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Abstract

Detecting a point in a data sequence where the behaviour alters abruptly, otherwise

known as a changepoint, has been an active area of interest for decades. More recently,

with the advent of the data intensive era, the need for automated and computationally

efficient changepoint methods has grown. We here introduce several new techniques

for doing this which address many of the issues inherent in detecting changes in a

streaming setting. In short, these new methods, which may be viewed as non-trivial

extensions of existing classical procedures, are intended to be as useful in as wide a

set of situations as possible, while retaining important theoretical guarantees and ease

of implementation.

The first novel contribution concerns two methods for parallelising existing

dynamic programming based approaches to changepoint detection in the single

variate setting. We demonstrate that these methods can result in near quadratic

computational gains, while retaining important theoretical guarantees.

Our next area of focus is the multivariate setting. We introduce two new methods

for data intensive scenarios with a fixed, but possibly large, number of dimensions.

The first of these is an offline method which detects one change at a time using a

new test statistic. We demonstrate that this test statistic has competitive power in a

variety of possible settings for a given changepoint, while allowing the method to be

versatile across a range of possible modelling assumptions.

The other method we introduce for multivariate data is also suitable in the

streaming setting. In addition, it is able to relax many standard modelling

assumptions. We discuss the empirical properties of the procedure, especially insofar

as they relate to a desired false alarm error rate.
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Chapter 1

Introduction

We live in an increasingly data-rich environment. With each year, the number

of sensors monitoring a myriad of the minutiae of daily life multiplies. Indeed,

the amount of data collected in 2017 and 2018 was nine times the total amount

of data collected across recorded history up to and including 2016 (Petrov, 2019).

While this fast-changing world affords countless opportunities for improvement and

innovation, the practicalities of appropriately handling “Big Data” in a timely fashion

are becoming ever more challenging.

One such challenge is to ensure that data can be appropriately inspected, features

identified and necessary responses enacted - if required - in an unsupervised fashion,

given that, for many systems, the scale of the data space entirely precludes human

monitoring. The number of possible features of interest is vast; we herein focus on

changepoints: points in a data series where some aspect of the system alters abruptly,

if potentially subtly.

The benefits of quickly locating changepoints within data intensive settings are

self-evident in numerous contexts from health to the environment to the stock market

(see, for example, Chandola et al. (2013), Manogaran and Lopez (2018) and Gu et al.

(2013) respectively).

One example application is the monitoring of changepoints in telecommunications

data. As reported by, for example, Khomami (2016), in early February 2016 a

major outage of the broadband network occurred across much of the UK. It later

1
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transpired that this was due to a fault within one of the main core router units,

which subsequently degraded the network to the extent experienced (Jackson, 2016).

Figure 1.1 below displays the basic structure for a broadband network for a single

gateway router. In broad terms, if a core or gateway router fails, then the effect

on the network at large can be felt by the access layer, usually comprised of Edge

Routers. A resultant ramification is then experienced by the computing servers of

individual customers.

Internet

Gateway Router

Core Layer

Aggregation Layer

Access Layer

Computing Servers

Figure 1.1: Basic topology of the broadband network for a single gateway router. Note that the

routers within the access layer are usually referred to as Edge Routers. This image was inspired by

a similar image from Fiandrino (2014).

British Telecommunications Ltd (BT) collects an extensive amount of information

from each Edge Router at one-minute intervals. Every Edge Router is comprised of

a number of shelves, while each shelf contains a number of ports. For each of these

ports, a measurement is taken in a number of metrics. Even for a single Edge Router,

this can lead to thousands of variates to analyse. Therefore, given the high sampling

rate, subtle shifts in network performance can easily be missed, as indeed happened

in early 2016, leading to a greater chance of a later, and more costly, failure.

On the other hand, there is also the potential for ‘small-scale’ changes occurring in

a single shelf or port of an Edge Router, leading to a much more localised outage. In
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such a situation, it is important for BT to be as ‘targeted’ as possible when reporting

on a change in order to be suitably efficient with engineering resources. We discuss

the dichotomy between localised and global changes further in Chapters 2 and 4.

Other authors have explored the challenge of finding changes within Edge Router

data. For example, Rajaduray et al. (2004) examine the problem of handling highly

non-smooth demand on an Edge Router by reacting with an ‘Optimal Burst Switching’

technique. More recently, Jutila (2016) investigated the idea of using changes in

quality-of-service to trigger the implementation of ‘adaptive edge computing solutions’

in an Internet of Things context; while these and other technology-focused solutions

are interesting and useful, it is the ability of the system to be reactive only when

required in a data intensive setting that is the fundamental issue at hand. We therefore

herein present novel algorithmic, computational and theoretical contributions to the

changepoint detection problem in such settings which may be described as data

intensive. This could either be because we are receiving data in an online fashion

(i.e. a data stream), or else have a high-dimensional series, or simply need to analyse

a (long) sequence of data as efficiently as possible.

In Chapter 2, we formally introduce the changepoint problem and give a summary

of the current literature in multiple inference settings, with particular focus on online

detection and change detection in multiple dimensions.

In Chapter 3, we consider the challenge of changepoint detection in the classical

univariate, offline setting. In recent years, various means of efficiently detecting

changepoints in such a setting have been proposed, with one popular approach

involving minimising a penalised cost function using dynamic programming. In

some situations, these algorithms can have an expected computational cost that is

linear in the number of data points; however, the worst-case cost remains quadratic.

We introduce two means of improving the computational performance of these

methods by parallelising the dynamic programming approach. We establish that

parallelisation can give substantial computational improvements: in some situations,

the computational cost decreases roughly quadratically in the number of cores used.

These parallel implementations are no longer guaranteed to find the true minimum of
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the penalised cost. However, we show that they retain the same asymptotic guarantees

in terms of their accuracy in estimating the number and location of the changes.

In Chapter 4, we extend the discussion to multiple dimensions in the offline setting.

Detecting changepoints in datasets with many variates is a challenge of increasing

importance. While several methods which are applicable in this domain have been

introduced, the issue of timely and accurate location of changes remains, particularly

if information on which variates are affected by the change is desired. In this chapter,

we propose a method with these properties: SUBSET - a model-based approach

which uses the penalised likelihood to detect changes for a wide class of parametric

settings. We derive suitable values for the penalties using the Gaussian change in

mean setting. Further, we demonstrate that, under these penalties, SUBSET provides

theoretical power in detecting changepoints which can affect few or many of the

variates. We also show that the method performs well empirically, even when the

data are non-Gaussian. In addition, we demonstrate SUBSET’s utility by considering

count data on the number of terrorist incidents worldwide since the beginning of the

1970s.

In Chapter 5, we introduce a new method designed for the online, multivariate

setting, which can be applied with very few parametric assumptions. Identifying

changepoints across many variates while the data stream is still being observed is a

challenging problem, but has a vast number of potential applications. Several methods

for handling this problem have been proposed in recent years, however many of these

make restrictive assumptions on the data generating processes of the stream. In

addition, other methods generally require a great deal of tuning for specific problems,

meaning limited versatility across multiple possible streams. We here introduce a new

nonparametric method, OMEN, for which few assumptions on the data generating

processes are required. Importantly, OMEN requires one value as an input, for which

a sensible value can be found with minimal understanding of the stream. We show

that OMEN has a good theoretical false alarm error rate, and exhibit this empirically.

In addition, our synthetic examples show that OMEN has a competitive detection

ability for even relatively ‘difficult’ types of change. The applicability of OMEN is
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demonstrated on hourly records of wind speeds for various cities in Canada and Israel.

We conclude in Chapter 6, with a discussion of some potential avenues for future

research. Additional materials may be found in the appendices. Appendix A provides

proofs for some of the theoretical results given in Chapter 3, as well as further

discussion of the parallelisation methods from a finite-sample perspective. The latter

is conducted in the context of a second simulation study involving an increasing

number of changepoints. Appendix B provides proofs for the theoretical results given

in Chapter 4, as well as further empirical results on the use of SUBSET in simulated

and real data settings. Appendix C gives a theoretical result on the false alarm error

rate of OMEN. In addition, we provide further simulations to discuss a particular

choice made in implementing the procedure, and conclude by showing the application

of OMEN to another real data example.



Chapter 2

An Overview of Changepoint

Detection

In this chapter, we discuss recent advances in the changepoint problem in order to

place our new detection procedures into context, analysing the current state of the art

while also discussing the precise issues which we return to in the chapters to follow.

Much historic work has focused on data which has been received in its entirety in

advance of any inference, otherwise known as the offline setting. We therefore devote

Section 2.1 to surveying well-established approaches to change detection for such data

in the univariate case. In Section 2.2, we discuss how these have been extended to the

offline setting under multiple variables, an area of increasing interest. Practically,

the main issue when detecting changepoints in this setting has been striking an

appropriate balance between computational feasibility and statistical power, and we

explore this problem further. This issue is also a concern in the online setting. In

this setting, given estimates for changepoints are required ‘as fast as possible’ - in

particular, before we have collected all of the data. Therefore, keeping the number of

false alarms as low as possible, while maintaining a useful true detection probability,

is very important. We discuss existing approaches to the online changepoint detection

problem in Section 2.3 for both univariate and multivariate data. We conclude with

a general discussion in Section 2.4.

For the pertinent sections relating to each subsequent chapter, note that Chapter 3

6
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concerns the offline detection of changepoints in the univariate setting by parallelising

a common model-based approach. We discuss common model-based methods for

changepoint detection in Section 2.1.2, where we also introduce the general framework

in which our parallelisation methods operate.

Chapter 4 introduces a new offline method for detecting changepoints in the

multivariate setting. To do this, the method computes a test statistic to find

a single changepoint, before embedding this within one of a class of existing

methods for detecting multiple changepoints given a test statistic for a single change.

Methods which follow a similar strategy for the univariate setting are discussed in

Section 2.1.1. Methods which are of this type in the multivariate setting are discussed

in Section 2.2.1. One important contribution our new method of Chapter 4 makes

is that it has competitive statistical power both for settings in which very few of

the variates are affected by a changepoint, as well as in situations where most of the

variates are affected. The problem of balancing power between these two settings

is discussed in more detail at the beginning of Section 2.2. Note that the test

statistic we use to detect a single change in Chapter 4 arises from considering a

model-based approach in the multivariate setting under a single changepoint. We

therefore briefly discuss the extension of model-based methods to the multivariate

setting in Section 2.2.2.

Chapter 5 introduces a new online, nonparametric method for detecting

changepoints in the multivariate setting. Our new method uses a ‘memory window’

in which we impose a two-stage test statistic for the presence of a changepoint. In

Section 2.3.1, we compare this methodology with other established approaches which

use a rolling test statistic to find changes in the univariate setting. We use Section 2.3.2

to give an indication of the current sparsity of the literature in the online location of

changes in a multivariate setting.
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2.1 Classical Univariate Changepoint Techniques

In this section, we present two classes of procedure for locating a changepoint in

a univariate data sequence, and discuss the relative merits of each. The section

concludes with a review of other recently proposed methods that do not readily fall

into either of the classes described.

We first present the problem which the methods of this section seek to resolve.

Let y1:n = (y1, . . . , yn) ∈ Rn be a data sequence. Suppose that there are m < n

changepoints in the system occurring at time points 0 = τ0 < τ1 < τ2 < . . . < τm <

τm+1 = n with (τ1, . . . , τm) ∈ Nm, such that

yj ∼ Gk for τk−1 + 1 ≤ j ≤ τk for k ∈ {1, . . . ,m+ 1}. (2.1.1)

Here G1, . . . , Gm+1 are a sequence of data-generating processes such that Gk � Gk+1

for k ∈ {1, . . . ,m}. Of particular interest in the literature is the setting where these

data-generating processes come from the same family of distributions and differ only

in terms of some set of parameters. Examples of such parameters include the mean

(Gupta and Chen, 1996; Lebarbier, 2005; Srivastava and Worsley, 1986; Wang et al.,

2007), variance (Inclan, 1993; Tsay, 1988; Whitcher et al., 2000; Wichern et al., 1976),

and event rate, among others. In these instances, (2.1.1) becomes

yj ∼ g (.|µk) for τk−1 + 1 ≤ j ≤ τk for k ∈ {1, . . . ,m+ 1} (2.1.2)

where g(.|.) is some pre-specified family of densities, and µ1, . . . ,µm+1 are a sequence

of latent parameter vectors with ||µk − µk+1||0 > 0 for k ∈ {1, . . . ,m}. Note that

for problem (2.1.2), we typically additionally assume that the data are conditionally

independent given these latent parameter vectors. For most of this chapter, our focus

shall be on problem (2.1.2) rather than the more general (2.1.1). However, we shall

maintain a commentary on techniques suitable for the nonparametric setting, where

appropriate.

Given either (2.1.1) or (2.1.2), one seemingly intuitive solution is to define a

suitable test statistic, or score, for a given segmentation, enumerate all possible

sets of changepoints in the sequence, and compare all score values. Practically,
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however, this approach is computationally prohibitive, with 2n−1 possible models

when m is unknown, and
(
n−1
m

)
when m is known. Therefore, several existing methods

circumvent this problem by detecting multiple changepoints one at a time. Broadly

speaking, there are two popular ways of doing this. The first of these concerns the

construction of a test statistic which can be used to search the data for the presence

of a single changepoint. Such methods individually are referred to as At Most One

Changepoint (AMOC) approaches. Multiple changepoints are then subsequently

found by considering points before and after an estimated changepoint separately,

recursively seeking further changepoints in each sub-region. The second class of

methods uses a model-based approach. These typically include a ‘pass’ through

the data using recursive updates, considering the likely history of the sequence to

determine whether the current location may be labelled as a candidate changepoint.

In the below, we review pertinent literature associated with both approaches.

2.1.1 AMOC Approaches and Extensions to the Detection of

Multiple Changes

AMOC Detection

One of the most established approaches to detecting changes in the AMOC setting

has been to define a suitable test statistic, T (t; y1:n), for placing a changepoint at

time 1 ≤ t ≤ n − 1. We can then test, against a null hypothesis of no change, for

the presence of a change, by finding maxt T (t; y1:n) and comparing this to a suitable

threshold value, say ξ(n).

Perhaps the most common changepoint problem is detecting changes in mean. For

this setting, a natural choice of T (.; .) is the CUSUM statistic, defined as

T (t; y1:n) =

√
t (n− t)

n

∣∣∣∣∣ 1

n− t

(
n∑

j=t+1

yj

)
− 1

t

(
t∑

j=1

yj

)∣∣∣∣∣ . (2.1.3)

This has been used since at least Hinkley (1971) for the change in mean problem

under Gaussian noise, building on a similar procedure of Page (1954). More recently,

the CUSUM test statistic has been used by a variety of authors (Kass-Hout et al.,
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2012; Kulkarni et al., 2015; Pranuthi et al., 2014; Tartakovsky et al., 2013) in contexts

as diverse as detecting linguistic change to cybersecurity to flu epidemic modelling.

This popularity is partially due to the well-established theory attached to the CUSUM

statistic, with classical results from Lee et al. (2006), Lee et al. (2004) and Ploberger

and Krämer (1992), among others. These results demonstrate that, in the null setting,

the set of CUSUM statistics for 1 ≤ t ≤ n − 1 follows a Brownian bridge. This

fact enables the setting of a penalty to give a worst-case probability of a Type I

error. However, it should be noted that, in practice, such penalties are often much

too conservative. Indeed, some authors, such as Gallagher et al. (2013), instead set

penalties based on simulations from the appropriate null model.

Note that the CUSUM test statistic for a change at a specific location is equivalent

to performing a likelihood ratio test for a change in mean at that location under

a model with i.i.d. Gaussian noise with known variance. Hence, the CUSUM

typically has high power in situations where the noise is i.i.d. Gaussian, or else

well approximated by i.i.d. Gaussians. However, in other situations, such as highly

correlated or heavy-tailed noise, the CUSUM statistic loses power compared to test

statistics which make more appropriate modelling assumptions. Nevertheless, over

the years the CUSUM statistic has been adapted to other settings. Inclán and

Tiao (1994) introduce a normalised CUSUM statistic for the change in variance

problem. Csörgő and Horváth (1988) discuss a scaled version of the CUSUM statistic

in the nonparametric i.i.d. setting. Robbins et al. (2011) introduce an appropriately

adjusted CUSUM for correlated data. We discuss some additional extensions to the

multivariate setting in Section 2.2 and Chapter 4.

A closely-related alternative to the CUSUM is the Worsley likelihood ratio test

(Worsley, 1979), also for the Gaussian change in mean problem, given by

T (t; y1:n) =
(n− 2)

1
2 V

(1− V 2)
1
2

, (2.1.4)

where
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V = max
1≤t≤n−1

√
t(n−t)
n

∣∣∣1t (∑t
j=1 yj

)
− 1

n−t

(∑n
j=t+1 yj

)∣∣∣√∑n
j=1

(
yj − 1

n

∑n
i=1 yi

)2
. (2.1.5)

This particular test statistic has been used by Pranuthi et al. (2014) and Shen (2016),

among others. Note that the Worsley likelihood ratio test is equivalent to the CUSUM

statistic scaled by an estimate of the variance. Therefore, unlike with the classical

CUSUM given in (2.1.3), we do not require that the variance be known a priori.

However, like the CUSUM, it will lose power outside of situations in which the noise

is approximately i.i.d. Gaussian.

There has also been some success in recent years at deriving test statistics based

on a “windowed-CUSUM” type approach. This has the advantage of just examining

a test statistic within a small interval of the data. This mitigates the problem of

there being potentially several changes within the sequence, which could corrupt

the test statistic and cause a false negative result. A prominent example of a

windowed approach is a procedure based on MOSUM statistics for which a bandwidth

parameter is required (Hušková and Slabý, 2001; Eichinger and Kirch, 2018). While

this method has been shown to be consistent and efficient, in practice the selection

of this bandwidth parameter is extremely important. If it is too large, then multiple

changes can be present in the window, and the main advantage over CUSUM is lost.

If it is too small in relation to n, then the test statistic does not converge as desired

in the null setting.

The final two choices of test statistic, T (.; .), we mention here are the Mood and

Mann-Whitney U test statistics. These two classical nonparametric tests for the

presence of a changepoint are based on a computation of the ranks (r (yj))
n
j=1, where

r (yj) =
∑

i 6=j 1 {xi ≤ xj}. In particular, T (., .) is given as

T (t; y1:n) =
t∑
i=1

(
r (yi)−

n+ 1

2

)2

, (2.1.6)

and



CHAPTER 2. AN OVERVIEW OF CHANGEPOINT DETECTION 12

T (t; y1:n) =
t∑
i=1

r (yi)−
t(t+ 1)

2
, (2.1.7)

for the Mood and Mann-Whitney U tests respectively; see, for example, Ross et al.

(2011) for further discussion. Note that as ranking the data points is equivalent to

sorting, the complexity of computing the Mood and Mann-Whitney test statistics is

O (n log n) in the worst case. This contrasts with the computation of the statistics

in the CUSUM procedure, which is linear in n. However, these test statistics are

invariant to monotone transformations of the data, meaning that they are robust to

distributional assumptions.

Extending to Multiple Changes

In the previous section, we reviewed AMOC-based approaches. We now turn

our focus to the setting of multiple changepoints. Following the computation of

Tn = maxt T (t; y1:n), we check if Tn > ξ (n), where ξ(.) is a threshold chosen based

on asymptotic null behaviour of the test statistic, or through simulation from the null

setting to achieve a desired Type I error. If ξ(n) is exceeded, then a changepoint

is placed at arg maxt T (t; y1:n). To locate potential further changepoints, a form of

Binary Segmentation is then typically used. Binary Segmentation as a method for

dividing time series into segments dates back to at least Scott and Knott (1974),

who were in turn building on similar ideas from Edwards and Cavalli-Sforza (1965).

For the changepoint detection problem in the classical univariate setting, Binary

Segmentation proceeds as follows. To begin with, for a general test statistic T (.; .),

a changepoint is estimated at τ̂(1) = arg maxt T (t; y1:n). Then, the sequence is

segmented into two separate sequences, y1:τ̂(1) and y(τ̂(1)+1):n. The process is then

repeated, with maxt T
(
t; y1:τ̂(1)

)
and maxt T

(
t; y(τ̂(1)+1):n

)
compared to ξ

(
τ̂(1)

)
and

ξ
(
n− τ̂(1)

)
respectively. This continues iteratively, such that if ξ (.) is not exceeded

for a particular subset of the sequence, it is concluded that no changepoints are present

in this region. The region is then removed from further consideration.

Binary Segmentation, usually using the CUSUM test statistic, has been a

popular multiple changepoint detection method for many years, largely due to its
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computational efficiency and ease of implementation. Examples of its use include

Hernandez-Lopez and Rivera (2014), Mahmoud et al. (2007), Yang (2004) and

Zdansky (2006), where it is implemented in a wide range of practical contexts

from video surveillance to NASA wind tunnel experiments to detecting periods of

‘good form’ within sports. Moreover, various theoretical results can be established

for the Binary Segmentation procedure in the change in mean setting. For

example, Venkatraman (1992) states that, under the assumptions that the number of

changepoints remains fixed and that the changepoints are spaced apart by a minimum

distance of O
(
n7/8

)
, the correct change locations will be found in probability as

n → ∞ with error at most O
(
n3/4

)
. Given that this error is o(n), we can refer

to Binary Segmentation in this setting as asymptotically consistent from an infill

perspective. That is, if the changepoints are placed at fixed ‘proportions’ in the

sequence, say θ1, . . . , θm such that bθinc = τi for i ∈ {1, . . . ,m}, then as n → ∞,

these change proportions will be correctly estimated.

The theoretical properties of Binary Segmentation, and variant methods, are still

a significant area of interest, with recent literature such as Chen et al. (2011), Cho and

Fryzlewicz (2012) and Fryzlewicz (2014) improving upon the results of Venkatraman

(1992). However, despite the good theoretical performance of the method, Binary

Segmentation has some notable drawbacks. Most significantly, there is the issue of

masking (Padmore, 1992). Masking is defined as those situations where the presence

of multiple changepoints causes the test to fail to detect at least one change. This is

especially problematic in a sequence with many changepoints, as not only is masking

much more likely, but multiple tests for changes across relatively short segments

increases the chance of overfitting. We illustrate the problems of overfitting and

masking in a simple example in Figure 2.1. This was created with the aid of the

changepoint package of Killick et al. (2016), using the default arguments (with

penalty=’’BIC’’) for Binary Segmentation, with the maximum possible number of

changepoint estimates set to 25. As can be seen from Figure 2.1, Binary Segmentation

fails to detect three true changepoints whose effects cancel one another out, at

t = 200, 220 and 240.
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As a result of these problems, several authors have suggested variations to the

Binary Segmentation approach. A well-known example of such an alternative is

Wild Binary Segmentation (Fryzlewicz, 2014), which greatly reduces the problem

of masking by uniformly drawing M intervals (where M is large) of the data sequence

and performing the tests solely across the intervals in question. The central idea

underpinning this approach is that, for sufficiently large M , the probability that there

is an interval containing exactly one changepoint is high. One common criticism of the

method is that the recommended default setting of M is often taken to be very large.

This means that the method can be computationally cumbersome. In addition, it can

lead to more false positives due to testing across many different intervals. In practice,

the latter issue can be overcome by increasing the penalty appropriately. Meanwhile,

the computational drawbacks were addressed in a recent article by the same author

(Fryzlewicz, 2019), in which a similar method, referred to as WBS2, was introduced.

It is broadly this segmentation procedure which we use to search for multiple changes

in our novel method in Chapter 4. We illustrate the use of Wild Binary Segmentation

on the same example as for Binary Segmentation in Figure 2.1. This plot was created

with the aid of the wbs package of Baranowski and Fryzlewicz (2015), with the default

parameters used. Note that the performance of Wild Binary Segmentation is improved

over Binary Segmentation, however one change is still missed, at t = 200.

Another popular alternative to Binary Segmentation is Circular Binary

Segmentation (Olshen et al., 2004; Venkatraman and Olshen, 2007), which

simultaneously tests for persistent and epidemic changes. Note that the latter is

defined as a change from a ‘regular’ regime to an ‘irregular’ regime and back again.

Circular Binary Segmentation is most typically applied in the context of genomic data

(Cheng et al., 2015; Verhaak et al., 2010; Zack et al., 2013). However, the issue of

simultaneously testing the length and location of the abnormal interval reduces the

efficiency of the method in general.

Work on finding further alternatives to Binary Segmentation continues, with

very recent additions to the literature. See, for an additional example, the

Narrowest-Over-Threshold approach of Baranowski et al. (2018). This indicates that
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the popularity of Binary Segmentation methods, both directly in the changepoint

literature and beyond, is likely to continue.

In the next section, we turn to consider another class of changepoint detection

methods which do not require Binary Segmentation or alternatives to search for

multiple changes. Informally, instead of searching for a changepoint that maximises

some test statistic, these model-based methods search for changepoint candidates

based on an observed history of the sequence.

2.1.2 Model-based Changepoint Detection with Recursive

Updates

In the previous section, we examined changepoint detection methods which maximised

some single test statistic and subsequently used Binary Segmentation to search for

multiple changes. While Binary Segmentation can be very fast, the approach has the

potential to incorrectly assign or miss changepoints, particularly if n is not sufficiently

large or there are extremely short segments in the data. We therefore now turn to

consider a second broad class of changepoint detection procedures for which interest

lies in detecting each changepoint based on ‘one pass’ through the data sequence.

Formally, the general setup involves the use of a model for the sequence, which we

then recursively update with each successive point in the pass. Some post-processing

is then typically required to find the location of the changepoints based on optimally

resolving the model.

Cost Function Approaches

Many popular model-based methods involve the use of a penalised cost function. In

such a formulation of the problem, which typically assumes that each of the data

generating mechanisms from (2.1.1) or (2.1.2) are stationary, we require a segment

cost function, C
(
y(i+1):j

)
. This measures how well we can fit data y(i+1):j without

requiring a changepoint. A typical construction involves modelling the data within a

segment and basing the cost function on the negative of the maximum log-likelihood
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for the chosen model.

Additionally, a means of penalising the presence of changepoints is needed to

avoid overfitting. The usual approach involves defining a single penalty value, β. This

leads, for a choice of the number of changepoints, m̂, and the corresponding change

locations, τ̂1, . . . , τ̂m̂, to the general global cost function

C (m̂, τ̂1, . . . , τ̂m̂|C(.), f(.), β) =
m̂+1∑
i=1

C
(
y(τ̂i−1+1):τ̂i

)
+ βf(m̂), (2.1.8)

such that τ̂0 = 0 and τ̂m̂+1 = n, for some increasing function f(.) and some

appropriately chosen C(.) and β. We typically take f(m̂) = m̂, so that (2.1.8) becomes,

up to one β term

C (m̂, τ̂1, . . . , τ̂m̂|C(.), β) =
m̂+1∑
i=1

[
C
(
y(τ̂i−1+1):τ̂i

)
+ β

]
. (2.1.9)

The challenge, given C (.) and β, is then to find m̂ and τ̂1, . . . , τ̂m̂ such that (2.1.9)

is minimised. Before introducing existing methods which do this, we discuss several

typical choices for the penalty function f(m̂), the segment cost function C(.), and the

penalty β.

Cost Function Approaches: Choice of f(m̂)

As stated above, f(m̂) = m̂ is by far the most common penalty function selected

within the changepoint literature. After this section, we assume that the total penalty

increases by some fixed β on the detection of each new changepoint. However, this

choice is by no means universal. Indeed, in the Gaussian change in mean setting (with

variance σ2), there are some alternatives which have received increasing interest in

recent years. For example, several authors have suggested penalties of the form

βf(m̂) =
m̂

n
σ2
(
c1 log

( n
m̂

)
+ c2

)
, (2.1.10)

with Lebarbier (2005) recommending simulation to set the constants c1 and c2, so that

the model selection realises the minimax of an appropriate risk ratio. Indeed, many

of the non-linear penalty functions arise from more general model selection problems.
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For instance, Massart (2004) suggests the penalty form given by (2.1.10), in addition

to several others, in the wider context of non-asymptotic model selection. However,

the tuning required for many of these penalties, as for (2.1.10), remains a disadvantage

in a changepoint context, as does the typical requirement that the problem is a change

in mean under Gaussian noise.

Other recent work has focused on the application of penalties used within the

regression analysis literature. (Note that we discuss further the contemporary place

of changepoint detection with varying-coefficient models, including regression models,

in Section 2.4.1.) Most notably, Harchaoui and Lévy-Leduc (2010) remark on the

similarity between detection of changes in mean under Gaussian noise and the

Least Absolute Shrinkage Selection Operator (LASSO) of Tibshirani (1996). They

demonstrate that when a total penalty is taken which is proportional to the sum of

the absolute differences between the estimated means between consecutive segments,

then the problems become equivalent (assuming that we have chosen to minimise

squared error loss - see the next section for more information). Several others, such

as Tibshirani and Wang (2008), have examined similar total variation penalties for

changepoint detection, with other penalties from regression analysis such as SCAD

(Fan and Li, 2001), itself a function of the total variation, being applied. However, as

some recent authors, such as Ng et al. (2018), have noted, such penalties have difficulty

in detecting the true number of changepoints. They suggest an alternative penalty

based on the bridge penalty of Frank and Friedman (1993) and Fu (1998). Using this

penalty does give a greater guarantee of consistency than the other regression-based

penalties we have discussed, although the authors note that this is subject to the

number of changepoints not increasing ‘too fast’ as the length of the sequence grows.

Cost Function Approaches: Choice of Segment Cost Function

As previously stated, a very common choice for the segment cost function is based on

the negative of the maximum log-likelihood for a particular model of the data. For

example, if data within a segment are assumed to be i.i.d. from a family of models

with density f(y|µ), then C(y(i+1):j) = −2 maxµ
∑j

k=i+1 log f(yk|µ) is a natural choice;
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see Eckley et al. (2011), Hawkins (2001) and others.

Alternatively, for a given type of change, we can use generic loss functions. For

instance, in the change in mean setting we can take

C(y(i+1):j) = min
µ

j∑
k=i+1

l(yk − µ), (2.1.11)

where a common choice for the loss function, l(.), is squared error loss. One criticism

with using squared error loss for the change in mean problem is that a typical

procedure which minimises the global cost function may not then be robust to the

presence of outliers. In addition, if a chosen likelihood model has heavy tails (where

in practice this can just mean not sub-Gaussian), setting the penalty value to avoid

overfitting while maintaining power becomes much more challenging. To mitigate

the former issue somewhat, it is relatively common practice (Bai, 1995, 1998; Huber,

2011; Hušková, 2013) to use absolute error loss in place of residual sum of squares.

Other robust choices include Huber loss and biweight loss (Huber, 2011; Fearnhead

and Rigaill, 2019), which are defined as

C
(
y(i+1):j

)
=

j∑
k=i+1


(
yk − µ̂(y(i+1):j)

)2
if
∣∣yk − µ̂(y(i+1):j)

∣∣ < K

K
∣∣yk − µ̂(y(i+1):j)

∣∣−K2 otherwise,

(2.1.12)

and

C
(
y(i+1):j

)
=

j∑
k=i+1


(
yk − µ̂(y(i+1):j)

)2
if
∣∣yk − µ̂(y(i+1):j)

∣∣ < K

K2 otherwise,

(2.1.13)

respectively. Here, K is a suitably chosen value and µ̂(y(i+1):j) is an estimate for the

segment parameter which minimises the segment cost function.

Many other popular current choices of cost function are detailed in Truong et al.

(2019) and references therein. We make mention of two of these here. The first is

based on the empirical cumulative distribution function, and is therefore naturally

equipped to deal with change detection in the nonparametric setting

C
(
y(i+1):j

)
= −(j − i)

ω∑
z=1

F̂(i+1):j(z) log F̂(i+1):j(z) + (1− F̂(i+1):j(z)) log(1− F̂(i+1):j(z))

(z − 0.5)(ω − z + 0.5)
. (2.1.14)
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Note that ω is a signal length/information window parameter and F̂(i+1):j(.) is the

empirical cumulative distribution defined here by

F̂(i+1):j(z) =
1

j − i

[
j∑

k=i+1

1 {yk < z}+ 0.5× 1 {yk = z}

]
.

Another option in the non-parametric setting is to use a kernel-based cost function,

as suggested by Harchaoui and Cappe (2007), Harchaoui et al. (2009), Garreau and

Arlot (2018) and many others. As a cost function, we can set

C
(
y(i+1):j

)
=

j∑
k=i+1

κ(yk, yk)−
1

j − i

j∑
k,l=i+1

κ(yk, yl), (2.1.15)

where κ(., .) is a suitable kernel function. Note that if κ(yk, yl) = ykyl, then we obtain

standard squared error loss, (2.1.16). Both of these nonparametric options can be

inefficient, as we discuss shortly.

We conclude this section on segment cost functions by remarking that there can

be close links between this approach to detecting changepoints and those methods

discussed in Section 2.1.1. Indeed, some segment cost functions are equivalent to

certain test statistics which we have discussed for the AMOC problem. The most

important example is if we detect a change in mean using the cost function that is

the sum of squared residuals. This gives a segment cost function of

C
(
y(i+1):j

)
=

j∑
k=i+1

(
yk −

1

j − i

j∑
l=i+1

yl

)2

=

j∑
k=i+1

y2
k −

1

j − i

(
j∑

k=i+1

yk

)2

. (2.1.16)

This cost function has, in particular, been used in the Gaussian setting; see, for

example, Xie et al. (2007) and Yao (1988). Under this choice of segment cost, the

difference in cost of adding a single change at a specific location τ̂1 is

C (0|C(.), β)− C (1, τ̂1|C(.), β) =
1

τ̂1

(
τ̂1∑
k=1

yk

)2

+
1

n− τ̂1

(
n∑

k=τ̂1+1

yk

)2

− 1

n

(
n∑
k=1

yk

)2

− β

=
τ̂1 (n− τ̂1)

n

(
1

τ̂1

(
τ̂1∑
k=1

yk

)
− 1

(n− τ̂1)

(
n∑

k=τ̂1+1

yk

))2

− β.

which is just the square of the CUSUM statistic given in (2.1.3) for a change at

τ̂1 minus the penalty for adding a change, β. This means that if we used the

penalised cost approach to detect a single changepoint by minimising (2.1.9) under
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the constraint that m ≤ 1; then our estimate of whether there is a change and where

it occurs would be identical to that obtained by performing a CUSUM test for a

single change with a threshold
√
β for the test statistic. We further discuss this with

a novel consistency result in Chapter 3. The link between the CUSUM statistic and

minimising the penalised residual sum of squares is additionally further explored in

Chapter 4.

Cost Function Approaches: Choice of Penalty

We now discuss the choice of penalty value β within (2.1.9). Classical information

criteria are some of the most extensively employed options in this context. For

example, see the default penalty options in the changepoint package of Killick

et al. (2016), as well as Gupta and Chen (1996) and Eckley et al. (2011). One

very popular information criterion used as a penalty in this setting is the Schwarz

Information Criterion (SIC), also known as the Bayesian Information Criterion (BIC),

first introduced by Schwarz (1978). For a general problem, if n is the number of

samples and b is the number of parameters estimated by the model, then the BIC/SIC

for the vector of estimated parameters µ̂ ∈ Rb is

CSIC(µ̂) = b log n− 2 logL(µ̂), (2.1.17)

where L(.) is the likelihood function for the chosen model. Note that this is (2.1.9)

with C(.) set as twice the negative log-likelihood within the segment and b log n = m̂β.

For each new estimated changepoint, it is required that we estimate the parameters

which may change either side of any newly-placed change. In addition, the estimated

changepoint itself is an additional parameter. For example, in the scenario where we

allow for a change in a single parameter only (say, the mean), each changepoint adds

an additional two parameters to the model: the estimated change location, and an

additional mean parameter. The latter is needed as there are now two “new” means

either side of the change, where previously there was just one estimated mean within

the segment. Therefore, under the BIC, β = 2 log n. See Yao (1988) and Chapter 3

for a theoretical justification of this choice in the Gaussian change in mean setting.
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As noted by Zhang and Siegmund (2007), the BIC penalty has difficulty in settings

where the noise is not sub-Gaussian. In such a scenario, they propose using the

Modified Bayesian Information Criterion (MBIC). When the segment cost function is

twice the negative log-likelihood, the MBIC gives a total penalty of

βf (m̂) = (2m̂− 1) log n+
m̂+1∑
i=1

log (τ̂i/n− τ̂i−1/n) . (2.1.18)

The final choice we mention here is the Akaike Information Criterion (AIC), first

introduced by Akaike (1974), for which

CAIC(µ̂) = 2b− 2 logL(µ̂). (2.1.19)

This gives β = 4 in the setting where a single parameter is subject to a change. Given

the lack of scaling with n, it is unsurprising that the use of this penalty typically

results in a very high false positive rate, as noted by Haynes et al. (2017a), Jones and

Dey (1995), Reeves et al. (2007) and others. Therefore, AIC is rarely used in practice.

The choice of penalty, or alternatively the threshold ξ(n) for AMOC detection

methods, is often the most challenging modelling issue for a given problem. This is

especially true in situations where sensible choices for the likelihood are not known

a priori. Many of the theoretical results introduced in Chapters 3, 4 and 5 discuss

the best setting of the penalty for a limited class of generating processes for a given

method. For now, we focus on the use of typical segment cost functions and penalty

choices in the literature to date.

Cost Function Approaches: Existing Methods

We now discuss some existing methods which minimise (2.1.9). One of the first

changepoint detection procedures to use a cost function approach was introduced

by Yao (1984). This method minimises a cost function of type (2.1.9) from a

Bayesian perspective using forward and backward recursions. A similar means

of minimising (2.1.9), known as Segment Neighborhood, is due to Auger and

Lawrence (1989). In this method, a constraint is placed on the maximum number
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of changepoints which may be estimated by the procedure, say m̂ ≤ Q < n. Dynamic

programming is then used to search through all possible segmentations with at most

Q estimated changepoints. The segmentation with the smallest total cost is returned,

giving the estimated change locations. Formally, this is done by defining cqa,b as the

cost of the best partitioning of ya:b into q segments. The objective is to find cQ1:n, and

hence the best partition. The first step in this is to calculate

c1
i+1,j = C(y(i+1):j),∀i, j s.t. i < j.

The method then proceeds recursively, using

cq1,j = min
v∈{1,...,j}

(
cq−1

1,v + c1
v+1,j

)
.

