
IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. XX, XX 2019 1

Particle Swarm Optimized Autonomous Learning
Fuzzy System

Xiaowei Gu, Qiang Shen and Plamen P. Angelov, Fellow, IEEE

Abstract—The antecedent and consequent parts of a first-order
evolving intelligent system (EIS) determine the validity of the
learning results and overall system performance. Nonetheless, the
state-of-the-art techniques mostly stress on the novelty from the
system identification point of view but pay less attention to the
optimality of the learned parameters. Using the recently intro-
duced autonomous learning multiple model (ALMMo) system as
the implementation basis, this paper introduces a particle swarm-
based approach for EIS optimization. The proposed approach is
able to simultaneously optimize the antecedent and consequent
parameters of ALMMo and effectively enhance the system
performance by iteratively searching for optimal solutions in the
problem spaces. In addition, the proposed optimization approach
does not adversely influence the “one pass” learning ability of
ALMMo. Once the optimization process is complete, ALMMo
can continue to learn from new data to incorporate unseen data
patterns recursively without a full retraining. Experimental stud-
ies with a number of real-world benchmark problems validate
the proposed concept and general principles. It is also verified
that the proposed optimization approach can be applied to other
types of EISs with similar operating mechanisms.

Index Terms—Autonomous learning, evolving intelligent sys-
tem, optimality, particle swarm optimization

I. INTRODUCTION

EVOLVING intelligent systems (EISs) [1], [2] are capa-
ble of effectively approximately modeling non-stationary

problems in real time. In particular, they have been widely
used in real world applications for streaming data processing
[3], [4]. EISs self-organize and gradually self-develop their
system structure and parameters through “one pass” learning
process from data streams. Comparing with neural networks
or deep learning, EISs are able to efficiently transform stream-
ing data into knowledge in a human-interpretable form, and
they also demonstrate stronger ability of handling imprecisely
described data patterns that are distinct from historical data.

One major issue of current EISs comes from the fact that
both the antecedent and consequent parts of the system learned
from streaming data are often not optimal. This is caused
by the “one pass” learning procedure without involving any
optimization mechanism, thereby being unable to iteratively
search for the optimal solution. In order to address this issue
and enhance the performance of EISs, a global searching
technique is necessary.

X. Gu and P. Angelov are with the School of Computing and
Communications, Lancaster University, Lancaster, LA1 4WA, UK, e-
mail:{x.gu3,p.angelov}@lancaster.ac.uk

Q. Shen is with the Department of Computer Science, Aberystwyth Uni-
versity, Aberystwyth SY23 3DB, U.K. email: qqs@aber.ac.uk

Corresponding author: Xiaowei Gu
Manuscript received XXXX XX, 2019; revised XXXX XX, 2019.

Evolutionary computation (EC) techniques, inspired by bio-
logical evolution, are generally applied to global optimization.
Particle swarm optimization (PSO) [5], [6] is such a technique
that simulates the social behavior of animal flocking, and that
has demonstrated strong ability in searching for optimal solu-
tions in a range of problem spaces. Thanks to its conceptual
simplicity and high computational efficiency, PSO has gained
increasing popularity since its inception and has become one
of the main tools for solving real-world optimization problems.

In this paper, a PSO-based approach is proposed for EISs
to autonomously attain optimal solutions given imprecisely
described problems. Using the recently introduced autonomous
learning multiple model (ALMMo) fuzzy system [7] as the
underlying implementation, the algorithmic procedure for si-
multaneously optimizing both the antecedent and consequent
parameters of EISs is presented. This optimization process
works on data samples collected during the online learning
process. It helps significantly boost the performance of EISs in
terms of the prediction accuracy owing to PSO’s strong global
searching ability. Numerical examples on benchmark problems
as well as real-world ones are conducted for verifying the
validity and effectiveness of the proposed general concept and
principles.

The unique contribution of this paper is reflected by the
following aspects.

1) A canonical PSO-based approach for optimizing both
antecedent and consequent parts of EISs simultaneously
based on historical observations only; and

2) A learning mechanism for the optimized EISs to learn
from new observations in a “one pass” manner after
optimization to efficiently incorporate new data patterns.

Whilst ALMMo is herein utilized to implement the pro-
posed approach, the underlying techniques are generic and
can be applied to other types of EIS with similar operating
mechanisms. In addition, more advanced PSO algorithms can
be employed to further strengthen the performance.

The remainder of this paper is organized as follows. Section
II outlines the background of this study. Section III briefly
recalls the learning process of ALMMo. The proposed PSO-
based optimization algorithm is described in detail in Section
IV. Section V presents numerical examples serving as the proof
of the concept. This paper is concluded by Section VI and
directions for future work are also given in this section.

II. BACKGROUND

A. EISs
Nowadays, EISs have been widely used for streaming data

processing in various application scenarios [4], [8], [9]. EISs

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. XX, XX 2019 2

can be implemented in the forms of neuro-fuzzy [10]–[13]
or fuzzy rule-based models [14]–[16]. Being an intensively
studied area, a number of successful (neuro-) fuzzy models
have been introduced, which include, but are not limited
to, DENFIS [11], eTS [14], CNFS [12], PENsemble [13],
FLEXFIS [16], pClass [15], SAFIS [17], McIT2FIS [18],
eT2Class [19], PANFIS [20] and GENEFIS [21]. Due to the
limited space of this paper, it is practically impossible to cover
all the existing zero-order, first-order and higher-order (type-
2) EISs and their applications. Interested readers are referred
to the recent surveys [1], [2] for more details regarding EISs.
This paper is focused on first-order EISs given their popularity
and status of being the best developed in the literature.

Current first-order EISs usually employ different operating
mechanisms for antecedent (IF) part identification. Widely-
used rule evolving schemes include density criterion [14],
[22], distance criterion [16] error criterion [17] and statistical
contribution criterion [21]. These evolving schemes have dif-
ferent pros and cons, and there exist EISs incorporating several
criteria together for better evolving ability and performance
[7]. For the consequent parameter learning, the majority of
EISs utilize recursive least squares [23] or its extensions,
e.g. fuzzily weighted recursive least squares (FWRLS) [14]
and maximum correntropy criterion [12]. There are also EISs
that use extended Kalman filter for antecedent and consequent
parameter updating [17], but such an optimization algorithm
increases the computational burden while performing online
learning.

Most of EISs learn from data in a “one pass” manner. They
assemble prediction models from data samples coming in a
stream form and continuously self-improve the performance
by adapting both system structure and parameters based on
feedback on their predictions. Existing EISs typically stress
on the ability of reacting promptly to the shifts and/or drifts
of underlying patterns of the streaming data [24]. This ability
is, indeed, of great importance to the success of EISs due to
the non-linear, non-stationary nature of data streams in real-
world applications [1]. However, it also frequently leads to the
poor global prediction accuracy and the so-called “unlearning
effect” [25]. Moreover, both antecedent and consequent pa-
rameters of EISs often lack optimality due to the fact that the
system structure and parameters are usually self-developed in
an exploratory manner. The absence of parameter optimization
process during the learning process of EISs may result in a
significant loss of information carried by training data. As a
result, the performance of EISs in terms of prediction accuracy
can be further improved to a greater extent once the optimality
issue is addressed.

