Main conclusions:

1. Dayside convection throat rotates towards afternoon sector before main phase

2. Then electric potential increases and dayside throat rotates back towards noon

3. Average large-scale morphological changes in the electric field during storms happen on dayside

Average Ionospheric Electric Field Morphologies during Geomagnetic Storm Phases

Maria-Theresa Walach, A. Grocott, S.E. Milan

Motivation
• SuperDARN was built to study high-latitude ionospheric convection
• Radio signals are back-scattered by moving ionised particles (extrinsic)
• SuperDARN is used to calculate convection velocities

Method
• Extract and quantify dominant morphologies (patterns) from each dataset
• Use a quantitative assessment
• Use principal component analysis to build improved model

Principal Component Analysis
• Each original dataset maps X_i can be expressed as (reconstructed) in terms of eigenvectors of the covariance matrix of X_i and their eigenvalues σ_i:

\[\sigma_i = \Phi_i \cdot X_i \] (1)

\[\Phi_i = \sum_{i=1}^{n} \sigma_i \] (2)

• We use the Householder method and Householder's method to achieve this (see Press et al. 2007)
• We scale each storm phase duration to the SuperDARN data period
• We perform a superposed epoch analysis (see also Ampère's Law) on normalised time scale $o(m)$
• We use the principal component analysis to extract and quantify dominant morphologies from each day

Eigenvectors:

• σ_1 is the electric potential increases throughout main phase and decreases as soon as recovery phase starts
• σ_2 is the dayside convection pattern

Eigenvectors:

• Most variability is on the dayside

SuperDARN* coverage, Jan. 2016

Super Dual Auroral Radar Network (SuperDARN) is a collection of radars funded by national scientific funding agencies of Australia, Canada, China, France, Japan, South Africa, United Kingdom, and United States of America, and we thank the international PI team for providing the data.

SuperDARN network:

SuperDARN's mid-latitude (SuperDARN) maps (normalised by storm phase duration)

Example average SuperDARN maps (normalised by storm phase duration):

Example geometric storm:

Geometric storm event list (is available to download in part of supporting information to Walach & Grocott, 2019 in JGR: Space Physics)

m.walach@lancaster.ac.uk

Funded by NERC #NE/P001556/1