One issue with Segment Neighborhood is that the computational cost is O (Qn2). In

settings where there is a great deal of uncertainty about the number of changes - in

particular, in situations where very short segments are possible or even common -

it is desirable from a modelling perspective to set Q ∼ n. In this way, all possible

segmentations are searched. However, by doing this, the computational cost incurred

is O (n3). This is prohibitive from the standpoint of quick decision-making, or even

for attempting to extend the method to multiple dimensions.

The Optimal Partitioning method of Jackson et al. (2005) somewhat fixes the

issue of computational cost. Like Segment Neighborhood, Optimal Partitioning

uses dynamic programming to minimise (2.1.9). However, in addition, Optimal

Partitioning conditions on the location of the most recent changepoint to determine

whether a changepoint should also be placed at a particular location in the ‘current

segment’. Formally, the method defines

F (i) = min
m′ ,0<τ̂1<...<τ̂m′<i

m
′
+1∑

k=1

[
C
(
y(τ̂k−1+1):τ̂k

)
+ β

]
,

the cost of the segmentation which minimises (2.1.9) for y1:i. Note here we use

i = τ̂m′+1 for notational convenience, despite the fact that i itself may not be a

changepoint. After setting F (0) = −β, a similar recursion step to the Segment

Neighborhood procedure is then used, namely

F (j) = min
i<j

{
F (i) + C(y(i+1):j) + β

}
.
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This enables the computation of F (n), the optimal cost of the whole sequence. The

estimated change locations then follow naturally.

Note that Optimal Partitioning does not require an upper limit on the number

of estimated changes. In addition, the worst-case computation time of the method is

O (n2), as the computation of F (j) is linear in j for each j = 1, . . . , n. This is more

desirable from a practical perspective, especially as Optimal Partitioning finds the

exact solution to (2.1.9). However, we remark that, in general, the performance of

Binary Segmentation is still preferable. (Binary Segmentation is often asymptotically

linear in n unless, for example, the number of changepoints also grows linearly with

n.)

A further computational saving is made by the Pruned Exact Linear Time (PELT)

method of Killick et al. (2012), which adds an additional pruning step to Optimal

Partitioning. This pruning step makes use of the observation that introducing a

changepoint reduces the cost of the sequence (possibly up to the inclusion of the

penalty). That is, if the optimal cost of the sequence up to time n2 > n1 satisfies

F (n1) + C
(
y(n1+1):n2

)
+ β ≥ F (n2),

then for any n3 > n2, n1 cannot be the most recent changepoint. In other words,

the optimal cost up to time n2 is at most the best cost obtained conditioning on

n1 being the most recent change prior to n2. In practice, this means that when

conditioning on the location of the most recent changepoint, the method will typically

only consider points since the most recent true changepoint. While this is intuitive, the

computational gains from this over Optimal Partitioning are impressive. In particular,

PELT has a linear computational cost in the setting where the maximum segment

length remains bounded (for example, if the number of changepoints grows linearly

with n). However, PELT is an O (n2) method in the worst case, which can be seen

in situations where the number of changepoints remains fixed as n→∞. We discuss

this issue in more detail in Chapter 3, and develop two means of ensuring that the

worst-case computational cost may become linear in n through parallelisation. The

performance of PELT on the same example as for Binary Segmentation and Wild
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Binary Segmentation is shown in Figure 2.1. Again, the changepoint package was

used to generate the plot, with the same inputs as for Binary Segmentation.
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Figure 2.1: A sequence of length 350 exhibiting seven changes in mean - at the times shown by

blue vertical lines - under Gaussian noise (top left). The change locations estimated by Binary

Segmentation, Wild Binary Segmentation and PELT are shown as red vertical lines (top right, bottom

left and bottom right respectively). Binary Segmentation fails to find the changes at t = 200, 220

and 240 due to masking, and incorrectly places two additional changespoints at t = 55 and t = 300.

Wild Binary Segmentation does not place any spurious changes into the sequence, and detects all

but one of the changepoints. PELT does not place any spurious changes into the sequence, and

detects all changepoints present, albeit with a slight location error in two cases.

Despite the issue of a worst-case quadratic cost, PELT has become a very popular
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changepoint detection method within the literature; see, for example, Figueroa et al.

(2014), Hilborn et al. (2017), Murray et al. (2016) and Richardson et al. (2018). There

are a multitiude of other examples in which PELT has been applied, in practical

contexts as diverse as vegetation tracking, cancer risk and predator-prey population

modelling. There are, therefore, many recent methods which successfully build on

the PELT procedure for particular contexts. One example is the CAPA method of

Fisch et al. (2019a), which can be used to detect anomalies. Another is the ED-PELT

procedure of Haynes et al. (2017b). This uses a cost function approximating (2.1.14)

within the PELT framework to give a computationally efficient means of locating

changes in the nonparametric setting. The resulting procedure has an O (n log n)

complexity. Computationally, the approximation is necessary. For example, the

NMCD algorithm of Zou et al. (2014) uses (2.1.14) within Segment Neighbourhood.

As a result, the procedure is O (Qn2 + n3), where again Q is taken to be the maximum

possible number of changes the method is allowed to insert into the sequence.

Another extension of the PELT procedure, which can additionally be applied to

any method which exactly minimises (2.1.9), is the CROPS algorithm of Haynes

et al. (2017a). Here, instead of specifying a penalty value β, a ‘penalty interval’,

[βmin, βmax], is an input. In other words, CROPS finds

min
β∈[βmin,βmax]

[
min

m̂,τ̂1,...,τ̂m̂
C (m̂, τ̂1, . . . , τ̂m̂|C(.), β)

]
where C(.|.) is as defined in (2.1.9). CROPS is therefore advantageous in situations

where the ‘optimal’ penalty is unknown. Computationally, when used within the

PELT procedure, CROPS has a worst-case computational cost of

O
{
n2 × (m̂ (βmin)− m̂(βmax) + 2)

}
.

Note here we adopt the notation that the number of changepoints estimated by the

procedure using a penalty γ is m̂(γ). This worst-case cost is due to the fact that, as

β is varied from βmin to βmax, m̂ (βmin)− m̂ (βmin) + 2 runs of PELT are required.

An extremely computationally efficient alternative to the PELT procedure,

applicable in the single parameter change case, is the Functional Pruning Optimal
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Partitioning (FPOP) method of Maidstone et al. (2017). For FPOP, a different form

of pruning, known as functional pruning, is used in place of the inequality-based

pruning favoured by PELT. The advantage of functional pruning is that the number

of candidates considered as the most recent changepoint is drastically reduced, even

compared to inequality-based pruning. This means that, when it can be applied,

FPOP is much faster than PELT. This is especially true when there are particularly

long segments in the data. The main disadvantage of FPOP is that it can be

applied to fewer cost functions than PELT or Optimal Partitioning. Indeed, only

a change in a single variable is permitted, with the method being most efficient when

the cost function is piecewise quadratic. Despite this, there has been much recent

interest in FPOP, with Hocking et al. (2018) introducing the Generalized FPOP

(GFPOP) procedure, and Fearnhead and Rigaill (2019) formulating a robust version,

R-FPOP. Importantly, these and other extensions to FPOP can be used to fit models

with dependencies in the parameters across segments. This represents a significant

advantage over PELT or Optimal Partitioning, where such costs cannot be minimised.

As an aside, we note that the Segment Neighbourhood search procedure can also

be improved using functional pruning. This idea is the basis of the pruned Dynamic

Programming Algorithm (pDPA) introduced by Rigaill (2010) and further discussed

by Cleynen et al. (2014).

Other Model-based Approaches

We conclude this section on model-based approaches by briefly summarising some

recent Bayesian changepoint detection techniques. Many Bayesian methods exist

which include a conditioning on the most recent changepoint location. A number of

these are based on a Hidden Markov Model approach, where the states are typically

taken to be the regimes which the system is known to enter (for example, ‘normal’

or ‘abnormal’). This has been a relatively popular idea in the literature for some

time (Chib, 1998; Ko et al., 2015; Luong et al., 2013), particularly for applications in

finance and genomics.

Another Bayesian method of note is the perfect simulation procedure of Fearnhead
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(2006), which uses a product-partition model for the prior on the change locations

and then recursively updates the posterior in a similar fashion to the updating of F (.)

within PELT. Like PELT, this method has an expected linear run time. We discuss

online extensions to this approach, as well as other Bayesian methods, in Section 2.3.

2.1.3 Other Recent Approaches

There exist a number of other approaches to offline univariate changepoint detection.

One example of a method which performs simultaneous estimation of the changepoint

locations is the SMUCE procedure of Frick et al. (2014). This searches over

the entire space of possible discrete step functions in data generated according

to exponential-family processes. A similar method, H-SMUCE, for heterogeneous

Gaussian regression models, was introduced by Pein et al. (2017). SMUCE and

H-SMUCE are advantageous procedures in that, in addition to being computationally

efficient, there is a natural means of obtaining a confidence set on the locations of the

changepoints.

Another method of note is Hierarchical Clustering (HC), as discussed by Sullivan

(2002). HC can essentially be thought of as ‘backwards Binary Segmentation’, as

we begin by considering the entire sequence as n separate clusters consisting of the

singleton points in the sequence. Neighbouring points are then merged if there is

sufficient similarity between them. One issue with HC, potentially preventing the

method from being more widely used, is the general lack of capability in ‘un-merging’

points. In addition, specifying a suitable stopping condition is challenging. Despite

this, there has been some uptake of the method (Fryzlewicz, 2018; Harnish et al., 2009;

Wang et al., 2005; Xing et al., 2007). In addition, some recent entries to the literature

have used hierarchical clustering-type approaches to relax assumptions surrounding

the generating processes. For example, the method of Khaleghi and Ryabko (2012)

provides an interesting hybrid of Binary Segmentation and Hierarchical Clustering to

relax many typical assumptions, such as within-segment independence.
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2.2 Multivariate Changepoint Detection

Compared to the univariate problem, interest in detecting changepoints in the

multivariate setting is much more recent. Letting the number of variates be d, the

analogue to the univariate problem of (2.1.1) is now, for i = 1, . . . , d

yi,j ∼ Gi,k for τk−1 + 1 ≤ j ≤ τk for k ∈ {1, . . . ,m+ 1}. (2.2.1)

Again we assume that Gi,1, . . . , Gi,m+1 are a sequence of data generating processes.

We additionally stipulate that Gi,k � Gi,k+1 iff i ∈ Sk, where Sk ⊆ {1, . . . , d} is a

non-empty affected set of variates. That is, Sk is the non-empty set of variates which

undergo a change at τk.

Importantly, an implication of (2.2.1) is that we do not know which variates are

changed at each changepoint. Therefore, the information about the change can be

very different depending on whether only a few or many of the variates change. To

see this, consider detecting a single changepoint which changes the mean of |S| of

the variates. Two simple approaches to detecting a change in mean in multivariate

data consist of either (i) assuming all variates change; or (ii) looking at each variate

separately and considering whether there is a change in any of them.

To simplify the following exposition, assume we wish to test for a change at a

single time point, t. Note that the intuition from the following argument applies for

the more usual case of needing to test for changes at all locations - for example, see

Enikeeva and Harchaoui (2019). If we use a likelihood ratio test, then, in the setting

where we assume all variates change, we would have the test statistic

T (t; y1:d,1:n) =
d∑
i=1

1

t

(
t∑

j=1

yi,j

)2

+
1

n− t

(
n∑

j=t+1

yi,j

)2

− 1

n

(
n∑
j=1

yi,j

)2
 ,

in the case of Gaussian noise with known variance 1. Note that this test statistic has

a χ2
d distribution for a given t under the null. As we increase d, the quantiles of χ2

d

increase like

d+ r
√
d,

where r is dependent on the quantile in question. Under the alternative where, for

instance, variate i changes by ∆i at t, the test statistic is non-central chi-squared,
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χ2
d(ν), where ν = t(n−t)

n

∑
i∈S (∆i)

2 is the non-centrality parameter. Given that the

mean of χ2
d(ν) is ν + d, to have high power in detecting a change we therefore require

ν + d to be much larger than the test threshold. Asymptotically, as d increases for

fixed n and t, this occurs if ∑
i∈S

(∆i)
2 >> d1/2+γ,

for some pre-specified γ > 0. By contrast, we would not have high power for much

smaller values of
∑

i∈S(∆i)
2.

To simplify further, imagine all |S| series affected by the change are altered by

the same amount. Then if |S| is O (dγ1) and the size of the change is O(dγ2), then

as d → ∞ we can show we have power to detect the change that tends to 1 if

γ1 + 2γ2 > 0. In particular, we can detect a change of fixed size providing the number

of variates which change dominates
√
d in order. Additionally, we can detect changes

of decreasing size if |S| increases at a polynomial rate faster than
√
d. By comparison,

if γ1 < 0, we require γ2 > 0.

In the setting where we examine at each variate separately, a natural choice for

T (t; y1:d,1:n) is the maximum of the likelihood ratio test statistics for each individual

series

T (t; y1:d,1:n) = max
i∈{1,...,d}

1

t

(
t∑

j=1

yi,j

)2

+
1

n− t

(
n∑

j=t+1

yi,j

)2

− 1

n

(
n∑
j=1

yi,j

)2
 .

Note that this is the maximum of d independent χ2
1 distributions under the null.

Therefore, an appropriately scaled version of the test statistic converges to a Gumbel

distribution as d→∞. The threshold we use would need to increase like

2 log d− log log d,

as d increases. See, for example, Gasull et al. (2015) for further explanation.

Therefore, if there is a change, and ∆ is the largest change in mean for any series, the

distribution of our test statistic is bounded below by χ2
1 (ν), with ν = t(n−t)

n
∆2. By

Birgé (2001), the test statistic is therefore bounded below by ν + 1− 2k
√

1 + 2ν with

high probability. Hence, ignoring the t(n− t)/n factor, if

∆2 >> 2 log d,
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we would have high power to detect the change. Hence, if only a few variates within the

dataset change, this is a much weaker condition than that obtained for (i). However,

if many variates change, this is a much stronger condition. Therefore, in terms of

the asymptotic behaviour as d increases, the question as to which of the tests is best

depends on whether |S| increases faster or slower than
√
d.

We typically refer to those cases where (i) gives greater power, for example in

situations where many variates change, as the dense setting. In contrast, those cases

where (ii) gives greater power are referred to as the sparse setting. It is important

for methods which are powerful in the sparse setting to give an exact idea of which

series are changed. In this way, resources are not needlessly wasted or a problem

mis-diagnosed (see, for example, the telecoms example discussed in Chapter 1). We

refer the reader to Chapter 4 for a further discussion on sparse and dense changepoints

in the multivariate setting.

Another issue in the multivariate setting is the significantly increased

computational intensity of the problem. Some methods such as the E-Divisive

procedure of Matteson and James (2014), or the Hierarchical Clustering approach of

Székely and Rizzo (2005), scale in an undesirable way in either n or d. Therefore, most

methods for multivariate changepoint detection are based on the AMOC approaches

with Binary Segmentation discussed in Section 2.1.1.

2.2.1 AMOC Approaches and Extensions to Multiple

Changes

There have been several attempts to extend the use of the CUSUM statistic to the

multivariate setting, three of which are introduced in Groen et al. (2013) and Cho and

Fryzlewicz (2015). We introduce these in more detail in Chapter 4, where we refer

to the three statistics as Max, Mean and Bin-Weight. These multivariate statistics

for a test of a single changepoint at t are, respectively, TMax(t; y1:d,1:n) = maxiWi,t,

TMean(t; y1:d,1:n) =
∑d

i=1Wi,t/d and TBin−Weight(t; y1:d,1:n) =
∑d

i=1 Wi,t1 {Wi,t > α},

for some α. Note that here Wi,t refers to the standard univariate CUSUM statistic at
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time t from (2.1.3), applied to the sequence yi,1:n.

Another method which is equivalent to the weighted sum of CUSUMs is the

Inspect method of Wang and Samworth (2018). Inspect seeks to compute the best

projection direction of the multivariate series to maximise the signal-to-noise ratio in

the univariate projected series. The optimal projection direction is the (normalised)

difference of the multivariate means either side of the change. Using this would lead

to no loss of information. The problem is then a question of how to estimate the

projection direction, so that a suitable univariate detection method can then be used.

The authors suggest solving a convex relaxation of the problem of finding the k-sparse

leading left singular vector of the CUSUM transformation of the data stream. Note

that in practice that this cannot be found directly as the problem is NP-hard.

For each of Max, Mean, Bin-Weight and Inspect, a form of Binary Segmentation

is used to find multiple changes. For example, Bin-Weight was introduced with

the Binary Segmentation alternative introduced by Cho and Fryzlewicz (2012),

while Inspect uses Wild Binary Segmentation. Therefore, all of the methods are

computationally efficient in both n and d. We discuss the empirical properties of the

four methods in more detail in Chapter 4 and Appendix B. However, we remark here

that the simultaneous attainment of competitive statistical power in both the sparse

and dense settings remains a challenge.

Other changepoint tests based around a multivariate CUSUM are relatively

common (Barigozzi et al., 2018; Cho, 2016; Dette and Gösmann, 2018; Enikeeva

and Harchaoui, 2019; Tartakovsky et al., 2014; Wang and Reynolds, 2013; Zamba

and Hawkins, 2006, 2009). However, again, the problems of sparse or dense power,

sometimes coupled with computational complexity, remain an issue. In addition,

we emphasise that the CUSUM is most effective in tracking changes in mean in the

Gaussian setting. Hence, for general problems CUSUM-based techniques can be much

less effective, as again we explore in Chapter 4.

There exist some nonparametric alternatives to the CUSUM suitable for the

multivariate setting. In addition to the aforementioned E-Divisive approach of

Matteson and James (2014), there is also the MultiRank procedure of Cabrieto et al.
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(2017). This is primarily designed to detect changes in correlation structure, and uses

the test statistic

T (t, y1:d,1:n) =
4

n2

[
tr̄T1 Σ̂−1r̄1 + (n− t)r̄T2 Σ̂−1r̄2

]
.

Here, Σ̂ is the empirical covariance matrix of the rank orders of the scores, and r̄1 and

r̄2 are “phase specific vectors” consisting of deviations from the expected mean phase

rank under the null. We note that, unusually for an AMOC approach, MultiRank does

not use a Binary Segmentation method to search for multiple changes after the first

changepoint. Instead, it then estimates the change locations simultaneously using a

Segment Neighborhood type approach with a constraint on the maximum number of

estimated changes. Thus, in addition to issues of performance under more challenging

models, there remains the question of computational complexity.

We conclude this section by remarking that projection-based methods of the type

considered by Wang and Samworth (2018) are becoming an increasingly popular

multivariate changepoint approach. Auret and Aldrich (2010), Moskvina and

Zhigljavsky (2003), Idé and Tsuda (2007) and Aston and Kirch (2012a) are among

many to recently introduce projection-based procedures. Again, though, the recovery

of information on the nature of which variates alter is typically more challenging. We

remark that our new multivariate approaches introduced in Chapters 4 and 5 (and

indeed many of the other methods discussed in this section) can in the strictest sense

also be described as projection methods, given that both rely on aggregations from

the univariate sequences within the dataset.

2.2.2 Model-based Approaches with Recursive Updates

In the multivariate setting, the central issue with cost function approaches of the type

seen in Section 2.1.2 is computational cost. For example, as a close analogue to PELT,

Pickering (2016) formulated a multivariate cost function for the multidimensional

setting. This cost function allows for any number of the variates to alter at each

changepoint. In addition, an exact means of resolving this cost function using

pruned dynamic programming, Subset Multivariate Optimal Partitioning (SMOP),
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was introduced. However, SMOP has a computational performance of O
(
d× n2d

)
in the worst case. This makes the method impractical except in very small data

examples. Therefore, it is the usual approach to relax the need for exactness when

resolving the cost function; see, for example, recent works such as Bardwell et al.

(2019), Fisch et al. (2019b) and Lavielle and Teyssiere (2006), where the latter

examines an adaptive penalisation procedure suitable for dependent processes. In

Chapter 4, we introduce a similar means of finding an approximate resolution for a

penalised cost function, albeit using an AMOC approach. The resulting method is

exact under a single sparse change and approximate otherwise.

Other model-based methods applicable in the multivariate setting include the

approach of Bulteel et al. (2014). This uses a moving sum type method to track

changes in correlation using a specified information window. Another existing

procedure is the Kernel Change Point (KCP) method of Arlot et al. (2012), which

uses a kernel-based approach of the type discussed in Section 2.1.2. Garreau and Arlot

(2018) show that KCP is consistent in identifying the correct number of changepoints.

Moreover, KCP detects the changepoint locations at optimal rate, enabling the

method to find many possible types of change. Note, however, that for fixed d the

computation of the cost function matrix using KCP is O (n4). In contrast, the novel

kernel-based method of Celisse et al. (2018) is O (dn2) in the worst case.

The final method we mention in this section is the nonparametric rank approach of

Lung-Yut-Fong et al. (2012). This also uses a form of dynamic programming, although

like SMOP the method loses computational efficiency if more than one change is to

be located.

2.2.3 Other Recent Approaches

As for Section 2.1.3, we focus on approaches which can estimate the locations of

all changepoints simultaneously. One such method is the Stochastic Approximate

Monte Carlo (SAMC) algorithm of Liang (2007) and Liang (2009) which, as discussed

by Cheon and Kim (2010) may be applied to multivariate multiple changepoint

problems. Indeed, as they show for problems such as the estimation of the number
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of changepoints, SAMC outperforms Reversible Jump Markov Chain Monte Carlo

(RJMCMC) approaches. However, RJMCMC remains a popular means of detecting

multiple changes in both the univariate and multivariate settings (Bolton and Heard,

2018; Ruggeri and Sivaganesan, 2005; Steward et al., 2016; Suparman et al., 2002;

Xuan and Murphy, 2007).

Another recent Bayesian changepoint detection method in the multivariate setting

is the procedure of Peluso et al. (2019). This method has the additional flexibility

of relaxing parametric assumptions on the generating processes within segments by

using a Dirichlet process mixture prior. Using such a prior is a general technique

which has been growing in popularity (see Maheu and Yang (2016), Dufays (2016)

and many others).

2.3 Online Changepoint Detection

In a data streaming setting, perhaps the most important problem is to identify

salient features in as timely a fashion as possible, and certainly at a rate faster than

the arrival of new data. In this way, pertinent decisions, which can subsequently

influence the evolution of the stream (for example, to bring it back under control),

can be made as the data are still being observed. Changepoints are, in this sense,

an extremely important feature. Therefore, the online change detection problem is

of great contemporary significance. This is especially true in scenarios where it is

impractical for humans to monitor all elements within a data stream by eye.

The online challenge is also somewhat distinct from the offline setting in that the

balance between the two central performance measures - i.e. a low false alarm rate

and high true detection rate - is often bespoke to the situation. Hence, many entries

in the literature attempt to address this trade-off directly. In this way, the problem

of tuning multiple different parameters can largely be avoided.

We split the remainder of this section into separate discussions on univariate and

multivariate online change detection.
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2.3.1 Univariate Online Changepoint Detection

As traditional AMOC approaches with Binary Segmentation require us to observe

the entire sequence in advance, they are typically impractical in an online setting.

This is because we require the update on the arrival of a new piece of data to be

O (1) in computational complexity. Therefore, the majority of online, or sequential,

changepoint methods have been Bayesian. Early such examples include Smith and

Cook (1980), Gamerman (1991) and Sarkar and Meeker (1998).

One popular approach is to use a latent state process for the position of the

most recent changepoint, before updating recursively through the sequence using a

generating function. For example, in Adams and MacKay (2007), this approach is

referred to as updating the changepoint prior, while Fearnhead and Liu (2007) describe

the iterative process as a filtering recursion. A typical choice for the generating

function is to assume that the gap between successive changes can be modelled using a

geometric distribution. This means that the system is effectively memoryless between

changepoints. In this setting, greater emphasis is placed on the evolution of the

process from one point to the next. Therefore, in practice, these methods are most

effective either when (i) the presence of a changepoint gives a great deal of information

on the location of the next changepoint; or (ii) when the noise in the system can be

modelled reasonably accurately. Under such circumstances, the true detection rate

can be very high, although the probability of a false alarm in the null setting as

n→∞ still approaches 1.

We discuss a multivariate extension to this style of approach to the changepoint

problem in Section 2.3.2. For a further discussion on online Bayesian (and

non-Bayesian) methods, see Cook (2017), Caron et al. (2012) and Chowdhury et al.

(2012) among others.

In contrast to the Bayesian literature, there is comparatively little on, for instance,

cost function style approaches to the online changepoint detection problem. However,

we note that some CUSUM-type approaches exist for a limited class of problems;

see, for example, Cheifetz et al. (2012), Cheng et al. (2017), Höhle (2010) and

Tsechpenakis et al. (2006). The traditional means of utilising the CUSUM in an
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online environment is to use a finite data horizon of recently observed data. This

is commonly referred to as a memory window for the recent past, beyond which the

process ‘forgets’ the contents of the sequence. This enables the computational memory

and time requirements at each stage to remain bounded.

We introduce a similar means of detecting changepoints (in the multivariate

setting) in Chapter 5. There, we also make use of the penalised cost framework

to raise an ‘initial alarm’ for a potential change within the stream.

2.3.2 Multivariate Online Changepoint Detection

Changepoint detection in the multivariate online setting is extremely challenging.

This is particularly true if the dimension of the problem and intensity of data arrival

can both be made very large. As such, the literature in this setting is sparse.

One notable recent method is the Bayesian Abnormal Region Detector (BARD)

method of Bardwell and Fearnhead (2017). This is based on the same principles of

Bayesian recursions as the procedures discussed in Section 2.3.1. With BARD, it is

assumed that variates within the stream all begin in a “Normal” state. Subsequently,

variates can only transition to an “Abnormal” state before transitioning back. While

BARD is flexible in modelling which variates undergo a given change, the fact that

each variate must return to a normal state does restrict the class of problems for which

the method is useful. Additionally, some assumptions extraneous to within-segment

independence are required. In Chapter 5, we attempt to relax these with our new

multivariate, online method.

Another very recent method is that of Chen (2019b), which is based on a k-Nearest

Neighbours approach to detecting changepoints first posited in an offline setting in

Schilling (1986) and Henze (1988). Therefore, like the new method we introduce in

Chapter 5, this approach is also nonparametric, and can additionally be applied in

situations with a non-Euclidean structure, such as networks. We compare this method

with our new approach in more detail in Chapter 5.
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2.4 General Discussion

In this chapter, we have given an overview of many of the more popular changepoint

detection methods. Additionally, we have discussed two important current spaces in

the changepoint problem. In Section 2.2, we summarised the problem of detecting

changepoints across many dimensions. In Section 2.3, we gave an overview of online

approaches to detecting changes. While these are two important issues and, along

with efficient inference, form the basis of the discussions in the chapters to follow,

they are by no means the exclusive extant problems in the field.

A major issue of importance is that of the degree of confidence in a given

changepoint estimate. While the Bayesian methods aforementioned in this chapter

provide a natural means of doing this, specific focus on the problem in a non-Bayesian

setting is a developing area of research. For example, Howard et al. (2019) examine

the interesting problem of constructing non-asymptotic confidence sequences for “A/B

Tests”. This is a problem to which certain problems of the changepoint setting can be

recast. For the remaining chapters, we consider accuracy only in terms of asymptotic

or finite-sample consistency (which we discussed in more detail in Sections 2.1.2

and 2.1.1). This is an approach in accordance with the introduction of the vast

majority of changepoint methods.

Another natural problem of importance, particularly in the streaming setting,

is that of prediction. This is of interest, both in terms of behaviour following a

changepoint (Galceran et al., 2017; Garnett et al., 2009; Steyvens and Brown, 2005)

and the location of the next changepoint itself (Botezatu et al., 2016; Chen and Tsui,

2013; Garre et al., 2008). Once again, outside of a Bayesian framework, this is typically

a very hard problem. In particular, very specific assumptions are usually required.

Therefore, existing methods are typically very bespoke. While we do not confront the

problem of changepoint prediction again directly, we discuss our new methods in this

context for further development in Chapter 6.
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2.4.1 Changepoint Detection in Context

We conclude this chapter with a brief comparison between the changepoint detection

problems we have focused on and other varying-coefficient problems.

Changepoints in Regression Models

As alluded to in the discussion of Section 2.1.2, there is a natural link between the

Gaussian change in mean problem and sparse regression. Several recent contributions

have examined this connection further by explicitly considering the problem of

detecting sparse changepoints in regression models. Notable among these is the work

of Zhang et al. (2015), where the authors exploit the ‘double sparsity’ of the problem

(i.e. sparsity of the number of changepoints relative to the number of samples, and

sparsity of the changes in terms of the number of regression coefficients altered), to

use a Sparse Group Lasso (Simon et al., 2013) approach based on a weighted sum

of L1 and L2 penalisations. They note that the resulting algorithm is O (n2 log n)

under standard assumptions, and establish consistency results on the changepoint

estimators obtained.

Another recent paper (Leonardi and Bühlmann, 2016) relaxes the need for

Gaussian residuals, and presents two approaches for changepoint detection in a

high-dimensional regression context. These two approaches are very similar in

character to the AMOC and model-based approaches we have discussed throughout

this chapter, and theoretical guarantees on the locations of the changes, which

they note are analogous to those obtained for the Lasso. In practice, however, a

degree of tuning is needed, as the method requires an appropriate setting of two

parameters. One of these regularises the high-dimensionality and sparsity, while the

other regularises the number of segments. While a theoretical basis for setting the

former is given, choosing the latter typically requires some knowledge of the minimum

segment length.
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Changepoints in Networks

An area which has experienced greatly increasing interest is that of the detection

of changepoints within a network setting. Recent work includes Barnett and Onnela

(2016), Masuda and Holme (2019), Yudovina et al. (2015) and Zhao et al. (2019), with

applications as varied as social proximity in academic environments and polarisation

of politics in the United States Congress. Modelling assumptions taken towards

the detection of changepoints in a network context are varied, with stochastic block

models (Ridder et al., 2016; Ludkin et al., 2018; Wills and Meyer, 2020) and Gaussian

graphical models (Gibberd and Nelson, 2014; Gibberd and Roy, 2017; Kolar and

Xing, 2012) perhaps two of the most commonly used frameworks in this space, with

many examples in the latter setting using a group-fused lasso penalisation of the type

discussed above.

Regardless of the modelling choices made, additional questions arise in the network

setting extraneous to the considerations in the time series settings we have hitherto

focused on this chapter. As a network naturally imbues a structure between the

vertices, it is of interest to find changes in the structure of the network, particularly

insofar as this relates to communities of nodes. (See, for example, Peel and Clauset

(2015) for some of the possible types of changepoints involving community structure.)

Several authors have utilised the additional structure of a network setting to search for

changepoints on more challenging time series. For example, Xuan and Murphy (2007)

use the Gaussian graphical model to search for changes in dependency across variates.

Another recent paper to have explored the link between networks and changepoints

under locally dependent data is that of Chen (2019a). Here, a test statistic based

on a standardised edge-count of the similarity graph of the observations in the series

is constructed. While this results in a test which can handle, for example, certain

levels of autocorrelation, the construction of the test statistic can be computationally

cumbersome.



Chapter 3

Parallelisation of a Common

Changepoint Detection Method

3.1 Introduction

The challenge of changepoint detection has received considerable interest in recent

years; see, for example, Rigaill et al. (2012), Chen and Nkurunziza (2017), Truong

et al. (2018) and references therein. There are many algorithms for estimating

the number and location of changepoints, for example Binary Segmentation, due

to Scott and Knott (1974), and its variants such as Circular Binary Segmentation,

Wild Binary Segmentation and Narrowest-Over-Threshold, due to Olshen et al.

(2004), Fryzlewicz (2014) and Baranowski et al. (2018) respectively; and dynamic

programming approaches that minimise a penalised cost, such as the Optimal

Partitioning procedure of Jackson et al. (2005) or the Pruned Exact Linear Time

(PELT) method of Killick et al. (2012).

In many applications, there are computational constraints that can affect the

choice of method. We are interested in whether parallel computing techniques can be

used to speed up algorithms such as Optimal Partitioning or PELT. The application of

parallelisation is vast, with use in such areas as meta-heuristics, cloud computing and

biomolecular simulation, as discussed in Alba (2005), Mezmaz et al. (2011), Schmid

et al. (2012) and Wang and Dunson (2014) among many others. Some methods

40
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are more easily parallelisable in that it is plain how to split a search space or other

task between different nodes. These problems are often described as ‘Embarrassingly

Parallel’. For the changepoint detection problem, Binary Segmentation and Wild

Binary Segmentation may be described as such. However, it is not so straightforward

to parallelise dynamic programming methods.

This chapter makes a new contribution to this area by suggesting two new

approaches for parallelising a penalised cost approach. In particular, we demonstrate

in Section 3.3 that the computational cost of dynamic programming algorithms that

minimise the penalised cost, such as PELT, can be reduced by a factor that can be

quadratic in the number of computer cores. Further, we demonstrate empirically that

super-linear gains in speed are achievable even in reasonably small sample settings in

Section 3.4. One disadvantage with parallelising an algorithm such as PELT is that

we are no longer guaranteed to find the segmentation which minimises the penalised

cost. However, these approximations do not affect the asymptotic properties of the

estimator of the number and locations of the changepoints: in Section 3.3 we show

that, for the change in mean problem, our proposed approaches retain the same

asymptotic properties as PELT.

The changepoint problem considers the analysis of a data sequence, y1, . . . , yn,

which is ordered by some index, such as time or position along a chromosome. We

use the notation ys:t = (ys, . . . , yt) for t ≥ s. Our interest is in segmenting the data

into consecutive regions. Such a segmentation can be defined by the changepoints,

0 = τ0 < τ1 < . . . < τm < τm+1 = n, where the set of changepoints splits the data

into m+ 1 segments, with the jth segment containing data-points yτj−1+1:τj .

As mentioned, we focus on a class of methods which involve finding the set

of changepoints that minimise a given cost. The cost associated with a specific

segmentation consists of two important specifications. The first of these is C(.),

the cost incurred from a segment of the data. Common choices for C(.) include

quadratic error loss, Huber loss and the negative log-likelihood (for an appropriate

within-segment model for the data); see Yao and Au (1989), Fearnhead and Rigaill

(2017) and Chen and Gupta (2000) for further discussion. For example, using
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quadratic error loss gives

C(ys:t) =
t∑
i=s

(
yi −

1

t− s+ 1

t∑
j=s

yj

)2

. (3.1.1)

This cost is proportional to the negative log-likelihood for a piecewise constant signal

observed with additive Gaussian noise. The second specification is β, the penalty

incurred when introducing a changepoint into the model. Common choices for β

include the Akaike Information Criterion, Schwarz Information Criterion and modified

Bayesian Information Criterion; see Rigaill et al. (2013), Haynes et al. (2017a) and

Truong et al. (2017) and references therein for further discussion. Finally, it is assumed

that the cost function is additive over segments. The objective is then to find the

segmentation which minimises the cost. In other words, we wish to find

arg min
m;0=τ0<...<τm<τm+1=n

m+1∑
i=1

[
C(yτi−1+1:τi) + β

]
. (3.1.2)

Sometimes this minimisation is performed subject to a constraint on the minimum

possible segment length. Optimal Partitioning, due to Jackson et al. (2005), uses

dynamic programming to solve (3.1.2) exactly in a computation time of O(n2). Killick

et al. (2012) introduced the PELT algorithm, which also solves (3.1.2) exactly and can

have a substantially reduced computational cost. In situations where the number of

changepoints increases linearly with n, Killick et al. (2012) show that PELT’s expected

computational cost can be linear in n. However, the worst-case cost is still O(n2).

The basis of these dynamic programming algorithms is a simple recursion for the

minimum cost of segmenting the first t data points, y1:t, which we denote as F (t). It

is straightforward to show that

F (u) = min
t<u
{F (t) + C (yt+1:u) + β} .

The intuition is that we minimise over all possible values for the most recent

changepoint prior to u, with the bracketed term being the minimum cost for

segmenting y1:u with the most recent changepoint at t. By setting F (0) = −β and

solving this recursion for u = 1, . . . , n, we obtain F (n), the minimum value of (3.1.2).
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At the same time, it is possible to obtain the set of changepoints which minimises the

cost, see Jackson et al. (2005) for more details.

One of our approaches to parallelising algorithms such as PELT will use the fact

that (3.1.2) can still be solved exactly when we restrict the changepoints to be from an

ordered subset B = {b1, . . . , bk} ⊂ {1, . . . , (n− 1)}. Let FB(bs) denote the minimum

cost of y1:bs when we restrict potential changepoints to B; this satisfies the recursion

FB(bs) = min
t<s
{FB(bt) + C(ybt+1:bs) + β} .

Using the initial condition FB(0) = −β, this gives a means of recursively calculating

FB(bk). For most cost functions, after a simple pre-processing step that is linear in

n, the computational cost of solving these recursions will be, at worst, quadratic

in the size of B rather than quadratic in n. This property is key to the near

quadratic speed-ups we can obtain as we increase the number of cores. For both

of the parallelisation methods we introduce, each core minimises the penalised cost

whilst allowing changepoints at just a subset of locations. If we have L cores, then

each core considers approximately n/L possible changepoint locations. Hence the

worst-case cost of minimising the penalised cost on a given core is roughly a factor of

L2 less than that of running PELT on the full data. Furthermore, the parallelisation

schemes we introduce involve no communication between cores other than a single

post-processing step of the output from each core.

The general format of this chapter is as follows: Section 3.2 introduces two means

of parallelising dynamic programming methods for solving (3.1.2), which we refer to

as Chunk and Deal. In each case, we provide a description of the proposed algorithm

with practical suggestions for implementation, followed by a short discussion of the

theoretical justifications behind these choices. We devote Section 3.3 to examining

this latter aspect in detail. In particular, we establish the asymptotic consistency of

Chunk and Deal in a specific case with recourse to the asymptotic consistency of the

penalised cost function method. Section 3.4 compares the use of parallelisation to

other common approaches in a number of scenarios involving changes in mean. We

conclude with a short discussion in Section 3.5. The proofs of all results may be found
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in Section 3.6 and Appendix A.

3.2 Parallelisation of Dynamic Programming

Methods

In this section, we introduce Chunk and Deal, two methods for parallelising dynamic

programming procedures for changepoint detection. For convenience, we shall herein

refer to this exclusively as the parallelisation of PELT.

We introduce the notation PELT (yA,B) when referring to applying PELT to a

dataset yA but only allowing candidate changepoints to be fitted from within the set

B. Note that we trivially require B ⊆ A. Thus, for example, when performing PELT

without any parallelisation, we may refer to this as PELT
(
y{1,...,n}, {1, . . . , n− 1}

)
.