Recently, increasingly more attention has been paid to the
optimality and stability analysis of EISs [26]. The stability of
the consequent (THEN) part of EISs has been shown [27].
In particular, a local error optimization approach for fuzzy
system identification has been proposed in [25]. However, this
is, again, a“one pass” approach and it lacks a theoretical proof
of optimality. In [28], the optimality of EISs is systematically
studied, and two algorithms are introduced for optimizing the
antecedent and consequent parts, respectively. Nonetheless, the
prediction accuracy is only improved marginally on certain

problems after system optimization. This is mainly because the
antecedent and consequent parts of the system are optimized
separately, based on the use of different criteria [28]. The
overall performance of an EIS is decided by both antecedent
and consequent parts. To achieve the best global prediction
accuracy, the two parts should be optimized as an entirety.

B. PSO

PSO is a population-based, heuristic and evolution algo-
rithm firstly introduced by Kennedy and Eberhart [5], [6]. In
PSO, a population of particles cooperate and interact to search
for solutions in a certain problem space, by learning from
individual best experience and the global best-so-far solution
of the entire swarm. Because of its implementational simplicity
and high computational efficiency, PSO has become a widely
used optimization tool for various research and engineering
problems. In the past two decades, a number of variants to the
original have been introduced attempting to further improve
its performance. Typical variants can be summarized in the
following four types: (1) neighborhood topology [29], [30]; (2)
parameter control [31], [32]; (3) hybrid methods [33], [34] and
(4) novel learning schemes [35], [36]. Since genetic algorithms
(GAs) have good exploration ability, genetic learning PSO
(GLPSO) has been proposed [37] to strength the performance
of PSO by generating high-quality exemplars to guide the
evolution of the particles [38].

Currently, PSO algorithms have been successfully applied
to many problems, e.g., clustering [39], control [40], feature
selection and image processing [41], [42]. There also exist a
number of approaches that involve PSO for training fuzzy sys-
tems [43]–[45] and artificial neural networks [46]. However,
such approaches are limited to offline scenarios and require
a full retraining if new data patterns occur. Therefore, they
are restricted in applications that concern online“data rich”
environments.

III. ALMMO* SYSTEM

In this section, the general architecture and autonomous
learning process of the ALMMo system are briefly recalled
to make this paper self-contained. Note, however, that the
ALMMo used in this paper differs from the original version
[7] in the following two aspects:

1) The firing strength of each fuzzy rule is calculated using
Gaussian kernel function; and

2) The processed historical data are stored in a data pool
instead of being discarded.

Gaussian kernel function is used by most of first-order EISs
[12], [25]. Comparing with Cauchy kernel function (which
is originally adopted in [7]), Gaussian is more compact and
sensitive to outliers and thus, it helps improve the ability of
ALMMo system to handle unfamiliar data patterns, enhancing
its online learning capability. The historical data saved in the
data pool will be used for system parameter optimization. To
distinguish the current version from the original, the ALMMo
system used herein is denoted as ALMMo*.

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. XX, XX 2019 3

A. General Architecture
The structure of ALMMo* is depicted in Fig. 1. The

system is composed of N linear models identified through
its inherent learning process. Each linear model is described
by a prototype-based fuzzy rule as described in Eqn. (1):

Ri : IF (x ∼ pi) THEN (yi = x̄Tai); (1)

where i = 1, 2, ..., N ; N is the number of linear models (fuzzy
rules); x = [x1, x2, ..., xM]T ∈ <M is the input vector of the
fuzzy rule; x̄ = [1,xT]T ; <M is an M dimensional real data
space; yi is the output of Ri; pi = [pi,1, pi,2, ..., pi,M]T and
ai = [ai,0, ai,1, ..., ai,M]T are the prototype and consequent
parameters, respectively.

Fig. 1: System structure of ALMMo*.

The overall ALMMo* system is mathematically modeled
by

y = f(x) =

N∑
i=1

λiyi =

N∑
i=1

λix̄
Tai; (2)

where λi is the firing strength of the ith fuzzy rule, Ri such
that

λi =
Di(x)∑N
j=1Dj(x)

; (3)

here Di(x) represents a Gaussian kernel-based local density of
x calculated within the data cloud, Ci that is formed around pi
by nearby data samples resembling Voronoi tessellation [47]:

Di(x) = e
− ||x−p̂i||

2

2(X̂i−||p̂i||2) . (4)

In Eqn. (4), || · || denotes the Euclidean norm; p̂i and X̂i

are calculated by:

p̂i =
Si

Si + 1
pi +

1

Si + 1
x; (5a)

X̂i =
Si

Si + 1
Xi +

1

Si + 1
||x||2; (5b)

where pi is the prototype of Ri and pi = 1
Si

∑
x∈Ci x; Xi is

the mean of squared Euclidean norm of data samples affiliated
with pi and Xi = 1

Si

∑
x∈Ci ||x||

2; and Si is the cardinality
(number of members) of Ci.

Firing strength calculated as per Eqn. (4) allows ALMMo*
to react to potential changes in data patterns promptly because
it enlarges the role of any new observation, x by attracting pi
towards it. This enhancess the adaptive ability of the system.

B. Online Learning Process

The online autonomous learning process of ALMMo* is
summarized below.

Stage 1. System Initialization
The ALMMo* system is initialized by the first observed

data sample, xk (k = 1). The global meta-parameters of the
system, global mean, µ and average squared Euclidean norm,
χ are set as:

µ← xk; χ← ||xk||2. (6)

The first data cloud, CN (N = 1) is initialized with xk as
its prototype:

CN ← {xk}; pN ← xk; XN ← ||xk||2;

SN ← 1; ΛN ← 0; ηN ← 1; IN ← k;
(7)

where ΛN denotes the accumulated firing strength; ηN is the
utility; and IN is the time instance at which pN is identified.

By initializing the consequent parameters, aN and converi-
ance matrix, ΘN using Eqn. (8) and (9),

aN ← 0(M+1)×1; ΘN ← ΩoI(M+1)×(M+1), (8)

the first fuzzy rule within the rule base is established such
that:

RN : IF (x ∼ pN) THEN (yN = x̄TaN), (9)

where N = 1. Note that Ωo is an externally controlled
parameter for covariance matrix initialization, representing the
standard for recursive least squares algorithms [48]. The first
data sample and the desired output, {xk, yk} are then stored
in the data pool for future use.

