
• SuperDARN was built to study high latitude ionospheric convection
• Radio signals are backscattered by magnetic field-aligned ionospheric 

irregularities
• Doppler shift is used to calculate ionospheric convection velocities
• A large dataset (2 min cadence, 2010-2016) allows us to statistically 

study average storm dynamics
• We use the geomagnetic storm list from Walach & Grocott (2019) 

which uses Sym-H to automatically identify 54 geomagnetic storms 
and their storm phases

• The median durations are:
o Initial phase: 9.8 hours
o Main phase: 4.5 hours
o Recovery phase: 27.9 hours

• We perform a superposed epoch analysis on the SuperDARN data, 
normalised to the median storm phase durations, to make average 
maps of ionospheric convection (at a 2-minute cadence)

• We perform a principal component analysis on the resulting 
ionospheric electric field to extract and quantify dominant 
morphologies without bias
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Motivation
• SuperDARN’s addition of mid-latitude radars allows us to study the 

high-latitude ionospheric electric field with improved coverage
• We are building a model of improved ionospheric electric field 

dynamics, which will include time-variability:

Need to know average storm dynamics to build improved models

Method
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SuperDARN* coverage, 
Jan. 2018:

Figure from vt.superdarn.org

SuperDARN network:

1. Dayside convection throat rotates towards afternoon 
sector before main phase

2. Then electric potential increases and dayside throat 
rotates back towards noon

3. Average large-scale morphological changes in the 
electric field during storms happen on dayside
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• Each original electric potential map (ɸt) can be expressed (or 
reconstructed) in terms of eigenvectors of the covariance matrix of 
ɸ(Xi) and their eigenvalues (αi), where:

(1)

(2)

• We use the Householder method for eigen-decomposition to achieve 
this (e.g. Press et al. 2007)

• We scale each average storm map to 40° magnetic colatitude and use 
a 2°×2° resolution for the electrostatic potential

• This gives use 4500 eigenvectors and values, which describe the 
storm-time dynamics

Eigenvectors:
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Geomagnetic storms
• A geomagnetic storm is an enhancement of the ring current (e.g. Gonzalez+ 1994) 

• We can measure this enhancement using magnetometers & magnetic indices at 
mid-latitudes (see also Ampère’s Law) 

• We use this to study geomagnetic storms during the most recent solar cycle 
(2010-2016) using method from Hutchinson+ 2011 to identify storms  
☞ see Walach & Grocott, JGR, 2019Milan+ 2017 Example geomagnetic storm:

Geomagnetic storms event list is openly available to 
download as part of Supporting Information to 
Walach & Grocott, 2019 in JGR: Space Physics

Example average SuperDARN maps (normalised by storm phase duration):

Main conclusions:
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A quantitative assessment:  
Pattern recognition with Principal Component Analysis
• Use electrostatic potentials from maps on normalised time scale 

• Scale each map to 40 degrees colatitude (expansions & contractions of pattern are given by the fitted 
Heppner-Maynard boundary (Heppner & Maynard, 1987)) 

•  Subtract mean from each map 

• Perform a principal component analysis on the dataset: 
 
Each original map (Φt) can be expressed (or reconstructed) in terms of eigenvectors of the covariance matrix of 
Φ (Xi) and their eigenvalues (αi): 
where  

• Use Householder method of eigen-decomposition (Press et al., 2007) to achieve this 

αi = Φt ⋅ Xi Φt =
m

∑
i=1

αiXi
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Explained variance [%]:
95 %

90 %

80 %

i = 8

Curve converges fast, which means not many eigenvectors & 
eigenvalues are needed to explain the majority of morphologies

Eigenvalues:
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• Most variability is on the 
dayside

• Clear increase of α1 
throughout main phase, 
followed by a decrease: 
Ionospheric electric 
potential increases 
throughout main phase and 
the decreases as soon as 
recovery phase starts

• α3 increases towards start of 
main phase and then clearly 
decreases throughout main 
phase: 
Dayside convection throat 
rotates towards afternoon 
sector before main phase 
and then as potential 
increases, dayside throat 
rotates back towards noon 

• Two-cell convection pattern is dominant
• X1 provides increase/decrease in two-cell potential
• X2 provides a way to add asymmetry
• X3+ provide rotation of the dayside convection throat & 

rotation of overall pattern