In addition, we refer to the parent core as the core which is responsible for dividing

the problem into sub-problems and then distributing these sub-problems to the other

cores available. It then receives the output from each core (i.e. a set of estimated

changepoints) and fits a changepoint model across the entire sequence using the results

from these other cores.

Using this notation, the general setup for the parallelisation procedure then takes

the following form.

� (Split Phase) We divide the space {1, . . . , (n− 1)} into (not necessarily disjoint)

subsets B1, . . . ,BL, where L is the number of computer cores available;

� Each of the cores i = 1, . . . , L then performs PELT (yAi ,Bi), returning a

candidate set, τ̂i, of changes, which are returned to the parent core;

� (Merge Phase) The parent core then performs PELT (y1:n,∪Li=1τ̂i), and the

method returns τ̂ , the set of estimated changes found at this stage.

In short, Ai is the set of time points over which the ith core is to fit a changepoint

model, while Bi is the set of candidate changepoints passed to the ith core. Note that
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in the above we require ∪Li=1Ai = {1, . . . , n}. Our two methods for parallelisation

differ in how they choose A1:L and B1:L.

3.2.1 Chunk

The Chunk procedure consists of dividing the data into continuous segments and then

handing each core a separate segment on which to search for changes. This splitting

mechanism is shown in Figure 3.1. One problem with this division arises from changes

which can be arbitrarily close to, or coincide with, the ‘boundary points’ of adjacent

cores. This necessitates the use of an overlap - a set of points which are considered

by both adjacent cores for potential changes, also shown in Figure 3.1. For a time

series of length n, we choose an overlap of size V (n) either side of the boundary for

each core (with the exception of the first and final cores, which can each trivially only

overlap in one direction). The full procedure for Chunk is detailed in Algorithm 1.

Figure 3.1: The time series is split into continuous segments by the Chunk procedure, in this case

with 5 cores (l). An overlap is specified between the segments such that points within are considered

by both adjacent cores (r).
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Algorithm 1 Chunk for the PELT procedure

Data: A univariate dataset, y1:n.

Result: A set of estimated changepoint locations τ̂1, . . . , τ̂m̂.

Step 1: Split the dataset into the subsets B1, . . . ,BL such that

B1 =
{

1, . . . ,
⌊
n
L

⌋
+ V (n)

}
,

Bi =
{

(i− 1)
⌊
n
L

⌋
− V (n), . . . , i

⌊
n
L

⌋
+ V (n)

}
∀i ∈ {2, . . . , L− 1},

BL =
{

(L− 1)
⌊
n
L

⌋
− V (n), . . . , n

}
;

for i = 1, . . . , L do

On core i, find τ̂i = PELT (yBi ,Bi);

end

Step 2: Sort ∪Li=1τ̂i into ascending order;

Step 3: Calculate and return (τ̂1, . . . , τ̂m̂) = PELT
(
y1:n,∪Li=1τ̂i

)
.

Given that Algorithm 1 executes PELT multiple times, it is not immediate that

Chunk represents a computational gain. We therefore briefly examine the speed of the

procedure. Recall that PELT has a worst-case computational cost that is quadratic

in the number of possible changepoint locations. Such a quadratic cost is observed

empirically when the number of changepoints is fixed as n increases. Taking this

worst-case computational cost, the cost of the split stage is O
((

n
L

)2
)

. The cost of

the merge phase is dependent on the total number of estimated changes generated

in the split phase. If we can estimate changepoint locations to sufficient accuracy,

then as each change appears in at most two of the ‘chunks’, the number of returned

changes ought to be at most 2m. Thus the merge phase has a cost that is O(m2).

This intuition is confirmed later, in Corollary 3.3.3.

These calculations suggest that by increasing L we can decrease the computational

cost by a factor of close to L2. This is observed empirically for large n and few

changepoints. In situations where there are many changepoints, the computational

cost for PELT can be much faster than its worst-case cost, and the computational

gains will be less.
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To guarantee that the method does not overestimate the number of changes, some

knowledge of the location error inherent in the PELT procedure is needed. This

motivates the results of Section 3.3, which in turn imply various practical choices for

the length of the overlap region, V (n). In particular, using V (n) =
⌈
(log n)2⌉ will

give an effective guarantee of the accuracy of the method. Other sensible choices for

V (n) can be made based on the trade-off between accuracy and speed (see Section 3.3

for details).

3.2.2 Deal

The Deal procedure allows each core to segment the entire data sequence, but

restricts them to considering a subset of possible changepoint locations. This is done

analogously to dealing the possible changepoints locations to the cores, so that each

core will receive every Lth possible location. A pictorial example of Deal is shown in

Figure 3.2.

Formally, we define Qa(b, c) as the largest integer such that Qa(b, c) × b +

(a mod b) < c. The split phase then partitions {1, . . . , (n− 1)} as follows

B1 = {1, L+ 1, 2L+ 1, . . . , Q1(L, n)L+ 1},

B2 = {2, L+ 2, 2L+ 2, . . . , Q2(L, n)L+ 2},

. . .

BL = {L, 2L, 3L, . . . , QL(L, n)L}.

This splitting mechanism is shown in Figure 3.2. On the kth core, the objective

function to be minimised then becomes

min
m,τ1,...,τm∈Bk

m+1∑
i=1

{
C(y(τi−1+1):τi) + β

}
,

as discussed in Section 3.1. When the estimated changepoints from each core have

been found and returned, the parent core then fits a changepoint model for the entire

data sequence, using only points returned from the cores as changepoint candidates.

The full procedure for Deal is detailed in Algorithm 2.
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Figure 3.2: The time series is distributed across a number of cores by the Deal procedure. A

particular core is given a certain collection of equally spaced points; for example, the points denoted

by crosses (l). This core will then fit a changepoint model using only these points as candidate

changes. The points estimated as changes are returned to the parent core. These points are circled

(r).

Algorithm 2 Deal for the PELT procedure

Data: A univariate dataset, y1:n.

Result: A set of estimated changepoint locations τ̂1, . . . , τ̂m̂.

Step 1: Split the dataset into subsets B1, . . . ,BL such that Bi =

{i, L+ i, . . . , Qi(L, n)L+ i};

for i = 1, . . . , L do

On core i, find τ̂i = PELT (y1:n,Bi);

end

Step 2: Sort ∪Li=1τ̂i into ascending order;

Step 3: Calculate and return (τ̂1, . . . , τ̂m̂) = PELT
(
y1:n,∪Li=1τ̂i

)
.

As for the Chunk procedure, the implementation of Deal leads to computational

gains. In a similar way to the previous section, the worst-case computational time
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of the split phase of Deal will be O
((

n
L

)2
)

. The speed of the merge phase is again

dependent on the number of changes detected at the split phase. We demonstrate in

the proof of Corollary 3.3.3 that, with probability tending to 1, the number of changes

detected by each core is at most 2m, meaning that the worst-case performance of the

merge phase is Op (L2).

We remark that while the Chunk and Deal procedures do not inherit the exactness

of PELT in finding the optimal solution to (3.1.2), they nevertheless track the true

optimum very closely. This can be seen in the empirical results of Section 3.4.

3.3 Consistency of Parallelised Approaches

Our two methods, Chunk and Deal, are no longer guaranteed to minimise (3.1.2).

Thus, we turn to the question as to whether, regardless, the estimates of the number

and location of the changepoints they give still retain desirable asymptotic properties.

We investigate this question for the canonical change in mean model with infill

asymptotics.

This corresponds to our time series, y1, ..., yn, having changepoints corresponding

to proportions θ1, ..., θm, for some fixed m, such that, for a given n, the changepoints

τ1, ..., τm are defined as τi = bθinc ∀i. For the asymptotic setting we consider, we take

θ1:m to be fixed.

With this framework in place, we note that the consistency results for Chunk and

Deal we develop in Section 3.3.1 require one particular result not provided by Killick

et al. (2012). Namely, consistency of PELT for the change in mean setting.

Proposition 1: We consider the change in mean setting for the univariate time series

Yi = δi + µk, for τk−1 + 1 ≤ i ≤ τk and k ∈ {1, ...,m+ 1}, (3.3.1)

where µk 6= µk+1, for k ∈ {1, ...,m} and (δ1, ..., δn) are a set of centered, independent

and identically distributed Gaussian random variables with known variance σ2. Take

a series with m changes and true changepoint locations τ1, ..., τm (where 0 < τ1 < ... <

τm < n). Apply the PELT procedure, minimising squared error loss, with a penalty of
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β = (2 + ε)σ2 log n, for any ε > 0, to produce an estimated set of m̂ change locations

0 < τ̂1 < ... < τ̂m̂ < n. Then, for any ζ > 0, P(Eζn)→ 1 as n→∞, where

Eζn =

{
m̂ = m; max

i=1,...,m
|τ̂i − τi| ≤

⌈
(log n)1+ζ

⌉}
.

Proof : See Section A.2.

This result indicates that the probability of PELT misspecifying the number of

changes, or the location of the true changes by more than a log-power factor, tends to

0 asymptotically. Note that this is with the Schwarz Information Criterion penalty in

this setting, namely 2 (1 + ε)σ2 log n. Whilst this proposition, and the related results

given in the next section, assume that the data have Gaussian distributions with

common variance, it is straightforward to extend the results to sub-Gaussian random

variables, or to allow the variance to vary across the time-series provided the variance

is upper-bounded. In the latter case we would need to replace σ2 in the condition for

the penalty with the maximum value the variance could take.

Proposition 1 also extends naturally to the same problem in the multivariate

setting with d dimensions, with a penalty of (d+ 1) (1 + ε)σ2 log n (see Section A.2 for

details). For the univariate case, the proof of Proposition 1 follows a similar pattern

to that of Yao (1988), though we relax Yao’s condition that an upper bound on the

estimated number of changes is specified a priori.

3.3.1 Consistency and Computational Cost of Chunk and

Deal

We now extend the consistency result in the unparallelised setting to obtain equivalent

results for Chunk and Deal. If we fix the number of cores, L, as we increase n, many

of the asymptotic results would follow trivially from existing results. For example,

if we consider the Chunk approach and fix L as n increases then consistency would

follow directly by the consistency of the analysis of data from each of the cores. Thus,

in the following, we allow the number of cores to potentially increase as n increases,

and use L (n) to denote the number of cores used for a given sample size n.
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Theorem 3.3.1. For the change in mean setting specified in (3.3.1), assume that for

a data series of length n we have L(n) cores across which to parallelise a changepoint

detection procedure, and an overlap of V (n) between adjacent cores. For any ζ > 0,

define Eζn as for the previous results. In addition to the assumptions of Proposition

1, assume that (i) L(n) = o(n) with L(n) → ∞, (ii) that there exists a γ > 1 such

that V (n)/ (log n)γ → ∞ and (iii) V (n) = o(n). Then estimates from the Chunk

procedure applied to a minimisation of the least squared error under a penalty of

β = (2 + ε)σ2 log n, satisfy P(Eζn)→ 1 as n→∞.

Proof : See Section 3.6.

In our simulation study we set V (n) =
⌈
(log n)2⌉, which satisfies the condition of

the theorem.

Theorem 3.3.2. If L(n) ≥
⌈
(log n)1+ζ

⌉
, then the same result as for Theorem 3.3.1

holds with the Deal parallelisation procedure.

Proof : See Section 3.6.

Note that the conditions on L(n) are stronger for Deal than for Chunk, with a

lower bound corresponding with the maximum location error inherent in the event Eζn.

We believe the constraint on L(n) is an artefact of the proof technique. Intuitively

we would expect the statistical accuracy of Deal to be larger for smaller L(n) as, for

example, L(n) = 1 corresponds to optimally minimising the cost. Practically, setting

L(n) = d(log n)e is unlikely to be problematic for typical values of n, a notion which

we confirm empirically in Section 3.4.

Finally, given these results, we are now in a position to give a formal statement on

the worst-case computational cost for both Chunk and Deal, when the computational

cost of setting up a parallel environment is assumed to be negligible.

Corollary 3.3.3. Under the change in mean setting outlined in Proposition 1,

with probability tending to 1 as n → ∞, the worst-case computational

cost for Chunk when parallelising the PELT procedure using L(n) computer

cores is Op
(

max

((
n

L(n)

)2

,m2

))
, while for Deal the worst-case cost is
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Op
(

max

((
n

L(n)

)2

, (L(n))2

))
, compared to a worst-case cost of O(n2) for

unparallelised PELT.

Proof : See Section 3.6.

In the best case, we achieve a computational gain which is quadratic in L(n).

These results also show there is a limit to the gains of parallelisation as we continue

to increase the number of cores. This is particularly true for Deal, where larger

values of L(n) can lead to more candidate changepoints considered in merge phase.

For large L(n), the cost of the merge phase will then dominate the overall cost of

the Deal procedure. Setting L(n) ∼ n
1
2 in Corollary 3.3.3 guarantees a worst-case

computational cost of Op(n) for both Chunk and Deal, no matter the performance of

PELT. We emphasise again that this result ignores the cost of setting up a parallel

environment, which can lead to PELT performing better computationally for small

n. Therefore, we now conduct a simulation study in order to understand the likely

practical circumstances in which parallelisation is a more efficient option.

3.4 Simulations

We now turn to consider the performance of these parallelised approximate methods

on simulated data.

While these suggested parallelisation techniques do speed up the implementation

of the dynamic programming procedure underlying, say, PELT, the exactness of PELT

in resolving (3.1.2) is no longer guaranteed. We therefore compare parallelised PELT

with Wild Binary Segmentation (WBS), proposed by Fryzlewicz (2014), a non-exact

changepoint method which has impressive computational speed. To implement WBS,

we used the wbs R package of Baranowski and Fryzlewicz (2015).

Simulated time series with piecewise normal segments were generated. Five

scenarios, with changes at particular proportions of the time series, were examined

in detail in the study. For time series of length 100000, these scenarios are shown in

Figure 3.3.



CHAPTER 3. CHUNK AND DEAL 53

Figure 3.3: Five scenarios under examination in the simulation study. From top to bottom are

scenarios A, B, C, D and E with 2, 3, 6, 9 and 14 true changes respectively.
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Different lengths of series for each of the five scenarios - keeping the changepoints

fixed at particular proportions in the time series as per the asymptotic regime outlined

at the beginning of Section 3.3 - were used to examine the statistical power of PELT,

Chunk, Deal and WBS under 200 replications for the error terms. In addition, four

change magnitudes (∆µ = 0.25, 0.5, 1 and 2) were used to examine the behaviour

of the algorithms in each of the scenarios as ∆µ was increased. When using PELT,

Chunk and Deal, we assumed a minimum spacing between consecutive changes of at

least two points.

The number of false positives (which were counted as the number of estimated

changes more than dlog ne points from the closest true change) and missed changes

(the number of true changes with no estimated change within dlog ne points), as

well as the maximum observed location error and average location error across all

repetitions were measured. Finally, the average cost of the segmentations (using mean

squared error) generated by the methods, relative to the optimal given by PELT, were

recorded.

As can be seen from Tables 3.1-3.3, Chunk and Deal closely mirror WBS and

PELT in statistical performance in finding approximately the same number of changes

in broadly similar locations. This was particularly evident in situations where the

length of the series was 105. Here, the performance of Chunk and Deal becomes

indistinguishable from PELT and WBS in most cases. However, as the number of

changes and series length was increased, WBS was generally outperformed by both

Chunk and Deal in terms of location accuracy. One additional aspect of note is that

WBS was generally slightly more effective than the cost function based approaches

at detecting the full set of changepoints in the scenarios with very short segments

lengths (B, D and E) - see Table 3.2 for the full picture.

From Table 3.4, we note that, in practice, Deal often outperforms Chunk in terms

of computational speed for a given number of cores. This is due to the fact that the

Deal procedure will rarely perform at the worst-case computational speed during the

split phase (which typically dominates the computation time), as one of the candidates

around a true change is very likely to be chosen as a candidate changepoint (see
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the proof of Theorem 3.3.2). This means that more candidates for the most recent

changepoint are pruned than for Chunk. PELT was observed to be the fastest method

for the smallest value of n across all scenarios. It was at the larger values of n where the

super-linear gains in speed of Chunk and Deal became apparent, as can also be seen

in Figure 3.4, which indicates that both Chunk and Deal exhibit a super-linear gain in

speed in most situations. The exception to this is the use of the Chunk algorithm in

Scenario E, which has a comparatively large number of true changepoints. As a result

of this, the maximum segment length in the series in Scenario E remains similar in

both the PELT and Chunk settings, even as the number of cores is increased. Hence,

the computation gains here are less impressive.

An additional point of interest from Tables 3.4 and 3.5 is that PELT generally

outperforms Chunk and Deal computationally when the time series is of length 103

or 104. This is due to the fact that the setting up of the parallel cluster takes around

one second to complete, while the PELT algorithm takes significantly less time than

this for shorter data sequences.

Finally, from Table 3.6, both Chunk and Deal are seen to track PELT very closely

in terms of the final cost of the model. This appears to be particularly true for the

datasets of greater length, where the average cost seen under both Chunk and Deal

was seen to be the same as PELT (up to our stated precision) for almost all situations

we investigated. In light of the behaviour seen from Tables 3.1-3.3, however, this

should not be surprising.

Caution should be exercised when discussing these results in the context of the

general statistical performance of Chunk and Deal, as only the value of L = 4 was

tested.

All simulations were run in R using a Linux OS on a 2.3GHz Intel Xeon CPU.

Simulations were run in batches of 20, grouped by length of series and detection

method. When testing the PELT procedure, each job within a batch was assigned a

separate core without any parallelisation or external packages involved. For Chunk

and Deal, although jobs were again run in batches of 20, each was assigned the

number of cores across which the algorithm was to be parallelised. (This was 4 in
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all cases, except to run the simulations to generate Figure 3.4.) Parallelisation was

implemented using the doParallel and foreach packages of Calaway et al. (2018)

and Calaway and Weston (2017) respectively. Note that the doParallel package uses

multiprocessing as opposed to multithreading.

In addition to the simulation study we have conducted here, please see the further

study in Section A.3, in which we examine the performance of Chunk and Deal relative

to PELT for a situation with an increasing number of changepoints.

3.5 Discussion

We have proposed two new methods for changepoint detection, Chunk and Deal,

each based on parallelising an existing method, PELT. These methods represent a

substantial computational gain in many cases, particularly for large n. In addition,

by establishing the asymptotic consistency of PELT, we have been able in turn to

show the asymptotic consistency of the Chunk and Deal methods, such that the

error inherent to all three is O (log n) in terms of the maximum location error of an

estimated change relative to the corresponding true change. We have demonstrated

empirically that an implication of this is that Chunk and Deal, while not inheriting

the exactness of PELT, do perform well in finding changes in practice.

There are other approaches to reduce the computational cost of changepoint

methods, whilst retaining the same asymptotic statistical properties. A suggestion,

made by a reviewer, is that we could implement the Deal algorithm but with fewer

candidates per core. Providing there is at least one core with a candidate close to

the true change, say within log n of it, then under infill asymptotics of the kind

discussed in Section 3.3 we will still detect the change with probability tending to

1 as n increases. Our empirical experience with such a method is that it can lose

power at detecting changes in practical, non-asymptotic settings. Such a strategy

has similarities to the ideas presented in Lu et al. (2018), and could be sensible in

situations that they consider where n is exceedingly large, and it is computationally

infeasible to analyse all the data.
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Average False Alarms Length = 103 Length = 104 Length = 105

∆µ ∆µ ∆µ

Scenario Method 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2

A PELT 0.65 0.72 0.24 0.01 1.36 0.72 0.15 0.00 1.28 0.59 0.10 0.00

(2 changes) Chunk4 0.67 0.87 0.21 0.01 1.49 0.72 0.16 0.00 1.29 0.59 0.10 0.00

Deal4 0.64 0.69 0.22 0.01 1.35 0.72 0.15 0.00 1.28 0.59 0.10 0.00

WBS 0.54 0.66 0.29 0.08 1.20 0.66 0.16 0.00 1.26 0.59 0.10 0.00

B PELT 0.17 0.26 0.15 0.01 0.75 0.46 0.14 0.00 0.98 0.83 0.09 0.00

(3 changes) Chunk4 0.15 0.24 0.16 0.01 0.70 0.46 0.14 0.00 0.98 0.83 0.09 0.00

Deal4 0.16 0.27 0.15 0.01 0.75 0.46 0.14 0.00 0.98 0.83 0.09 0.00

WBS 0.15 0.25 0.19 0.07 0.55 0.45 0.12 0.02 0.97 0.93 0.24 0.10

C PELT 0.87 1.01 0.68 0.12 2.79 2.08 0.37 0.00 3.94 1.89 0.20 0.00

(6 changes) Chunk4 0.89 1.00 0.73 0.15 2.66 2.11 0.37 0.00 3.96 1.88 0.19 0.00

Deal4 0.84 1.02 0.69 0.12 2.81 2.08 0.36 0.00 3.94 1.89 0.20 0.00

WBS 0.86 1.23 1.07 0.23 2.73 2.40 0.66 0.08 4.11 2.17 0.53 0.11

D PELT 1.03 1.17 0.61 0.09 3.42 2.83 0.60 0.11 5.16 2.73 0.43 0.00

(9 changes) Chunk4 1.02 1.16 0.63 0.12 3.10 2.81 0.60 0.10 5.14 2.73 0.43 0.00

Deal4 1.01 1.11 0.60 0.09 3.41 2.83 0.61 0.11 5.16 2.73 0.43 0.00

WBS 0.97 1.27 1.01 0.17 3.20 3.10 0.90 0.20 5.42 3.26 0.79 0.17

E PELT 0.94 1.16 0.64 0.07 3.93 3.64 0.86 0.07 8.12 4.07 0.59 0.05

(14 changes) Chunk4 0.99 1.27 0.91 0.30 3.85 3.64 0.90 0.10 8.16 4.06 0.59 0.05

Deal4 0.92 1.15 0.65 0.09 3.91 3.63 0.86 0.07 8.11 4.07 0.59 0.05

WBS 1.01 1.67 1.24 0.24 3.86 4.23 1.24 0.18 8.14 4.50 1.08 0.18

Table 3.1: The average number of false alarms recorded across all 200 repetitions for each of the 5

scenarios A, B, C, D and E. A false alarm is defined as an estimated changepoint which is at least

d(log n)e points from the closest true changepoint. Bold entries show the best performing algorithm.
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Average Num. Missed Length = 103 Length = 104 Length = 105

∆µ ∆µ ∆µ

Scenario Method 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2

A PELT 1.78 1.14 0.22 0.01 1.38 0.71 0.14 0.00 1.28 0.59 0.10 0.00

(2 changes) Chunk4 1.95 1.39 0.21 0.01 1.56 0.72 0.15 0.00 1.29 0.59 0.10 0.00

Deal4 1.78 1.15 0.22 0.01 1.38 0.71 0.14 0.00 1.28 0.59 0.10 0.00

WBS 1.84 1.29 0.22 0.01 1.45 0.66 0.16 0.00 1.26 0.59 0.10 0.00

B PELT 2.63 2.06 1.19 1.02 2.47 1.94 1.22 0.00 2.45 0.86 0.09 0.00

(3 changes) Chunk4 2.65 2.15 1.22 1.03 2.48 1.95 1.22 0.00 2.45 0.86 0.09 0.00

Deal4 2.63 2.08 1.19 1.03 2.47 1.95 1.25 0.00 2.44 0.86 0.09 0.00

WBS 2.65 2.13 1.29 0.91 2.51 1.95 1.06 0.01 2.43 1.02 0.16 0.01

C PELT 5.55 4.87 2.29 0.95 4.85 2.08 0.37 0.00 3.94 1.89 0.20 0.00

(6 changes) Chunk4 5.69 4.99 2.56 1.00 5.01 2.11 0.37 0.00 3.96 1.88 0.19 0.00

Deal4 5.54 4.87 2.38 0.98 4.88 2.08 0.36 0.00 3.94 1.89 0.20 0.00

WBS 5.57 4.71 1.22 0.08 4.90 2.36 0.56 0.03 4.05 2.08 0.48 0.04

D PELT 8.26 7.10 4.67 2.80 7.51 4.39 1.78 0.74 6.43 2.76 0.44 0.00

(9 changes) Chunk4 8.40 7.19 4.78 2.98 7.67 4.43 1.79 0.73 6.43 2.75 0.44 0.00

Deal4 8.26 7.07 4.68 2.87 7.53 4.40 1.81 0.74 6.45 2.76 0.44 0.00

WBS 8.22 6.66 2.65 0.66 7.79 4.57 1.07 0.07 6.48 3.21 0.67 0.02

E PELT 13.0 11.8 9.43 7.62 12.3 7.75 3.54 2.29 9.90 4.75 0.82 0.20

(14 changes) Chunk4 13.2 12.1 9.91 8.04 12.4 7.89 3.63 2.40 9.95 4.75 0.82 0.20

Deal4 13.0 11.9 9.53 7.71 12.3 7.78 3.54 2.29 9.89 4.76 0.82 0.20

WBS 13.1 11.2 6.09 1.53 12.3 7.46 2.51 0.16 10.2 5.00 0.97 0.04

Table 3.2: The average number of missed changes across all 200 repetitions for each of the 5 scenarios

A, B, C, D and E. A missed change is defined as a true changepoint for which no estimated change

lies within d(log n)e points. Bold entries show the best performing algorithm.
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Average Location Error Length = 103 Length = 104 Length = 105

∆µ ∆µ ∆µ

Scenario Method 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2

A PELT 58.0 18.6 5.04 1.23 70.1 11.5 3.25 1.19 46.0 11.7 3.21 1.26

(2 changes) Chunk4 51.2 18.8 3.16 1.24 90.3 12.1 3.35 1.18 47.4 11.7 3.21 1.26

Deal4 61.0 15.5 3.21 1.23 57.3 11.5 3.25 1.19 46.0 11.7 3.21 1.26

WBS 86.2 34.7 12.7 10.7 52.4 12.3 3.40 1.20 46.0 12.1 3.18 1.26

B PELT 70.3 31.5 11.7 3.74 76.1 42.8 3.66 1.25 47.5 12.1 3.00 1.27

(3 changes) Chunk4 77.5 37.2 12.5 1.16 72.3 41.6 3.59 1.24 47.0 12.1 3.00 1.27

Deal4 70.3 32.9 11.8 3.77 74.6 41.6 3.65 1.24 47.1 12.0 3.00 1.27

WBS 59.9 38.7 17.4 13.8 32.2 11.0 3.25 1.52 47.4 14.4 5.82 3.07

C PELT 25.9 15.0 4.38 1.53 64.2 11.9 3.29 1.23 50.3 12.5 3.04 1.23

(6 changes) Chunk4 26.3 14.1 4.53 1.77 60.9 12.7 3.29 1.23 50.7 12.4 3.01 1.24

Deal4 25.5 14.8 4.38 1.54 64.3 12.0 3.28 1.23 50.3 12.5 3.04 1.23

WBS 21.8 14.1 5.87 2.51 65.1 17.7 5.79 1.88 80.7 24.0 5.62 1.93

D PELT 18.9 10.4 3.57 1.43 58.3 13.2 3.52 1.47 86.0 11.7 3.32 1.25

(9 changes) Chunk4 19.6 10.9 3.71 1.54 63.6 13.8 3.68 1.47 86.8 11.6 3.32 1.25

Deal4 18.8 9.90 3.57 1.44 56.6 13.2 3.53 1.47 86.2 11.7 3.32 1.25

WBS 17.6 10.4 4.41 4.12 58.3 20.0 5.29 1.76 199 20.4 6.47 2.39

E PELT 13.0 8.68 3.78 1.44 51.7 13.3 3.60 1.39 50.9 12.7 3.48 1.44

(14 changes) Chunk4 15.0 9.88 4.91 2.09 65.8 15.0 4.14 1.73 52.0 12.6 3.48 1.44

Deal4 12.9 9.01 3.78 1.44 51.4 13.3 3.64 1.39 50.8 12.8 3.48 1.44

WBS 13.7 9.67 4.20 2.58 56.9 17.1 9.05 1.64 70.6 36.3 5.18 1.90

Table 3.3: The average location error between those true changes which were detected by the

algorithms and the corresponding estimated change across all 200 repetitions for each of the 5

scenarios. Bold entries show the best performing algorithm.
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Mean Time Taken Length = 103 Length = 104 Length = 105

(seconds) ∆µ ∆µ ∆µ

Scenario Method 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2

A PELT 0.06 0.06 0.05 0.05 1.61 1.44 1.47 1.49 108 107 113 109

(2 changes) Chunk4 1.48 1.49 1.37 1.13 1.90 1.89 1.83 1.54 23.9 24.0 21.1 24.1

Deal4 1.59 1.23 1.59 1.49 1.72 1.70 1.45 1.69 12.1 10.7 11.9 11.1

B PELT 0.06 0.06 0.06 0.06 2.23 2.27 2.35 2.57 147 144 154 165

(3 changes) Chunk4 1.38 1.37 1.13 1.38 1.78 1.82 1.55 1.78 23.9 24.1 24.2 31.6

Deal4 1.49 1.49 1.24 1.16 1.82 1.45 1.59 1.59 16.2 16.5 16.5 16.4

C PELT 0.06 0.05 0.04 0.03 1.23 0.94 0.93 0.88 72.2 71.8 70.7 72.1

(6 changes) Chunk4 1.48 1.13 1.38 1.48 1.84 1.50 1.73 1.85 22.3 20.0 23.2 29.7

Deal4 1.58 1.58 1.49 1.15 1.46 1.42 1.28 1.37 8.33 7.58 7.60 7.30

D PELT 0.05 0.05 0.03 0.04 1.12 0.82 0.73 0.75 60.6 55.5 56.9 55.4

(9 changes) Chunk4 1.37 1.37 1.48 1.37 1.79 1.73 1.85 1.77 22.5 22.5 19.8 29.8

Deal4 1.49 1.23 1.58 1.58 1.65 1.36 1.40 1.26 6.66 6.58 6.26 6.91

E PELT 0.05 0.05 0.04 0.04 1.03 0.69 0.63 0.58 60.9 40.0 37.2 37.7

(14 changes) Chunk4 1.42 1.38 1.48 1.37 2.15 1.65 1.74 1.65 28.8 14.3 16.0 16.0

Deal4 1.50 1.58 1.48 1.23 1.55 1.38 1.56 1.33 8.92 5.23 4.95 5.44

Table 3.4: The time taken across 200 repetitions for each of the scenarios in question for PELT,

Chunk and Deal (using 4 cores). Bold entries show the best performing algorithm.
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Average Relative Gain Length = 103 Length = 104 Length = 105

In Computation Speed ∆µ ∆µ ∆µ

Scenario Method 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2

A Chunk4 0.04 0.04 0.03 0.04 0.85 0.76 0.80 0.97 4.53 4.44 5.34 4.53

(2 changes) Deal4 0.04 0.05 0.03 0.03 0.94 0.85 1.01 0.88 8.94 9.97 9.46 9.83

B Chunk4 0.04 0.05 0.06 0.05 1.25 1.25 1.52 1.44 6.14 5.96 6.37 5.21

(3 changes) Deal4 0.04 0.04 0.05 0.05 1.23 1.57 1.48 1.62 9.05 8.71 9.34 10.0

C Chunk4 0.04 0.04 0.03 0.02 0.67 0.63 0.54 0.47 3.24 3.59 3.05 2.43

(6 changes) Deal4 0.04 0.03 0.03 0.03 0.84 0.66 0.72 0.64 8.67 9.47 9.31 9.88

D Chunk4 0.04 0.03 0.02 0.03 0.63 0.48 0.39 0.42 2.69 2.47 2.87 1.86

(9 changes) Deal4 0.03 0.04 0.02 0.02 0.68 0.61 0.52 0.59 9.10 8.43 9.08 8.01

E Chunk4 0.04 0.03 0.03 0.03 0.48 0.42 0.36 0.35 2.11 2.79 2.32 2.36

(14 changes) Deal4 0.03 0.03 0.03 0.03 0.66 0.50 0.40 0.44 6.82 7.64 7.51 6.94

Table 3.5: The average relative computation gain of the Chunk and Deal methods relative to the

PELT method across 200 repetitions for each of the scenarios in question. These values are calculated

by dividing corresponding values from Table 3.4. Bold entries show the best performing algorithm.

Average Cost - Optimal Length = 103 Length = 104 Length = 105

∆µ ∆µ ∆µ

Scenario Method 0.25 0.5 1 2 0.25 0.5 1 2 0.25 0.5 1 2

A Chunk4 1.70 1.57 0.03 0.01 3.17 0.05 0.01 0.00 0.00 0.00 0.00 0.00

(2 changes) Deal4 0.01 0.03 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

B Chunk4 0.12 0.51 0.13 0.09 0.19 0.01 0.00 0.00 0.00 0.00 0.00 0.00

(3 changes) Deal4 0.01 0.05 0.02 0.04 0.01 0.01 0.04 0.00 0.00 0.00 0.00 0.00

C Chunk4 1.65 1.85 2.44 6.52 3.44 0.39 0.02 0.00 0.00 0.00 0.00 0.00

(6 changes) Deal4 0.03 0.04 0.07 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D Chunk4 2.30 2.23 2.90 7.44 4.10 1.13 1.42 0.01 0.10 0.00 0.00 0.00

(9 changes) Deal4 0.05 0.06 0.13 0.17 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00

E Chunk4 2.41 4.02 8.43 24.2 7.45 4.21 6.75 19.7 0.10 0.00 0.00 0.00

(14 changes) Deal4 0.05 0.11 0.19 0.29 0.02 0.02 0.03 0.10 0.00 0.00 0.00 0.00

Table 3.6: The average error, across 200 repetitions, between the penalised residual sum of squares

using Chunk and Deal with 4 cores and PELT (which is optimal). Bold entries show the best

performing algorithm.
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Figure 3.4: Mean computational gain (y) across 200 repetitions for Chunk and Deal compared to

PELT across a differing number of cores (x) under three specific scenarios. The lines y = x and

y = x2 are shown for comparison.
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3.6 Proofs

The following results will be stated with respect to a general ζ > 0. Theoretically,

this means that any ζ > 0 can be used in Algorithm 1 or Algorithm 2, however in

the simulation study detailed in Section 3.4, d(log n)2e was used as the overlap length

(for Chunk), while the cutoff value for closeness detailed in the merge phase (Step 3)

of both procedures was taken as d(log n)e.

Proof of Theorem 3.3.1: The Chunk procedure involves obtaining a set of

candidate changepoints from analysing the data sent to each core, and then finding

the best segmentation using these changepoints in the merge phase. We claim that

to show Chunk is consistent, it is sufficient to show that, with probability tending to

1, there will be a segmentation using m of the candidate changepoints that gives an

RSS that is within op (log n) of the RSS we obtain for the true segmentation.

This claim follows from a simple adaptation of the proof of Proposition 1. In that

proof we show that, with probability tending to 1, for any penalty (2 + ε)σ2 log n with

ε > 0, a segmentation with m̂ > m changepoints will have a worse penalised cost than

the true segmentation. Furthermore, any segmentation with m̂ ≤ m which is not in

Eζn will miss one or more changepoints by more than (log n)1+ζ and will have a worse

penalised cost than a segmentation with m̂ > m changepoints (i.e. a segmentation

obtained by adding three changepoints for each changepoint that is not estimated well

enough). Thus, to show our claim, we need only show that, with probability tending

to 1, we do not overestimate the number of changepoints.

Assume we use a penalty of (2 + ε)σ2 log n for Chunk. From the argument in the

proof of Proposition 1 applied to the penalised cost with a penalty (2 + 2ε)σ2 log n,

we have that with probability tending to 1, for all τ̂1:m̂ with m̂ > m,

RSS (y1:n; τ̂1:m̂)− RSS (y1:n; τ1:m) + (m̂−m) (2 + 2ε)σ2 log n > 0, so

RSS (y1:n, τ̂1:m̂)− {RSS (y1:n; τ1:m) + op (log n)}+ (m̂−m) (2 + ε)σ2 log n > εσ2 log n+ op (log n) ,

as required.

We now show that we will have a suitable set of candidate changepoints for the

merge phase in two steps. The first of these steps establishes that each changepoint

will be estimated within log log n.
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By the set-up of Chunk, each changepoint will appear in the non-overlap region

of data assigned to precisely one core. Furthermore, as L(n)→∞ and V (n) = o(n),

then for large enough n the core that a changepoint is assigned to will have data

which contains only that changepoint.

Consider the data associated with each such core. Such a core will have data with

just a single changepoint and a minimum segment length that is at least V (n). As for

sufficiently large n, V (n) > dlog ne1+γ, for some γ > 0, then, by a simple adaptation

of the argument in Section A.1, it is straightforward to show that, with probability

tending to 1, we will detect precisely one changepoint for this data. Standard results

(for example, see Lemma 3 of Yao and Au (1989)) for detecting a single changepoint

from Gaussian data shows that the error in the location is Op(1), and hence with

probability tending to 1 we will detect the changepoint within an error of log log n.

As there are a finite number of changepoints, with probability tending to 1 we will

detect precisely one changepoint with an error less than log log n for all cores with a

changepoint in the non-overlap region.

We now define, for a true segmentation of τ1:m and sequence of length n, a good

set of segmentations, H (τ1:m, n), such that

H (τ1:m, n) = {τ̂1:m̂|m̂ = m, |τ̂i − τi| ≤ log log n for i ∈ {1, . . . ,m}} .

The second phase is to show that for any set of changepoints τ̂1:m̂ ∈ H (τ1:m, n), the

maximum difference between the RSS for fitting changepoints at τ̂1:m and the RSS

for fitting changepoints at the true locations is Op(log log n).

Define ∆µk := |µk − µk+1|. For any appropriate τ̂1:m we have

RSS(y1:n; τ̂1:m)− RSS(y1:n; τ1:m) ≤
m+1∑
i=1

 1

τi − τi−1

 τi∑
j=τi−1+1

Zj

2

− 1

τ̂i − τ̂i−1

 τ̂i∑
j=τ̂i−1+1

Zj

2


+

m∑
k=1

(∆µk)
2

log log n+G,

where the fourth term, G, depends on τ̂1:m with G ∼ N
(
0, 4σ2

∑m
k=1 (∆µk)

2 log log n
)
.