Stage 2. System Output Generation
When a new data sample, xk (k ← k + 1) is observed,

the local density, Di(xk) (i = 1, 2, ..., N) of xk at each
data clould, Ci is firstly calculated using (4). Then, the firing
strength, λi(i = 1, 2, ..., N) of each fuzzy rule is calculated
with respect to Eqn. (3) and the system output ŷk = f(xk) is
generated using Eqn. (2).

Stage 3. Global Meta-Parameter Updating
The global mean, µ and average squared Euclidean norm,

χ are updated using Eqn. (10a) and (10b) below, respectively:

µ← k − 1

k
µ+

1

k
xk; (10a)

χ← k − 1

k
χ+

1

k
||xk||2. (10b)

Stage 4. System Structure Updating
In this stage, firstly, the global densities at xk and {p}N

are calculated by Eqn. (11) (in a similar form to Eqn. (4)):

D(z) = e
− ||z−µ||2

2(χ−||µ||2) ; (11)

where z ∈ {xk,p1,p2, ...,pN}.
Condition 1 is checked to see whether xk has the potential

to be a new prototype:

Condition 1 : If (D(xk) < min
i=1,2,...,N

(D(pi)))

Or (D(xk) > max
i=1,2,...,N

(D(pi)))

Then (xk is a new prototype)

(12)

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. XX, XX 2019 4

If D(xk) is greater than the global density calculated with
respect to the existing prototypes, {p1,p2, ...,pN}, it means
that xk is more representative and has stronger summarization
power than other prototypes. On the other hand, if D(xk)
is smaller than the minmim global density calculated with
the prototypes, xk stands for a new data pattern that is very
different from all the previously identified ones. Therefore, if
Condition 1 is met in either case, xk becomes a new prototype
and initializes a new data cloud.

Once Condition 1 is satisfied, Condition 2 is checked to
remove the nearby data cloud whose area of influence heavily
overlaps with the new data cloud initialized by xk:

Condition 2 : If (Di(xk) ≥ Do)

Then (xk is very close to pi)
(13)

where Do = e−
1
8 . The rationale behind Condition 2 is that

if Di(xk) is larger than e−
1
8 , the Euclidean distance between

xk and pi is smaller than half of the average distance between
any two data samples within Ci. In such case, xk and pi are
very close and therefore, intuitively pi should be replaced by
xk to avoid redundancy [7].

If both Conditions 1 and 2 are met, the nearest data cloud
denoted by Cn∗ regarding xk is identified by the following
equation:

n∗ = arg min
i=1,2,...,N

(||xk − pi||), (14)

and xk is assigned to Cn∗ with its meta-parameters updated
such that:

Cn∗ ← Cn∗ ∪ {xk}; pn∗ ←
pn∗ + xk

2
;

Xn∗ ←
Xn∗ + ||xk||2

2
; Sn∗ ←

⌈
Sn∗ + 1

2

⌉
;

(15)

where d·e denotes the ceiling operation.
If only Condition 1 is met, a new data cloud with xk as

its prototype is added to the system (N ← N + 1) following
Eqn. (7) and a new fuzzy rule RN is initialized in the same
form as Eqn. (9) with the consequent parameters initialized
accordingly by Eqn. (16) below:

aN ←
1

N − 1

N−1∑
i=1

ai; ΘN ← Ωo · I(M+1)×(M+1). (16)

Otherwise, if Condition 1 is unsatisfied, xk is assigned to
the nearest data cloud, Cn∗ with its meta-parameters updated
with respect to Eqn. (17):

Sn∗ ← Sn∗ + 1; pn∗ ←
Sn∗ − 1

Sn∗
pn∗ +

1

Sn∗
xk;

Xn∗ ←
Sn∗ − 1

Sn∗
Xn∗ +

1

Sn∗
||xk||2;

(17)

For the data clouds that do not receive new members at the
current processing cycle, their meta-parameters stay the same.

Stage 5. Rule Base Quality Monitoring
In this stage, the firing strength of each fuzzy rule, λi

(i = 1, 2, ..., N) is firstly calculated using Eqn. (3). Then,
the accumulated firing strength of each fuzzy rule is updated
using Eqn. (18) below:

Λi ← Λi + λi; (18)

and the corresponding utility is updated by

ηi ←
Λi

k − Ii
. (19)

Then, Condition 3 is checked to remove any fuzzy rules
and the corresponding data clouds that contribute little to the
overall system output:

Condition 3 : If (ηi < ηo)

Then (Ri and Ci are removed)
(20)

where ηo is another externally defined parameter for fuzzy rule
quality monitoring.

If Ri and Ci satisfy Condition 3 and are removed from
ALMMo*, N ← N − 1, and the firing strengths of the
remaining fuzzy rules are re-calculated using Eqn. (3).

Stage 6. Consequent Parameter Updating
The consequent parameters of the fuzzy rules are updated

using the popular FWRLS method as given in [14] (i =
1, 2, ..., N):

Θi ← Θi −
λiΘix̄kx̄

T
k Θi

1 + λix̄T
k Θix̄k

; (21a)

ai ← ai + λiΘix̄k(yk − x̄T
k ai). (21b)

Stage 7. Rule Base Updating
In the final stage of the current processing cycle, all fuzzy

rules within the rule base are updated correspondingly with
regard to the latest prototypes and consequent parameters, and
the current data sample and the corresponding desired output,
{xk, yk} are stored in the data pool for future use. Then,
ALMMo* goes back to Stage 1 ready for the next new data
sample. The flowchart of the learning process of ALMMo* is
presented in Fig. 2 to support illustration.

Fig. 2: Flowchart of ALMMo* learning process.

The two externally controlled parameters, Ωo in Eqn. (8)
and ηo in Eqn. (20) can subtly influence the performance of
ALMMo system. Ωo is for initializing the covariance matrix
and ηo concerns the quality of fuzzy rules. Empirically, Ωo

influences the convergence of the consequent part of the fuzzy

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. XX, XX 2019 5

system and may deteriorate the system performance if it is
set too large or too small. Also, ηo may subtly influence
the system structure. A larger value of ηo makes the system
remove stale rules faster and vice versa. However, the system
performance will deteriorate significantly if ηo is set too large
since the system forgets the learned knowledge from historical
data rather rapidly. The influence of Ωo and ηo has been
analyzed and verified through numerical examples in [7],
[28]. The recommended values of Ωo and ηo are 10 and 0.1,
respectively.

IV. OPTIMIZING ALMMO* BY PSO
ALMMo* as well as the majority of other first-order type-

1 EISs are computationally efficient thanks to the “one pass”
type learning process. However, such learning process often
leads to the problem that the solution learned from data lacks
optimality. This can significantly and adversely influence the
overall accuracy of the system. To address this issue, a PSO-
based EIS optimization algorithm is proposed here for simul-
taneously optimizing both the premise and consequent parts
of ALMMo*. Without loss of generality, the canonical single-
objective PSO algorithm is employed for demonstrating the
proposed concept. Nonetheless, if preferred, more advanced
PSO algorithms may be used as alternative, (e.g., GLPSO [37],
and multi-objective PSO algorithms [49]), but this is beyond
the scope of this paper.

