissions is lower, while the sensitivity to 

Delhi traffic emissions increases by ~30%. Around 10:00 LT, local traffic emissions and 

emissions from NCR have a similar effect on PM2.5. In contrast, local traffic emissions 365 

dominate the PM2.5 in Delhi around 20:00 LT, with a sensitivity contribution of up to ~80%. 

This is caused by the collapse of the PBL in the evening rush hour at around 20:00 LT which 

enhances the sensitivity to fresh local emissions. Local traffic emissions contribute ~60% of 

primary PM2.5 emission in Delhi (Fig. 6a), which remains concentrated in the PBL during rush 

hours. In contrast, the fully developed PBL in the daytime mixes air down from the free 370 

troposphere (Chen et al., 2016a), where regional transport of pollutants from NCR can be 

important. This could explain the second peak in the sensitivity to NCR emissions (50-60%) 

during the afternoon (Fig. 5a).  

The variation of O3 in Delhi City Region is overwhelmingly dominated by local traffic 

emissions with a sensitivity index higher than 80% at night-time (Fig. 5b), when O3 and traffic 375 

emissions are anti-correlated. Traffic contributes ~75% of total NOx emission in Delhi (Fig. 
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6b), and the shallow PBL during the night traps the NOx. This removes O3 through chemical 

reaction in the absence of solar radiation. As the PBL develops in the morning, the sensitivity 

of O3 to traffic decreases and the sensitivity to NCR emissions increases. The sensitivity to 

NCR emissions reaches its highest point (70%) when the PBL is fully developed around 15:00 380 

LT. As discussed above, the downward mixing of air from the free troposphere and dilution of 

local emissions in the fully developed PBL could be the reason for this. The O3 peak coincides 

with the highest PBL at this time because photolysis and development of the PBL are both 

driven by solar radiation. The development of the PBL increases the contribution from regional 

transport, and precursors emitted from the NCR are one of the dominant contributors to the 385 

peak of O3 in Delhi. NOx, mainly originating from traffic emissions, is underestimated by ~30% 

during the O3 peak period (Fig. S4). This uncertainty can propagate into the Gaussian process 

emulator and could lead to underestimation of the influence of traffic on peak O3, but is not 

expected to change the nature of our conclusion about the predominance of regional transport 

and local traffic emissions. In addition, it is noteworthy that the NOx-rich urban plume from 390 

Delhi has a substantial influence on O3 in downwind regions across the NCR as well, as 

discussed in Text S3.  

3.5 Mitigation Strategies 

To demonstrate a framework for developing better mitigation strategies for addressing 

both PM2.5 and O3 pollution in Delhi, emission-sector based pollutant response surfaces are 395 

generated using Gaussian process emulation (Fig. 7). For local emissions in Delhi, we focus 

mainly on traffic and residential sectors here, because we find that power and industrial 

emissions have a more limited influence on PM2.5 and O3 concentrations in Delhi (Fig. 5). A 

range of different mitigation strategies are analysed, aiming at mitigating PM2.5 pollution whilst 

minimizing the risk of O3 increase.  400 
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We find that the responses of PM2.5 and O3 to each emission sector are nearly linear in 

Delhi. The response surfaces show that reducing local traffic emissions in Delhi leads to an 

efficient decrease in PM2.5 loading (Fig. 7a) but increases O3 greatly (Fig. 7b). Reducing local 

domestic emissions decreases PM2.5 loading less than reducing traffic but without increasing 

O3. The small impact on O3 may be because domestic emissions are not a major source of NOx, 405 

contributing only 15% of that from traffic (Fig. 6). A 10-20% reduction in NOx is expected 

when reduce local domestic emissions by 50%; but a 35-45% reduction is seen for a 50% 

reduction in local traffic emissions (Fig. S7). In addition, VOC is reduced more than NOx when 

controlling domestic emissions, as the VOC/NOx emission ratio (kg/kg) is 1.8 in contrast to a 

ratio of 0.4 for traffic emissions. Greater reduction of VOC suppresses the increase of O3 in 410 

Delhi, which is a VOC-limited environment. A reduction in local traffic emissions alone of 50% 

could decrease Delhi PM2.5 loading by 15-20%, but this would also increase O3 by 20-25%. 