Note that the first term in this inequality does not depend on τ̂1:m and has a χ2
m+1

distribution, and so is Op(log log n); the second term is negative and the third term

is a constant multiple of log log n. So it only remains to check that G = Op (log log n)
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uniformly across all members of H. This follows trivially from standard bounds on

a Gaussian distribution together with a Bonferroni correction over the (2 log log n)m

possibilities for τ̂1:m. �

Proof of Theorem 3.3.2: Recall that L(n) ≥
⌈
(log n)1+ζ

⌉
and L(n) = o(n).

The idea will be to show that the core which is ‘dealt’ a particular true change, τi,

will always return this true change as a candidate changepoint for the merge phase.

By Yao (1988), letting τ̂1:m be a set of estimated changes which miss the true change

τi by at least
⌈
(log n)1+ζ

⌉
, then again by the proof of Corollary A.1.3 the cost of

this segmentation is strictly worse than the cost of also fitting changes at the points

τi − L(n) and τi + L(n). By then considering the difference

Diff := RSS(y1:n; τ̂1:m, τi − L(n), τi + L(n))− RSS(y1:n; τ̂1:m, τi − L(n), τi, τi + L(n)),

in a similar fashion to the proof of Corollary A.1.3, it can be shown that in probability

Diff

L(n)
→ (∆µi−1)2 ,

where again ∆µi−1 is the absolute change in mean at the changepoint τi. �

Proof of Corollary 3.3.3: It is sufficient to prove the following Claim regarding

the number of candidate changes each core returns.

Claim: With probability tending to 1, and for any candidate set given to the

cores in accordance with the conditions of Theorem 3.3.1 and Theorem 3.3.2

(I): under the Chunk procedure, the maximum number of points returned for the

merge phase is bounded above by 2m,

(II): under Deal, the maximum number of points recorded as estimated changes is

bounded above by 2m for each core.

Proof of Claim:

Proof of (I): We note that when L(n) is constant, the result is immediate from

the proof of Proposition 1.

When L(n)→∞, it suffices to show that across all cores which are given no true

changes, the probability of any of these cores returning a true change converges to 0.
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Given that the number of cores which are given a change is fixed (and bounded above

at 2m - as each change could fall inside an overlap), the result is then immediate from

the proof of Theorem 3.3.1.

Considering a single core with no true changes, we adapt the argument from the

proof Proposition 1. For a quantity Uk+1 which is distributed according to a χ2
k+1

distribution, then by Laurent and Massart (2000)

P(Uk+1 ≥ d log n) ≤ n−
d
2

+δ, for any δ > 0.

Fitting k > 0 changes across a core will give that the residual sum of squares, relative

to a fit of no changes across the same core, follows a χ2
k+1 distribution. Therefore,

following the application of a Bonferroni correction across all possible placings of k

changes gives that the difference between the null fit and the best possible fit of k

changes is then bounded in probability as

P(Diffk ≥ d log n) ≤ n−
d
2

+δ ×
(

n

L(n)

)k
.

In particular, setting d = 2k (1 + ε) and δ = ε/2 as before, gives that

n/L(n)∑
k=1

P(Diffk ≥ 2k (1 + ε) log n) ≤
n/L(n)∑
k=1

n−
(2k−1)ε

2

(L(n))k

=
n−

ε
2

L(n)

(
1− n−ε

n
L(n)L(n)−

n
L(n)

1− n−εL(n)−1

)
→ 0, ∀ε > 0,

and so scaling this by L(n)

P(A core with no true changes overfits)→ 0 ∀ε > 0.

Therefore, the computation time of the merge phase of Chunk is Op(m2) in the worst

case, which along with the worst-case cost from the split phase of O
((

n
L(n)

)2
)

gives

the worst-case computation time for the whole procedure.

Proof of (II): We introduce the set of points, a subset of the points given to a

particular core under the Deal procedure, with exactly 2m elements. Each element in

this set is the closest time point given to the core immediately before and after each

true change. That is, we define, for a given core under the Deal procedure

U1 =
{
s

(1)
1 , s

(2)
1 , s

(1)
2 , s

(2)
2 , . . . , s(1)

m , s(2)
m

}
,
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where s
(1)
i is the final point given to the core which is strictly before τi, and s

(2)
i is

the first point given to the core which is after τi. In the same way as for the proof

of Proposition 1, we examine the best possible segmentations which include U1 as a

subset of the estimated changepoints for a core, and show that all are rejected in favour

of U1 in probability. We then show that this is true across all cores in probability.

For a given core, suppose U2 is a set of points estimated as changes under the Deal

procedure such that U1 ⊂ U2. By construction of U1, all points in U2 ∩ U c1 must lie in

a region between two points of U1 which also does not contain any true changes. We

can therefore apply the same argument as for Proposition 1 to the difference

Diff := RSS(yA;U1)− RSS(yA;U2),

where A refers to any such region between two consecutive points of U1 which contains

a point found only in U2. Uniformly across such regions, and supposing k > 0 such

estimated changes are found within A, it can be seen that the positive term in the

expression of the difference above is distributed as χ2
k+1. Thus letting ñ = n

L(n)
and

again with recourse to the Bonferroni correction argument as in Proposition 1, for a

given ε > 0

ñ∑
k=1

P(Diffk ≥ 2k (1 + ε) log n) ≤
ñ∑
k=1

n−
(2k−1)ε

2

(L(n))k

=
n−

ε
2

L(n)

(
1− n−ñεL(n)−ñ

1− n−εL(n)−1

)
→ 0, ∀ε > 0.

Note that this argument does not consider segmentations which do not contain U1 as

a proper subset. In order to extend this argument, we define the following three sets

of segmentations (with respect to a given core)

GU2 = {τ̂ : |τ̂ | = 2m; τ̂2t−1 ≤ τt, τ̂2t > τt,∀t ∈ {1, ...,m}} ,

GU1 = {τ̂ : |τ̂ | ≤ 2m; |τ̂ ∩ {τt + 1, ..., τt+1}| ≥ 1, ∀t ∈ {0, ...,m} ; }

{|τ̂ ∩ {τt + 1, ..., τt+1}| = 1, some t /∈ {0,m}} ,

GU0 = {τ̂ : |τ̂ | ≤ 2m; |τ̂ ∩ {τt + 1, ..., τt+1}| = 0, some t} .

In short, GU2 is the set of segmentations containing exactly 2m points where

between two consecutive true changes there are exactly two estimated changepoints.
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Additionally, there is exactly one estimated change prior to the first true change and

exactly one estimated changepoint following the final true change. Meanwhile, GU1

is the set of segmentations in which at least one estimated change is placed between

two consecutive true changes in every case, and, for at least one case, exactly one

estimate is placed between two consecutive true changes. Finally, GU0 is the set of

segmentations with at most 2m estimated changes, where in at least one case no

estimated changes are placed between two consecutive true changes.

Note that U1 ∈ GU2. In addition, the argument showing that any segmentation U2

containing U1 is rejected uniformly in favour of U1 may be extended to any element of

GU2. This in turn shows that any segmentation with more than 2m estimated changes

in total, and which has at least two estimated changes between each true change, is

uniformly dominated by a corresponding element of GU2.

In the same way, let us now consider extensions from a general element, T1 ∈

GU1, where here an extension is defined as a superset of T1 which also contains

additional estimated changes from regions between two estimated changes within T1

not containing a true change. Let, for example

T1 =
{
s

(1)
1 , s

(2)
1 , ..., s

(2)
i−1, s

(k)
i , s

(1)
i+1, ..., s

(2)
m

}
⊂ U1,

for some k ∈ {1, 2} and i ∈ {1, ...,m}. Then, any extension of T1 consists of placing

further estimated changes in any of the regions between the changes above with the

exception of either (if k = 1) the region
(
s

(1)
i , s

(1)
i+1

)
or (if k = 2) the region

(
s

(2)
i−1, s

(2)
i

)
.

Let T ′1 be an arbitrary such extension, and again let A be any region between two

consecutive points of T1 which contains a point found only in T ′1 . As before, uniformly

across such regions, and supposing again that k > 0 such estimated changes are found

within A, letting

Diff := RSS(yA; T1)− RSS(yA; T ′1 ),

then again Diff is distributed as χ2
k+1. With recourse to the same argument as before

(noting again that any such region A will have at most ñ = n
L(n)

candidate points for

the extension - no matter which base element of GU1 we pick), and extending to other

elements of GU1, we conclude that any segmentation with more than 2m estimated
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changes which places just one estimated change between two true changes in at least

one case will be rejected uniformly (and for all cores) in favour of an element of GU1.

Finally, we consider all segmentations with more than 2m changes which place no

estimated changes between two true changes in at least one case. We again compare

with T0 ∈ GU0. Let, for example

T0 =
{
s

(1)
1 , s

(2)
2 , . . . , s

(2)
i−1, s

(1)
i+1, . . . , s

(2)
m

}
,

for some i ∈ {1, . . . ,m}. Then any extension of T0 consists of placing any further

estimated changes in any of the regions between the changes above, with the exception

of the region
(
s

(2)
i−1, s

(1)
i+1

)
. Let T ′0 be an arbitrary such extension, and again let A be

any region between two consecutive points of T0 which contains a point found only in

T ′0 . Then again letting

Diff := RSS(yA; T0)− RSS(yA; T ′0 ),

then for k > 0 changes in the region A, Diff is distributed as χ2
k+1. We can

again extend this argument to extensions of other elements of GU0 to conclude that

segmentations with more than 2m changes which have no estimated changepoints

between two consecutive true changes in at least one case will be uniformly rejected

in favour of an element of GU0.

Therefore, as any segmentation with more than 2m changes for any core is

an extension of an element of GU0, GU1 or GU2 (as such a segmentation must

contain a region between two consecutive true changes with at least three estimated

changes), then across all cores, a segmentation must be picked from within one of the

classes GU0, GU1 or GU2 in probability. Thus, the maximum number of estimated

changepoints that a core can return in the Deal procedure is 2m.

The number of candidates returned for the merge phase of the Deal procedure

is therefore bounded in probability by 2mL(n), so that the maximum computation

time of the merge phase is Op
(
(L(n))2) in the worst case. This gives the stated total

worst-case computation time for the whole procedure. �



Chapter 4

Computationally Efficient

Multivariate Changepoint

Detection

4.1 Introduction

Changepoint detection concerns inferring those points in a data sequence where

some aspect of the data generating mechanism alters abruptly. Classical examples

of aspects which may undergo a change include the mean (Hinkley, 1971; James

et al., 1987; Kokoszka and Leipus, 1998, among others), variance (Hsu, 1977; Inclán

and Tiao, 1994; Chen and Gupta, 1997, among others), slope (Miao, 1989; Julious,

2001; Aue et al., 2006, among others), event rate (Raftery and Akman, 1986; Yao,

1986; Henderson, 1990, among others) or distribution (Lombard, 1987; Carlstein, 1988;

Barry and Hartigan, 1992, among others).

Changepoint detection continues to be an area of intense activity and practical

concern, particularly due to the large amount of data that is routinely collected

and interest in segmenting such data into regions with homogeneous behaviour.

Application areas are wide-ranging, from climate change (Manogaran and Lopez,

2018) to brain imaging (Jewell et al., 2019) and Bitcoin volatility (Thies and Molnár,

2018). Recent contributions include Anastasiou and Fryzlewicz (2019), Eichinger and

70
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Kirch (2018), Plasse and Adams (2019) and Roy et al. (2017).

Whilst detecting changes in univariate data sequences has a long history, there

has been much less work on methods for detecting potentially multiple changepoints

in multivariate datasets. Univariate approaches can be readily adapted to the

multivariate setting if we are willing to assume all variates change at each changepoint;

see, for example, Wessman (1998), Wolfe and Chen (1990) and Zhou et al. (2010).

However, this may not be appropriate in applications where some, but not all, variates

are affected by each changepoint, or where it is not known a priori whether a change

will only affect a very small number or many of the variates.

Within the multivariate changepoint setting, the change in mean problem has

to date received the most substantial focus; see, for example, Sen and Srivastava

(1973), Bardet and Dion (2019) and many others. In this setting, evidence for a

change in a single series can, for example, be quantified using CUSUM statistics – a

weighted difference in the empirical mean before and after the potential changepoint.

The simplest ways of combining evidence across time series are to (i) perform some

form of averaging of the CUSUM statistics; or (ii) take the maximum value of the

CUSUM statistics. Enikeeva and Harchaoui (2019) study the properties of these two

approaches under an asymptotic regime where both the number of variates and the

number of observations per variate increase. The detection boundaries, that is, how

large a change in mean is needed in order that the presence or absence of a change

can be determined with probability tending to 1, for approaches based on (i) and

(ii) are very different. In particular, which of (i) and (ii) is better depends on the

proportion of variates that undergo a sizeable change. If we let d be the number

of variates, a change is said to be sparse if it affects o(d1/2) of the variates, and

dense otherwise. Then methods based on averaging CUSUM statistics are able to

detect smaller changes in the dense setting. By contrast, using the maximum can

detect smaller changes in the sparse setting. Enikeeva and Harchaoui (2019) propose

combining these two approaches in order to have a high detection chance across all

types of change.

Alternative ways of aggregating evidence for a change across variates try to
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strike a balance between approaches (i) and (ii). For example, Cho and Fryzlewicz

(2015) and Cho (2016) sum only CUSUM statistics that exceed a certain threshold.

Conversely, Wang and Samworth (2018) consider sparse projections of the data. This

is equivalent to using a weighted average of CUSUM statistics. These approaches can

demonstrate strong empirical performance, but neither has been shown theoretically

to simultaneously work as well as (i) in the dense setting and (ii) in the sparse setting.

For example, the method of Wang and Samworth (2018) was designed for detecting

sparse changes, and its theory establishes strong performance in only that setting.

In this chapter, we propose an alternative approach for detecting changes in

multivariate datasets, based on likelihood ratio test statistics. One challenge with

performing a likelihood ratio test is that we do not know how many, and which, of

the variates change at any potential changepoint. Consequently, as Chapter 4 of

Pickering (2016) identified, we introduce a penalised version of the likelihood ratio

test statistic. Here, the penalty depends on how many variates are assumed to change.

We then maximise these penalised statistics over all possible subsets of variates and

changepoint locations. The method we propose has good computational properties,

with an approximately linear computation time in the number of temporal points

when the number of dimensions is fixed, and vice versa. Note that our approach

is distinct from Chapter 4 of Pickering (2016), as their procedure exactly minimises

a multivariate cost function. As they discuss, this leads to a heavy computational

burden.

Since our approach is penalised, we show how to choose the penalties so that,

for the change in mean problem, it has good asymptotic properties simultaneously

for both sparse and dense changes. The method can be applied to detect a range

of different types of change, providing we use an appropriate likelihood model for

the data within a segment on which we base our likelihood ratio test statistic.

The theoretical properties for the change in mean case solely use the chi-squared

distribution of the likelihood ratio statistic, and thus the penalties we have developed

in that setting will be appropriate more generally, providing that the likelihood

ratio test statistic is approximately chi-squared distributed. This is demonstrated
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empirically for count data under a negative binomial model in Section 4.4.

Whilst our new approach gives a test for detecting a single changepoint and

estimating where it occurs, we can embed this within a recent wild binary

segmentation procedure (Fryzlewicz, 2019) in order to efficiently detect multiple

changes. We also introduce a fast post-processing step that estimates which series

change at each changepoint. Importantly, this is done using information about all

the estimated changepoints. In doing so, we reduce the problem that estimates of

which variates change at a given point can be corrupted by other variates changing at

nearby time points. We call the resulting multivariate changepoint algorithm Sparse

and Ubiquitous Binary Segmentation in Efficient Time (or SUBSET), given that

the method has computational efficiency which is competitive with other existing

methods, while also being equipped to estimate the subset of variates within the

dataset which are affected by each change.

The chapter is organised as follows: Section 4.2 formally introduces the

multivariate changepoint detection problem, whilst Section 4.3 provides a complete

description of the SUBSET procedure, including theoretical justifications in the

change in mean setting. Section 4.4 compares the SUBSET method against a

number of competitor methods in a simulation study covering both at most one

change and multiple change scenarios. Section 4.5 applies SUBSET to the Global

Terrorism Database (GTD). The GTD is a global historical record of terrorist

incidents maintained by the National Consortium for the Study of Terrorism and

Responses to Terrorism at the University of Maryland (Jensen, 2018). Specifically,

we search for changepoints in overall terror activity in different regions of the world

since 1970. We conclude with a discussion in Section 4.6.

4.2 Problem Formulation

We are interested in the problem of changepoint detection for multivariate data. One

typical complication in such a setting, as identified by, for example, Chapter 4 of

Pickering (2016), is the nature of the change in question, i.e. whether a change affects
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all variates simultaneously, or just some subset (see Figure 4.1).

Figure 4.1: Four univariate sequences comprise this example dataset. There are three changepoints,

which each affect a different number of variates: the first change affects the first variate only, the

second change affects all variates and the third change alters the third and fourth variates.

Suppose that the data sequence for each variate, (yi,j)
n
j=1 for i = 1, . . . , d, within

the dataset, y1:n, can be segmented by changepoints, which are often shared across

variates within the data. Following Chapter 4 of Pickering (2016), we define the set of

changepoints to be points where at least one variate undergoes a change. Therefore,

for each changepoint, there is an associated affected set of variates which undergo

a change. Formally, let 0 = τ0 < τ1 < . . . < τm < τm+1 = n be the changepoints

with corresponding affected sets S1, . . . ,Sm. We will assume a parametric model for

the data within a segment for each variate, and assume that the segment parameter

for this model only changes at changepoints which affect that variate. To simplify

the exposition, assume that the data are conditionally independent given the segment

parameters. In other words, we have

yi,j ∼ g(.|µi,k), (4.2.1)

for some family of densities g(.|.), where k = |{v : τv < j}|+ 1.

We remark that, in many practical applications, it can be expected that data

will have dependence across the different variates within the system. While some

recent works - see, for example, Aston and Kirch (2012b) and Bücher et al. (2014)

- have considered this problem for contexts where assuming independence is much
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less reasonable, such as financial time series, in general the current state of the art is

to assume independence in everything except the changepoint locations. One likely

effect of using the test statistic we propose on highly dependent data would be to

depress the number of sparse changepoints detected, while inflating the number of

dense changepoints detected. This is one important reason why we propose the

post-processing step to our method presented in Section B.3. This post-processing

step enables each variate to be considered separately, in a computationally efficient

fashion, to remove any possible overfitting effects. For instance, as can be seen from

our example application in Section 4.5, the only dense changepoint found by our

method following post-processing can be explained by a change in the data collection

method.

4.3 SUBSET

In this section, we introduce our new method for detecting multiple changepoints in

the multivariate setting. We begin by discussing the detection of a single change.

4.3.1 Detecting a Single Changepoint

We begin with a derivation of the test statistic used by SUBSET in the single change

setting. The log-likelihood ratio statistic for detecting a changepoint at time τ ,

affecting variates in set S, is

R(τ,S) = 2

[∑
i∈S

{
max
µ

τ∑
t=1

log g(yi,t|µ) + max
µ

n∑
t=τ+1

log g(yi,t|µ)−max
µ

n∑
t=1

log g(yi,t|µ)

}]
.

To simplify the notation, let C(yi,s:t) = −2 maxµ
∑t

t=s log g(yi,t|µ). Then we can define

Di,t = C(yi,1:n)− C(yi,1:t)− C(yi,t+1:n)

to be the contribution from the ith series to the log-likelihood ratio statistic, if this

variate is assumed to change at time t. Then R(τ,S) =
∑

i∈S Di,τ .

Directly using the log-likelihood test statistic is complicated due to the fact we do

not know τ or S. In addition, different choices of S will allow for different numbers of
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series to change. We therefore consider a penalised version of the test statistic, where

the penalty depends on the number of variates that change, |S|. We then maximise

over possible choices of τ and S. That is, we use maxt St as our test statistic where,

for t = 1, . . . , n− 1,

St = max
S

∑
i∈S

Di,t − Pen(|S|),

for some suitable penalty function Pen(·).

As we shall describe in detail in Section 4.3.2, we suggest a piecewise linear penalty

of the form Pen(p) = min{β + αp,K} for some suitable constants α, β and K. We

then detect a change if maxt St > 0, with the location at τ̂ = arg maxt St and the

set of affected variates estimated by arg maxS
∑

i∈S Di,τ̂ − Pen(|S|). Here we choose

a piecewise linear penalty as this makes the maximisation over S computationally

efficient. In particular, we define D
′
i,t = max{Di,t − α, 0}, and then

St = max

{
d∑
i=1

D
′

i,t − β,
d∑
i=1

Di,t −K

}
.

The two terms in the maximisation above correspond to the two different linear

regimes in the penalty function. As we shall see later, the β + αp part of the

penalty function determines the test statistic’s behaviour for detecting sparse changes.

Meanwhile, the constant term, K, is needed to improve power for detecting dense

changes. Note here that if St =
∑d

i=1 D
′
i,t−β > 0, then we say that we have detected

a sparse change, with evidence for a change only in those variates i such that D
′
i,t > α.

If, however, St =
∑d

i=1Di,t −K > 0, then all changes are labelled as affected by the

estimated changepoint. In this situation, the change is described as dense.

4.3.2 Theory for a Change in Mean

To understand the behaviour of the test statistic for a single change, we study its

theoretical properties for the canonical change in mean problem with Gaussian noise

and a common, known variance, σ2. As we are considering just a single change, we

will simplify notation so that µi,1 is the initial mean of series i. If there is a change, µi,2

will be the mean after the change, and µi,1 = µi,2 if i /∈ S1. Thus, the data-generating
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model is

Yi,j = εi,j +

µi,1 for 1 ≤ j ≤ τ,

µi,2 for τ + 1 ≤ j ≤ n,

for i ∈ {1, . . . , d} (4.3.1)

where the εi,j, for i = 1, . . . , d, and j = 1, . . . , n are a set of centred, independent and

identically distributed Gaussian random variables.

For this particular problem, we have that

C (yi,s:t) =
1

σ2

t∑
j=s

(
yi,j −

1

t− s+ 1

t∑
k=s

yi,k

)2

,

and consequently it follows that

Di,t =
1

σ2

1

t

(
t∑

k=1

yi,k

)2

+
1

n− t

(
n∑

k=t+1

yi,k

)2

− 1

n

(
n∑
k=1

yi,k

)2
 .

Hence Di,t is chi-squared distributed with 1 degree of freedom when no changepoint is

present. We use this fact to establish false positive and detection probability results

in the single change setting under Gaussian noise when maxt St is taken as the test

statistic.

Our first theoretical contribution concerns the false positive rate of the chosen test

statistic. As we shall explain shortly, this result motivates our specific choices for β, α

and K in this setting.

Theorem 4.3.1. Suppose we are in setting (4.3.1), and without loss of generality that

in addition µi,1 = µi,2 ∀i and V ar (εi,j) = 1 ∀i, j. Take α = 2 log d, β = (J + ε) log n

and K = β + d+
√

2βd for some ε > 0; then

P
(

max
t
St > 0

)
≤ Cn1−J

2
−ε/2,

where C is an absolute constant bounded above for all d > 1.

Proof : See Section B.2.

Note that taking J = 2 in the above corresponds to the standard BIC penalty for

a change in a single parameter. However, we take J = 4 herein, as we later use a form

of Binary Segmentation where we want to control the probability of maxSt > 0 for
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O (n) different regions of data in order to detect multiple changes (see Section 4.3.4).

Note that this is under the assumption that the number of changes grows at most

linearly with n.

We additionally remark that, as this result just follows from using the marginal

chi-squared distribution of Di,t when there is no change, the penalties derived in

Theorem 4.3.1 would be natural choices in other settings if the test statistic is based

on the log-likelihood ratio statistic for a regular model. In practice, for such cases

we recommend choosing α as above, but then tuning both β and K using simulated

data. This helps to ensure that we have an appropriate overall false positive rate (e.g.

1%) and that we have similar rates of false positives where
∑d

i=1D
′
i,t > β as where∑d

i=1Di,t > K.

Given these choices for the penalty values, we next establish a result on the power

of this procedure.

Theorem 4.3.2. Assume that we are again in setting (4.3.1) with σ2 = 1, and now

we have that µi,1 6= µi,2 whenever i ∈ S1 ⊆ {1, . . . , d}. Let ∆i := |µi,2 − µi,1|. Then

for δ > 0 and a = max{n, d}, we have that P (maxt St > 0) ≥ 1 − (a)−δ, providing

that, for KS1 := β + |S1|α

nθ (1− θ)
∑
i∈S1

(∆i)
2 ≥

VS for a sparse change

VD for a dense change.

Here VS := 4δ log a+KS1 − |S1|+ 2
√
δ log a (4δ log a+ 2KS1 − |S1|), VD := 4δ log a+

K − d + 2
√
δ log a (4δ log a+ 2K − d) and θ = τ

n
is fixed strictly between 0 and 1.

Additionally, 2 > δ > 0 is required in the dense setting.

Proof : See Section B.2.

Note that KS1 = β+ |S1|α corresponds to the total penalty incurred in the sparse

setting. We introduce this notation to emphasise the link between the sufficiency

conditions in the sparse and dense settings. We additionally remark that in the

setting where n = max{n, d} → ∞, we require only that
∑

i∈S1 (∆i)
2 > 0 under both

types of change asymptotically. In contrast, when d = max{n, d} → ∞, the leading
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order term of the condition for detecting a sparse change is O
(√
|S1| log d

)
, while in

the dense condition this is O
(√

d log d
)
. We also remark on the following. Assume

that all series which change are altered by the same amount, ∆. Allow d to increase as

n→∞. Then, for our choice of β, α andK, if |S1| = o(
√
d) - corresponding to a sparse

change - we have power tending to 1 for detecting changes when ∆ = Ω

(√
log a
n

)
.

By contrast, in the dense setting, we have power tending to 1 when ∆ = Ω
(

(log a)1/4

n1/2

)
.

We remark that the boundary of |S1| = o(
√
d) between sparse and dense

changepoints corresponds to the sparsity boundary discussed in Enikeeva and

Harchaoui (2019), who also propose a test statistic with ‘two regimes’. For both

their procedure and ours, this can be seen from considering the power of performing

a likelihood ratio test across all variates when there is a change of ∆ in |S1| of the

variates. If |S1| dominates
√
d in order, then this test has very high power in detecting

the change. Conversely, if |S1| = o(
√
d), considering the maximum of the likelihood

ratios across the variates gives a weaker requirement on the size of the changepoint.

For a more detailed account of this transition, see the beginning of Section 2.2.

Note that this transition boundary is a distinct idea from the more traditional

phase transition often discussed in changepoint detection. The latter typically refers

to a boundary on the signal to noise ratio relative to the length of the sequence,

below which consistency for any changepoint detection procedure becomes impossible.

This boundary has been the subject of much recent interest. For example, Wang

et al. (2019a) give results for the classical univariate change in mean setting under

sub-Gaussian noise, and Wang et al. (2018) discuss the boundary for the change in

covariance problem in a high dimensional setting.

4.3.3 Relationship to other Multivariate Changepoint Tests

For the change in mean setting, it is possible to draw strong comparisons between our

approach and other multivariate changepoint tests, with the main difference being the

means of aggregating evidence for a change across different variates. These alternative

approaches use the CUSUM statistic for each variate within the dataset. The CUSUM
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statistic is defined, in the known σ2 case, as

Wi,t :=
1

σ

√
t (n− t)

n

∣∣∣∣∣ 1

n− t

(
n∑

j=t+1

yi,j

)
− 1

t

(
t∑

j=1

yi,j

)∣∣∣∣∣ ,
for i = 1, . . . , d and t = 1, . . . , n − 1. Note in particular that Di,t = W 2

i,t. Therefore,

for the Gaussian change in mean setting, our test statistic can be expressed in terms

of the CUSUM statistic as

St = max

{
d∑
i=1

max{W 2
i,t − α, 0} − β,

d∑
i=1

W 2
i,t −K

}
.

For comparison, three previously proposed test statistics, which we refer to herein as

Mean (Groen et al., 2013), Max (Groen et al., 2013) and Bin-Weight (Cho and

Fryzlewicz, 2015), are defined as follows

S
(mean)
t =

1

d

d∑
i=1

Wi,t − β,

S
(max)
t = max

i
Wi,t − β,

S
(bin-weight)
t =

d∑
i=1

Wi,t1 {Wi,t > α} − β.

From the results in Enikeeva and Harchaoui (2019), we know that S
(mean)
t will have

high power for dense changes, but lose power for sparse changes. By comparison,

S
(max)
t will have higher power in the sparse case and lower power in the dense case.

Enikeeva and Harchaoui (2019) propose combining both test statistics as a way of

having higher power across both settings. Meanwhile, empirically, the behaviour of

S
(bin-weight)
t depends on the choice of α. Specifically, if α = O

(√
d
)

then it has

high power for sparse changes, whereas if α is fixed as we increase d, it will have high

power for dense changes.

4.3.4 Sparse and Ubiquitous Binary Segmentation in

Efficient Time

We now formally introduce SUBSET (Sparse and Ubiquitous Binary Segmentation

in Efficient Time), the full procedure for the use of the test statistic maxt St given
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in Section 4.3.1. Given this threshold penalty approach, SUBSET is designed to

detect both sparse and dense changes, the latter of which are labelled by SUBSET as

affecting all variates within the data.

In order to detect multiple changes within the data, SUBSET uses a hybrid of

Wild Binary Segmentation (Fryzlewicz, 2014), namely a very close variant of Wild

Binary Segmentation 2 (Fryzlewicz, 2019). This enables a fast, approximate search

for changes in the multivariate setting. We randomly generate M intervals of the

dataset, on which we then subsequently compute the test statistic and search for the

most significant point in the dataset across all intervals. We label the resulting point

as a change if the penalty in the sparse or dense setting is exceeded. The procedure

then repeats either side of the change.

For a sensible choice of M , the above results in a computationally efficient

procedure with an execution time which is linear in the number of entries in the

dataset. For example, in the simulation study that we report in Section 4.4, we use

M = 5 and for Section 4.5’s example we set M = 10. Note that these values of M are

similar to those recommended in the use of Wild Binary Segmentation 2 by Fryzlewicz

(2019), where here it was suggested that to obtain an equivalent guarantee on the

detection of changes as Wild Binary Segmentation (Fryzlewicz, 2014), M should be

set to O (log n). (Throughout our simulations, n = 1000.) However, an advantage of

a Wild Binary Segmentation 2 approach is that, in settings with a potentially large

number of changes, such as in our real data example of Section 4.5, the value of

M can be set slightly higher - but still much lower than the equivalent number of

intervals needed in Wild Binary Segmentation - to allow a significant chance of all

changes being detected. Fryzlewicz (2019) recommends M = 100 for such situations

where the data are recorded across at most a few thousand time points, with M

set at half the square of the length of sub-series at each stage of the procedure in

the worst-case setting. Given the computational difficulty of these more conservative

recommendations in the high dimensional setting, we suggest setting M ≈ blog nc

unless it is suspected that there may be a particularly high concentration of changes.

In such cases, M ≈ kblog nc for k = 1, 2, . . . can be tried for successive values of k
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until similar results are yielded for two consecutive integer values.

One practical challenge with SUBSET is that while the estimates of τ̂ tend

to be fairly reasonable, the estimates of Ŝ =
(
Ŝ1, . . . , Ŝm̂

)
are more prone to

misspecification due to masking from other changepoints. This is especially true for

variates which may also have a particularly strong change at a nearby time point. To

mitigate this, we propose using a post-processing step where we individually analyse

data from each variate conditional on the set of estimated changes, τ̂ = (τ̂1, . . . , τ̂m̂).

When analysing a single variate, we only allow changes to occur within the set τ̂ . We

detect the changes by minimising the univariate version of our penalised cost. That

is, for variate i, we find

arg min
0≤m′≤m̂;{ξ1,...,ξm′ }⊆τ̂

m
′
+1∑

k=1

[
C
(
yi,(ξk−1+1):ξk

)
+ β

]
.

This can be done efficiently using dynamic programming; see, for example, Section 2

of Tickle et al. (2018).

For the specific post-processing step we use to complete the SUBSET procedure,

please see Section B.3. We include the post-processing step in the implementation of

SUBSET in Sections 4.4 and 4.5, however for brevity we detail the SUBSET procedure

without the post-processing step in Algorithm 3.

We remark that, under this procedure, it may be the case that we check for the

possibility of a single changepoint within an arbitrary region of the dataset which

contains no true change. In this case, a slight modification to Theorem 4.3.1 is

required. The result which follows outlines that the probability of SUBSET locating

an erroneous change in the multiple change setting remains low.

Corollary 4.3.3. Consider the setting of Theorem 4.3.1. Using the SUBSET

procedure with the penalties β, α and K as derived in Theorem 4.3.1, with J = 4,

gives that the probability of erroneously placing an estimated changepoint within the

dataset is bounded above by Cn−ε/2, where C is an absolute constant bounded above

for all d > 1.

Proof : See Section B.2.
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Algorithm 3 SUBSET (without post-processing).
Data: A multivariate dataset, (yi,j)i=1,...,d,j=1,...,n; variate penalty function, α(., .); changepoint penalty function,

β(., .); threshold penalty function, K(., .); segment cost function, C (.); an interval number, M ; a sort function

with respect to vector v, ρv (.).

Result: An estimated set of changepoints τ̂1, . . . , τ̂m̂ and corresponding estimated affected sets Ŝ1, . . . , Ŝm̂.

Step 0: Set l = 1, u = n, τ̂ = NULL, Ŝ = NULL

Step 1: lM+1 = l, uM+1 = u

for j ∈ {1, . . . ,M + 1} do
r ∼ U {l, . . . , u}, s ∼ U {l, . . . , u}, (lj , uj) = (min (r, s) ,max (r, s))

if uj − lj > 1 then

for t ∈ {lj , . . . , uj} do
S1,t =

∑d
i=1 max

{
C
(
yi,lj :uj

)
− C

(
yi,lj :t

)
− C

(
yi,(t+1):uj

)
− α(d, uj − lj + 1), 0

}
S2,t =

∑d
i=1

{
C
(
yi,lj :uj

)
− C

(
yi,lj :t

)
− C

(
yi,(t+1):uj

)}
St = max {S1,t − β(d, uj − lj + 1), S2,t −K(d, uj − lj + 1)}

end

if maxt St > 0 then

qj = arg maxSt, Tqj = maxSt

if Sqj = S1,qj − β(d, uj − lj + 1) then

Tqj =
{
i : C

(
yi,lj :uj

)
− C

(
yi,lj :qj

)
− C

(
yi,(qj+1):uj

)
− α(d, uj − lj + 1) > 0

}
else

Tqj = {1, . . . , d}

end

else (
qj , Tqj , Tqj

)
= (NULL, 0, ∅)

end

else (
qj , T jq , Tqj

)
= (NULL, 0, ∅)

end

end

Step 2: Set q =
(
q1, q2, . . . , qM+1

)
if ||q||0 ≥ 1 then

γ = arg maxj∈{1,...,M+1} Tqj , η = qγ , U = Tη , τ̂ = (τ̂ , η), Ŝ =
(
Ŝ,U

)
SUBSET

(
yl:η , α, β,K, C (.)

)
, SUBSET

(
yη+1:u, α, β,K, C (.)

)
τ̂ = ρτ̂ (τ̂ ), Ŝ = ρτ̂

(
Ŝ
)

else

η = NULL, U = ∅

end
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4.4 Simulation Study

In this section, we examine the properties of the SUBSET method against the CUSUM

aggregation procedures discussed in Section 4.3.3. In addition, we compare these

methods against Inspect (Wang and Samworth, 2018). To implement Inspect, we

use code from the InspectChangepoint package (Wang and Samworth, 2016).

All simulations were run in R using a Linux OS on a 2.3GHz Intel Xeon CPU. We

examine multivariate series with pairwise independent Gaussian noise with variance

1, and count data generated according to a negative binomial likelihood model under

various different dispersion parameters. For all scenarios considered, 200 repetitions

were simulated.

Throughout this section, (α, β,K) =
(
2 log d, 4 log n, d+ 4 log n+

√
8d log n

)
for

the SUBSET method, as per the result of Theorem 4.3.1. The threshold penalty

for Inspect and the β values for the CUSUM-based methods were computed using

simulations from the null model, such that the false alarm rate was fixed at 5%.

Note that for the Bin-Weight procedure, the α value was taken to be
√

2 log n. The

justification for this arises from a consideration of the theoretical false alarm error rate

under an aggregation of CUSUMs; see, for example, Lemma 4 in the Supplementary

Materials of Wang and Samworth (2018).

4.4.1 Gaussian Setting, At Most One Change in Mean

Our first examination concerns the false alarm error rate of each of the methods.

As stated, we fix this at 5% for Bin-Weight, Inspect, Max and Mean. The penalty

choices for SUBSET lead to no false positives across all simulated data scenarios

(n = {1000, 10000, 100000} and d = {5, 10, 50, 100, 500, 1000}).

To check the power of the methods in the single change setting, we examine five

scenarios for the location of the changepoint. These correspond to the change being

found at proportions 0.050, 0.081, 0.184, 0.266 and 0.383 (to 3 d.p.) respectively along

the series. We increase ∆µ, the absolute change in mean - for each variate in which

a change occurs - from 0.01 to 1.00 in increments of 0.01, and record the proportion
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of tests which yield a missed change in each case. We do this for n = 1000, d =

{5, 10, 50, 100, 500, 1000} and for densities of change corresponding to 0.5%, 1%, 5%,

10%, 50% and 100% (where feasible) of the variates affected by the change.

Figure 4.2 shows the result of this for n = d = 1000 when the location of the

change is 5% of the way along the time series, for each of the densities of change, and

for each of the methods under investigation. These results indicate that SUBSET is

at least competitive with other methods, and often yields a smaller Type II Error.

In particular, we observe that SUBSET and Bin-Weight appear to give the most

‘balanced’ performances of all the methods present, exhibiting competitive power for

all the regimes. This is in contrast to some of the other procedures. For example,

for the dense regimes, we see that the Mean method performs best, while the Max

method is the worst performing method. The situation is exactly reversed in the sparse

examples. Similar patterns are seen for the other cases - please refer to Section B.4.

We next compare the average location errors of the methods. We again consider

the same n = d = 1000 cases as in Figure 4.2 across the same set of values for

∆µ. The results are shown in Figure 4.3. It is interesting to note that the SUBSET

method gives a relatively small location error in most settings, even in comparison to

the closest competitor methods. Indeed, in comparing Figure 4.3 to Figure 4.2 we see

that once the probability of a Type II error falls below 1 for the SUBSET procedure,

the location accuracy among those instances where SUBSET correctly identifies the

presence of a changepoint is high.