The algorithmic procedure of the proposed approach for EIS
optimization consists of the following main steps:

Stage 1. Swarm Initialization
Firstly, the swarm St, which is composed of L particles

St = {Pt
1,P

t
2, ...,P

t
L}, is initialized, where t represents the

current iteration (t ← 0). Each particle contains a full set
of antecedent and consequent parameters of the fuzzy rules
identified during the online learning process representing a
full solution to the given problem despite that it may not be
optimal. As PSO searches the data space in a semi-random
manner, the leading particle, Pt

1 can be formulated by Eqn.
(22) to guarantee that the performance of ALMMo* does not
deteriorate after the entire process is completed:

Pt
1 = [pt

1,a
t
1]N×2(M+1), (22)

where pt
1 = [p1,p2, ...,pN]T is the N × M dimen-

sional antecedent parameter matrix (prototypes); and at
1 =

[a1,a2, ...,aN]T is the N × (M + 1) dimensional consequent
parameter matrix.

The maximum range that other particles can travel from the
position of the leading particle, P1 within the searching space
<N×2(M+1), during the initialization stage, is defined by:

Q = [βT ,βT , ...,βT]TN×2(M+1) (23)

where β = [β1, β2, ..., β2(M+1)]1×2(M+1) and there is:

βj = max
i=1,2,...,N

(|Pt
1(i, j)|), (24)

with Pt
1(i, j) denoting the element at the ith row and

jthcolumn of Pt
1. The remaining particles are defined as

(i = 2, 3, ..., L):

Pt
i = [pt

i,a
t
i]
T
N×2(M+1) = Pt

1 + ri ◦Q, (25)

where “◦” represents Hadamard product; ri is a N×2(M+1)
dimensional random matrix whose elements follow the uni-
form distribution within the value range of [−1, 1]; Eqn.
(23) defines a local searching range surrounding the leading
particle, Pt

1 and Eqn. (25) scatters other particles randomly
in the defined local area. The searching efficiency is thus,
significantly improved thanks to the confined searching space.

To evaluate the fitness of Pt
i (i = 1, 2, ..., L), the data space

needs to be re-partitioned by the use of pt
i as prototypes to

attract nearby historical data samples forming Voronoi tessella-
tions using Eqn. (14). This results in N new data clouds, Ct

i,j

(j = 1, 2, ..., N). Subsequently, the meta-parameters of each
data cloud, which include cardinality, St

i,j , mean/prototype,
pti,j , and average square Euclidean norm Xt

i,j , are extracted.
With these updated meta-parameters ({p}ti, {X}ti, {S}ti and
{a}ti), the fitness of a particle is calculated by the following
objective function:

F (Pt
i) =

√√√√ 1

K

K∑
k=1

|yk − f ti (xk)|2, (26)

where f ti (x) is the mathematical model of ALMMo* same as
Eqn. (2) but with the antecedent and consequent parameters
derived directly from Pt

i. This objective function, F (Pt
i),

essentially, calculates the root mean square error (RMSE) be-
tween the outputs of the ALMMo* system (obtained so far) us-
ing historical training data {x1,x2, ...,xK} as the inputs and
the corresponding desired outputs, namely, {y1, y2, ..., yK}.
Therefore, the value of F (Pt

i) directly reflects the effective-
ness of ALMMo* on approximating the given (nonlinear)
prediction problem.

Then, the individual best position of each particle, Pbi is
set as: Pbi ← Pt

i and the global best position, Gb is selected
from the swarm according to the following rule:

Gb← Pt
i∗; i∗ = arg min

i=1,2,...,L
(F (Pt

i)). (27)

Stage 2. Particle Updating
In this stage, the algorithm iteratively searches the space for

a better solution. The velocity, vt+1
i of each particle (assuming

the ith one, i = 1, 2, ..., L) Pt
i is firstly calculated by the

following:

vt+1
i = ωvt

i +c1 ·r1 ◦ (Pbi−Pt
i)+c2 ·r2 ◦ (Gb−Pt

i); (28)

where v0
i = 0N×2(M+1); ω is the inertia weight determining

how much the current velocity is preserved; c1 and c2 are
the two acceleration coefficients that determine the relative
learning weights of Pbi and Gb; and r1 and r2 are two
randomly generated matrices with the same dimensionality
of P t

i following uniform distribution with the value range of
[0, 1].

To prevent a particle from moving too fast, the following
constraint is applied:{

vt+1
i (k, j) = v∗j , if vt+1

i (k, j) > v∗j ;

vt+1
i (k, j) = −v∗j , if vt+1

i (k, j) < −v∗j ;
(29)

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. XX, XX 2019 6

where vt+1
i (k, j) denotes the element at the kth row jth

column of vt+1
i ; v∗j = 0.1 · βj . Then, the particle is updated

with the velocity using Eqn. (30):

Pt+1
i = Pt

i + vt+1
i . (30)

After this, the fitness of the updated particle, Pt+1
i is

calculated using Eqn. (26), and the following two conditions
are examined:

Condition 4a : If (F (Pt+1
i) < F (Pb))

Then (Pbi ← Pt+1
i)

(31a)

Condition 4b : If (F (Pt+1
i) < F (Gb))

Then (Gb← Pt+1
i)

(31b)

Then, the next particle (i← i+1) is updated using the same
algorithmic procedure (Eqn. (28)-(31)). After all the particles
have been updated during the current iteration, the algorithm
iterates (t ← t+ 1) until convergence or a certain predefined
maximum iteration number is reached.

Stage 3. Fuzzy Rule Base Updating
After the algorithm converges or the maximum iteration

number has been reached, the optimization process is com-
pleted and the global best position Gb is used to derived the
optimal parameter setting ({p}, {X}, {S} and {a}), from data
by forming data clouds {C} in the data space. Other related
meta-parameters, namely, Λj ← 1, ηj ← 1, Ij ← K and
Θj ← ΩoI(M+1)×(M+1) are reset accordingly for each data
cloud, Cj (j = 1, 2, ..., N). The flowchart of the optimization
process of the proposed algorithm is presented in Fig. 3.

Fig. 3: Flowchart of PSO-based EIS optimization.

Note that the optimization process implemented by the
proposed algorithm can be triggered at any point of the online
learning process. The ALMMo* system after optimization us-
ing past data can continuously learn from new observations in
a “one pass” manner as normal. Indeed, it can be optimized for
multiple times during the entire learning process if computa-
tional resources permit. Nonetheless, without losing generality,
the proposed optimization algorithm is only executed at the
end of the online learning process unless specifically declared
otherwise. In summary, Algorithm 1 presents the pseudo-
code of the proposed procedure for PSO-based ALMMo*
optimization.

Algorithm 1 PSO-based ALMMo* optimization.