We note that our model may underestimate the influence of traffic emissions on O3 to some 

extent as described above (section 3.4), suggesting that the ozone increase could be stronger 

than we predict. To prevent the side-effect of increasing O3 by controls on traffic emissions, 415 

regional cooperation would be required to reduce emissions in the NCR region surrounding 

Delhi by 25-30%, which also permits a further reduction of PM2.5 by 5-10% (Fig. 7c and 7d). 

This is consistent with a recent study showing that ~60% of PM2.5 in Delhi originates from 

outside (Amann et al., 2017). We test this by performing an additional run with WRF-Chem 

using emission reductions of 50% and 30% for sectors of local traffic and the surrounding NCR 420 

region, respectively. We compare the WRF-Chem results of the additional run and the base 

case (without change of emissions) against the corresponding results from Gaussian process 

emulator (Fig. S8). We find that the PM2.5 and O3 results from the model runs lie within 5% of 

those estimated with the emulator and with R2 higher than 95%, demonstrating the high quality 

of the emulation approach adopted here and underlining its deeper value for identifying 425 
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mitigation approaches. The suggested regional joint mitigation with NCR surrounding Delhi is 

in line with a recent study for mitigating PM2.5 in Beijing, which showed that regional 

coordination over the North China Plain could lead to a reduction in PM2.5 of up to 40% in 

winter (Liu et al., 2016).  

 430 

4. Summary  

Previous studies have shown that emission controls focusing on mitigation of PM2.5 may 

result in substantial increases of surface ozone over urban areas that are in VOC-limited 

photochemical environment. Comprehensive studies of mitigation strategies with respect to 

both PM2.5 and O3 are urgently required, but are limited in India. In this study, we demonstrate 435 

a numerical framework for informing emission-sector based mitigation strategies in Delhi that 

account for multiple pollutants.  

By using Gaussian process emulation with an air quality model (WRF-Chem), we generate 

a computational efficient surrogate model for performing global sensitivity analysis and 

calculating emission-sector based pollutant response surfaces. These enable us to exhaustively 440 

investigate the impacts of different mitigation scenarios on PM2.5 and O3 in Delhi, which help 

decision makers choose better mitigation strategies. Global sensitivity analysis shows that 

pollutants originating from the National Capital Region (NCR) surrounding Delhi and local 

traffic emissions are the major contributors of PM2.5 and O3 in Delhi. They co-dominate the O3 

peak and PM2.5 in Delhi during daytime, while the regional transport governs PM2.5 during the 445 

night, in line with a recent study showing that ~60% of PM2.5 in Delhi originates from outside 

(Amann et al., 2017). Controlling local traffic emissions in Delhi would have the notable side 

effect of increasing O3, at least in the pre-monsoon/summer period (peak O3 season) that we 

consider here. This is in line with recent increases in O3 seen in China (Silver et al., 2018;Li et 
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al., 2018). The Chinese experience suggests that regional joint coordination is required to 450 

effectively mitigate PM2.5 pollution in Beijing (Liu et al., 2016). Our pollutant response 

surfaces go one step further and suggest that joint coordinated emission controls with the NCR 

region surrounding Delhi would be required to not only achieve a more ambitious reduction of 

PM2.5 but also to minimize the risk of O3 increases. In the regional joint coordination, 

residential energy use could be a dominant emission sector over a large region in India 455 

(Conibear et al., 2018).  

 

5. Discussion 

The experiences of developed countries (Dooley, 2002;EPA, 2011) and recently in China 

(Huang et al., 2018a;Wang et al., 2019) show that regional joint coordination can be achieved 460 

by changing energy infrastructure (e.g., replacing fossil fuel by renewable energy and natural 

gas), desulphurisation and denitrification technologies, popularization of new energy vehicles, 

strict control of vehicle exhaust and reducing road and construction dust. Further studies with 

more detailed information on specific emission sectors and strategies for clean-technology 

development and popularization would permit deeper insight into air pollution mitigation 465 

approaches suitable for Delhi. These are needed to address both PM2.5 which has a higher 

impact on public health (e.g., Huang et al., 2018a), and O3 which greatly impacts regional 

ecology and agriculture (e.g., Avnery et al., 2011). A more comprehensive evaluation of the 

health and economic benefits of different mitigation strategies would greatly help Indian 

decision makers, and the framework we have demonstrated here would provide a strong 470 

foundation for this.  
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