The final point of interest we mention here is the potential misspecification of

the true affected set at the change by SUBSET. Note that the competitor methods

do not give information on the affected subset of variates at a changepoint, so no

comparison is possible here. We again examine the same scenarios as for the power

and location error. The results are shown in Figure 4.4. Figure 4.4 indicates that,

when the Type II error is below 1 (again, see Figure 4.2 for comparison), SUBSET

is effective at estimating the true affected variate set in the various sparse settings.

SUBSET also exhibits a low ‘Variate Error’ in the case where all variates change.

Note that for the instance where, for example, 10% of the variates are affected by
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Figure 4.2: Type II Errors (in the AMOC setting) across a range of values for ∆µ between 0.01 and

1 for each of the five methods under investigation for different subset densities of the changepoint,

keeping the temporal location of the changepoint fixed at 5% of the way along the series and n =

d = 1000. 200 repetitions were simulated in each case.

the change, we see the effect of the threshold penalty K. For smaller values of the

change magnitude, SUBSET detects only very sparse effects for smaller ∆µ. A dense

effect is then correctly identified at a threshold value of ∆µ of just above 0.6. This
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Figure 4.3: Location Errors across a range of values for ∆µ between 0.01 and 1 for each of the five

methods under investigation for particular densities of change (i.e. percentage of variates affected).

Note that n = d = 1000, and the changepoint is fixed at 5% of the way along the series. In addition,

there are no values for SUBSET below certain change magnitudes as no changepoints are estimated

by the procedure in these cases (compare with Figure 4.2). 200 repetitions were simulated in each

case.
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phenomenon is empirical proof that the conditions from Theorem 4.3.2 on detecting

a dense change are stricter than for a sparse charge.
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Figure 4.4: Variate Errors across a range of values for ∆µ between 0.01 and 1 for the SUBSET method

under different densities of change. Note that again n = d = 1000, and the changepoint is fixed at

5% of the way along the series. In addition, there are no values below certain change magnitudes

as no changepoints are estimated by the procedure in these cases (compare with Figure 4.2). 200

repetitions were simulated in each case.
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4.4.2 Gaussian Setting, Multiple Changes in Mean

We now turn to the more complex task of extending to the multiple changepoint

setting. We examine five scenarios, which we label as F, G, H, I and J here, each

with three changepoints present. In each case, the changepoints may be found at

proportions 0.124, 0.394 and 0.989 of the way along the series. The only difference

between scenarios is the size of each affected set of variates at each change. Thus, the

scenarios imply different affected sets depending on the value of d. The scenarios are

summarised below for d = 1000. Note that we once again fix σ2 = 1 in all cases.

F : All three changes affect all variates.

G : The first and third changes affect all variates; the second change affects 0.5% of

variates.

H : The first and third changes affect 0.5% of variates; the second change affects all

variates.

I : All changes affect 1% of variates.

J : The first, second and third changes affect 0.5%, 1% and 5% of variates

respectively.

Here, we restrict ourselves to examining the power of the methods. Note that we herein

define a ‘missed change’ as being a true changepoint for which the methods do not

place an estimated change within dlog ne points. Table 4.1 shows the average number

of changes missed by each of the methods in each of the five scenarios for n = d = 1000,

when ∆µ = 1 for all variates which undergo a change at any changepoint. As can

be seen from Table 4.1, the best performing methods across most of the scenarios are

SUBSET, Bin-Weight and Inspect. The average number of missed changes for these

three methods is generally very similar across all tested instances.

4.4.3 Negative Binomial Setting

We now turn to consider the multivariate changepoint detection problem for data

distributed according to a negative binomial. In particular, we parameterise the

negative binomial with a success probability p and an over-dispersion number, r. The
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Average Number Missed Method

(Average False Alarms)

Scenario SUBSET Mean Max BW Inspect

F 0.06

(0.00)

0.05

(0.23)

0.24

(0.35)

0.00

(69.7)

0.00

(0.89)

G 0.12

(0.00)

1.06

(0.40)

0.34

(0.45)

0.01

(49.3)

0.00

(0.89)

H 0.44

(0.01)

1.97

(0.59)

0.46

(0.37)

0.03

(30.2)

0.03

(0.86)

I 0.22

(0.01)

1.97

(1.41)

0.47

(0.34)

0.05

(13.9)

0.02

(0.94)

J 0.19

(0.01)

1.60

(1.26)

0.38

(0.36)

0.03

(16.4)

0.03

(0.96)

Table 4.1: The average number of changes missed by each of the methods with n = d = 1000 fixed in

all cases and ∆µ = 1 for any variate undergoing a change. Each of the scenarios F, G, H, I and J has

3 changepoints, and the percentage of variates affected by each change in each scenario is discussed

at the beginning of Section 4.4.2. Bold entries show the best performing algorithm. 200 repetitions

were simulated in each case.
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latter represents the number of failures before an experiment is stopped. Formally,

we have

yi,j ∼



Neg-Bin (ri,1, pi,1) for 1 ≤ j ≤ τ1,

Neg-Bin (ri,2, pi,2) for τ2 + 1 ≤ j ≤ τ2,

. . .

Neg-Bin (ri,m+1, pi,m+1) for τm + 1 ≤ j ≤ n

for i ∈ {1, . . . , d} , (4.4.1)

for some sequence, (ri,k)
m+1
k=1 , of unknown over-dispersion parameters and some

sequence, (pi,k)
m+1
k=1 , of unknown success probabilities. Given the difficulty of

computing the maximum likelihood estimators for the former at a given stage of the

procedure, we assume that the over-dispersion parameter changes only if the unknown

success probability also changes. Subsequently, we compute a methods of moments

estimator (Savani and Zhigljavsky, 2006) for these over-dispersion parameters at each

stage of the procedure.

Note that while SUBSET extends naturally to the negative binomial setting

through adapting the Di,t = C(yi,1:n) − C (yi,1:t) − C (yi,t+1:n) quantities to an

appropriate C(.), the other methods examined in Section 4.4.1 and 4.4.2 are not

designed for this case. While they can still be applied, they work poorly - see

Section B.4.

We firstly examine the null setting for pi,1 = 0.5 ∀i, r = {1, 100} (∀i in either

case), n = 1000 and d = {5, 50, 100, 1000}. In all cases apart from (r, d) = (1, 1000) -

which gives a 1% false alarm rate - we record no false alarms.

We then check the multiple change setting, again using scenarios F, G, H, I and J

from Section 4.4.2 with the three changes at the same points in the series. Table 4.2

summarises the results for r = 20 and n = d = 1000. At each changepoint, for those

variates which are affected, the change manifests as a shift in the success probability

parameter by 0.1, where each series starts with pi,1 = 0.5. The results show that

SUBSET misses few of the changes in any of the scenarios, while consistently giving

a very low false alarm error rate. Note that a false alarm here is defined as in

Section 4.4.2.
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Average Number Missed Method

(Average False Alarms)

Scenario SUBSET

F 0.07

(0.02)

G 0.10

(0.01)

H 0.29

(0.02)

I 0.16

(0.01)

J 0.19

(0.02)

Table 4.2: The average number of changes missed by SUBSET across 200 repetitions in the negative

binomial setting, with an over-dispersion parameter of 20, d = n = 1000 fixed in all cases, and

∆p = 0.1 for any variate undergoing a change. Each of the scenarios F, G, H, I and J has 3

changepoints, and the percentage of variates affected by each change in each scenario is discussed at

the beginning of Section 4.4.2. 200 repetitions were simulated in each case.
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4.5 Detecting Changes in Global Terrorism

Please note that the Global Terrorism Database is copyrighted to the University of

Maryland (2018).

The Global Terrorism Database (GTD), first introduced to the literature by LaFree

and Dugan (2007), was built from the Pinkerton Global Intelligence Services (PGIS)

database. This collated all terrorist incidents from 1 January 1970 onwards. PGIS

defined terrorism as ‘events involving “threatened” or actual use of illegal force and

violence to attain a political, economic, religious or social goal through fear, coercion

or intimidation.’ Please see LaFree and Dugan (2007) for a more in-depth discussion

on this, including further refinements to the definition in order to bring the number

of events down to a record-able level.

Previous examinations of the GTD in LaFree and Dugan (2007), LaFree (2010)

and LaFree et al. (2014) have highlighted several important points. These include

the high preponderance of terrorism in Europe in the 1970s; a period of unusually

high terrorist activity in Latin America between 1980 and 1997; and a more general

note regarding the concentration of most incidents within geographic space. This

last observation appears to be a result of the fact that most terrorist incidents in

the period of interest have been domestic. For another analysis of this dataset, see

Santifort et al. (2012), where changes in the ‘arrival rate’ of terrorist incidents in the

univariate setting were found using a Reversible Jump Markov Chain Monte Carlo

(RJMCMC) approach. Other analyses of similar data include Clauset and Young

(2005), which examines the period between 1968 and 2004. However, the emphasis

here was on the severity, rather than number, of incidents for a given area at a given

moment in time.

We approach the problem of analysing the GTD from a multivariate changepoint

perspective. The GTD naturally stratifies the globe into twelve regions: Australasia

& Oceania, Central America & Caribbean, Central Asia, East Asia, Eastern Europe,

Middle East & North Africa, North America, South America, South Asia, Southeast

Asia, Sub-Saharan Africa and Western Europe. Given that these political terms may
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be somewhat fluid geographically, we show this division pictorially in Figure B.1 in

Section B.5. For each of the twelve regions, we aggregated all incidents for each month

to produce one univariate time series of counts for each region. Each of these is of

length 564, one for each month between January 1970 and December 2017 inclusive.

Note that 1993 is not included, as that year’s data are missing from the publicly

available copy of the database. The resulting incident count by region is shown in

Figure B.2 in Section B.5.

As the resulting series consist of count data, we model the data for each series as

realisations from a negative binomial with changing ‘success’ probability parameter.

We then apply SUBSET as per the study in Section 4.4.3. The results of this are

displayed in Table B.7 and Figure B.3 in Section B.5; these document the months

in which the estimated changepoints of the period occurred, and the corresponding

estimated geographical regions affected.

We here summarise the results given for the Middle East and North Africa, North

America and Western Europe regions. The plots showing the dates of the changes

which affect these regions are given in Figure 4.5.

Some notable features are apparent: for example, one of the very few dense changes

located by SUBSET (in January 1998) corresponds to an alteration in the data

collection method for all regions. Else, most of the estimated changes are in fact

sparse. This corresponds to the commentary found in, for example, LaFree et al.

(2014), which asserts that most causes of terrorism remain localised. For instance,

the change in the Middle East and North Africa in early 2013 appears to correspond

to the beginning of the so-called ‘Arab Winter’. Meanwhile the period of more intense

activity in Western Europe in the later 1970s seems to broadly align with some of the

worst years of the Troubles.

4.6 Discussion

We have proposed a means of computationally efficient multivariate changepoint

detection. This method incorporates a penalised likelihood approach with that of
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Figure 4.5: Terrorism incident count per month for the Middle East and North Africa (top), North

America (middle) and Western Europe (bottom) from January 1970 to December 2017. Changes

found by the SUBSET method using a negative binomial cost function are overlaid as dashed vertical

lines.

a recently introduced, computationally efficient variant of Wild Binary Segmentation.

We have demonstrated that the method has good theoretical and computational

properties in a variety of cases. These cases range from the at most one change in mean

problem, to more complex multiple change problems which potentially exhibit more

difficult behaviour at each changepoint. In addition, we believe that the suggestions

for implementation made here, such as the appropriate settings of the penalty values,

will be of use to practitioners.

Some remaining challenges include an explicit algorithmic treatment of correlated

or lagged changes to provide a clearer quantitative picture of a common cause of a

change. Presently, this is an issue of penalty adjustment. Another issue to overcome is

the fact that this method is best employed under specific parametric assumptions. It

would be desirable to find a setting for this method under which these may be relaxed.



CHAPTER 4. SUBSET 96

Perhaps the most important issue from a data streaming perspective, however, is that

this method, while efficient, is highly offline.

It is this latter challenge in particular, namely achieving a reliable sequential

changepoint detection algorithm in a general high-dimensional setting, that we believe

forms the basis of the most interesting problem arising from this method.



Chapter 5

An Online, Nonparametric Method

for the Detection of Multivariate

Changepoints

5.1 Introduction

Correctly identifying time points in a data series where a phenomenon changes,

usually referred to as changepoint detection, is a problem which is currently

receiving considerable attention. Many recent authors have explored the problem

of changepoint detection for contexts as varied as autonomous vehicle navigation,

hyperspectral imaging and European flood risk (Alcantarilla et al., 2018; Merz et al.,

2012; J. López-Fandiño et al., 2019).

With the growing preponderance of data generated in a streaming context, interest

in the changepoint community is increasingly focusing on the challenging problem of

detecting changepoints in a multivariate setting while collection is still in progress. We

refer to this as the multivariate online detection problem herein. Several contributions

have lately been seen in this area. For example, Tran (2019) uses an approach building

on K-means clustering (see, for instance, Hartigan and Wong (1979) among many

others) within two ‘rolling windows’; Ahmad et al. (2017) introduce a new means

of detecting changepoints and anomalies using Hierarchical Temporal Memory, a

97
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deep learning method; and Sethi and Kantardzic (2017) present a method based

on the analysis of margin density, where the margin is defined as the portion of space

most vulnerable to misclassification. In short, existing approaches to the problem

are extremely varied and often interestingly distinct from procedures developed for

classical settings (i.e. univariate data or an offline context or both).

Many of the traditional approaches in the univariate, offline setting rely on

dynamic programming to minimise a well-chosen cost function. Typically, this

dynamic programming setup, for example with methods such as Optimal Partitioning

(Jackson et al., 2005) and Pruned Exact Linear Time (Killick et al., 2012), performs

a scan through the data sequence, conditioning on the time of the most recent

changepoint. Given that the most recent changepoint is unknown, it is subsequently

inferred following the computation of the minimum global cost. Hence, the optimal

locations of the changepoints for minimising this cost are found.

This idea of considering the most recent changepoint has been popular in the

univariate online setting of the changepoint problem, too. Many Bayesian approaches,

such as those in Fearnhead and Liu (2007), Niekum et al. (2015), Ruggieri and

Antonellis (2016) and others adopt this style of approach. For such methods, the

use of a hidden state Markov model is a natural, and common, choice. In addition,

other non-Bayesian sequential methods such as the Shiryaev-Roberts (S-R) procedure

- see, for example, Polunchenko and Tartakovsky (2010) - ‘reset’ on raising an alarm

(i.e. estimating a change). In short, considering a history of the stream only up to

the most recent change is a natural mechanism for avoiding computational overhead.

One major issue with existing online methods is that very specific assumptions are

often required on how a system behaves. For example, the S-R procedure assumes

that the densities prior to and even following a change are known. This is in addition

to the more typical assumption that the data are i.i.d. either side of an unknown

changepoint location, τ . Meanwhile, many of the aforementioned Bayesian methods

require prior beliefs on (i) the parametric family of the generating process of the data

prior to or following the change; or (ii) the evolution of the system from one point

to the next, assuming no change; or (iii) the time between successive changepoints;
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or some combination of (i), (ii) and (iii). Indeed, the more recent multivariate online

methods discussed earlier almost universally make assumptions of type (i), (ii) or (iii).

In a general streaming setting, such assumptions are highly undesirable, and the need

for a nonparametric approach is clear.

We therefore present a novel nonparametric approach to the changepoint detection

problem in the streaming setting. This is an Online, Multivariate, Empirical,

Nonparametric method (OMEN) for change detection, suitable in a variety of contexts

where only within-segment i.i.d. observations can be assumed. In Section 5.2, we

formally introduce the nonparametric changepoint detection problem and discuss

existing approaches to changepoint detection on which OMEN builds. In Section 5.3,

we describe the OMEN procedure and its computational properties, and establish a

false alarm result. We also provide a comparison between our method and another

recent online, multivariate, nonparametric method (Chen, 2019b). In Section 5.4,

we compare the performance of OMEN, the method of Chen (2019b) and a current

popular multivariate technique (Wang and Samworth, 2018) in an ‘as if online’

simulation study. In Section 5.5, we apply OMEN to hourly observations of wind

speeds between 2012 and 2017 in various cities in Canada and Israel. We conclude

with a discussion in Section 5.6.

5.2 Background

We are interested in detecting changepoints in an online fashion in the multivariate

setting. We suppose that we observe a d-dimensional data stream. Let yt :=

(y1,t, . . . , yd,t) be the observation at time t, and let y1:T := (y1, . . . ,yT ) be the set

of observations up to and including time T , the most recent time point we have

observed.

We make the assumption that each variate of the stream follows some stationary

process, which is then potentially affected by a changepoint. Suppose that, up to time

T , these changepoints occur at times 0 = τ0 < τ1 < . . . < τm < T , for some (typically

unknown) m. Additionally, we say that some non-empty subset, or affected set, of the
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variates, Sj ⊆ {1, . . . , d}, within the system are affected by the changepoint τj.

Formally, for an individual variate i ∈ {1, . . . , d}, for which we have seen yi,1:T up

to time T , we can then define its set of changepoints. Let mi = |{k : τk < T, i ∈ Sk}|

be the number of changepoints, and let τ
(i)
1:mi

be the set of changepoints which affect

the ith variate of the stream. Then

yi,t ∼



Gi,1 for t ∈
{

1, . . . , τ
(i)
1

}
Gi,2 for t ∈

{
τ

(i)
1 + 1, . . . , τ

(i)
2

}
. . .

Gi,mi+1 for t ∈
{
τ

(i)
mi , . . . , T

}
.

(5.2.1)

Here we have used Gi,1, Gi,2, . . . , Gi,mi+1 to refer to time-independent data generating

processes, such that observations drawn from within the same segment are also

independent and exchangeable.

Note that we have placed no stipulations on the nature of a change between two

consecutive generating process, Gi,j and Gi,j+1. It could be that the processes differ

only in one parameter, or else several parameters, or else are drawn from entirely

different classes of distribution. In short, (5.2.1) is the nonparametric changepoint

problem under assumptions of independence and exchangeability within a segment.

Nonparametric change detection is a well-studied field. Efforts from Carlstein (1988),

Csörgő and Horváth (1988), Dümbgen (1991) and Wolfe and Schechtman (1984) were

among the first to describe the problem and propose detection methods for the single

change case in the univariate setting. More recently, nonparametric techniques such

as those of Zou et al. (2014), Haynes et al. (2017b) and Wang et al. (2019b) have

arisen to detect multiple changes in a univariate offline setting. Still others, such

as Ross et al. (2011) and Matteson and James (2014), have had success in either the

online or multivariate domain. However, resolving (5.2.1) in an online fashion remains

a largely open challenge (with only a small number of very recent exceptions, such as

Chen (2019b) - see Section 5.3.3 for more information). We attempt to address this

with our new method, OMEN.
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5.3 Methodology

In this section, we introduce the OMEN method, an online nonparametric method for

detecting changepoints in multivariate data. We describe the properties of OMEN,

giving a false alarm error rate result and discussing its other theoretical properties,

as well as covering the computational aspects of the procedure.

5.3.1 An Online, Multivariate, Empirical, Nonparametric

changepoint detection method (OMEN)

As for Section 5.2, we assume we have observed, by time T , the data stream y1:T .

For T < ω, we simply collect more data, meaning we cannot raise the alarm for

any change - true or not - during this time. (Although a change can still be flagged

within this period after the fact, as we shall see.) In short, ω can be thought of as

a ‘learning window’, a popular concept in the online changepoint detection literature

(Cao et al., 2018; Guo et al., 2016; Harel et al., 2014; Keogh et al., 2001; Malladi

et al., 2013). We discuss the best choice for ω in Section 5.3.2.

At T = ω, we compute, for i = 1, . . . , d, the empirical cumulative distribution

function - used in nonparametric changepoint detection since at least Pettitt (1980) -

for each variate as

F̂ ω
i (x) =

1

ω

ω∑
t=1

1 {yi,t ≤ x} , x ∈ (−∞,∞). (5.3.1)

We then use the empirical cdfs obtained in (5.3.1) to transform the incoming stream.

This begins with the observations already recorded, so that, for i = 1, . . . , d, t =

1, . . . , ω

zi,t := F̂ ω
i (yi,t). (5.3.2)

Note that, for each i, (zi,t)
ω
t=1 will form the sequence 1

ω
, . . . , ω

ω
in some order.

If there has been no changepoint in the first ω points, and our assumptions of

independence and exchangeability from Section 5.2 hold, then the sequence obtained

will be equivalent to sampling ω times from U ({1/ω, . . . , ω/ω}) without replacement.

Therefore, as ω →∞, values in the sequence resemble draws from U [0, 1].
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For applicability to a wide class of possible changepoint tests, it is useful to

then further transform the stream so that the data are standard normal assuming

no change. One option here is to use the inverse cdf of a standard normal, Φ−1(.), to

transform the data. However, in practice, a large value of ω is required to give the

use of the inverse cdf more power than our method. Instead, we use the Box-Muller

transform (Box and Muller, 1958). This results in two streams for i = 1, . . . , d,

t = 1, . . . , ω

ai,t =
√
−2 log ui,t cos (2πzi,t)

bi,t =
√
−2 log ui,t sin (2πzi,t)

where ui,t (for the same range of i and t) are a set of simulated, independent

realisations from U [0, 1]. By the properties of the Box-Muller transformation,

corresponding entries in the resulting two streams are independent, as well as

distributed according to the standard Gaussian. It is for these transformed streams

for which we then run a test for a changepoint.

We remark that regardless of the original distributions of the variates in the

stream, | cos(2πzi,t)| < 1 (and similarly | sin(2πzi,t)| < 1). Hence −|
√
−2 log ui,t| <

ai,t < |
√
−2 log ui,t| (and similarly for bi,t). However, as ui,t is a standard uniform,

then P
(
|
√
−2 log ui,t| ≥ x

)
= exp

(
−1

2
x2
)

for x > 0. Therefore, both ai,t and bi,t

are stochastically dominated by a sub-Gaussian random variable, and so are also

sub-Gaussian. We use this fact later, to prove a false alarm result for our method (see

Lemma 5.3.1).

For T > ω, we compute zi,T = F̂ ω
i (yi,T ), ai,T and bi,T for i = 1, . . . , T . We then test

for a change in each variate separately to examine the case for a change in the stream.

Note that the Box-Muller transform ensures that the stream remains sub-Gaussian,

even if there has been a change. We therefore use a test for a change from a normal

with mean 0 and variance 1 to a normal with unknown mean µ and variance σ2. The
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likelihood ratio test statistic for a change in variate i at time k in, say, stream a is

S(k; ai,(T−ω+1):T ) =− 2 log

 ∏T
t=T−ω+1

1√
2π

exp(−a2i,t/2)∏k
t=T−ω+1

1√
2π

exp(−a2i,t/2)
∏T
t=k+1

1√
2πσ̂2

exp (−(ai,t − µ̂)2/2σ̂2)


=

T∑
t=k+1

a2i,t − (T − k) log(σ̂2)−
T∑

t=k+1

(ai,t − µ̂)2/σ̂2

=

T∑
t=k+1

a2i,t − (T − k)
[
log(σ̂2) + 1

]
,

where µ̂ = 1
T−k

∑T
t=k+1 ai,t and σ̂2 = 1

T−k
∑T

t=k+1 (ai,t − µ̂)2.

If, for a particular variate i, maxT−ω+1≤k≤T−1 S (k; ai,T−ω+1:T ) > β
′
, for some β

′
-

the choice of which we discuss in Section 5.3.2 - then we check that

max
T−ω+1≤k≤T−1

S (k; bi,T−ω+1:T ) > β
′
.

If β
′
is exceeded for both sequences, then we compute a test statistic for a multivariate

change in the last ω time points. We here use a further test statistic, S
′
, to capture

changes which have a ‘marked’ effect on the stream, likely causing many variates to

change. (A change of this kind is often referred to as a ‘dense’ changepoint.) We set

S
′
= max

{
max

T−ω+1≤t≤T−1

d∑
i=1

Wt (ai,T−ω+1:T )2 , max
T−ω+1≤t≤T−1

d∑
i=1

Wt (bi,T−ω+1:T )2

}
,

(5.3.3)

where

Wt (x1:h) =

√
t (h− t)

h

∣∣∣∣∣ 1

h− t

h∑
k=t+1

xk −
1

t

t∑
k=1

xk

∣∣∣∣∣
is the standard CUSUM transform in variate i for a change at time j. We note that this

test statistic is equivalent to the likelihood ratio test for a multivariate change in mean

under standard Gaussian noise. We therefore claim a change has occurred iff S
′
> β

for β = (d+ 1) logω, with this choice of β arising from the Supplementary Materials

of Tickle et al. (2018). We remark that other choices of S
′

based on combinations of

Wj (ai,T−ω+1:T ) across i = 1, . . . , d are possible; see, for example, Groen et al. (2013),

Cho and Fryzlewicz (2015), Enikeeva and Harchaoui (2019) and Wang and Samworth

(2018).

If S
′
> β, then a changepoint is reported at

ξa = arg max
T−ω+1≤t≤T−1

d∑
i=1

Wt (ai,T−ω+1:T )2
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if maxT−ω+1≤t≤T−1

∑d
i=1 Wt (ai,T−ω+1:T )2 > β, and at

ξb = arg max
T−ω+1≤t≤T−1

d∑
i=1

Wt (bi,T−ω+1:T )2

otherwise. We then reset the entire procedure, beginning with the storing of the

next ω time points for each variate in the stream. Once this is done, the empirical

cumulative distribution functions are re-calculated.

If, however, S
′ ≤ β, or if the alarm for a change in a single variate using S(.; .)

is not raised for any i, then we do not report a changepoint. Instead, we collect the

next time point y1:d,(T+1), and transform this using the pre-calculated empirical cdfs

and Box-Muller. In the meantime, the system ‘forgets’ y1:d,T−ω, a1:d,T−ω and b1:d,T−ω.

Therefore, in the computation of the test statistics, only the most recent ω points are

considered. This continues as long as the stream itself persists.

We summarise OMEN in Algorithm 4. Algorithm 5, on which the OMEN

procedure detailed in Algorithm 4 has dependence, gives the pseudocode for the

update step in which we compute the test statistic for each variate. Note that in

Algorithm 5 we use ai := ai,1:g for brevity.
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Algorithm 4 OMEN.
Data: A multivariate dataset, y1:n, of dimension d; a penalty for introducing a multivariate change

to the model, β; a penalty for a single variate to raise an alarm, β
′
; an information

collection/memory window, ω; the CUSUM transformation of a vector for a change at time

k, Wk(.).

Result: A sequence of decisions on a declaration of a change or otherwise for each time point at

least ω after the most recent declaration of a changepoint.

Step 0: Set r = 0.

Step 1: Receive y(r+1):(r+ω). Then construct the following:

� For each variate, i = 1, . . . , d, the empirical cumulative distribution function, F̂ωi (.).

� The transformed data stream z(r+1):(r+ω), such that zi,j = F̂ωi (yi,j).

� dω independent draws from a U [0, 1], (ui,j)i=1,...,d;j=(r+1),...,(r+ω).

� The final streams for testing, (ai,j)i=1,...,d;j=(r+1),...,(r+ω) and (bi,j)i=1,...,d;j=(r+1),...,(r+ω), such

that ai,j =
√
−2 log ui,j cos(2πzi,j) and bi,j =

√
−2 log ui,j sin(2πzi,j).

Step 2: Receive a new point, yr+ω+1. Simulate ur+ω+1. Compute zr+ω+1, ar+ω+1 and br+ω+1.

(Ichange, τ) = Algorithm 5
(
a(r+1):(r+ω+1),b(r+1):(r+ω+1), β

′
, r
)

.

if Ichange = 1 then

Wa = maxr+1≤k≤r+ω
∑d
i=1Wk

(
ai,(r+1):(r+ω+1)

)2
ξa = arg maxr+1≤k≤r+ω

∑d
i=1Wk

(
ai,(r+1):(r+ω+1)

)2
Wb = maxr+1≤k≤r+ω

∑d
i=1Wk

(
bi,(r+1):(r+ω+1)

)2
ξb = arg maxr+1≤k≤r+ω

∑d
i=1Wk

(
bi,(r+1):(r+ω+1)

)2
if Wa > β then

Print ξa. Set r = r + ω. Return to Step 1.

if Wb > β then

Print ξb. Set r = r + ω. Return to Step 1.

else
r = r + 1. Return to Step 2.

end

else
r = r + 1. Return to Step 2.

end
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Algorithm 5 Update step within OMEN.

Data: Two transformed streams, (ai,j)i=1,...,d;j=1,...,g, (bi,j)i=1,...,d;j=1,...g; a penalty incurred, β
′
,

for raising an alarm; the time point in the stream, r, which falls immediately before the

beginning of the current memory window.

Result: An indicator, I, determining if there is sufficient evidence of a changepoint having occurred

within the memory window; and a changepoint location, τ , which is returned as NULL if

I = 0.

Step 1: For i = 1, . . . , d, take the sequences (ai,j)
g
j=1, and compute:

� cumulative sums, (saik )gk=1 :=
(∑k

j=1 ai,j

)g
k=1

;

� cumulative sums of squares, (ssaik )gk=1 :=
(∑k

j=1 a
2
i,j

)g
k=1

;

� test statistics for a change at k, for k = 1, . . . , g − 1,

S(k; ai) = ssaig − ss
ai
k + (g − k)

{
log(g − k)− 1− log

(
ssaig − ss

ai
k −

1
g−k

(
saig − s

ai
k

)2)}
;

� overall test statistic for a change Sa = max1≤i≤d max1≤k≤g−1 S(k; ai);

Step 2: if Sa < β
′
then

I = 0

else

Complete Step 1 for each of the sequences (bi,j)
g
j=1, for i = 1, . . . , d.

if Sb < β
′
then

I = 0

else
I = 1

end

end

5.3.2 Computational Considerations and Choices for ω and

β
′

We now consider the computational burden of the OMEN method.

Trivially, the size of the storage required for the method prior to the calculation of

the empirical cdfs is simply the size of the stream itself, meaning that ωd ‘raw’ data

points are stored. At this point, we then require F̂ ω
i (.) for each i, the computation

and storage of which are O (d logω) and O (dω) respectively. Computing and then

storing the two transformed streams using Box-Muller is O (ωd).
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For each subsequent time point, the storage required does not increase, as each

new transformed stream element replaces a ‘forgotten’ point from ω points earlier in

the stream. This calculation of the new elements in the stream is O (d logω), given

that the computation of F̂ ω
i (x) is O (logω). Meanwhile, the computation of all the

‘per stream’ test statistics is O (ωd) in the worst case. Therefore, the worst-case

per-iteration cost of OMEN is O (d (ω + logω)). Hence, from a computational

standpoint, it is important to keep ω as small as possible. We therefore suggest

setting ω to be the smallest possible value under which all ‘usual’ behaviours are

observed. For example, in a time series with a weekly cycle (such as per hour water

usage in a given building) we recommend setting ω to be the number of observations

seen in a given week. Note that as the system completely refreshes following the

detection of a change, ω can also be thought of as a ‘minimum segment length’. This

strengthens the case for our particular recommendation for ω. If such a time period

of ‘usual behaviour’ is not clear from the context of the data, we recommend setting

ω = 30 as a baseline, with the justification for the choice arising from Haynes et al.

(2017b).

We remark that, the computational considerations given above notwithstanding,

it would also be possible to have an extending learning window size, rather than

simply fixing this at the same length as the memory window, ω, or indeed another

prescribed value. The primary advantage of allowing a variable learning window

would be in allowing the OMEN procedure to be data-adaptive. For example,

say at time T OMEN is beginning a new learning phase, having detected a set of

changepoints 1 < τ̂1 < τ̂2 < ... < τ̂m̂ < T . If the changepoints are particularly

‘close together’ - for instance, if fm̂−1 := min1≤h≤m̂−1
τ̂m̂−τ̂m̂−h

hω
< 1 - this could

be an indication that the current learning window size has been set too low, and

that OMEN is finding changepoints within the normal behaviours of the system.

The learning size can then be increased appropriately as a function of f1, . . . , fm̂−1.

Conversely, if the gap between successive changes is sufficiently large - for instance,

if gm̂−1 := max1≤h≤m̂−1
(τ̂m̂−τ̂m̂−h)h

(h−1)T
> 1 - this could be an indication that the learning

window can be decreased.
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In practice, altering the length of the learning window works best for systems

where it is suspected a priori that the frequency of changes may alter over time. (For

example, hourly financial returns in a bull market versus a bear market.) In general,

work on considering an adapting learning window in the changepoint literature

remains sparse, with existing approaches typically being very bespoke. Although,

see, for example, Poddar et al. (2016). For OMEN, under the assumption that a

fixed learning window is sufficient to capture all normal behaviours of the system, we

recommend taking a single value for the length of the learning window throughout.

However, exploring an adaptive learning window, particularly for systems where there

may be missing data, is a very interesting open problem.

We additionally remark that the worst-case per-iteration cost is also linear in d.

For most examples this may not be an issue, particularly if parallel computation of

the test statistics is an option. However, for an arbitrary data stream with large d, an

alternative approach could be to combine the transformed variates in the stream. For

a very dense changepoint, this could be done by sampling from the variates uniformly

at random. In this way, the per-iteration computational cost does not increase linearly

with d.

There remains the choice of β
′
. We recommend setting this based on a false alarm

error rate. Let N be the period of time over which we wish to control the false

alarm error rate. This can be set to n, the total number of time points which will be

observed, if this is known (and not too large). We are then in a position to state the

following result.

Lemma 5.3.1. Define Λ such that the single variate penalty in OMEN is β
′
= 2 log Λ,

and let ω be the information window/minimum segment length of the procedure. Then,

under a stream of dimension d in which no change occurs for the first N time points,

the probability of the single variate test statistic being violated for, without loss of

generality, series a, is at most

d (N − ω) (ω − 2)

V

(
1
2
−
√

2
β

) e.

Proof : See Section C.1.
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From the final probability value given in Lemma 5.3.1, we see that, for instance,

setting Λ = ω2N3d3 (corresponding to β
′

= 4 logω + 6 logN + 6 log d) gives that

the probability that series a or b will incorrectly flag a change is less than C/
√
Nd,

for some absolute constant C. Therefore, the probability that the multivariate test

statistic is erroneously called is O(1/Nd).

Note that the proof of Lemma 5.3.1 exploits the sub-Gaussianity of the data

following the Box-Muller transform by using a bound from Fisch et al. (2019a). This

bound is in turn derived from a Chernoff-type approach. (See, for example, Chapter

2 of Boucheron et al. (2013).) Therefore, Lemma 5.3.1 is applicable in a finite-sample

setting.

We remark that the choice of ω also greatly affects the probability of detecting a

changepoint, if present. Clearly, this is also heavily dependent on the nature of the

change itself. We illustrate this point through the example of the change in mean

problem under Gaussian noise with constant variance 1. Suppose the change is of

size ∆. If ∆ is sufficiently small as to have a low or negligible impact on the ranks of

the values in the stream relative to the values of the stream in the learning window,

then the power of OMEN will be low. For example, suppose ∆ < Φ−1
(

1
2

+ 1
ω

)
. In

this setting, the ranks obtained will be altered by at most one from what they would

have been under no change. Given the naturally ‘smoothing’ effect of our proposed

application of the Box-Muller transform, this makes it very difficult for any slight

change in the ranks to be apparent in the transformed stream. Indeed, simply to

provide a guarantee that the vast majority of ranks are altered by at least one, we

require that ∆ > Φ−1
(

2
ω

)
− Φ−1

(
1
ω

)
. In this setting, the transformed stream would

be very slightly less likely to exhibit certain small ranges of values than before the

changepoint. In practical terms, we would require these ranges to be sufficiently large

to have a measurable effect on the resulting stream to ensure timely detection. For

example, it is comparatively fairly likely that OMEN will detect a change in mean if

∆ > Φ−1
(

6
ω

)
− Φ−1

(
1
ω

)
, which roughly corresponds to ∆ > 0.99 in the case when

ω = 30.

Outside of the Gaussian change in mean setting, advisable values of ω for sufficient
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detectability become even more difficult to determine. However, we remark that, if

the changepoint does not change first or second moment behaviour, then the power

of OMEN will remain low almost independently of the choice of ω, as we demonstrate

empirically in Section 5.4.

5.3.3 A Comparison with the approach of Chen (2019b)

A very recent method, presented by Chen (2019b), shares some similarities with our

proposed approach. Like OMEN, this method is applicable in streaming data contexts

under multiple variates, while being nonparametric. Additionally, the method can be

applied to non-Euclidean forms of data (e.g. networks). We refer to the method as

gstream herein, as per its naming in the corresponding package of Chen and Chu

(2019).

In a similar fashion to OMEN, gstream proceeds by taking in a period of ‘historical

observations’ (of length N0) analogous to the learning window of OMEN. Importantly,

however, unlike the learning window, it is explicitly assumed that no changepoint takes

place within the historical observations. Following the observation of the historical

period, gstream then computes a test statistic for a changepoint having occurred at

some point in the recent past. This is constructed by computing the (non-symmetric)

matrix AkJ of indicators on the most recent J observations, such that AkJ,ij = 1 if

observation yT−J+j is one of the k nearest neighbours (with respect to some norm,

||.||) of yT−J+i among observations yT−J+1, . . . ,yT . This matrix is then added to its

transpose. Meanwhile, another matrix of indicators is constructed such that an entry

is 1 if, following a random permutation of the indices, say P(.), either P(T −J + j) ≤

t < P(T −J + i) or P(T −J + i) ≤ t < P(T −J + j) such that t is the point at which

we wish to test for a change. We remark that the censoring of memory in considering

only the J most recent points invokes the memory window used within the OMEN

procedure.

The result is then normalised by its mean and standard deviation, to give a test

statistic which is standard normal under the assumption of no change, exactly as for

our method. If there is a changepoint, the test statistic will become large for values
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of t close to the true change, τ . This further processing of the data to produce a

test statistic in this way recalls the use of the Box-Muller transform in the OMEN

procedure. Note that our transform also serves the purpose of controlling the rate of

false positives, as demonstrated in Lemma 5.3.1.

As a stopping rule, Chen (2019b) recommends computing the test statistic for

T − n1 ≤ t ≤ T − n0, and then declaring a change at the point in this window which

maximises the test statistic, the first instance at which any time point in the window

gives a test statistic value above some threshold.

Unlike OMEN, in which we would typically advise tuning only the ω parameter,

gstream involves a number of selections, namely choices for N0, J, n0, n1 and, most

importantly, k and ||.||. Chen (2019b) notes that the selection of k in particular

greatly affects the performance of gstream, with an appropriate choice for this value

being sensitive to the choice of L, as well as the number of dimensions. We take the

suggested values in all simulations in the next section.