// ALMMo* online learning process //
while new observation, xk is available do

if k = 1 then
N ← 1
initialize µ and χ by (6)
initialize CN by (7)
initialize aN and ΘN by (8)
initialize RN by (9)

else
generate ŷk by (2)-(4)
update µ and χ by (10)
if Condition 1 is satisfied then

if Condition 2 is satisfied then
update Cn∗ by (15)

else
N ← N + 1
initialize CN by (7)
initialize aN and ΘN by (16)
initialize RN by (9)

end if
else

update Cn∗ by (17)
end if
remove Ri and Ci satisfying Condition 3
for i = 1 to N do

update ai and Θi by (21)
update Ri with pi and ai

end for
end if

end while
// PSO-based optimization process //
t← 0
initialize St by (22)-(25)
for i = 1 to L do

calculate F (Pt
i) by (26)

Pbi ← Pt
i

end for
select Gb by (27)
while terminal condition is unsatisfied do

for i = 1 to L do
update Pt

i to Pt+1
i by (28)-(30)

calculate F (Pt+1
i) by (26)

if Condition 4a is satisfied then
Pbi ← Pt+1

i

end if
if Condition 4b is satisfied then

Gb← Pt+1
i

end if
end for

end while
derive {C} from Gb
obtain {p}, {X}, {S} and {a}
for i = 1 to L do

Λi ← 1
ηi ← 1
Ii ← K
Θi ← ΩoI(M+1)×(M+1)

update Ri with pi and ai

end for

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. XX, XX 2019 7

V. COMPUTATIONAL COMPLEXITY ANALYSIS

A. ALMMo*

The computational complexity of each step of ALMMo* is
analyzed here. Since the complexity is dynamically changing
subject to the system structure of ALMMo* and the similarity
between the current observation and the historical ones, for
generality, the analysis is conducted at the time instance when
the Kth new observation is reached.

Stage 1 concerns system initialization only, and the com-
putational complexity is O(M). In addition, for any K > 1,
this stage is not performed. The system output is produced at
stage 2. The complexity for calculating the firing strengths
of the N fuzzy rules is O(MN) thanks to the recursive
calculation form (Eqn. (4) and (31)). Thus, the complexity of
stage 2 is O(MN) as well. Stage 3 is for updating the global
meta-parameters (µ and χ), and its computational complexity
is O(M). Stage 4 involves fuzzy rule base updating. The
complexity of computing the global density values at xK

and {p}N is O(M(N + 1)). The complexity of updating a
particular rule or adding a new rule is O(M). Stage 5 is related
to fuzzy rule quality monitoring. The most computation costs
at this stage take place when calculating the firing strength and
thus, the computational complexity of this stage is the same
as that of stage 4. Stage 6 requires significantly more com-
putational resources for updating the consequent parameters
of fuzzy rules because the FWRLS method needs to update
the covariance matrix, see Eqn. (21a). The computational
complexity of this stage is O((M + 1)2N). The final stage
updates the existing fuzzy rules with the latest premise and
consequent parameters, and its computational complexity is
negligible.

Therefore, the maximum computational complexity of each
processing cycle of ALMMo* is O((M + 1)2N), and the
overall computational complexity of the entire learning process
is O((M + 1)2NK).

B. Proposed Optimization Algorithm

The computational costs of the proposed optimization al-
gorithm are closely related to the costs of the canonical
PSO algorithm. The optimization process involves procedures
of initialization, fitness evaluation, and velocity and position
updating for each particle. The computational complexity for
initializing the swarm is O((2M+1)NL), where L stands for
the number of particles. Fitness evaluation for each particle
at each iteration cycle has the computational complexity of
O(MNK) due to the particular objective function (Eqn. (26))
used. The complexity of velocity and position updating per
particle at each iteration cycle is O((2M + 1)N) as well.
Therefore, assuming that the total iteration number is U , the
overall computational complexity of the optimization process
using the proposed algorithm is O(MNKLU)

VI. EXPERIMENTAL INVESTIGATION

In this section, numerical examples are performed for
validating the proposed concept and general principles. This
experimental study on performance evaluation is based on

running the proposed approach over a range of problems,
These include: five real-world benchmark regression problems,
one Mackey-Glass time series prediction problem, one non-
linear system identification problem and three financial data
prediction problems.

The optimized ALMMo* system by the proposed approach
is renamed as “particle swarm optimized ALMMo*” (PSO-
ALMMo*) for clarity. By default, the parameter setting for the
PSO algorithm follows the common practice in the literature
[37], namely, ω = 0.7298; c1 = c2 = 1.49618; the population
size is 100 and the maximum iteration number is 200. The re-
ported results in this section are obtained after 25 times Monte
Carlo experiments. Details of the comparative approaches
involved are summarized in Supplementary Table ST.I. Source
code of PSO-ALMMo* is available at: https://github.com/Gu-
X.

A. Regression Problems

Five real-world benchmark regression problems, namely, (1)
Auto, (2) Autompg, (3) Triazines, (4) Delta Ailerons and (5)
California Housing are herein used for performance evaluation.
Details of these are summarized in Supplementary Table ST.II.
As with the common practice in the research area, all the input
and output attributes are normalized in advance to the range
of [0, 1].

During each experiment, ALMMo* firstly learns from the
training set on a sample-by-sample basis. It is subsequently
optimized by the proposed PSO-based algorithm based on all
historically collected training data after the online learning
process is finished. The performance of PSO-ALMMo* is
evaluated on the basis of the testing sets, and the results
are reported in Table I in terms of the average prediction
accuracy (RMSE with respect to ground truth) and the number
of rules derived, denoted by #(Rules) in the table. The curves
of RMSE convergence on the five benchmark problems are
given in Fig. 4. The prediction results by ALMMo* and
ALMMo are also reported in the same table as the baseline
under the same experimental protocol. The self-boosting (SB)
algorithm [28], which is specifically designed for optimizing
EISs, is also involved in this example to better evaluate the
effectiveness of the proposed approach. From Table I it can
be seen that the proposed optimization algorithm is able
to effectively improve the prediction accuracy of ALMMo*
on all five benchmark problems. In particular, for Auto and
Autompg datasets, the prediction accuracy of the system after
the optimization process is improved for more than 20%, and
for Triazines dataset, the performance is improved for more
than 50%. Moreover,the proposed PSO-based optimization
algorithm outperforms the SB algorithm in four out of five
cases.

To demonstrate the importance of using ALMMo* to pro-
vide the initial parameters for optimization with PSO, dummy
PSO-ALMMo* is employed for comparison. Dummy PSO-
ALMMo* keeps the same ALMMo* framework, namely, the
same number of fuzzy rules, but uses randomly initialized
antecedent and consequent parameters for optimization. The
results obtained by dummy PSO-ALMMo* (setting 1) are

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. XX, XX 2019 8

reported in Table I. In addition, the same experiments are
repeated by varying the number of fuzzy rules of dummy
PSO-ALMMo* from 3 to 18 (setting 2), and the results are
reported in Supplementary Table ST.III. Based on Table I
and Supplementary Table ST.III it can be seen that PSO-
ALMMo* offers significantly higher performance than dummy
PSO-ALMMo* because the parameters learned by ALMMo*
provide a good initialization for PSO and expedite it to
converge to high-quality solutions.