We additionally remark that, while gstream is clearly applicable to a wider range

of applications than OMEN, there is no natural framework for determining the nature

of an affected set at each change, if we have a classical multivariate stream. We note

that this is relatively simple with OMEN: for example, we can replace the overall test

statistic given by (5.3.3) with the SUBSET test statistic of Chapter 4.

5.4 Simulations

We here examine seven scenarios for the generating processes. Each of these shall

extend for n = 1000 time points for a differing number of variates and proportion of

variates which undergo a change (where appropriate).

For the first and second scenarios, which we label as T1 and T2 respectively, we have

no changes within the system. The generating processes for variate i at time j in these

examples are T i,j1 ∼ N(i, 1), and T i,j2 ∼ Neg-Bin (r = 2, θ = [(i mod 5) + 1] /6) +

N(0, 10−6) respectively. (Note that the second scenario is not a pure negative

binomial, as a constant stream of 0s can cause OMEN to fault.)
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For the third scenario, T3, we impose a single change at time t = 600. If variate

i undergoes a change, the generating processes are T i,j3,1 ∼ N(0, 1) independently for

i = 1, . . . , d, j = 1, . . . , 600 and T i,j3,2 ∼ N(3, 1) for i = 1, . . . , d, j = 601, . . . , 1000. If

variate i does not experience a change, then T i,j3,1 is followed for j = 1, . . . , 1000.

For the fourth through to the seventh scenarios, T4, T5, T6 and T7, we impose

up to three changepoints per variate in increasingly more ‘challenging’ situations.

The fourth and fifth scenarios again feature the normal and negative binomial

distributions. If a variate i undergoes all three changepoints, at times t = 300, 600

and 900 respectively, then

T i,j4,1 ∼ N(3, 1)

T i,j4,2 ∼ N(0, 1)

T i,j4,3 ∼ N(2, 2)

T i,j4,4 ∼ N(5, 4)

T i,j5,1 ∼ Neg-Bin (2, 0.05) +N(0, 10−6)

T i,j5,2 ∼ Neg-Bin (2, 0.4) +N(0, 10−6)

T i,j5,3 ∼ Neg-Bin (7, 0.4) +N(0, 10−6)

T i,j5,4 ∼ Neg-Bin (4, 0.9) +N(0, 10−6).

The sixth and seventh scenarios both feature more challenging sets of changes. Here

we have

T i,j6,1 ∼ Pareto (xm = 1, α = 0.5)

T i,j6,2 ∼ Pareto (3, 2)

T i,j6,3 ∼ Pareto (5, 0.75)

T i,j6,4 ∼ Pareto (7, 3)

T i,j7,1 ∼ Exp
(√

12
)

T i,j7,2 ∼ N

(
1√
12
,

1

12

)
T i,j7,3 ∼ U

(
−3 +

√
3

6
,
3 +
√

3

6

)

T i,j7,4 ∼
−3 +

√
3

6
+ Beta

(
1

2
,
1

2

)
.

Note that in the sixth scenario, the mean is not bounded for T6,1 or T6,3, with the

variance being unbounded for T6,1, T6,2 and T6,3. Meanwhile, in the seventh scenario,

neither the mean nor variance changes at any of the changepoints, except between

T7,3 and T7,4 where, although the mean does not change, the variance is altered from

1/12 to 1/8 (this is in order to preserve the support between the two regimes).

We remark that for the fourth through to the seventh scenarios, if a variate does
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not undergo one of the changepoints in question, then the ‘current’ generating function

for variate i carries until a change is experienced. Therefore, if a variate i experiences,

say, just the change at t = 900, then for this variate for j = 1, . . . , 900, the data are

generated according to the first regime, and then for j = 901, . . . , 1000 according to

the fourth regime.

Several of these scenarios feature more challenging changes than can typically be

handled by, for example, CUSUM-based methods or those reliant on a parametric

cost function. The typical approach to heavy-tailed data in a penalty-based setting

is to increase the penalty incurred for flagging a changepoint; see, for example, Jeon

et al. (2016), Knoblauch et al. (2018), Zoubir and Brcich (2002) and others.

Throughout this study, we keep
(
β, β

′)
= ((d+ 1) log n, 4 logω + 6 log n+ 6 log d).

We additionally set ω = 30 for OMEN. We compare the performance with gstream

(see Section 5.3.3) and Inspect (Wang and Samworth, 2018), the latter of which is an

offline multivariate approach for which code can be found in the InspectChangepoint

package (Wang and Samworth, 2016). Note that we used the default parameter values

for the Inspect procedure as given in the package. Note also that Inspect is designed

for the Gaussian setting, and in general is not robust to non-Gaussian noise. We

therefore only include it for comparison in scenarios 1, 3 and 4. For gstream, we

used the code from the package gStream (Chen and Chu, 2019). We set many of the

parameters according to recommendations within Chen (2019b). In particular, we

took L = 10, N0 = 10, k = 3, n0 = 2 and n1 = 8. For the other inputs, we set the

Average Run Length (ARL) to be the length of the series (1000), and the probability

of an ‘early stop’, alpha, to be 0.05. In addition, we used the weighted test statistic

out of the choice of four available in the package. Finally, we computed the Euclidean

distance between the d−dimensional points as the distance norm.

We examine two sizes of the affected sets of the changes within each scenario,

and look at three cases for the total number of variates. The metrics of interest

were taken as the false alarm error rate, the number of missed changes and the

average location error of the change. Note that a false alarm is hereby defined as an

estimated changepoint falling at least ω temporal points away from the closest change
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(or within said tolerance of the true changepoint if another estimated changepoint

is closer to the true changepoint). In addition, a missed change is hereby defined

as a true changepoint for which no estimated change was fitted within ω temporal

points. Finally, the average location error of the change is the number time points of

separation between each true change and associated estimated changepoint.

All simulations were run in R using a Linux OS on a 2.3GHz Intel Xeon CPU.

Under each scenario, number of variates and size of affected set, we perform 200

repetitions and report the average of the aforementioned metrics.

Note that in Tables 5.1-5.3, we denote a change which affects 100% of the variates

as D, and a change which affects a ‘middling’ number of variates as M. Therefore,

for example, (D, D, D) denotes that the changes at t = 300, 600 and 900 each affect

100% of the variates. Note that here a ‘middling’ change here affects 3 variates in the

5 variate setting, 5 variates in the 10 variate setting and 50 in the 100 variate setting.

Table 5.1 examines the average number of false alarms triggered by each of the

three methods in each of the seven scenarios. We note that in almost all situations,

OMEN reports the fewest false alarms (with a very low false alarm error rate in all

scenarios except 4 and 5).

Table 5.2 gives the average number of missed changes in each of the scenarios.

Again, the performance of OMEN was encouraging, with most changes detected in

most of the scenarios. However, it did perform poorly in scenarios 6 and 7. Note

that the difficulty for the OMEN method in detecting changes in scenarios 6 and 7

may be due to the fact that these situations do not exhibit conventional mean or

variance changes. As our test statistics for detecting changepoints within the window

are, fundamentally, checking for a change from a Gaussian to another sub-Gaussian

random variable, then it is clear that OMEN will be most powerful in detecting mean

and variance changes. We remark that gstream generally outperforms OMEN in terms

of the number of missed changes, however this should be viewed in the context of the

false alarm results, which indicate that gstream is much more likely than OMEN to

overfit. Additionally, gstream also has some difficulty detecting the changepoints in

the more difficult scenarios, in particular scenario 7. This may be due to the chosen
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distance metric only allowing for significant detection of changepoints under a change

in first or second moment behaviour.

Table 5.3 gives the average location error for the estimated changepoints which

were not previously labelled as false alarms. That is, the distance from the

corresponding true change of any estimated change which was the closest of all

estimated changes to this true change while being within at most ω time points. We

again note that, while the performance of Inspect is impressive, given the number

of false alarms a small location error is very much to be expected. It is clear

that OMEN’s accuracy improves with the number of variates present, which is

unsurprising. However, at first glance, the lower location error for the (M, M, M)

cases relative to the corresponding (D, D, D) regimes is more curious. By comparing

Table 5.3 to Table 5.2, we see that this can be explained by the fact that OMEN

estimates fewer changes in the scenarios where the change occurs in fewer of the

variates. In short, OMEN can be described as a parsimonious method. However, the

method nevertheless raises an alarm quickly in those situations where the change is

more drastic.

In Section C.2, we give a comparison of OMEN’s performance under each of these

metrics in these scenarios for different values of ω.

As a direct illustrative comparison between OMEN and gstream, we show the

results of applying both methods to the five variate setting in scenarios 3, 4, 5 and

7. In each case, we set all of the variates to change at each of the changepoints and

display only the first variate for greater clarity. We then ran both of the methods

once, using the same inputs as in the simulation study for this section, to get an

idea of a typical segmentation given by the two procedures. The results are shown in

Figure 5.1.

5.5 Real Data Example - Wind Speeds

We examine hourly wind speed data, measured to the nearest m/s, across 3 Canadian

and 2 Israeli cities from 1am on 1 October 2012 to 12am on 28 October 2017, for a total
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Average False Alarms Method

5 Variates 10 Variates 100 Variates

Scenario, Method (D, D, D) (M, M, M) (D, D, D) (M, M, M) (D, D, D) (M, M, M)

1, OMEN 0.01 0.01 0.00 0.00 0.00 0.00

1, Inspect 0.01 0.01 0.02 0.02 0.02 0.02

1, gstream 5.41 5.41 4.70 4.70 4.33 4.33

2, OMEN 0.00 0.00 0.00 0.00 0.00 0.00

2, gstream 8.33 8.33 6.80 6.80 5.46 5.46

3, OMEN 0.01 0.10 0.00 0.10 0.00 0.00

3, Inspect 0.02 0.03 0.02 0.03 0.02 0.02

3, gstream 9.07 7.91 8.77 8.38 8.69 8.34

4, OMEN 0.44 0.32 0.19 0.17 0.00 0.00

4, Inspect 2.83 0.96 8.89 1.41 77.8 55.3

4, gstream 11.0 8.60 13.6 10.1 17.0 16.5

5, OMEN 0.37 0.36 0.18 0.14 0.00 0.00

5, gstream 12.4 7.67 14.0 5.43 18.8 8.02

6, OMEN 0.02 0.02 0.01 0.01 0.00 0.00

6, gstream 13.2 8.89 13.3 5.32 14.9 5.16

7, OMEN 0.01 0.00 0.00 0.00 0.00 0.00

7, gstream 4.33 4.88 3.71 3.92 3.63 4.88

Table 5.1: The average number of false alarms incurred by OMEN, Inspect and gstream under each

of the scenarios. Bold entries show the best performing algorithm. 200 repetitions were simulated

in each case.
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Average Num Missed Method

5 Variates 10 Variates 100 Variates

Scenario, Method (D, D, D) (M, M, M) (D, D, D) (M, M, M) (D, D, D) (M, M, M)

3, OMEN 0.01 0.12 0.00 0.13 0.00 0.00

3, Inspect 0.00 0.00 0.00 0.00 0.00 0.00

3, gstream 0.01 0.04 0.00 0.01 0.00 0.01

4, OMEN 1.15 1.27 1.05 1.26 1.00 1.14

4, Inspect 0.00 0.00 0.00 0.00 0.00 0.00

4, gstream 0.43 0.88 0.08 0.50 0.00 0.00

5, OMEN 1.11 1.78 0.92 1.73 0.34 1.50

5, gstream 0.15 1.64 0.03 1.88 0.00 1.25

6, OMEN 2.95 2.96 2.93 2.96 2.77 2.93

6, gstream 0.69 1.34 0.69 1.99 0.71 2.29

7, OMEN 2.98 2.99 3.00 3.00 3.00 3.00

7, gstream 2.43 2.31 2.42 2.40 2.51 2.24

Table 5.2: The average number of changes missed by OMEN, Inspect and gstream under each of the

scenarios. Bold entries show the best performing algorithm. 200 repetitions were simulated in each

case.

Average Location Error Method

5 Variates 10 Variates 100 Variates

Scenario/Method (D, D, D) (M, M, M) (D, D, D) (M, M, M) (D, D, D) (M, M, M)

3, OMEN 8.22 6.37 7.61 3.59 3.90 1.28

3, Inspect 0.00 0.01 0.00 0.00 0.00 0.00

3, gstream 3.06 3.66 2.92 3.08 2.83 2.90

4, OMEN 8.68 7.61 7.65 4.86 2.34 0.98

4, Inspect 0.05 0.15 0.01 0.05 0.00 0.00

4, gstream 4.05 4.81 3.16 3.89 2.89 2.84

5, OMEN 7.71 5.75 5.92 3.25 2.79 0.71

5, gstream 3.90 10.1 3.42 9.86 2.80 8.24

6, OMEN 5.60 4.50 4.07 3.44 2.93 1.00

6, gstream 4.29 8.26 4.15 12.1 4.12 13.4

7, OMEN 11.7 20.0 0.00 21.0 0.00 0.00

7, gstream 15.6 13.8 15.1 14.0 14.1 13.6

Table 5.3: The average location error of the OMEN, Inspect and gstream under each of the scenarios.

Bold entries show the best performing algorithm. 200 repetitions were simulated in each case.
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Figure 5.1: Results from a single run of OMEN (four leftmost plots) and gstream (four rightmost

plots), on each of scenarios 3, 4, 5 and 7. Changes found by OMEN are overlaid as red vertical lines.

Changes found by gstream are overlaid as green vertical lines. In each case, the total number of

variates was 5 and the change affected all variates.

of 44460 observations for each city. These data can be found on Kaggle (Beniaguev,

2017). Specifically, our interest lies in the wind speed records from each of these cities.

We discuss the application of the OMEN method to another dataset in Section C.3.

5.5.1 Canada

We examine wind speed recordings from Montreal, Toronto and Vancouver using the

OMEN procedure with the same standard settings for β and β
′

as in Section 5.4.

The value of the learning window was set at ω = 148, roughly corresponding to the

number of observations made over six days. The plotted series are shown for these

three cities in Figure 5.2, with the changes found by OMEN overlaid.

As can be seen from Figure 5.2, OMEN places relatively few changes in the series,

with the exception of 2014-15. In this particular period, the wind activity notably

fell out of step in all three cities with other years. For example, in Toronto, a hint

of a seasonal effect can be observed, with greater wind speeds more likely from late

autumn to early spring. This is not seen in the winter of 2014-15. Most other changes

found by OMEN seem to detect some aspect of this seasonal effect, with an average

of two changepoints per year around the turn of each year. We remark that OMEN

also seems detects the culmination of the period in which there was a particularly
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Figure 5.2: Hourly Wind Speeds - to the nearest (m/s) - in three Canadian cities from October

2012 to October 2017. Changes found by the OMEN method, with a minimum segment length

corresponding to the number of observations made in one week, are also shown as red vertical lines.

The span of the original learning window is indicated by the horizontal purple line on each plot.

notable number of hours in which a speed of zero was recorded. (This approximately

corresponds to the beginning of 2014.)

5.5.2 Israel

We examine wind speed recordings from Eilat and Tel Aviv District. Note that, while

the original dataset had series for six cities in Israel, four of these contained imputed

data, so they are ignored here. The plotted series are shown for these two cities in

Figure 5.3, with the changes found by OMEN overlaid. As for the Canada series, we

used the usual settings for the penalty values and took ω = 148.

Very few changes are detected by OMEN throughout the period of interest, which
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Figure 5.3: Hourly Wind Speeds - to the nearest (m/s) - in two Israeli cities from October 2012 to

October 2017. Changes found by the OMEN method, with a minimum segment length corresponding

to the number of observations made in one week, are also shown as red vertical lines. The span of

the original learning window is indicated by the horizontal purple line on each plot.

appears to be unsurprising. Some of the changes which are found seem to correspond

to points after which the chance of an ‘unusually high’ observation becomes more

likely. For example, the change roughly corresponding to the beginning of 2016 is

followed by a period of around one year in which wind speeds of 10 or more become

more likely (with the change in 2017 seemingly marking the end of this period). We

note that the method appears to be robust to the presence of single anomalous results.

In particular, only one changepoint (at the beginning of 2013) is seemingly flagged

due to the appearance of one exceptional observation.
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5.5.3 Sensitivity of OMEN to ω

We now briefly comment on the behaviour of OMEN under alternative choices of

ω for these real datasets. We firstly remark that for larger values of ω (but still

keeping ω << 44460), a very similar change profile emerges. Indeed, the only notable

difference in the performance of OMEN is a tendency to place slightly fewer estimated

changes, with this becoming more pronounced for larger values of ω. The opposite

is true when ω is decreased, and for significantly smaller values (say, ω = 30, as for

the central comparison in the simulation study in Section 5.4), OMEN degenerates

completely, giving a changepoint almost at every kω, for k = 1, 2, . . .. This suggests

that the dataset exhibits a degree of non-stationarity which can be overcome somewhat

by picking a suitably high value for ω, with the trade-off that more true changes are

likely to be missed.

5.6 Discussion

We have introduced OMEN, a new online, nonparametric means of detecting

changepoints in the multivariate setting. This approach is inspired by empirical

quantile estimation, as well as by existing cost function methods for resolving

the offline changepoint problem. We have shown OMEN performs well from the

perspective of the false alarm rate across a variety of circumstances. In addition, our

simulation study in Section 5.4 also suggests that, for those situations where there

is a change in mean or variance (even if this is the result of another parameter or

distribution change), OMEN will still likely locate the change in question. However,

the performance for changepoints which do not exhibit a mean or variance change is

much less impressive. It would, therefore, be interesting to try to extend our method

to ideas in uniform quantile estimation. This could be done by building on the results

of, for example, Polonik (1997), Lei et al. (2013), Lei et al. (2018) and many others.

The central question under such an alternative formulation would concern the number

of empirical quantiles to track and the accuracy in estimating said quantiles. These

are important considerations, informing the convergence rate and hence a suitable
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setting for the length of the learning window.

On the subject of the learning window, it would clearly be of interest to link the

power of the OMEN procedure as it stands to the length of this window. In this way,

an idea of the likely effects which could be missed can be gleaned. For instance, in

the wind speed setting (see Section 5.4), it is not immediately clear that all pertinent

behaviours are seen, such as the period of suspiciously low wind speeds in Eilat in

early 2014. Indeed, this is potentially symptomatic of the wider inability of OMEN

to consider potential subsets of variates which could alter at the changepoint. At

present, the method simply labels all or no variates as having altered. This is another

important consideration for making OMEN more suitable for a data streaming setting.
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Conclusions

In the previous chapters, we have introduced novel techniques for handling time series

with changepoints in different data intensive settings. While there remain several

shortcomings of these new procedures, as well related wider questions of interest, we

first summarise the important new material of this work.

6.1 Key Findings

In Chapter 3, we demonstrated the empirical and asymptotic properties of Chunk and

Deal, two means of parallelising exact dynamic programming methods for changepoint

detection in the univariate setting. Our consistency results for Chunk and Deal rely

on assumptions for the number of cores used, L(n), for a given length of sequence,

n. Note that these two results rely on a new consistency result for unparallelised

changepoint detection in the cost function setting. While all of this theory is strictly

applicable only in the asymptotic setting, other recent work such as Wang et al.

(2019a) has successfully derived finite-sample results in the unparallelised setting.

The most important new theoretical contribution of Chapter 3 concerns the

worst-case computational cost of Chunk and Deal. This shows that, if the setting

up of the parallel environment is not the computational bottleneck of the procedure,

then, under particular choices of the number of cores, the worst-case computational

cost is linear in the length of the sequence. This is an improvement over previous

123



CHAPTER 6. CONCLUSIONS 124

techniques which minimise a segment cost function, where typically the worst-case

computational cost is quadratic in the length of the sequence. While all of these

results have here only been established for the Gaussian change in mean setting, in

instances where a sequence may consist of many observations - for example, in the

BT setting, with an observation recorded every minute - Chunk and Deal provide

important new means of giving accuracy and speed for any changepoint problem

where the segment cost function is given.

In Chapter 4, we introduced SUBSET, a multivariate changepoint detection

technique using both Binary Segmentation and cost function approaches to locate

changepoints in sparse and dense settings. As well as showing the good empirical

performance of SUBSET on synthetic data, we established its strong finite-sample

theoretical performance in the single Gaussian change in mean setting. These results

highlight the negligible false alarm error rate of SUBSET, while showing that the

conditions required for high-probability detectability of a change are weak in both

the sparse and dense cases.

One critical advantage of SUBSET over alternative approaches is that, subject

to choosing an appropriate cost function, it can be applied to many different

model settings. These of course include the terrorism database example, as well

as nonparametric change detection, where for the latter we may use cost functions of

the type suggested in the ED-PELT method of Haynes et al. (2017b).

SUBSET uses a very recent Wild Binary Segmentation idea (Fryzlewicz, 2019),

which allows it to be data-driven when detecting multiple changepoints. In particular,

while the masking problems of classical Binary Segmentation are removed, the heavier

computational overhead of Wild Binary Segmentation (Fryzlewicz, 2014) is avoided,

except in situations where the system has many changepoints. Additionally, the

computationally light post-processing step allows SUBSET to consider each variate

separately, in order to, for example, overcome any issues of dependency between the

different variates in the dataset.

In Chapter 5, we introduced OMEN, an online, multivariate, nonparametric means

of detecting changepoints. OMEN uses several classical techniques to transform each
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variate of the stream into two sub-Gaussian sequences. Importantly, these sequences

are independent and approximately standard normal under the assumption of no

changepoint. We use this fact to derive a two-stage test statistic for a changepoint.

A novel result given in Chapter 5 shows that the false alarm rate using this transform

and test statistic is low, regardless of the original distribution of the data. We

demonstrated this on several synthetic examples, in which we also observed that

the detection ability of the methods was at least comparable to other state of the art

procedures in the multivariate setting.

Several open challenges remain from the work conducted. In addition, there are

several highly prescient potential directions in which each of the new methods can be

taken. We discuss some of these ideas in more detail in Section 6.3. We first revisit

the BT example introduced in Chapter 1, and canvass the applicability of the new

methods to that particular setting.

6.2 A Return to the BT Example

Recall from Chapter 1 the BT setting of interest, in which the performances of

individual ports within Edge Routers - the components of the access layer of

broadband networks - are measured per minute according to a number of metrics. For

a typical Edge Router, this gives a data stream comprised of around one thousand

variates, however this number may vary depending on the number of customers the

Edge Router is assigned to serve. Given the number of customers served by the

broadband network in the UK, the number of variates across the entire access layer

of Edge Routers is therefore many millions.

None of the methods we have presented here have anything remotely close to

the required capability to simultaneously analyse the entire access layer in an online

fashion. Indeed, it is arguable that any such method currently exists, despite the

recent surge of interest in Big Data. However, each of the methods we have introduced

here may still be used to give valuable insights for reduced variants of the problem.

For Chunk and Deal, while we have not proposed any means of parallelising



CHAPTER 6. CONCLUSIONS 126

techniques for multivariate changepoint detection, the established worst-case

computational cost and location accuracy indicate that either method is a good

candidate for verifying the results given by other methods. In particular, for those

instances where a Major Service Outage (MSO) is seen to affect a single port by any

overarching detection method, it would be useful to employ a reliable but efficient

single variate method such as Chunk or Deal to verify the presence of a change.

This is particularly true in those cases where a fault may not have been reported by

a customer, given the cost of incorrectly sending an engineer to fix a very specific

problem.

The benefits of SUBSET within an analysis of Edge Router data are even more

apparent. While the method is not online, it could potentially be applied on a rolling

basis (e.g. once a day), to analyse the output of a single Edge Router, where the

number of variates is much more manageable. Certain additional problems would

need to be rectified, however. Most notably, data returned from each router would

exhibit strong daily, weekly and seasonal patterns. SUBSET would struggle in such

situations given the requirement of a segment cost function, which assumes stationary

data. Therefore, a pre-processing of the data to remove these normal behaviours

would be needed. As the UK moves towards the 5G era, the assumptions made by

a de-seasonalising procedure may not hold indefinitely, potentially requiring repeated

manual interference as infrastructure is updated.

The problem of seasonality is potentially less of an issue with OMEN, providing

a sensible learning window is chosen in advance. (Although such a window would

be unlikely to take into account ‘one-off’ events such as public holidays or major

sporting events in which behaviours may change markedly.) Under OMEN, providing

the data remain within the pattern of normal behaviours, even if these behaviours

are technically non-stationary, no change will be detected. Conversely, if something

drastically affects components of the router in such a way that a fast response

is required (for example, an MSO that affects an entire router or a distributed

denial-of-service (DDOS) cyber-attack), OMEN would be likely to raise a timely

alarm, under the assumption of behaviour well outside the normal. The issue with
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using OMEN under non-stationary data are that changes which, for instance, affect

the shape of the data, but have little impact on the first or second moment, would

have a lower chance of being flagged.

6.3 Open Challenges and Future Directions

We now turn to some of the broader challenges arising from our findings.

We first discuss some of the questions surrounding our proposed parallelisation

methods in the univariate, offline setting. As noted in Section 6.1, our theoretical

results for Chunk and Deal apply only asymptotically. In the wake of recent finite

sample results on the consistency of unparallelised changepoint detection, it would

be interesting to derive a new result in the finite n setting for both Chunk and Deal.

Moreover, new theory on the detection probability and accuracy of the methods may

help to relax the assumptions we imposed in Chapter 3 on the number of cores, L(n),

for increasing n. For example, it would be interesting to explore the requirements for

the detection of all changes in a sequence for an arbitrary fixed, or at least bounded,

L. This would be of particular importance in the Deal setting, not only because our

assumptions on the number of cores were stricter, but also in determining the likely

output of a single core in the small L setting. If this output is sufficiently close to a

true segmentation in cases without extremely short segments, then using a variant of

Chunk where, following the split phase, only one core fits a changepoint model, could

give an extremely impressive computational cost with little loss of accuracy.

We additionally remark that the splitting methods for Chunk and Deal are

somewhat naive. In particular, there is little possibility for either procedure to be

data-driven following the discovery of any changepoints in the sequence. Moreover,

the stipulation that each point is considered as a changepoint by at least one core

places a constraint on the computational gains which can be made. Possible splitting

techniques which could ameliorate these issues include sampling on a steadily finer

dyadic grid of the sequence. In addition, from a parallelisation perspective, it would

be relatively straightforward to employ a ‘work-stealing’ mechanism between cores,
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as seen in other parallel implementations (Acar et al., 2013; Fernando et al., 2019;

Pedro and Abreu, 2010). Such a work-stealing mechanism would prevent the analysis

of any one level of resolution of the sequence being a computational bottleneck, while

simultaneously ensuring that relatively few cores are required for parallelisation. Areas

in which changes are found or suspected in the sequence could then undergo further

analysis in the merge phase.

Finally, it would be of interest to explore and implement parallelisation for

multivariate settings, where the computational gain over methods such as SMOP

(Pickering, 2016) or MultiRank (Cabrieto et al., 2017) has the potential to be

extremely impressive. We note, however, that such an approach would preclude

online implementation (assuming that we again choose a technique where each point

is observed by at least one core).

We now turn to consider pertinent questions arising from the SUBSET procedure.

Although we derived novel theory on the probabilities of a false alarm and missing a

change in the single change setting, it would be prudent to also give a result on the

location accuracy. This would then give an indication of how the method theoretically

extends to the multiple change setting under the Wild Binary Segmentation scheme

we adopted, as well as show more broadly how the method behaves in settings with

many changes under either large n or large d. Other important missing theory

includes a consideration of the penalties for data settings outside the toy example

of the Gaussian change in mean. As demonstrated in the negative binomial example,

while using the recommended penalties works well in cases where the over-dispersion

parameter is sufficiently large, for instances where this is close to 0 it is much more

advisable to use simulations from the null to set the appropriate penalty values. It

would not, however, be too difficult to extend our proof techniques to, for example,

sub-exponential settings, to give an idea of how the penalties may scale appropriately.

Indeed, recent work such as Zheng et al. (2019) has examined penalty setting for a

range of changepoint problems, such as detection under exponential decay. However,

one complication in our considered setting would be to ensure an appropriate balance

between sparse and dense false positives.
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Another setting of interest which was neglected in Chapter 4 was that of binary

streams. These are now a very common consideration in the changepoint literature,

given the potential to, for instance, apply such thinking to networks (see the discussion

in Section 2.4.1 for some recent examples). Indeed, the terrorism example we discuss

in Chapter 4 could very naturally be recast as a sparse time series of binary responses.

It would be very interesting to corroborate the results of our analysis of the GTD with

an appropriate setting of SUBSET for binary data.

Finally, it would be interesting to implement the SUBSET test statistic within

the OMEN procedure of Chapter 5, in place of the multivariate AMOC detector for

a single Gaussian change in mean. This could potentially also provide a mechanism

for determining which variates alter at the changepoint. However, we remark that,

in such a scenario, additional care would need to be taken with the setting of the

penalty, given the problem of testing for many different types of change within the

memory window each time an alarm is flagged.

Other questions arising from Chapter 5 predominantly concern the power of the

method, particularly for those situations in which the mean and variance do not

change. In particular, it would be useful to link the length of the learning window,

ω, to the probability that OMEN detects a particular type of change, for example a

change in mean in the Gaussian setting of magnitude ∆ across all variates. While this

would by no means be a complete result from the perspective of a general change in

distribution of the type given in problem (2.1.1), it would be an important first step in

understanding the power of the method outside an empirical context. More generally,

it would be interesting to investigate other implementations of the ideas within the

OMEN algorithm. One natural approach is to use the inverse-cdf-transformation,

rather than the Box-Muller transformation, to convert the data to a stream that is

standard Gaussian under the null distribution. One challenge here is the question

of how to deal with the discreteness of the transformation when the empirical cdf

is inverted. This means that, for small ω, the transformed data will be resemble a

discrete approximation to a Gaussian.

Another interesting potential extension to OMEN arises from considering the
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situation where variates may ‘drop in and out’ of the stream. This style of modelling

is useful even in contexts where the number of variates may be fixed, given that entries

into the stream can go missing due to poor data handling, the loss of a sensor etc.

Other authors to have considered the issue of missing data in a changepoint context

include Xie et al. (2013), who use an interesting submanifold approach to handle high

dimensional data in an online context, and Muniz-Terrera et al. (2011), who assume a

data missing-at-random approach within a logistic regression model. Many authors,

such as Oca et al. (2010), typically resort to using interpolation for small numbers

of missing observations, which can create severe issues when the number of missing

entries is significant (for example, with the missing year of data from the Global

Terrorism Database). Indeed, all of these existing methods would be significantly

challenged in the scenario where variates may enter and leave the system of the stream

‘at will’.

A related issue to the missing data problem is that of differing sampling rates across

the variates. A natural approach in this setting may be to consider data at time points

corresponding to the observation points of the variate being sampled at the lowest

frequency. However, this can involve the loss of a significant amount of information.

Of the few authors to have previously addressed variants of the problem, Brauckhoff

et al. (2006) examine anomaly detection under differing sampling rates in the telecoms

setting, but strictly in an offline context. In general, however, this problem remains

very much an open, and prescient, area of research, particularly given the volume of

data generated at irregular intervals, such as from social media activity. Indeed, as

Petrov (2019) records, in the first six weeks of 2019, over 1.5 billion tweets were sent.

Developing a toolkit to track features in such data and automatically report changes

of interest is an exciting possible future avenue of research.

One other barrier to such developments is the relative lack of literature on the

analysis of text data from the changepoint perspective. Such efforts include Chandola

et al. (2013), which uses a CUSUM procedure alongside a text analysis in a health

care claims setting, and Kulkarni et al. (2015), who construct a ‘distributional time

series’ for specific words to track linguistic shifts (again using CUSUM statistics) over
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long periods of time. There is clearly scope to build on these approaches, as well as

ideas from traditional National Language Processing in the machine learning domain,

to develop changepoint methodology for text data in a streaming setting.

While these problems are still some way from a satisfactory solution, the challenge

of intensive data settings and the detection of changepoints therein is now justifiably

receiving attention commensurate to its importance. The new algorithms we have

introduced here are intended, in this sense, as a bridge between an interesting, if

classical, statistical problem and the practicalities of a data world which never ceases

to change.



Appendix A

Chunk and Deal

A.1 Yao’s Results and Extension

The following two lemmas are due to Yao (1988).

Lemma A.1.1. Suppose Z1, ..., Zn ∼i.i.d. N(0, σ2). Then, for any ε > 0, as n→∞

P

(
max

0≤i<j≤n

(Zi+1 + ...+ Zj)
2

(j − i)
> 2 (1 + ε)σ2 log n

)
→ 0. (A.1.1)

Lemma A.1.2. Let mU be an upper bound on the number of changes, and let

(τ̂1, ..., τ̂m̂) be the set of estimated changes generated (by Yao’s procedure). For every

m̂ s.t. m < m̂ ≤ mU and 1 ≤ r ≤ m,

P((τ̂1, ..., τ̂m̂) ∈ B2
i (n))→ 0

as n→∞, where

Bδ
i (n) = {(ξ1, ..., ξt) : 0 < ξ1 < ... < ξt < n and |ξs − τr| ≥

⌈
(log n)δ

⌉
for 1 ≤ s ≤ m̂}.

Corollary A.1.3. Lemma A.1.2 can be extended to B1+ζ
i (n), for any ζ > 0.

Proof of Corollary A.1.3: The argument for the location accuracy being (log n)2 in

Yao (1988) comes from showing that the residual sum of squares for a segmentation

that misses a change by more than this amount can be reduced by an amount that is

greater than 3 (2 + ε) log n (with probability tending to 1 as n increases), by adding

132
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three changes at the changepoint plus or minus (log n)2. Thus, such a segmentation

cannot be optimal, as the penalised cost for the latter segmentation will be less than

the original one. We therefore need only show that this argument holds if we replace

an accuracy of (log n)2 with (log n)1+ζ for any ζ > 0.

To do this, it suffices to show that a segmentation τ̂1, . . . , τ̂m̂ which misses a

particular change τi by at least
⌈
(log n)1+ζ

⌉
has a residual sum of squares between

the points τi−
⌈
(log n)1+ζ

⌉
and τi +

⌈
(log n)1+ζ

⌉
, which when normalised by the true

fit has term of leading order
⌈
(log n)1+ζ

⌉
.

For a segmentation τ̂1:m̂, define RSS(ys:t; τ̂1:m̂) to be the residual sum of squares

obtained if we fit the changepoints to the subset of data ys:t. Note that this will only

depend on the changepoints, if any, that lie between time points s and t. Then, for

any τ̂1:m̂ ∈ B1+ζ
i (n)

RSS(y1:n; τ̂1:m̂) ≥ RSS
(
y1:n; τ̂1:m̂, τ1, . . . , τi−1, τi −

⌈
(log n)

1+ζ
⌉
, τi +

⌈
(log n)

1+ζ
⌉
, τi+1, . . . , τm

)
.

(A.1.2)

As Yao (1988) remarks, RHS of (A.1.2) can be decomposed as

RSS(y1:τ1 ; T1) + . . .+ RSS
(
yτi−1+1:τi−d(logn)1+ζe; Ti

)
+ RSS

(
yτi−d(logn)1+ζe+1:τi+d(logn)1+ζe; ∅

)
+ RSS

(
yτi+d(logn)1+ζe+1:τi+1

; Ti+1

)
+ . . .+ RSS (yτm+1:n; Tm+1) ,

where Th is the subset of τ̂1:m̂ which falls inside the corresponding segment of the

univariate time series. By Lemma A.1.1, each term in this decomposition involving

Th is such that

RSS(ya+1:b; Th) =
b∑

j=a+1

Z2
j +Op(log n),

while, if without loss of generality we assume that the mean at the changepoint τi

changes from 0 to µ, then letting c
(ζ)
n =

⌈
(log n)1+ζ

⌉

RSS
(
y
τi−c

(ζ)
n +1:τi+c

(ζ)
n

; ∅
)

=

τi+c
(ζ)
n∑

j=τi−c
(ζ)
n +1

(
Yi − Ȳ

(
τi − c(ζ)

n + 1, τi + c(ζ)
n

))2

=

τi+c
(ζ)
n∑

j=τi−c
(ζ)
n +1

Z2
j +

µ2

2
c(ζ)
n −

1

2c
(ζ)
n

 τi+c
(ζ)
n∑

j=τi−c
(ζ)
n +1

Zj

2

+D,



APPENDIX A. CHUNK AND DEAL 134

where D ∼ N
(

0, 2σ2c
(ζ)
n µ2

)
. Therefore


τi+c

(ζ)
n∑

j=τi−c
(ζ)
n +1

Z2
j − RSS

(
y
τi−c

(ζ)
n +1:τi+c

(ζ)
n

; ∅
) /c(ζ)

n =
µ2

2
− 1

2
(
c

(ζ)
n

)2

 τi+c
(ζ)
n∑

j=τi−c
(ζ)
n +1

Zj

2

+D/c(ζ)
n

→ µ2

2
by Lemma A.1.1.

In particular, ∀τ̂1:m̂ ∈ B1+ζ
i (n){

RSS
(
x1:n; τ̂1:m̂, τ

−i
1:n, τi − c(ζ)

n , τi + c(ζ)
n

)
−

n∑
j=1

Z2
j

}
/c(ζ)
n →

µ2

2
.

Thus, as any segmentation from B1+ζ
i (n) is strictly worse than a corresponding

segmentation, which in turn is worse (in probability) than fitting the truth under

a penalty of β = 2 (1 + ε) log n, then uniformly in B1+ζ
i (n), P(τ̂1:m̂ ∈ B1+ζ

i (n)) → 0.

�

A.2 Unparallelised Consistency Results

Proof of Proposition 1: Let m̂ be the number of changes estimated by the

procedure. The aim is firstly to show that

(a): P(m̂ > m)→ 0,

(b): P(m̂ < m)→ 0.

Proof of (a): Under Corollary A.1.3, for m̂ > m, with probability 1 as n → ∞, it

must be the case that m of the estimated changes are within (log n)1+ζ , some ζ > 0,

of the true changes. We will now show that, with probability tending to 1, these

segmentations cannot be optimal.