The prediction performance of PSO-ALMMo* is further
compared with the state-of-the-art approaches under the same
experimental protocol. The comparison is also reported in
Table I. For Trazines, DENFIS [11] fails because of the
high-dimensional input attributes and hence, its result is not
reported. As can be seen from the comparison, PSO-ALMMo*
is able to achieve very high prediction accuracy on the testing
data surpassing or, in the worst case, on par with the state-of-
the-art approaches.

Apart from the prediction error, statistical significance of
the performance improvement of the proposed approach is
analyzed in comparison with alternative approaches, by run-
ning the statistical pairwise t-tests. In this paper, Fisher’s
method is employed to combine the p-values returned from
the hypothesis tests on the 25 times Monte Carlo experiments:

X2 = −2

H∑
h=1

ln(ph), (32)

where ph is the p-value of the hth hypnosis test (h =
1, 2, ...,H); H = 25. The X2 values returned from the t-
tests between PSO-ALMMo* and alternatives are presented
in Table II, where “Inf” denotes infinite value. Note that the
test statistic X2 tends to be large when the p-values are small,
which suggests that the null hypotheses are not true for every
test. If the obtained p-values from the 25 hypothesis tests are
all greater than 0.05, X2 is smaller than 149.7866. In addition,
pairwise t-tests are also performed between the ground truth
and all approaches, and the returned test statistic X2 values
are reported in Table II as well. From Table II it can be seen
that the predictions made by PSO-ALMMo* are significantly
better than most alternatives and are very close to the ground
truth.

Fig. 4: Convergence curves of proposed optimization algo-
rithm.

To compare between the online learning abilities of
ALMMo* and ALMMo, the performances of both algorithms
are evaluated by following the typical online learning evalua-
tion method, “test-then-train” on a single epoch using the five
benchmark problems as well as three other problems (includ-
ing a nonstationary one) that are involved in the numerical
examples to be presented later, and the results are given in
Supplementary Table ST.IV. It is noticeable that the online
learning performance of ALMMo* system is stronger than
ALMMo thanks to the Gaussian kernel function used.

The same five problems are further considered to assess
the learning ability of PSO-ALMMo* by breaking the time
dependence between training samples. In this investigation,
the order of training samples is randomly scrambled, and
the statistical performance of the proposed algorithm is re-
ported in Table III in the form of mean ± std in terms of
prediction RMSE and #(Rules). From Table III it is shown
that PSO-ALMMo* outperforms all other approaches in most
cases demonstrating that the proposed optimization approach
can, indeed, effectively improve the prediction accuracy of
ALMMo*.

Numerical experiments are also conducted to evaluate the
continuously learning ability of PSO-ALMMo*. The same
experimental protocol as above is employed. However, the
proposed optimization algorithm is here executed at the middle
of the learning process using the first half of the training
set. The statistical results are reported in supplementary Table
ST.V. Such results illustrate that unlike other approaches, PSO-
ALMMo* can continue to learn from new observations in a
“one pass” manner and can successfully follow changing data
patterns without a full retraining by autonomously gaining new
fuzzy rules and discarding stale rules with trivial contributions
to the overall system output.

To further demonstrate the merits and generality of the
proposed optimization algorithm, it is applied for optimizing
ALMMo [7], AnYa [50] and FCMMS [53] following the
same experimental protocol as Table III. The more recently
introduced GLPSO algorithm [37] is used for optimizing the
EISs under the same framework as described in Section IV.
The parameter setting of GLPSO follows the mode of [37],
namely, ω = 0.7298; c = c1 = c2 = 1.49618; the population
size is 100 and the maximum iteration number is 200. The
numerical results are reported in Supplementary Table ST.VI,
The results show that the proposed approach can effectively
optimize the antecedent and consequent parts of other EISs
with similar operating mechanisms, enhancing their prediction
performance. Interestingly, such results also reflect the fact that
the effectiveness of the proposed optimization approach can be
further enhanced by using more advanced PSO variants.

B. Mackey-Glass Time Series Prediction

The proposed PSO-ALMMo* is, in this subsection, tested
on the widely-used chaotic Mackey–Glass time series. The
detailed problem description is given in Supplementary Mate-
rial. The prediction accuracy in terms of nondimensional error
index (NDEI) and #(Rules) obtained by PSO-ALMMo* and
alternative prediction approaches are given in Table IV. It can

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. XX, XX 2019 9

TABLE I: PERFORMANCE COMPARISON ON REAL-WORLD BENCHMARK PROBLEMS

Algorithm Auto Autompg Triazines Delta Ailerons California Housing
RMSE #(Rules) RMSE #(Rules) RMSE #(Rules) RMSE #(Rules) RMSE #(Rules)

PSO-ALMMo* 0.0425
8

0.0694
7

0.0043
7

0.0497
10

0.0711
11ALMMo* 0.0560 0.0858 0.0092 0.0511 0.0791

Dummy PSO-ALMMo* 0.3902 0.1939 0.7424 0.1004 0.3730
SB-ALMMo* 0.0457 3 0.0830 2 0.0022 3 0.0506 5 0.0734 5
ALMMo [7] 0.0568 8 0.0842 9 0.0078 7 0.0512 10 0.0777 10

SB-ALMMo [28] 0.0452 4 0.0934 3 0.0022 3 0.0512 4 0.0771 5
DENFIS [11] 0.4516 8 0.1458 7 / / 0.0497 11 0.0715 14
CEFNS [12] 0.0666 2 0.0750 2 0.0452 6 0.0502 3 0.0878 2
ESAFIS [51] 0.0604 3 0.0731 33 0.0331 19 0.0506 13 0.0892 6
SAFIS [17] 0.1184 5 0.0993 2 0.0581 9 0.0549 14 0.0988 12
AnYa [50] 0.0604 3 0.0958 2 0.0224 6 0.0515 1 0.0818 3
eTS [14] 0.0535 3 0.0864 6 0.0179 9 0.0513 4 0.0772 3

Simpl eTS [22] 0.0765 5 0.0765 5 0.0197 9 0.0512 4 0.0773 3
McFIS [52] 0.0689 10 0.0806 4 0.0556 12 0.0509 15 0.0822 15

McIT2FIS [18] 0.0687 3 0.0806 4 0.0556 12 0.0509 15 0.0822 15

TABLE II: p-VALUE IN STATISTICAL PAIRWISE t-TEST ANALYSIS

Dataset PSO-ALMMo* ALMMo* ALMMo SBALMMo SAFIS ESAFIS AnYa

PSO-ALMMO*
vs

Auto / 220.1704 226.573 45.457 128.5498 37.9377 263.3305
Autompg / 146.2628 122.2057 92.7903 1123.5411 244.7446 1934.1507
Triazines / 55.8087 54.4101 52.2966 145.9701 579.4935 858.0194

Delta Ailerons / 2157.0497 7519.9293 136.5655 18355.2751 655.2257 Inf
California Housing / 236.9164 226.9166 237.8739 Inf 1982.3634 32900.9305

Ground Truth
vs

Auto 44.3194 197.1727 202.8881 70.2553 73.5143 49.0860 226.7226
Autompg 24.6885 36.9609 33.8431 23.4307 553.7204 22.36515 1746.1042
Triazines 85.4557 81.5286 80.5165 183.0187 139.0642 559.7690 873.5257

Delta Aileron 60.6014 334.8833 856.8403 88.3148 3889.5226 156.9097 31536.0079
California Housing 81.8245 69.3474 36.6639 48.2006 10792.2564 669.6971 17622.0537

be seen that PSO-ALMMo* is able to produce the second
best prediction result amongst all on this dataset (with the
RMSE reduced for more than 55% after optimization). Whilst
its system complexity is much lower than that of the approach
with the best result.

C. Nonlinear System Identification Problem

This experiment uses a nonlinear system identification
problem as a benchmark for further evaluating the perfor-
mance of PSO-ALMMo*. The problem description is given
in Supplementary Material. The performance of all involved
approaches are given in Table V in terms of prediction RMSE
and #(Rules). It is clearly shown that PSO-ALMMo* surpasses
alternatives by producing the most accurate prediction result
(with the RMSE dropping for more 60% after optimization).
In addition, its system complexity is also at the low end
among the comparative algorithms. The identified fuzzy rules
during online learning process and the optimized rules after
the iterative optimization process by the proposed approach
are tabulated in Supplementary Tables ST.VII and ST.VIII,
respectively, for better demonstration.

D. Nonstationary Regression Problems

Nonstationary regression problems are typically more chal-
lenging than problems of other types. This is because they
usually have much more frequent and intensive changes in the
data patterns. Such problems are very useful for evaluating
the performance of learning algorithms in complex real-world

application scenarios. In this paper, three real-world financial
data prediction problems are utilized for numerical examples,
details of which are given in Supplementary Material.

In the first numerical example, the popular high-frequency
trading problem named QuantQuote second resolution market
dataset is considered. The data has been standardized online
before conducting experiments. The results by PSO-ALMMo*
as well as other competitive prediction approaches are reported
in Table VI. As can be seen, PSO-ALMMo* produces the best
prediction results in all experiments despite that the prediction
accuracy of ALMMo* is below the average. This numerical
example serves as a strong proof of the effectiveness of the
proposed optimization approach.

The second nonstationary problem used for performance
evaluation is named S&P 500 closing price prediction. The
data has been normalized to the range of [0,1] in advance
[60]. The prediction performance in terms of NDEI and
#(Rules) obtained by PSO-ALMMo* for the proposed and
alternative fuzzy and neuro-fuzzy approaches are tabulated in
Table VII, demonstrating that PSO-ALMMo* outperforms all
the comparative approaches on this dataset.

The performance of PSO-ALMMo* is further evaluated
on the foreign currency exchange rate prediction problem.
Note that foreign currency exchange rates usually do not
change drastically in a short time. Thus, there is no significant
difference between exchange rates of one day and the next day.
The statistical performance, in terms of RMSE and #(Rule),
of PSO-ALMMo* is reported in Supplementary Table ST.IX,
and the results by other approaches are tabulated in the

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. XX, XX 2019 10

TABLE III: STATISTICAL RESULTS ON REAL-WORLD
BENCHMARK PROBLEMS BY RANDOMLY SCRAM-
BLING TRAINING SAMPLES

Dataset Algorithm RMSE #(Rules)

Auto

PSO-ALMMo* 0.0415±0.0038 8.6±2.1ALMMo* 0.0545±0.0023
SB-ALMMo [28] 0.0456±0.0002 3.6±1.8

ALMMo [7] 0.0569±0.0024 7.8±2.5
FCMMS [53] 0.1067±0.0469 1.2±0.5
ESAFIS [51] 0.0437±0.0032 2.2±0.4
SAFIS [17] 0.1752±0.0443 2.4±0.8
AnYa [50] 0.0624±0.0187 2.6±0.6

FNN 0.0968±0.0215 /
LSTM [58] 0.0442±0.0033 /

Autompg

PSO-ALMMo* 0.0663±0.0025 8.2±1.3ALMMo* 0.0833±0.0024
SB-ALMMo [28] 0.0928±0.0003 3.4±1.0

ALMMo [7] 0.0846±0.0025 8.4±1.8
FCMMS [53] 0.1504±0.0362 6.0±1.8
ESAFIS [51] 0.0738±0.0074 2.1±0.2
SAFIS [17] 0.1352±0.0341 2.5±0.6
AnYa [50] 0.0988±0.0134 2.0±0.0

FNN 0.0832±0.0100 /
LSTM [58] 0.0708±0.0035 /

Triazines

PSO-ALMMo* 0.0041±0.0010 6.9±1.2ALMMo* 0.0100±0.0015
SB-ALMMo [28] 0.0021±0.0001 3.3±1.1

ALMMo [7] 0.0103±0.0017 6.8±1.8
FCMMS [53] 0.0343±0.0164 1.0±0.0
ESAFIS [51] 0.0108±0.0033 2.1±0.3
SAFIS [17] 0.2212±0.0940 2.6±1.0
AnYa [50] 0.0745±0.0354 5.9±0.9

FNN 0.0307±0.0143 /
LSTM [58] 0.0152±0.0045 /

Delta
Ailerons

PSO-ALMMo* 0.0497±0.0002 9.7±1.1ALMMo* 0.0516±0.0006
SB-ALMMo [28] 0.0512±0.0000 4.7±1.2

ALMMo [7] 0.0515±0.0004 9.3±1.3
FCMMS [53] 0.0682±0.0197 2.7±2.9
ESAFIS [51] 0.0509±0.0008 2.2±0.4
SAFIS [17] 0.0620±0.0092 5.5±1.4
AnYa [50] 0.0512±0.0000 1.0±0.0

FNN 0.0514±0.0019 /
LSTM [58] 0.0511±0.0019 /

California
Housing

PSO-ALMMo* 0.0706±0.0010 9.6±1.9ALMMo* 0.0779±0.0006
SB-ALMMo [28] 0.0771±0.0000 4.1±1.2

ALMMo [7] 0.0782±0.0006 9.4±1.4
FCMMS [53] 0.1071±0.0405 3.0±2.4
ESAFIS [51] 0.0716±0.0022 4.2±0.9
SAFIS [17] 0.0945±0.0043 10.4±1.7
AnYa [50] 0.0782±0.0034 2.6±0.6

FNN 0.0810±0.0161 /
LSTM [58] 0.0602±0.0044 /

same table for comparison. Despite there being no significant
difference between the exchange rates of two consecutive
days as aforementioned, the performance of ALMMo* is still
improved by the proposed optimization algorithm.