To do this, we will compare the penalised cost of any such segmentation with the

penalised cost of the true segmentation. The latter cost can be bounded above by∑n
t=1 Z

2
t + m (2 + ε) log n. Our approach is to split the comparison of the residual

sum of squares of a segmentation τ̂1:m̂ with
∑n

t=1 Z
2
t into comparisons for a fixed

number of regions of data. To do this, define c
(ζ)
n =

⌈
(log n)1+ζ

⌉
, u0 = 0, lm+1 = n,



APPENDIX A. CHUNK AND DEAL 135

and for i = 1, . . . ,m, li = τi − c
(ζ)
n and ui = τi + c

(ζ)
n . We can partition the time

points 1, . . . , n into regions Mi = {ui−1 + 1, . . . , li}, for i = 1, . . . ,m + 1 and regions

Li = {li + 1, . . . , τi} and Ri = {τi + 1, . . . , ui} for i = 1, . . . ,m. These can be viewed

as regions more than c
(ζ)
n from a changepoint, and regions of length c

(ζ)
n that are

respectively left and right of a changepoint.

It is straightforward to show that for any segmentation

RSS(y1:n; τ̂1:m̂) ≥
m+1∑
i=1

RSS(yMi
; τ̂1:m̂) +

m+1∑
i=1

RSS(yLi ; τ̂1:m̂) +
m+1∑
i=1

RSS(yRi ; τ̂1:m̂).

The proof proceeds by showing that, on each region Mi, if we have k = k(τ̂1:m̂)

changepoints that lie within this region, then with probability tending to 1

max
τ̂1:m̂

{
RSS(yMi

; τ̂1:m̂) + 2 (1 + ε/2) k log n−
li∑

t=ui+1

Z2
t

}
> −4 log log n.

We then show that, on each region Li (and similarly each region Ri), that if there are

k = k(τ̂1:m̂) changepoints, then with probability tending to 1

max
τ̂1:m̂

{
RSS(yLi ; τ̂1:m̂)−

li∑
t=ui+1

Z2
t

}
> −4 (k + 1) log log n.

Taken together we have, with probability tending to 1, a uniform bound on the

difference in cost between any segmentation with more than m changepoints, and

that also has one change within c
(ζ)
n of each true change, and the true segmentation.

As such a segmentation can only have, at most, m̂ −m changes in regions Mi, this

difference is bounded by

(m̂−m)ε log n− 4(2m+ 3) log log n > ε log n− 4(2m+ 3) log log n,

which is positive for large enough n.

Note that on each region Mi,Li,Ri, there are no true changes. Therefore, any

estimated changes we do fit inside these regions will involve fitting changes to the

noise. Take a generic region of length ñ which contains no true changes. We examine

the reduction in the residual sum of squares when we add 0 and k > 0 estimated

changes. Note that, in the former case, it is true that

−RSS(yAi ; τ̂1:m̂) +

ai+ñ∑
t=ai+1

Z2
t =

1

ñ

(
ai+ñ∑
t=ai+1

Zt

)2

,
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where A is used as a placeholder to refer to any of the three types of region such that

Ai = {ai+1, . . . , ai+ñ}. Thus, the negative of the expression of interest is distributed

according to χ2
1. Therefore, for sufficiently large n, the probability that this quantity

is greater than 4 log log n tends to 0.

So we need focus only on the case where k > 0. Label, without loss of generality,

the estimated changes which lie in the region Ai as τ̂1, . . . , τ̂k, and let

Diff = RSS(yAi ; τ̂1:m̂)−
ai+ñ∑
t=ai+1

Z2
t .

Then

Diff =
1

τ̂1 − ai

(
τ̂1∑

t=ai+1

Zt

)2

+ . . .+
1

ai + ñ− τ̂k

(
ai+ñ∑
t=τ̂k+1

Zt

)2

.

We demonstrate that this difference is less than 2k(1 + ε) log ñ, for any ε > 0. Note

that, collectively, the positive terms in the expression follow a χ2
k+1 distribution.

By Laurent and Massart (2000), for any quantity U which follows a chi-squared

distribution with D degrees of freedom, for any x > 0

P
(
U −D ≥ 2

√
Dx+ 2x

)
≤ exp(−x), (A.2.1)

letting D = k + 1 and x =
d log ñ−

√
(2d log ñ−(k+1))(k+1)

2
, for some d > 0 such that

ñ ≥ e
k+1
2d . In practice d > k (see below) so almost all positive integer values of ñ will

be sufficient. With this choice of x, the LHS of (A.2.1) corresponds to P(U > d log ñ),

and for large enough ñ (A.2.1) becomes

P(U ≥ d log n) ≤ ñ−
d
2

+δ, for any δ > 0. (A.2.2)

There are then
(
ñ
k

)
possible segmentations of these (incorrectly) fitted changes in this

region. Given that
(
ñ
k

)
< ñk

k!
, then by employing a Bonferroni correction, for the best

segmentation involving k changes in the region

P(Diff ≥ d log ñ) ≤ ñ−
d
2

+δñk

= ñk+δ− d
2 → 0 for d = 2k(1 + ε), if we set, for example, δ = ε/2.

(For d = 2k(1 + ε), if δ = ε/2 - as (A.2.2) permits any strictly positive value of δ -

then k + δ − d
2

= − (2k − 1) ε/2 < 0.)
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Note that this establishes the appropriate bound only in the case where k is fixed

and positive. To obtain the uniform bound over all k, we must sum over all k =

1, . . . , ñ. So, for a given ñ and ε

ñ∑
k=1

P(Diff ≥ 2k (1 + ε) log ñ) ≤
ñ∑
k=1

ñ−(2k−1)ε/2

=
ñ−ε/2

(
1− ñ−ñε

)
1− ñ−ε

→ 0, ∀ε > 0.

This establishes the required results for both regions of type Mi and Li (Ri) by

substituting ñ = λn, λ ≤ 1 and ñ =
⌈
(log n)1+ζ

⌉
(for ζ < 1 to obtain the constant 4

in the two initial statements) respectively.

Hence P(m̂ > m)→ 0.

Proof of (b): Now suppose we have that m̂ < m. For n sufficiently large, it is

guaranteed that there is at least one true change (which shall be labelled τ) such that

the closest estimated change is at least
⌈
(log n)1+ζ

⌉
time points away. Thus, by the

proof of Corollary A.1.3, given that a change has been missed by this error, adding

in estimated changes to the model at the points τ −
⌈
(log n)1+ζ

⌉
, τ , τ +

⌈
(log n)1+ζ

⌉
gives that the reduction in the RSS is greater than the incurred penalty for adding 3

changes. Thus, the original segmentation was not optimal.

Hence P(m̂ < m)→ 0.

Lastly, we need to establish that, when m̂ = m, the event that each of the

estimated changes is within
⌈
(log n)1+ζ

⌉
of a true change tends to 1. Suppose we

have a segmentation with m̂ = m which contains a true change, τi, with no estimated

changes within
⌈
(log n)1+ζ

⌉
. Then by comparing this segmentation to an equivalent

segmentation which also fits estimated changes at τi−
⌈
(log n)1+ζ

⌉
, τi, τi+

⌈
(log n)1+ζ

⌉
,

we again obtain a saving of greater than the cost of adding 3 changes by Yao (1988)

and Corollary A.1.3. �

Note that this result extends naturally to a multivariate analogue.

Lemma A.2.1. Take a procedure which exactly minimises the squared error loss for

the multivariate problem

Yi = εi + µk, for τk−1 + 1 ≤ i ≤ τk, and k ∈ {1, ...,m+ 1}, (A.2.3)
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where Yi =
(
Y

(1)
i , ..., Y

(d)
i

)T
, ∀i ∈ {1, ..., n}; µk 6= µk+1, ∀k ∈ {1, ...,m};

εi ∼i.i.d. Nd (0, σ2Id), some d. In addition, take the penalty for fitting a change to

be (d+ 1) (1 + ε) log n, for any ε > 0. Then, defining Eζn as for Proposition 1 for any

ζ > 0, again gives that P(Eζn)→ 1 as n→∞.

Proof of Lemma A.2.1: We define the natural extension of the residual sum of

squares in the multivariate case as

RSS(y1:n; τ̂1:m̂) =

τ̂1∑
i=1

(yi − µ̂1)T (yi − µ̂1) + ...+
n∑

i=τ̂m̂+1

(yi − µ̂m̂+1)T (yi − µ̂m̂+1)

=
m̂+1∑
j=1

τ̂j∑
i=τ̂j−1+1

d∑
k=1

(yi,k − µ̂j,k)2 ,

where µ̂j,k = 1
τ̂j−τ̂j−1

∑τ̂j
i=τ̂j−1+1 yi,k = ȳj,k. Using this, we proceed along the same

trajectory as for the previous proof. Suppose that m̂ changes are estimated by the

procedure. Then we first show that

(a): P(m̂ > m)→ 0,

(b): P(m̂ < m)→ 0.

Proof of (a): Again let c
(ζ)
n =

⌈
(log n)1+ζ

⌉
. Note first that an equivalent result to

Corollary A.1.3 holds in the multivariate case, as the residual sum of squares between

the points τi− c(ζ)
n and τi+ c

(ζ)
n (where τi is some true change missed by the procedure

as before) satisfies

RSS

(
y
τi−c

(ζ)
n +1:τi+c

(ζ)
n

; ∅
)
−

d∑
k=1

τi+c
(ζ)
n∑

j=τi−c
(ζ)
n +1

Z2
j,k

c
(ζ)
n

=
d∑

k=1

(
µ

(i)
k − µ

(i+1)
k

)2

2

− 1

2c
(ζ)
n

d∑
k=1

(∑
j

Zj,k

)2

+
Dk

c
(ζ)
n

→
d∑

k=1

(
µ

(i)
k − µ

(i+1)
k

)2

2
as n→∞,

where Dk is normally distributed with a variance equivalent to the deterministic term

scaled by 4σ2.
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Hence, as per the previous proof, we can compare the residual sum of squares of the

fit of a set of estimated changes with m̂ > m across (equivalent) regions Mi,Li,Ri

to the null fit. Across a region bounded by the points (a, b) containing estimated

changes τ̂1, ..., τ̂p, the relevant difference term is

Diff =
d∑

k=1

 1

τ̂1 − a

(
τ̂1∑

j=a+1

Zj,k

)2

+ ...+
1

b− τ̂p

 b∑
j=τ̂p+1

Zj,k

2 ,
giving that Diff ∼ χ2

d(p+1). A similar argument to before then gives that

P(Diff ≥ p (d+ 1) (1 + ε) log n)→ 0,

and in particular
n∑
p=1

P(Diff ≥ p (d+ 1) (1 + ε) log n)→ 0.

Hence P(m̂ > m)→ 0.

Proof of (b): This follows immediately from considering the multivariate equivalent

to Corollary A.1.3 shown above, inferring the presence of a missed change, τi,

and fitting three estimated changes at τi −
⌈
(log n)1+ζ

⌉
, τi, τi +

⌈
(log n)1+ζ

⌉
. This

segmentation will produce a lower residual sum of squares than the original with

probability approaching 1.

Hence P(m̂ < m)→ 0.

All that remains is to show that this correct number of changes falls within⌈
(log n)1+ζ

⌉
. However, this again follows the same line of reason as for the univariate

case by the result established above. �

A.3 Additional Simulations: Parallelisation Under

an Increasing Number of Changepoints

We here examine the behaviour of Chunk and Deal compared to PELT in situations

with an increasingly large number of changes. We again focus on the Gaussian change

in mean setting, beginning with a mean of 0. At every changepoint, the mean changes
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to 2 if the mean was previously at 0, and changes to 0 if the mean was previously at

2. Gaussian noise of variance 1 is added to each time point.

For the following scenarios (which we label as p = 1, . . . , 7), the length of the series

was taken as n = 1024, while the number of changes was taken as m = 2p − 1, with

the set of changepoints in scenario p being τ
(p)
i = 210

2p
× i, for i = 1, . . . , 2p − 1.

As for the main study in Chapter 3, all simulations were run in R using a Linux

OS on a 2.3GHz Intel Xeon CPU. The average for all metrics was calculated across

200 repetitions in each case.

In Table A.1, we show the average number of false alarms incurred in each setting

by Chunk and Deal under a differing number of cores, L, for each of the scenarios

p = 1, . . . , 6. In Table A.2, we show the average number of changes missed for each

of the scenarios p = 1, . . . , 7. In Table A.3, we show the average location area of the

methods for each of the scenarios p = 1, . . . , 7. The performance of unparallelised

PELT is shown for comparison in each case.

We see from all three tables that parallelisation has little effect on the accuracy,

with all of the methods, for example, missing many changepoints in the more difficult

settings as p is made larger. Indeed, with regards to the false alarm performance,

there was no change at all in the performance of the methods with parallelisation up

to 10 cores, even with just 16 points per segment for p = 6.

We remark on the interesting case of p = 4, however, which corresponds to a

setting with 15 changepoints. Here, a slight detrimental effect is observed, with Chunk

struggling to reach the performance of PELT as L is increased and Deal experiencing

a higher number of missed changes and larger average location error even for L = 2.

Comparing the results here to the result given in Table 3.2, we see that Chunk and

Deal (with 4 cores) are in fact performing better than for the case with 14 changes

(which we labelled as scenario E). This is somewhat unsurprising given that this latter

case had irregularly spaced changepoints, leading to some very short segments, making

some changepoints more difficult to detect. (Indeed, PELT also does much worse.)

In addition, each changepoint in scenario E shifts the mean signal by 1, whereas here

there is a shift of 2 which, particularly for a small number of cores, increases detection
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Average False Alarms Scenario (p), ∆µ = 2, n = 1024

Method L 1 2 3 4 5 6

PELT 1 0.00 1.00 1.00 2.00 0.00 0.00

Chunk 2 0.00 1.00 1.00 2.00 0.00 0.00

Chunk 3 0.00 1.00 1.00 2.00 0.00 0.00

Chunk 4 0.00 1.00 1.00 2.00 0.00 0.00

Chunk 5 0.00 1.00 1.00 2.00 0.00 0.00

Chunk 6 0.00 0.00 1.00 2.00 0.00 0.00

Chunk 7 0.00 0.00 1.00 2.00 0.00 0.00

Chunk 8 0.00 0.00 1.00 2.00 0.00 0.00

Chunk 9 0.00 0.00 1.00 2.00 0.00 0.00

Chunk 10 0.00 0.00 1.00 2.00 0.00 0.00

Deal 2 0.00 1.00 1.00 2.00 0.00 0.00

Deal 3 0.00 1.00 1.00 2.00 0.00 0.00

Deal 4 0.00 1.00 1.00 2.00 0.00 0.00

Deal 5 0.00 1.00 1.00 2.00 0.00 0.00

Deal 6 0.00 1.00 1.00 2.00 0.00 0.00

Deal 7 0.00 1.00 1.00 2.00 0.00 0.00

Deal 8 0.00 1.00 1.00 2.00 0.00 0.00

Deal 9 0.00 0.00 1.00 2.00 0.00 0.00

Deal 10 0.00 1.00 1.00 2.00 0.00 0.00

Table A.1: The average number of false alarms recorded across all 200 repetitions for each of the

scenarios p = 1, . . . , 6. A false alarm is defined as an estimated changepoint which is at least d(log n)e

points from the closest true changepoint. Note that this is why we do not report scenario 7 here, as

any spuriously placed changepoint will be sufficiently close to a true change as to not be flagged as

a false alarm. Bold entries show the best performing algorithm for each scenario.

probability, again as we saw in Table 3.2.

In Chapter 3, we discussed the asymptotic performance of Chunk and Deal using

a novel asymptotic consistency result for PELT. These results assumed an infill

asymptotic setting. That is, the number of changes remaining at fixed positions

(i.e. proportions) of the data sequence for increasing n. The simulation study we

have conducted here demonstrates that Chunk and Deal are not noticeably worse in

terms of statistical performance than unparallelised PELT, even for settings very far

removed from the assumptions made.
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Average Number Missed Scenario (p), ∆µ = 2, n = 1024

Method L 1 2 3 4 5 6 7

PELT 1 0.00 0.00 1.00 2.00 30.0 62.0 125

Chunk 2 0.00 0.00 1.00 2.00 30.0 62.0 125

Chunk 3 0.00 0.00 1.00 2.00 30.0 62.0 125

Chunk 4 0.00 0.00 1.00 6.00 30.0 62.0 125

Chunk 5 0.00 0.00 1.00 6.00 30.0 62.0 125

Chunk 6 0.00 0.00 1.00 2.00 30.0 62.0 125

Chunk 7 0.00 0.00 1.00 6.00 30.0 62.0 125

Chunk 8 0.00 0.00 1.00 6.00 30.0 62.0 125

Chunk 9 0.00 0.00 1.00 6.00 30.0 62.0 125

Chunk 10 0.00 0.00 1.00 6.00 30.0 62.0 125

Deal 2 0.00 0.00 1.00 6.00 30.0 62.0 125

Deal 3 0.00 0.00 1.00 6.00 30.0 62.0 125

Deal 4 0.00 0.00 1.00 6.00 30.0 62.0 125

Deal 5 0.00 0.00 1.00 6.00 30.0 62.0 125

Deal 6 0.00 0.00 1.00 6.00 30.0 62.0 125

Deal 7 0.00 0.00 1.00 6.00 30.0 62.0 125

Deal 8 0.00 0.00 1.00 6.00 30.0 62.0 125

Deal 9 0.00 0.00 1.00 6.00 30.0 62.0 125

Deal 10 0.00 0.00 1.00 6.00 30.0 62.0 125

Table A.2: The average number of missed changes across all 200 repetitions for each of the scenarios

p = 1, . . . , 7. A missed change is defined as a true changepoint for which no estimated change lies

within d(log n)e points. Bold entries show the best performing algorithm.
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Average Location Error Scenario (p), ∆µ = 2, n = 1024

Method L 1 2 3 4 5 6 7

PELT 1 5.00 52.2 3.14 3.27 6.00 6.00 1.00

Chunk 2 5.00 52.2 3.14 3.27 6.00 6.00 1.00

Chunk 3 5.00 52.2 3.14 3.27 6.00 6.00 1.00

Chunk 4 5.00 52.2 3.14 3.73 6.00 6.00 1.00

Chunk 5 5.00 52.2 3.14 3.64 6.00 6.00 1.00

Chunk 6 5.00 2.33 3.14 3.07 6.00 6.00 1.00

Chunk 7 5.00 2.33 3.14 3.73 6.00 6.00 1.00

Chunk 8 5.00 2.33 3.14 3.73 6.00 6.00 1.00

Chunk 9 5.00 2.33 3.86 3.73 6.00 6.00 1.00

Chunk 10 5.00 2.33 3.14 3.64 6.00 6.00 1.00

Deal 2 5.00 52.2 3.14 3.73 6.00 6.00 1.00

Deal 3 5.00 52.2 3.14 3.73 6.00 6.00 1.00

Deal 4 5.00 52.2 3.14 3.73 6.00 6.00 1.00

Deal 5 5.00 52.2 3.14 3.73 6.00 6.00 1.00

Deal 6 5.00 52.2 3.14 3.73 6.00 6.00 1.00

Deal 7 5.00 52.2 3.14 3.73 6.00 6.00 1.00

Deal 8 5.00 52.2 3.14 3.73 6.00 6.00 1.00

Deal 9 5.00 2.33 3.14 3.73 6.00 6.00 1.00

Deal 10 5.00 52.2 3.14 3.73 6.00 6.00 1.00

Table A.3: The average location error between those true changes which were detected by the

algorithms and the corresponding estimated change, across all 200 repetitions for each of the 7

scenarios. Bold entries show the best performing algorithm.
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As we noted earlier in this section, the performance of Chunk, Deal and PELT is

noticeably better in the p = 4 case than for scenario E of Section 3.4, despite the latter

having fewer changepoints. Indeed, it is clear that all the methods based on dynamic

programming suffer when there is a very short segment. For example, we see from

Table 3.2 in scenario B that, even for ∆µ = 2 when n = 1000, the methods all miss

at least one change on average, with WBS noticeably the best performing procedure.

However, as n is increased under this same scenario, there is a very marked reduction

in the false alarm rate even for lower values of ∆µ. This is consistent with a recent

work in which the finite-sample properties of methods such as PELT are explored for

the change in mean setting (Wang et al., 2019a). Here, it is shown that providing

∆µ
√

min1≤i≤m+1(τi − τi−1)

σ
≥ C

√
(log n)1+ι, (A.3.1)

for some sufficiently large constant C and some ι > 0, then the probability of detecting

all changepoints to within D log n, for some D, is at least 1− e×n3−c for some c > 3.

Assumption (A.3.1) is useful in giving a broad description of the trade-off between

min1≤i≤m+1(τi − τi−1),∆µ, σ, n and L under Chunk and Deal. For example, under

the Chunk procedure, we would require that the minimum segment length within the

chunk given to a particular core is at least

Cσ

∆µ

√
(log n− logL)1+ι.

Note that, from a computational perspective, we recommended setting L ∼ n
1
2

in Section 3.3.1, which simply gives an adjustment of the constant, such that the

minimum segment length should still be Ω(
√

log n), meaning little degeneracy in

performance with parallelisation. However, the two obvious caveats are that (i) this

argument ignores any new minimum segment length induced by the placing of a

boundary; and (ii) we are required to perform a correction on the lower bound of

the detection probability stated above. To mitigate (i) in the infill setting, we took

an overlap of length d(log n)1+ξe, for some ξ > 0, and made the assumption that at

most one change fell within each chunk for sufficiently large n. In a finite-sample case

with potentially many changes, this argument is not valid. Indeed, we note it is no
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longer possible to guarantee a minimum segment length within a chunk in general

without, for example, assuming that adjacent changes must be at least 2d(log n)1+ξe

points apart. With regards to (ii), note that in the case of L ∼ n
1
2 we would require

a sequence of length n2 before Chunk had comparable detection in probability to

unparallelised PELT.

We remark that many of the issues discussed above for Chunk also apply to Deal,

as the central assertion required when proving the consistency of Deal was that the

core which is ‘dealt’ the true change will necessarily return that point as a change. If

L dominates the minimum segment length, however, this is not guaranteed.
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SUBSET

B.1 Preliminary Lemmas

In this section, we establish several lemmas required to prove the central results of

Chapter 4 (please see Section B.2 for the main proofs). Our general approach with

this section is to establish the stated results in either the sparse or the dense setting,

and then combine these results appropriately in Section B.2. Throughout this section,

we repeatedly use the following two Lemmas.

Lemma B.1.1. Suppose G ∼ χ2
k. Then for any x > 0

P
(
G ≥ k + 2

√
xk + 2x

)
≤ exp (−x) .

Proof : See, for example, Laurent and Massart (2000).

Lemma B.1.2. Suppose H ∼ χ2
k(ν). Then for any y > 0

P
(
H ≥ k + ν − 2

√
(k + 2ν)y

)
≥ 1− exp(−y),

and

P
(
H ≥ k + ν + 2

√
(k + 2ν)y + 2y

)
≤ exp(−y).

Proof : See Birgé (2001).

We now give two results on the Type I error of the SUBSET procedure.

Lemma B.1.3 gives a bound on the Type I error in the sparse setting, under particular

146
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choices for the penalties α and β, and Lemma B.1.4 gives an equivalent result in the

dense setting, under an additional choice for the dense penalty K.

Lemma B.1.3. Suppose we are in the same setting as for Theorem 4.3.1 of Chapter 4.

Let D
′
i,t, α and β be as defined in Section 4.3 of Chapter 4. Define S1,t =

∑d
i=1 D

′
i,t−β.

Let
√
β =

√
2d

Γ( 1
2
,α
2 )

Γ( 1
2)

+ C
√

log n for some constant C, then

P
(

max
t
S1,t > 0

)
≤ n1−C

2

2 exp

(
(1 + ϑ)2

4ϑ

d

exp
(
α
2

)(1 + α)−
1
2

)
, some ϑ,

providing that
γ
(

1
2
, α

2

)
Γ
(

1
2

) ≥ ϑ > 0, (B.1.1)

and

β > 2d
Γ
(

1
2
, α

2

)
Γ
(

1
2

) . (B.1.2)

Lemma B.1.4. Suppose again that we are in the same setting as for Theorem 4.3.1

of Chapter 4. Let Di,t and K be defined as in Section 4.3 of Chapter 4. Define

S2,t =
∑d

i=1Di,t −K. Setting β = (J + ε) log n, α = 2 log d and K = d +
√

2βd + β

gives that

P
(

max
t
S2,t > 0

)
≤ n1− (J+ε)

2 .

Proof of Lemma B.1.3: Fix τ . Note if fD′i,τ
(x) is the density function for D

′
i,τ , then

it is straightforward to show that for x > 0, d log fD′i,τ
(x)/dx < −1

2
; therefore, D

′
i,τ is

stochastically dominated by Ni,τ , where

Ni,τ =

0 w.p. pα

Exp
(

1
2

)
w.p. 1− pα,

such that pα = P
(
D
′
i,τ = 0

)
=

γ( 1
2
,α
2 )

Γ( 1
2)

. We define for convenience qα = 1−pα =
Γ( 1

2
,α
2 )

Γ( 1
2)

.

Let Aτ =
∑d

i=1 Ni,τ ; then the moment generating function of Aτ is

mAτ (λ) =

(
pα +

qα
1− 2λ

)d
.

We seek the Cramer transform, ψ∗Aτ (r), of Aτ , such that

ψ∗Aτ (r) = sup
λ≥0

{
λr − d log

(
pα +

qα
1− 2λ

)}
;
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it is easy to see that for λ < 1
2

the supremum is achieved close to λ = 1
2pα
− 1

pα

√
dqα
2r

,

such that we obtain

P (Aτ ≥ β) ≤ exp
(
−ψ∗Aτ (β)

)
≤ exp

(
−

(
1

2pα
− 1

pα

√
dqα
2β

)
β

)(
pα

1−
√
βqα2d

)d

≤ exp

− 1

2pα

(√
β − (1 + pα)

√
dqα
2

)2
 exp

(
(1 + pα)2dqα

4pα
+ d log pα

)

≤ exp

(
(1 + ϑ)2

4ϑ
Q

)
exp

(
−1

2

(√
β −

√
2Q
)2
)
,

for Q = dqα, where the penultimate line follows from considering F such that(
1/pα − 1

pα

√
βqα
2d

)−d
≤ exp(

√
βF ) and performing a Taylor Series expansion, and

the final line follows from conditions (B.1.1) and (B.1.2).

Let
√
β =

√
2Q + C

√
log n, some C. We now use the fact that Γ(v,w)

Γ(v)
≤

e−w
(
1 + w

v

)v−1
(which can be shown using Jensen’s Inequality), to assert that

qα ≤ e−α/2(1 + α)−1/2, and that therefore

P (Aτ ≥ β) ≤ n−
C2

2 exp

(
(1 + ϑ)2

4ϑ

d

exp
(
α
2

) (1 + α)−
1
2

)
;

performing a Bonferroni correction for the position of τ in the data then gives the

stated result. �

Proof of Lemma B.1.4: In the scenario where there is no true change, the difference

in cost between selecting the point τ as a change (with affected subset S = {1, . . . , d})

and simply finding the (correct) null model is

Diff = RSS (y1:n; ∅)− RSS (y1:n; τ ;S)−K

:= W −K.

Note that here we use the notation RSS(z; ξ; T ) to denote the residual sum of squares

of the vector z, while also enforcing a changepoint at time ξ with affected set T . Note

that W ∼ χ2
d. By Lemma B.1.1, to establish the result we require K and x such that

K = d+ 2
√
xd+ 2x

exp (−x) = n−
J
2
−ε/2,
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giving x = (J + ε) /2 log n = β/2, and consequently K = d +
√

2βd + β as required.

�

We later use these lemmas to establish Theorem 4.3.1 and Corollary 4.3.3. Before

this, we give further results which are needed in establishing the other central result

of Chapter 4.

Lemma B.1.5. Assume that we are in the same setting as for Lemma B.1.3, except

now we have that µi,1 6= µi,2 whenever i ∈ S ⊆ {1, . . . , d}. For i ∈ S, let ∆i :=

|µi,2 − µi,1|. Then for δ > 0 and a = max {n, d}, a sparse changepoint will be detected

by SUBSET with probability greater than 1− (a)−δ providing that

∑
i∈S

(∆i)
2 ≥

4δ log a+ β + |S| (α− 1) + 2
√
δ log a ((2α− 1)|S|+ 2β + 4δ log a)

nθ (1− θ)
,

where here we have that θ = τ
n

is fixed strictly between 0 and 1.

Lemma B.1.6. Assume that we are in the same setting as for Lemma B.1.5, except

with the threshold penalty regime. Then, again with probability greater than 1 − a−δ,

for 2 > δ > 0 and a = max{n, d}, providing that

d∑
i=1

(∆i)
2 ≥

4δ log a+K − d+ 2
√
δ log a (4δ log a+ 2K − d)

nθ (1− θ)

a changepoint will be detected in the dense setting.

Proof of Lemma B.1.5: Suppose there is a true change at location τ which affects

a non-empty, sparse subset S ⊂ {1, . . . , d} of variates, such that the magnitude of

change in variate i is ∆i. We compare the cost of fitting no change in such a scenario

against the cost of fitting the truth; i.e. let

Diff :=
∑
i∈S

Di,τ − β − |S|α,

where Di,τ is as defined in Chapter 4. Note that Di,τ ∼ χ2
1 (nθ (1− θ) (∆i)

2), so

Diff + β + |S|α ∼ χ2
|S|

(
nθ (1− θ)

∑
i∈S

(∆i)
2

)
.
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Therefore, by Lemma B.1.2, letting γ = nθ(1− θ)
∑

i∈S (∆i)
2

P
(

Diff + β + |S|α ≥ |S|+ γ − 2
√

(|S|+ 2γ) y
)
> 1− exp(−y).

Note that if Diff > 0, then a changepoint will be detected in probability. Therefore,

we require that

γ ≥ 4y + β + |S|(α− 1) +
√

4y ((2α− 1)|S|+ 2β + 4y).

We may set y = δ log a, for a = max{n, d}, to give that P (Diff > 0) > 1 − a−δ,

providing that∑
i∈S

(∆i)
2 ≥

4δ log a+ β + |S|(α− 1) + 2
√
δ log a ((2α− 1)|S|+ 2β + 4δ log a)

nθ (1− θ)
,

as required. �

Proof of Lemma B.1.6: When comparing a fit at the true location τ = θn

under a total penalty of K to the null fit, the difference in cost (in favour of the

non-null fit) is distributed as a non-central chi-squared distribution with d degrees of

freedom and non-centrality parameter nθ (1− θ)
∑d

i=1 (∆i)
2. By Lemma B.1.2 and

the definition of K, we therefore see that setting ν − 2
√
y
√
d+ 2ν ≥ 2

√
dx + 2x for

ν = nθ (1− θ)
∑n

i=1 (∆i)
2 gives that P (χ2

d (ν) > K) ≥ 1− exp (−y).

Resolving the inequality ν − 2
√
y
√
d+ 2ν ≥ 2

√
dx+ 2x gives that

ν ≥ 4y + 2x+ 2
√
xd+ 2

√
y

(
4y +

(√
4x+

√
d
)2
)

; (B.1.3)

as x = β/2, and setting y = δ log a, (B.1.3) becomes

d∑
i=1

(∆i)
2 ≥

4δ log a+K − d+ 2
√
δ log a (4δ log a+ 2K − d)

nθ (1− θ)
,

as required. �

With these lemmas, we are now in a position to prove the results of Chapter 4.

B.2 Proofs of Main Results

In this section, we combine the preliminary results of Section B.1 to give proofs of the

results stated in Chapter 4.
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Proof of Theorem 4.3.1: From Lemma B.1.3, letting g (n, d) = d and C =
√
J + %, some % > 0, gives that α = 2 log d and

√
β =

√
2d

Γ( 1
2
,log d)

Γ( 1
2)

+
√
J + %

√
log n,

so that in the sparse setting

P
(

max
t
S1,t > 0

)
≤ n1−J

2
−%/2 exp

(
(1 + ϑ)2

4ϑ

1√
1 + 2 log d

)
,

where here
γ( 1

2
,α
2 )

Γ( 1
2)
≥ ϑ > 0.

As we have Γ(s,x)
Γ(s)
≤ e−x

(
1 + x

s

)s−1
for 0 < s < 1, we have that

ϑ ≤ 1− 1

d (1 + log d)
1
2

so that, for example, by taking d = 2, we may bound exp
(

(1+ϑ)2

4ϑ
1√

1+2 log d

)
above by

an absolute constant ∀d ≥ 2. For maxt S2,t, we use Lemma B.1.4, and the result for

SUBSET in both settings follows as St = maxt {S1,t, S2,t}. �

Proof of Corollary 4.3.3: This follows from the proof of Theorem 4.3.1 by

taking a further Bonferroni correction in both the sparse and dense settings. �

Proof of Theorem 4.3.2: In the sparse setting, we may directly apply

Lemma B.1.5, while in the dense setting we may directly apply Lemma B.1.6. Note

that the condition in Lemma B.1.5 resolves to give the required statement by setting

KS = β + |S|α. �

B.3 Post-Processing and Computational

Discussion

As discussed in Section 4.3.4, a post-processing step is required in the SUBSET

procedure. This ensures that masking between different changepoints present in the

data does not cause misspecification in the estimates of the affected sets at each

changepoint. We detail this post-processing procedure in Algorithm 6.
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Algorithm 6 Post-processing step for the SUBSET procedure.

Data: A multivariate dataset, y1:n; a β and C (.) as for Algorithm 3; a set of

candidates returned by Algorithm 3, 0 = ξ0 < ξ1 < . . . < ξq < ξq+1 = n.

Result: An estimated set of changepoints τ̂1, . . . , τ̂m̂ and corresponding estimated

affected sets Ŝ1, . . . , Ŝm̂.

Step 0: Set Ŝ1 = . . . = Ŝq = ∅, τ̂ = NULL;

for i ∈ {1, . . . , d} do

F = (−β, 0, . . . , 0);

for j ∈ {1, . . . , q + 1} do

F [j + 1] = min
1≤k≤j

[
F [k] + C

(
yi,ξk−1:ξj

)
+ β

]
;

r = arg min
1≤k≤j

[
F [k] + C

(
yi,ξk−1:ξj

)
+ β

]
;

Ŝr−1 = (Ŝr−1, {i})

end

end

for j ∈ {1, . . . , q} do

if Ŝj 6= ∅ then

τ̂ = (τ̂ , ξj)

end

end

Note that this procedure, which closely parallels the Optimal Partitioning of

Jackson et al. (2005), has complexity of O (q2d), where q is the number of candidate

changepoint locations returned by SUBSET. Indeed, employing a pruning step as per

the PELT procedure of Killick et al. (2012) results in an expected cost of O (qd). As

shown in Tickle et al. (2018), this can be improved further to a worst-case cost of

O (qd) using parallelisation. Therefore, the worst-case computational complexity of

the post-processing step is O (nd).

Given that the SUBSET procedure uses an approach very similar to Wild Binary

Segmentation 2, simulating M intervals at each stage, the worst-case computational

cost of SUBSET is not dominated by the post-processing step, and is O (dn(log n)2);
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see Fryzlewicz (2019) for details.

B.4 Simulation Study: Additional Materials

Here, we give further results from the simulation study in both the at most one change

and multiple change settings. We begin by considering the power of the methods in

the single change setting. This is done from a slightly different perspective to that

discussed in Chapter 4. Tables B.1-B.3 give a snapshot into the Type II Errors in

the single change in mean setting under Gaussian noise (again we take σ2 = 1). The

entries correspond to ‘critical change magnitudes’. That is, in a system where all

variates undergoing a change alter by the same amount, the minimum value of the

change in mean required for the method to locate a changepoint at least 95% of the

time. For these experiments, the location of the changepoint (θ = τ/n), the number of

variates (d) and the density of the changepoint were all altered. However, the length

of the series, n, was fixed at 1000.

We can infer several empirical properties of the methods from Tables B.1-B.3.

For denser changes, where a higher proportion of variates are affected by the change,

the method which seems to perform best is Mean. This confirms the intuition of

Section 4.3.3 of Chapter 4. For sparser regimes, Max and Bin-Weight appear to have

the best performance. This is again in line with the commentary of Section 4.3.3.

We remark, however, that Inspect and, in particular, SUBSET shadow this best

performance in both the sparse and dense settings very closely. SUBSET is regularly

the best performing method behind Mean in the most dense cases, and a close third

behind Max and Bin-Weight in cases of medium or high sparsity. This suggests

that Inspect and SUBSET are most effective at giving a ‘balanced’ performance. In

addition, we highlight the context of these results in light of the respective Type

I Errors. The other methods each have a 5% Type I Error, while SUBSET has a

negligible such error in all cases, given that the penalty values for SUBSET are not

calculated empirically.

It was for these experiments that computation time was recorded. The results of
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Critical ∆µ Values 5 Variates 10 Variates

Location (θ) Method 100% 60% 20% 100% 50% 10%

0.050 SUBSET 0.51 0.62 1.03 0.41 0.54 1.07

Mean 0.33 0.46 1.10 0.28 0.41 1.37

Max 0.48 0.52 0.75 0.42 0.50 0.79

BW 0.46 0.53 0.76 0.42 0.51 0.78

Inspect 0.42 0.55 1.00 0.37 0.49 0.90

0.081 SUBSET 0.41 0.51 0.83 0.33 0.44 0.85

Mean 0.27 0.37 0.86 0.22 0.34 1.07

Max 0.38 0.42 0.60 0.33 0.40 0.63

BW 0.38 0.42 0.60 0.33 0.41 0.63

Inspect 0.30 0.45 0.65 0.30 0.36 0.75

0.184 SUBSET 0.29 0.35 0.61 0.23 0.31 0.59

Mean 0.20 0.26 0.60 0.15 0.24 0.70

Max 0.26 0.30 0.44 0.24 0.29 0.44

BW 0.26 0.31 0.44 0.23 0.29 0.43

Inspect 0.22 0.26 0.52 0.20 0.26 0.52

0.266 SUBSET 0.27 0.32 0.52 0.20 0.27 0.53

Mean 0.18 0.23 0.52 0.13 0.21 0.66

Max 0.22 0.26 0.40 0.21 0.25 0.40

BW 0.23 0.26 0.40 0.20 0.26 0.40

Inspect 0.21 0.23 0.44 0.16 0.22 0.50

0.383 SUBSET 0.23 0.28 0.47 0.18 0.25 0.48

Mean 0.16 0.21 0.48 0.12 0.18 0.64

Max 0.21 0.24 0.35 0.18 0.23 0.35

BW 0.21 0.23 0.34 0.19 0.23 0.35

Inspect 0.19 0.25 0.39 0.15 0.21 0.44

Table B.1: The critical (i.e. smallest observed) values for ∆µ at which each of the methods exhibits

a Type II Error of 0.05 or less. The percentages correspond to the density of the changes across the

variates. Bold entries show the best performing algorithm. 200 repetitions were simulated in each

case.
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Critical ∆µ Values 50 Variates 100 Variates

Location (θ) Method 100% 50% 10% 6% 100% 50% 10% 5% 1%

0.050 SUBSET 0.22 0.31 0.62 0.72 0.18 0.25 0.52 0.63 1.12

Mean 0.16 0.24 0.65 0.96 0.13 0.19 0.52 0.86 3.89

Max 0.35 0.41 0.59 0.65 0.34 0.37 0.53 0.58 0.88

BW 0.91 0.94 1.11 1.17 0.25 0.31 0.46 0.53 0.89

Inspect 0.25 0.33 0.58 0.66 0.23 0.30 0.51 0.68 1.32

0.081 SUBSET 0.18 0.26 0.51 0.58 0.14 0.20 0.42 0.51 0.88

Mean 0.13 0.19 0.53 0.82 0.11 0.16 0.40 0.68 2.95

Max 0.29 0.33 0.47 0.52 0.26 0.30 0.41 0.46 0.68

BW 0.72 0.76 0.90 0.96 0.21 0.25 0.36 0.44 0.70

Inspect 0.19 0.25 0.46 0.55 0.17 0.22 0.38 0.54 1.04

0.184 SUBSET 0.13 0.18 0.34 0.40 0.10 0.15 0.29 0.36 0.63

Mean 0.09 0.14 0.39 0.57 0.08 0.11 0.28 0.46 1.98

Max 0.19 0.23 0.32 0.34 0.18 0.21 0.30 0.34 0.49

BW 0.50 0.54 0.62 0.65 0.14 0.17 0.25 0.31 0.52

Inspect 0.12 0.15 0.33 0.37 0.10 0.13 0.25 0.32 0.71

0.266 SUBSET 0.11 0.16 0.31 0.35 0.09 0.13 0.25 0.30 0.53

Mean 0.08 0.12 0.32 0.48 0.07 0.09 0.24 0.42 1.74

Max 0.17 0.21 0.28 0.30 0.16 0.19 0.25 0.29 0.43

BWα 0.44 0.46 0.55 0.56 0.13 0.15 0.22 0.26 0.45

Inspect 0.10 0.14 0.29 0.33 0.09 0.13 0.23 0.30 0.67

0.383 SUBSET 0.10 0.14 0.28 0.31 0.08 0.11 0.23 0.28 0.49

Mean 0.07 0.11 0.30 0.45 0.06 0.09 0.23 0.37 1.59

Max 0.16 0.18 0.25 0.26 0.14 0.17 0.23 0.26 0.38

BW 0.40 0.43 0.49 0.51 0.11 0.14 0.21 0.24 0.38

Inspect 0.08 0.12 0.25 0.33 0.07 0.09 0.20 0.25 0.56

Table B.2: The critical (i.e. smallest observed) values for ∆µ at which each of the methods exhibits

a Type II Error of 0.05 or less. The percentages correspond to the density of the changes across the

variates. Bold entries show the best performing algorithm. 200 repetitions were simulated in each

case.
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Critical ∆µ Values 500 Variates 1000 Variates

Location (θ) Method 100% 50% 10% 5% 1% 100% 50% 10% 5% 1% 0.5%

0.050 SUBSET 0.11 0.15 0.34 0.46 0.72 0.09 0.13 0.28 0.39 0.63 0.73

Mean 0.09 0.12 0.31 0.47 1.69 0.08 0.11 0.25 0.37 1.30 2.46

Max 0.29 0.33 0.43 0.48 0.74 0.28 0.36 0.42 0.46 0.62 0.70

BW 0.18 0.23 0.34 0.40 0.65 0.16 0.20 0.30 0.36 0.55 0.66

Inspect 0.16 0.21 0.39 0.47 0.91 0.15 0.22 0.35 0.45 0.76 1.10

0.081 SUBSET 0.09 0.12 0.27 0.37 0.58 0.07 0.10 0.22 0.31 0.51 0.59

Mean 0.07 0.10 0.24 0.37 1.35 0.06 0.08 0.19 0.29 0.95 1.83

Max 0.23 0.25 0.35 0.40 0.58 0.25 0.28 0.36 0.40 0.53 0.58

BW 0.14 0.18 0.26 0.32 0.51 0.13 0.16 0.25 0.30 0.45 0.53

Inspect 0.12 0.15 0.29 0.37 0.76 0.11 0.15 0.26 0.33 0.67 0.87

0.184 SUBSET 0.06 0.09 0.19 0.26 0.40 0.05 0.07 0.16 0.22 0.35 0.41

Mean 0.05 0.07 0.17 0.26 0.96 0.04 0.06 0.13 0.20 0.69 1.27

Max 0.15 0.18 0.25 0.28 0.39 0.17 0.20 0.25 0.28 0.37 0.41

BW 0.10 0.12 0.19 0.23 0.35 0.09 0.11 0.17 0.20 0.31 0.39

Inspect 0.07 0.10 0.17 0.23 0.45 0.06 0.08 0.16 0.21 0.42 0.63

0.266 SUBSET 0.06 0.08 0.16 0.22 0.36 0.05 0.06 0.14 0.19 0.32 0.36

Mean 0.05 0.06 0.14 0.22 0.80 0.04 0.05 0.12 0.17 0.58 1.07

Max 0.15 0.16 0.20 0.23 0.34 0.16 0.18 0.22 0.24 0.32 0.36

BW 0.09 0.11 0.16 0.20 0.31 0.08 0.10 0.15 0.18 0.28 0.33

Inspect 0.06 0.08 0.15 0.20 0.45 0.05 0.06 0.13 0.17 0.36 0.54

0.383 SUBSET 0.05 0.07 0.15 0.21 0.33 0.04 0.06 0.13 0.18 0.28 0.33

Mean 0.04 0.06 0.13 0.20 0.77 0.04 0.05 0.11 0.16 0.54 1.03

Max 0.13 0.15 0.19 0.22 0.31 0.14 0.16 0.21 0.23 0.28 0.34

BW 0.08 0.10 0.14 0.18 0.28 0.07 0.09 0.14 0.16 0.24 0.30

Inspect 0.05 0.06 0.13 0.18 0.40 0.04 0.06 0.12 0.15 0.33 0.47

Table B.3: The critical (i.e. smallest observed) values for ∆µ at which each of the methods exhibits

a Type II Error of 0.05 or less. The percentages correspond to the density of the changes across the

variates. Bold entries show the best performing algorithm. 200 repetitions were simulated in each

case.
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this are shown in Table B.4 for the case when θ = 0.184. In addition to the n = 1000

setting, we also examined the n = 10000 and n = 100000 cases for the purposes of

exploring the scalability of each of these procedures.

The final additional simulation study results included here concern the detection

of multiple changes in the negative binomial setting. In Section 4.4.3, we examined

the missed change rate of each of the SUBSET methods when the over-dispersion

parameter was kept fixed at 20. The full results for all five methods are detailed in

Table B.5. Note that the SUBSET column is simply the set of results from Table 4.2.

We now give the equivalent results for an over-dispersion parameter of 3. These

are summarised in Table B.6. Note that, unlike for the other simulations in Chapter 4

and in this appendix, we use an empirically calculated value for the β (and K) penalty

for SUBSET. This is because the default Gaussian-based penalties lead to a higher

false alarm rate in this instance, given that a lower over-dispersion rate corresponds

to the noise departing more markedly from behaving in a sub-Gaussian fashion. We

remark that this was not an issue in the single change setting, given the relatively low

number of intervals drawn uniformly across the data sequence on which the SUBSET

test statistic was then calculated. Table B.6 seems to suggest that SUBSET, Max

and Inspect are roughly comparable in terms of locating the changes across these

simulations. However, this is again in the context of the average number of false

alarms which each method incorrectly places into the system.
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Computation Time (s) Method

n d SUBSET Mean Max BW Inspect

1000 5 0.00114 0.00275 0.00106 0.00311 0.00055

10 0.00148 0.00148 0.00134 0.00341 0.00199

50 0.00450 0.00488 0.00857 0.00749 0.00740

100 0.00990 0.01007 0.01895 0.01295 0.01913

500 0.05116 0.04706 0.05153 0.04421 0.21236

1000 0.08588 0.11421 0.07538 0.11082 0.77755

10000 5 0.01153 0.01222 0.02524 0.02254 0.00574

10 0.01474 0.04726 0.03608 0.03042 0.01722

50 0.05286 0.04666 0.09395 0.09434 0.07582

100 0.10266 0.08522 0.09923 0.09680 0.14087

500 0.45512 0.45858 0.44463 0.48023 0.79061

1000 0.97533 0.73940 0.76509 0.83851 2.10629

100000 5 0.13211 0.13300 0.29013 0.13022 -

10 0.15759 0.17302 0.17461 0.19873 -

50 0.56481 0.55088 0.97380 0.58404 -

100 0.95607 0.92535 0.99223 1.00181 -

500 5.59921 4.41211 4.51795 5.09488 -

1000 12.5877 8.09231 8.13885 8.69370 -

Table B.4: The average time taken (across 200 repetitions of the method) by each method, with the

changepoint at proportionate temporal point 0.184, with ∆µ = 1, and 50% of variates undergoing a

change (60% in the case of d = 5). The Inspect times for n = 100000 are not recorded here due to

integer overflow preventing the method from running for these larger examples. Bold entries show

the best performing algorithm. 200 repetitions were simulated in each case.
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Average Number Missed Method

(Average False Alarms)

Scenario SUBSET Mean Max BW Inspect

F 0.07

(0.02)

0.01

(114)

0.01

(212)

0.00

(387)

0.00

(188)

G 0.10

(0.01)

0.09

(90.9)

0.02

(214)

0.02

(393)

0.00

(151)

H 0.29

(0.02)

0.86

(41.7)

0.02

(179)

0.01

(394)

0.00

(117)

I 0.16

(0.01)

1.25

(1.40)

0.02

(146)

0.00

(394)

0.01

(0.79)

J 0.19

(0.02)

1.43

(1.37)

0.02

(142)

0.01

(387)

0.03

(0.79)

Table B.5: The average number of changes missed by each of the methods in the negative binomial

setting with an over-dispersion parameter of 20 for each variate; a starting success probability of 0.5

for each variate; d = n = 1000 fixed in all cases; and ∆p = 0.1 for any variate undergoing a change.

Each of the scenarios F, G, H, I and J has 3 changepoints, and the percentage of variates affected

by each change in each scenario is discussed at the beginning of Section 4.4.2. Bold entries show the

best performing algorithm. 200 repetitions were simulated in each case.
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Average Number Missed Method

(Average False Alarms)

Scenario d SUBSET Mean Max BW Inspect

F 1000 0.09

(1.22)

0.04

(95.2)

0.46

(70.4)

0.00

(403)

0.00

(583)

G 1000 0.91

(1.03)

0.31

(54.7)

0.88

(38.8)

0.08

(404)

0.00

(611)

H 1000 1.45

(1.72)

1.34

(24.1)

1.64

(12.9)

0.22

(412)

0.00

(621)

I 1000 1.35

(1.72)

2.71

(1.04)

1.66

(3.60)

0.13

(409)

0.00

(625)

J 1000 0.92

(3.00)

2.40

(0.61)

1.91

(2.56)

0.13

(405)

0.01

(624)

Table B.6: The average number of changes missed by each of the methods in the negative binomial

setting with an over-dispersion parameter of 3 for each variate; a starting success probability of 0.5

for each variate; d = n = 1000 fixed in all cases; and ∆p = 0.1 for any variate undergoing a change.

Each of the scenarios F, G, H, I and J has 3 changepoints, and the percentage of variates affected

by each change in each scenario is discussed at the beginning of Section 4.4.2. Bold entries show the

best performing algorithm. 200 repetitions were simulated in each case.



APPENDIX B. SUBSET 161

B.5 Additional Material on the Analysis of the

Global Terrorism Database

This section contains many of the additional details on our analysis of the Global

Terrorism Database (GTD). We begin with some basic visual representations of the

data. Figure B.1 shows the world divided into the twelve regions as per the GTD.

These regions are henceforth referred to as: Australasia & Oceania (Au & Oc), Central

America & Caribbean (C.Am & C), Central Asia (C.As), East Asia (E.As), Eastern

Europe (E.Eu), Middle East & North Africa (M.E. & N.Af), North America (N.Am),

South America (S.Am), South Asia (S.As), Southeast Asia (SE.As), Sub-Saharan

Africa (SS.Af) and Western Europe (W.Eu).

Figure B.1: Nations of the world divided into twelve geographical groups as per the Global Terrorism

Database (GTD). Produced with the aid of the maps package of Becker and Wilks (2018). Political

boundaries are correct as of 2015.

From Figure B.2, it is clear that there are points in time where abrupt changes

occur in the terrorism incident rate for various series. It is less clear as to whether

changes which share a common cause are present. As stated in Section 4.5, we

assume a negative binomial likelihood for each of the twelve sequences within the

time series. A changepoint in this context is therefore defined as a month in which

the probability of a terrorist attack changes. We track the value of the over-dispersion

parameters in each of the twelve regions using a method of moments estimator,
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Figure B.2: Terrorism incident count per month for each of the 12 regions in Figure B.1. Note that

the series’ colours match those of the corresponding geographical regions in Figure B.1.

given the computational challenge of accurately computing the maximum likelihood

estimators.

After running SUBSET through the time series, the estimated changepoints and

the corresponding affected sets of regions were computed. These are shown in

Table B.7. For an alternative visualisation, with the estimated changes for each region

superimposed over the raw count data, see Figure B.3. By comparison, Figure B.4

shows the results of applying a univariate method to each series individually. In

this case, the univariate method used is the minimisation of the penalised univariate

negative binomial cost function using dynamic programming.

Several salient features of the dataset are revealed by this analysis. Firstly, we

note that there are many similarities between the changes found by the univariate

method and SUBSET. For several of the series (for example, Western Europe), the

same number of changepoints are found, with broadly the same change locations.

However, in general, we see that SUBSET is more parsimonious. In addition, by

its nature, changepoints which occur in different series at the same time are more

readily identified by SUBSET. For example, the most dense changepoint (following

post-processing) located using SUBSET is that of January 1998. Note that this month

corresponds to a change in the data collection methods for the GTD for the “GTD2”
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Dates Regions

Sep 1971 E.Eu, N.Am, W.Eu

Feb 1975 C.Am & C, M.E. & N.Af, SS.Af, W.Eu

Dec 1977 C.Am & C, E.As, S.Am, SE.As

Sep 1978 C.Am & C, E.As, M.E. & N.Af, S.As, SS.Af

Apr 1980 N.Am, S.Am, W.Eu

Mar 1984 Au & Oc, S.As, SE.As

Jan 1988 E.As, E.Eu, S.As, SS.Af

Mar 1990 E.Eu, M.E. & N.Af

Jan 1991 C.As

Feb 1992 C.Am & C

Jul 1994 N.Am, S.Am

May 1995 M.E. & N.Af

Apr 1996 E.Eu

Jan 1998 Au & Oc, C.Am & C, E.As, N.Am, S.Am, S.As, SS.Af, W.Eu

Mar 1999 C.As

Aug 2003 E.Eu, S.Am, W.Eu

Mar 2005 M.E. & N.Af, S.As, SE.As

Jun 2007 SS.Af

Apr 2008 E.Eu, S.Am

Jul 2011 S.As, SS.Af

Mar 2012 W.Eu

Jan 2013 E.As, M.E. & N.Af, SE.As

Jan 2014 Au & Oc, E.Eu

Sep 2015 E.As, E.Eu, N.Am

Table B.7: Changepoints found within the count data of terrorist incidents per month using the

SUBSET procedure. The regions column corresponds to those areas which are said to be affected

by the corresponding changepoint.
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phase. Other changepoints of interest found by SUBSET include several “staggered”

changepoints at the end of the 1980s and the beginning of the 1990s. These appear

to correspond to the end of the Cold War. More recent changepoints seem to align

with significant events in, for example, the Arab Spring uprising and the conflict in

Ukraine.

Figure B.3: Incident count for each region between 1970 and 2017, with changes found by the

SUBSET method overlaid as red vertical lines.
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Figure B.4: Incident count for each region between 1970 and 2017, with changes for individual series

found by a univariate method overlaid as red vertical lines.



Appendix C

OMEN

C.1 Proof of the False Alarm Result

Proof of Lemma 5.3.1: We first note that, whatever the behaviour of the stream

following a changepoint, the transformed stream for each variate under Box-Muller

is necessarily sub-Gaussian. We can therefore consider the problem of the method

incorrectly labelling a changepoint from a standard normal stream to a non-standard

normal stream.

Without loss of generality, we consider the ith variate, such that the transformed

streams of interest are

ai,t =
√
−2 log ui,t cos(2πzi,t)

bi,t =
√
−2 log ui,t sin(2πzi,t),

for t = 1, . . . , N , which we take as independently standard normal. Within a memory

window of length ω with start time l + 1 and end time l + ω, the test statistic for a

change in the a-sequence at time k is

S(k; ai,(l+1):(l+ω)) =
l+ω∑

q=k+1

a2
i,q − (ω + l − k) log

 l+ω∑
q=k+1

a2
i,q −

1

ω + l − k

(
l+ω∑

q=k+1

ai,q

)2


+ (ω + l − k) log(ω + l − k)− (ω + l − k).
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By Fisch et al. (2019a), we have that

P
(
S(k; ai,(l+1):(l+ω)) >

ω + l − k
(ω + l − k)− 1

(
2 + 2r + 2

√
2r
))
≤ ee−r.

Note that this result follows by computing the moment generation function of

S(k; ai,(l+1):(l+ω)), which can in turn be found by noting that

l+ω∑
q=k+1

a2
i,q =

l+ω∑
q=k+1

(
ai,q −

1

ω + l − k

l+ω∑
q=k+1

ai,q

)2

+
1

ω + l − k

(
l+ω∑

q=k+1

ai,q

)2

,

where the two terms on the right hand side are independent. After bounding the

moment generating function appropriately, we can then find the appropriate Chernoff

bound to give the result.

Using the bound gives

ω + l − k
(ω + l − k)− 1

(
2 + 2r + 2

√
2r
)

= β
′
.

Labelling f = ω + l − k for brevity, we obtain that

r =
f − 1

2f
β
′ −

√
f − 1

f
β ′ − 1, for f ∈ {2, . . . , ω − 1} ,

such that applying a Bonferroni correction gives

P
(

sup
f
S(ω + l − f ; ai,(l+1):(l+ω)) > β

′
)
≤

ω−1∑
f=2

ee
−
(
f−1
2f

β
′−
√
f−1
f
β′−1

)
.

We note that

f − 1

2f
β
′ −

√
f − 1

f
β ′ − 1 >

f − 1

2f
β
′ −

√
f − 1

f
β ′ ,

so that

P
(

sup
2≤f≤ω−1

S(ω + l − f ; ai,(l+1):(l+ω)) > β
′
)
< (ω − 2) ee

−
(

1
4
− 1√

2β
′

)
β
′

=
(ω − 2)e

Λ

(
1
2
−
√

2

β
′

) .

In addition we have that

P

(
sup

1≤l≤(n−ω)

sup
1≤i≤d

sup
2≤f≤ω−1

S(ω + l − f ; ai,(l+1):(l+ω))

)
<
d(n− ω)(ω − 2)

Λ

(
1
2
−
√

2
β

) e,

as required. �
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C.2 Further Simulations - Examining Different ω

Values

We now examine the same scenarios under the same conditions as in Section 5.4,

except we now compare the output of OMEN under three different values for the

learning window length, ω. Note that the values reported here for ω = 30 are the same

as for those given in Tables 5.1-5.3 in Section 5.4, which we include for comparison

with the two other values we examine, namely ω = 10 and ω = 50.

Table C.1 examines the average number of false alarms triggered by OMEN under

each of the three learning windows. We note that while the performance of ω =

50 appears to best minimise the average number of false alarms, the improvement

over ω = 30 is marginal in almost all cases. On the other hand, taking ω = 30

gives a noticeably lower false alarm rate than ω = 10 in those situations where the

number of variates was relatively small. Given that a larger ω leads to a higher

per-iteration computational cost, this supports our choice of ω = 30 for the simulations

of Section 5.4.

Table C.2 gives the average number of missed changes in each of the scenarios

under each of the learning window lengths. Meanwhile, Table C.3 gives the average

location error for the estimated changepoints which were not previously labelled as

false alarms. The results in both tables give a more mixed picture of the performance

for increasing ω, with some indication that the greater parsimony of the method for

greater ω had a detrimental effect on detecting more subtle true changes. However,

we remark that these results should be seen in the context of those of Table C.1. For

example, in scenario 5, the competitive detection performance of OMEN for ω = 10

is at the expense of a false alarm rate at least twice that seen for ω = 30.
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Average False Alarms Method

OMEN 5 Variates 10 Variates 100 Variates

Scenario, ω (D, D, D) (M, M, M) (D, D, D) (M, M, M) (D, D, D) (M, M, M)

1, ω = 10 0.15 0.15 0.03 0.03 0.00 0.00

1, ω = 30 0.01 0.01 0.00 0.00 0.00 0.00

1, ω = 50 0.00 0.00 0.00 0.00 0.00 0.00

2, ω = 10 0.12 0.12 0.06 0.06 0.00 0.00

2, ω = 30 0.00 0.00 0.00 0.00 0.00 0.00

2, ω = 50 0.00 0.00 0.00 0.00 0.00 0.00

3, ω = 10 0.22 0.42 0.05 0.21 0.00 0.00

3, ω = 30 0.01 0.10 0.00 0.10 0.00 0.00

3, ω = 50 0.01 0.11 0.00 0.09 0.00 0.00

4, ω = 10 1.05 1.50 0.80 0.87 0.00 0.00

4, ω = 30 0.44 0.32 0.19 0.17 0.00 0.00

4, ω = 50 0.15 0.19 0.05 0.10 0.00 0.00

5, ω = 10 0.76 0.88 0.37 0.51 0.00 0.00

5, ω = 30 0.37 0.36 0.18 0.14 0.00 0.00

5, ω = 50 0.19 0.19 0.08 0.07 0.00 0.00

6, ω = 10 0.14 0.15 0.05 0.06 0.00 0.00

6, ω = 30 0.02 0.02 0.01 0.01 0.00 0.00

6, ω = 50 0.00 0.01 0.02 0.00 0.00 0.00

7, ω = 10 0.78 0.67 0.39 0.27 0.00 0.00

7, ω = 30 0.01 0.00 0.00 0.00 0.00 0.00

7, ω = 50 0.01 0.00 0.00 0.00 0.00 0.00

Table C.1: The average number of false alarms incurred by OMEN under each of the scenarios for

three different values of ω. Bold entries show the best performing ω value. 200 repetitions were

simulated in each case.
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Average Num Missed Method

OMEN 5 Variates 10 Variates 100 Variates

Scenario, ω (D, D, D) (M, M, M) (D, D, D) (M, M, M) (D, D, D) (M, M, M)

3, ω = 10 0.08 0.24 0.01 0.19 0.00 0.00

3, ω = 30 0.01 0.12 0.00 0.13 0.00 0.00

3, ω = 50 0.01 0.12 0.00 0.10 0.00 0.00

4, ω = 10 1.16 1.77 0.95 1.76 0.99 2.61

4, ω = 30 1.15 1.27 1.05 1.26 1.00 1.14

4, ω = 50 1.04 1.19 1.02 1.14 1.00 1.07

5, ω = 10 0.70 1.18 0.43 1.43 0.99 2.61

5, ω = 30 1.11 1.78 0.92 1.73 0.34 1.50

5, ω = 50 1.54 1.97 1.28 1.94 0.63 1.89

6, ω = 10 2.79 2.81 2.64 2.79 1.83 2.30

6, ω = 30 2.95 2.96 2.93 2.96 2.77 2.93

6, ω = 50 2.98 2.96 2.92 2.94 2.73 2.88

7, ω = 10 2.92 2.93 2.95 2.97 3.00 3.00

7, ω = 30 2.98 2.99 3.00 3.00 3.00 3.00

7, ω = 50 3.00 3.00 3.00 3.00 3.00 3.00

Table C.2: The average number of changes missed by OMEN under each of the scenarios for three

different values of ω. Bold entries show the best performing ω value. 200 repetitions were simulated

in each case.
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Average Location Error Method

OMEN 5 Variates 10 Variates 100 Variates

Scenario, ω (D, D, D) (M, M, M) (D, D, D) (M, M, M) (D, D, D) (M, M, M)

3, ω = 10 1.49 1.42 1.48 0.89 1.33 0.27

3, ω = 30 8.22 6.37 7.61 3.59 3.90 1.28

3, ω = 50 13.7 9.78 11.8 6.01 6.09 1.97

4, ω = 10 1.89 1.75 1.54 1.27 0.89 0.44

4, ω = 30 8.68 7.61 7.65 4.86 2.34 0.98

4, ω = 50 16.4 14.1 13.3 8.96 2.96 1.53

5, ω = 10 1.71 1.44 1.52 0.88 1.02 0.36

5, ω = 30 7.71 5.75 5.92 3.25 2.79 0.71

5, ω = 50 11.7 6.42 9.40 4.50 4.09 1.68

6, ω = 10 0.81 1.21 0.65 0.70 0.52 0.11

6, ω = 30 5.60 4.50 4.07 3.44 2.93 1.00

6, ω = 50 10.5 13.6 8.87 10.4 4.65 2.00

7, ω = 10 4.00 5.21 4.70 3.17 0.00 0.00

7, ω = 30 11.7 20.0 0.00 21.0 0.00 0.00

7, ω = 50 26.0 20.0 0.00 0.00 0.00 0.00

Table C.3: The average location error of the OMEN under each of the scenarios for three different

values of ω. Bold entries show the best performing ω value. 200 repetitions were simulated in each

case.
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C.3 Application of OMEN to Running Paces

Dataset

During the 2018-19 academic year, I have been commuting from home (close to the

centre of the historic town of Lancaster) to the office (Lancaster University, located

somewhat south of the town itself) and back by running the distance. This is

approximately 5.1 km on the way in in the morning, and 5.7 km on the way back in

the evening. This discrepancy in distance is due to the fact that my stopping point

in the morning is the university gym, located at the north end of campus.

Starting from the evening of 11 January 2019, I began to record my running times

using Strava on my mobile device. Strava uses GPS tracking to give an accurate

breakdown of performance across the entire route. In particular, users are able to

mark down ‘segments’ of various lengths over which people may then compare their

performance with other users. After using Strava for some time, I discovered that

my morning route covered seven such segments, and my afternoon route covered two.

Strava had been automatically recording my pace in average number of minutes taken

to run 1 km across each of the segments.

We here examine these segment paces using OMEN, looking at the morning and

afternoon datasets separately for a total of 130 and 127 entries respectively. The series

cover the period from 11 January - 2 September 2019. Note that the difference in the

number of entries is due to the occasional time where an external factor forced me

away from the office to a third location before I could run home. The results for three

of the morning segments are given in Figure C.1. The two afternoon segments are

given in Figure C.2. The changes found by OMEN are overlaid, using the standard

penalties with ω = 10 (corresponding to a memory window of 10 days, the number of

times I typically run to and from the office in a fortnight).

Similar changes are found by OMEN for the morning and afternoon datasets.

The ‘morning changepoints’ given by the method correspond to 15 February and 1

August, while the ‘afternoon changepoints’ returned by the method are 19 February

and 5 August. Note that by using a window length of ω = 30, as per the simulation
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Figure C.1: Paces (in min/km) for three of the seven segments covered by the morning runs. Note

that the months have far from an equal number of entries due to my presence at conferences away

from Lancaster etc. Changes found by OMEN are overlaid as red vertical lines.

study, only the second change (in August) is found for either dataset. Interestingly, the

changepoint in February corresponds roughly to the point at which my runs began to

take place during daylight hours. Civil twilight in 2019 in Lancaster began at 6.55am

on the morning of 15 February, and ended at 6.04pm on the evening of 19 February.

As my morning runs typically begin around 6.45am, and I normally run home a

little after 5.30pm, these dates almost exactly correspond with the first days in which

visibility would have been suitable across the entire route for distinguishing objects.

Meanwhile, the changepoint in August coincides with a decrease in temperature after

an extremely humid summer.
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Figure C.2: Paces (in min/km) for the two segments covered by the afternoon runs. Note that

the months have far from an equal number of entries due to my presence at conferences away from

Lancaster etc. Changes found by OMEN are overlaid as red vertical lines.
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N. Cheifetz, A. Samé, P. Aknin, and E. de Verdalle. A cusum approach for online

change-point detection on curve sequences. In Proceedings of the 2012 European

Symposium on Artificial Neural Networks, pages 399 – 404. ESANN, 2012.

F. Chen and S. Nkurunziza. On estimation of the change points in multivariate

regression models with structural changes. Communications in Statistics - Theory

and Methods, 46(14):7157 – 7173, 2017.

H. Chen. Change-point detection for multivariate and non-euclidean data with local

dependency. arXiv:1903.01598v1, pages 1 – 33, 2019a.

H. Chen. Sequential change-point detection based on nearest neighbors. The Annals

of Statistics, 47(3):1381 – 1407, 2019b.

H. Chen and L. Chu. gStream: Graph-Based Sequential Change-Point Detection for

Streaming Data, 2019. Version 0.2.0.

J. Chen and A. K. Gupta. Testing and locating variance changepoints with application

to stock prices. Journal of the American Statistical Association, 92(438):739–747,

1997.

J. Chen and A. K. Gupta. Parametric Statistical Changepoint Analysis. Birkhäuser,
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H. Dette and J. Gösmann. Relevant change points in high dimensional time series.

Electronic Journal of Statistics, 12(2):2578 – 2636, 2018.
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T. Idé and K. Tsuda. Change-point detection using krylov subspace learning.

In Proceedings of the 2007 SIAM International Conference on Data Mining,

Minneapolis, Minnesota, United States of America, 2007. SIAM.

C. Inclan. Detection of multiple changes of variance using posterior odds. Journal of

Business & Economic Statistics, 11(3):289 – 300, 1993.



BIBLIOGRAPHY 187

C. Inclán and G. C. Tiao. Use of cumulative sums of squares for retrospective detection

of changes of variance. Journal of the American Statistical Association, 89(427):

913–923, 1994.
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G. J. Székely and M. L. Rizzo. Hierarchical clustering via joint between-within

distances: Extending ward’s minimum variance method. Journal of Classification,

22(2):151 – 183, 2005.

A. Tartakovsky, I. Nikiforov, and M. Basseville. Sequential Analysis: Hypothesis

Testing and Changepoint Detection. CRC Press, Taylor and Francis Group, New

York, United States of America, 2014.

A. G. Tartakovsky, A. S. Polunchenko, and G. Sokolov. Efficient computer network

anomaly detection by changepoint detection methods. IEEE Journal of Selected

Topics in Signal Processing, 7(1):4 – 11, 2013.

S. Thies and P. Molnár. Bayesian change point analysis of bitcoin returns. Finance

Research Letters, 27:223 – 227, 2018.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society: Series B (Methodological), 58:267 – 288, 1996.



BIBLIOGRAPHY 198

R. Tibshirani and P. Wang. Spatial smoothing and hot spot detection for cgh data

using the fused lasso. Biostatistics, 9:18 – 29, 2008.

S. O. Tickle, I. A. Eckley, P. Fearnhead, and K. Haynes. Parallelisation of a common

changepoint detection method. arXiv:1810.03591v1, pages 1–35, 2018.

D.-H. Tran. Automated change detection and reactive clustering in multivariate

streaming data. In Proceedings of the 2019 IEEE-RIVF International Conference

on Computing and Communication Technologies, Danang, Vietnam, 2019. IEEE.

C. Truong, L. Gudre, and N. Vayatis. Penalty learning for changepoint detection. In

Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO)

in Kos, Greece, 2017.

C. Truong, L. Oudre, and N. Vayatis. A review of changepoint detection methods.

arXiv:1801.00718, pages 1–31, 2018.

C. Truong, L. Oudre, and N. Vayatis. Selective review of offline change point detection

methods. arXiv:1801.00718v2, pages 1 – 46, 2019.

R. S. Tsay. Outliers, level shifts and variance changes in time series. Journal of

Forecasting, 7(1):1 – 20, 1988.

G. Tsechpenakis, D. N. Metaxas, C. Neidle, and O. Hadjiliadis. Robust online

change-point detection in video sequences. In P. Light, editor, Proceedings of the

2006 Conference on Computer Vision and Pattern Recognition Workshop, pages

155 – 161, New York, New York, United States of America, 2006. IEEE.

E. S. Venkatraman. Consistency Results in Multiple Change-Point Problems. PhD

thesis, Stanford University, 1992.

E. S. Venkatraman and A. B. Olshen. A faster circular binary segmentation algorithm

for the analysis of array cgh data. Bioninformatics, 23(6):657 – 663, 2007.

R. G. W. Verhaak, K. A. Hoadley, E. Purdom, V. Wang, Y. Qi, M. D. Wilkerson,

C. R. Miller, L. Ding, T. Golub, J. P. Mesirov, G. Alexe, M. Lawrence, M. O’Kelly,



BIBLIOGRAPHY 199

P. Tamayo, B. A. Weir, S. Gabriel, W. Winckler, S. Gupta, L. Jakkula, H. S.

Feiler, J. G. Hodgson, C. D. James, J. N. Sarkaria, C. Brennan, A. Kahn, P. T.

Spellman, R. K. Wilson, T. P. Speed, J. W. Gray, M. Meyerson, G. Getz, C. M.

Perou, D. N. Hayes, and The Cancer Genome Atlas Research network. Integrated

genomic analysis identifies clinically relevant subtypes of glioblastoma characterized

by abnormalities in pdgfra, idh11, egfr, and nf1. Cancer Cell, 17:98 – 110, 2010.

D. Wang, Y. Yu, and A. Rinaldo. Optimal covariance change point localization in

high dimensions. arXiv:1712.09912v2, pages 1 – 46, 2018.

D. Wang, Y. Yu, and A. Rinaldo. Univariate mean change point detection:

Penalization, cusum and optimality. arXiv:1810.09498v4, pages 1 – 40, 2019a.

P. Wang, Y. Kim, J. Pollack, B. Narasimhan, and R. Tibshirani. A method for calling

gains and losses in array cgh data. Biostatistics, 6:45 – 58, 2005.

S. Wang and M. R. Reynolds. A glr control chart for monitoring the mean vector of

a multivariate normal process. Journal of Quality Technology, 45:18 – 33, 2013.

T. Wang and R. Samworth. InspectChangepoint: High-Dimensional Changepoint

Estimation via Sparse Projection, 2016. Version 1.0.1.

T. Wang and R. Samworth. High dimensional change point estimation via sparse

projection. Journal of the Royal Statistical Society Series B, 80(1):57–83, 2018.

X. Wang and D. B. Dunson. Parallelizing MCMC via weierstrass sampler.

arXiv:1312.4605v2, pages 1–35, 2014.

X. L. Wang, Q. H. Wen, and Y. Wu. Penalized maximal t test for detecting

undocumented mean change in climate data series. Journal of Applied Meteorology

and Climatology, 46(6):916 – 931, 2007.

Y. Wang, Z. Wang, and X. Zi. Rank-based multiple change-point detection.

Communications in Statistics - Theory and Methods, pages 1–17, 2019b.



BIBLIOGRAPHY 200

P. Wessman. Some principles for surveillance adopted for multivariate processes with

a common change point. Communications and Statistics - Theory and Methods, 27

(5):1143 – 1161, 1998.

B. Whitcher, P. Guttorp, and D. B. Percival. Multiscale detection and location of

multiple variance changes in the presence of long memory. Journal of Statistical

Computation and Simulation, 68:65 – 87, 2000.

D. W. Wichern, R. B. Miller, and D.-A. Hsu. Changes of variance in first-order

autroregressive time series models - with an application. Journal of the Royal

Statistical Society: Series C (Applied Statistics), 25:248 – 256, 1976.

P. Wills and F. G. Meyer. Change point detection in a dynamic stochastic blockmodel.

In H. Cherifi, S. Gaito, J. Mendes, E. Moro, and L. Rocha, editors, Complex

Networks and Their Applications VIII. Springer, Cham, 2020.

D. A. Wolfe and Y.-S. Chen. The changepoint problem in a multinomial sequence.

Communications in Statistics - Simulation and Computation, 19(2):603 – 618, 1990.

D. A. Wolfe and E. Schechtman. Nonparametric statistical procedures for the

changepoint problem. Journal of Statistical Planning and Inference, 9:389 – 396,

1984.

K. J. Worsley. On the likelihood ratio test for a shift in location of normal populations.

Journal of the American Statistical Association, 74(366):365 – 367, 1979.

M. Xie, Q. P. Hu, Y. P. Wu, and S. H. Ng. A study of the modeling and analysis of

software and fault-detection and fault-correction processes. Quality and Reliability

Engineering International, 23:459 – 470, 2007.

Y. Xie, J. Huang, and R. Willett. Change-point detection for high-dimensional time

series with missing data. IEEE Journal of Selected Topics in Signal Processing, 7:

12 – 27, 2013.

B. Xing, C. M. T. Greenwood, and S. B. Bull. A hierarchical clustering method for

estimating copy number variation. Biostatistics, 8:632 – 653, 2007.



BIBLIOGRAPHY 201

X. Xuan and K. Murphy. Modeling changing dependency structure in multivariate

time series. In Proceedings of the 24th international conference on Machine learning,

pages 1055 – 1062, Corvalis, Oregon, United States of America, 2007. ACM.

T. Y. Yang. Bayesian binary segmentation procedure for detecting streakiness in

sports. Journal of the Royal Statistics Society Series A, 167:627 – 637, 2004.

Y.-C. Yao. Estimation of a noisy discrete-time step function: Bayes and empirical

bayes approaches. The Annals of Statistics, 12(4):1434–1447, 1984.

Y.-C. Yao. Maximum likelihood estimation in hazard rate models with a change-point.

Communications in Statistics - Theory and Methods, 15(8):2455–2466, 1986.

Y.-C. Yao. Estimating the number of change-points via schwarz’ criterion. Statistics

& Probability Letters, 6(3):181–189, 1988.

Y.-C. Yao and S. T. Au. Least-squares estimation of a step function. Sankhya: The

Indian Journal of Statistics, Series A, 51(3):370–381, 1989.

E. Yudovina, M. Banerjee, and G. Michailidis. Changepoint inference for erdős–rényi
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