E. Remarks

Numerical examples presented in this paper demonstrate
that the proposed approach can effectively optimize first-
order EISs for better performance. In particular, the following
remarks are worth noting:

Firstly, the performance of a first-order EIS depends on
many different factors, including model size, rule form (e.g.,

TABLE IV: PERFORMANCE COMPARISON ON
MACKEY-GLASS TIME SERIES PROBLEM

Algorithm NDEI #(Rules)
PSO-ALMMo* 0.191 8ALMMo* 0.432

SB-ALMMo [28] 0.437 5
ALMMo [7] 0.402 9
DENFIS [11] 0.276 58
CEFNS [12] 0.303 8
ESAFIS [51] 0.312 10
SAFIS [17] 0.380 21
AnYa [50] 0.501 1
eTS [14] 0.356 99

Simpl eTS [22] 0.376 21
FLEXFIS [16] 0.157 89
PANFIS [20] 0.301 19

GENEFIS (C) [21] 0.280 19
GENEFIS (B) [21] 0.339 9

eT2RFNN [54] 0.320 3
GSETSK [55] 0.347 19
SPLAFIS [56] 0.279 30

LEOA [25] 0.248 42

TABLE V: PERFORMANCE COMPARISON ON NONLIN-
EAR SYSTEM IDENTIFICATION PROBLEM

Algorithm RMSE #(Rules)
PSO-ALMMo* 0.0148 7ALMMo* 0.0383

SB-ALMMo [28] 0.1267 3
ALMMo [7] 0.1159 8
DENFIS [11] 0.2599 3
CEFNS [12] 0.0183 12
ESAFIS [51] 0.0338 15
SAFIS [17] 0.0221 17
AnYa [50] 0.0546 2
eTS [14] 0.0212 49

Simpl eTS [22] 0.0225 22
FLEXFIS [16] 0.0171 8
SOFMLS [57] 0.0201 5

zero-order, first-order), membership function type (e.g., Gaus-
sian, Cauchy, triangular), and inherent learning mechanisms,
etc. An EIS may also behave very differently for different
problems depending on their nature.

Secondly, PSO, in general, produces better results on the
first-order EISs with a smaller model size because of the
lower dimensionality of the problem space (see Supplementary
Table ST.VI). This is also observed from numerical examples
presented in [26], where PSO is employed for zero-order EIS
optimization.

VII. CONCLUSION

This paper presents a PSO-based approach for first-order
EIS optimization. The proposed approach is generic and purely
data-driven. It simultaneously optimizes the antecedent and
consequent parameters of EISs, learning the optimal models
based on historically observed data. Moreover, the proposed
approach does not change the underlying operating mecha-
nisms and learning behaviors of EISs. The optimized system
model can continuously self-update from new observations in
a “one pass” manner without a full retraining. Experimental

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. XX, XX 2019 11

TABLE VI: PERFORMANCE COMPARISON ON QUAN-
TQUOTE DATASET

Dataset Algorithm NDEI #(Rules)

xk+10,4 =
f(xk)

PSO-ALMMo* 0.3351±0.1756 8.6±2.4ALMMo* 0.5983±0.6200
SB-ALMMo [28] 0.3361±0.1864 4.8±1.6

ALMMo [7] 0.6131±0.5947 9.1±2.4
FCMMS [53] 0.4147±0.3129 6.2±3.0
ESAFIS [51] 0.4338±0.2659 2.3±0.9
SAFIS [17] 0.8337±0.6703 22.2±7.4
AnYa [50] 0.9369±0.7445 4.5±0.8

FNN 0.5784±0.8356 /
LSTM [58] 0.3456±0.1662 /

xk+15,4 =
f(xk)

PSO-ALMMo* 0.4232±0.1534 9.4±2.7ALMMo* 1.0044±0.9079
SB-ALMMo [28] 0.4350±0.1687 4.6±2.3

ALMMo [7] 0.8558±0.6770 8.9±2.2
FCMMS [53] 0.5592±0.3541 6.4±3.6
ESAFIS [51] 1.0487±1.0100 2.2±1.1
SAFIS [17] 1.7274±1.3923 19.9±8.9
AnYa [50] 1.0192±1.1586 4.8±0.7

FNN 1.2029±2.4667 /
LSTM [58] 0.4336±0.1494 /

xk+20,4 =
f(xk)

PSO-ALMMo* 0.5278±0.1963 8.7±1.9ALMMo* 1.3637±1.6079
SB-ALMMo [28] 0.5482±0.2338 4.5±2.3

ALMMo [7] 1.2946±1.3748 8.4±2.0
FCMMS [53] 0.6169±0.3128 6.0±2.9
ESAFIS [51] 1.3302±1.4781 2.8±1.1
SAFIS [17] 1.9117±1.7789 22.5±18.8
AnYa [50] 1.0751±0.9620 4.3±0.7

FNN 0.7968±1.1031 /
LSTM [58] 0.5329±0.2005 /

TABLE VII: PERFORMANCE COMPARISON ON S&P 500
DATASET

Algorithm NDEI #(Rules)
PSO-ALMMo* 0.0146 6

ALMMo* 0.0147 6
ALMMo [7] 0.0149 7
PANFIS [20] 0.09 4

GENEFIS [21] 0.07 2
eT2RFNN [54] 0.04 2

ANFIS [10] 0.02 32
LEOA [25] 0.1229 52
SEFS [59] 0.0182 2

EFS-SLAT [60] 0.0156 23

investigation with a range of real-world data-based benchmark
problems demonstrate that the proposed optimization approach
effectively improves the overall performance of EISs.

There are several considerations for further works Firstly, it
is interesting to examine and introduce any new mechanism to
monitor the quality of identified fuzzy rules during the opti-
mization process. By removing useless fuzzy rules, efficiency
can be gained over the computation- and memory- resources
required. Secondly, the optimization process is conveniently
conducted at the end of the online learning process, it would
be very useful to develop certain criteria that can help EISs to
self-determine when to carry out system optimization to en-
sure the high system performance being maintained. Another
important direction is to consider alternative EC techniques
(e.g., genetic algorithms) for EIS optimization. Different EC
techniques have different pros and cons, it may be beneficial

to investigate how they perform comparing with the use of
PSO.

REFERENCES

[1] I. S̆krjanc, J. Iglesias, A. Sanchis, D. Leite, E. Lughofer, and F. Gomide,
“ Evolving fuzzy and neuro-fuzzy approaches in clustering, regression,
identification, and classification: a survey,” Information Sciences, vol. 490,
pp. 344-368, 2019.

[2] E. Lughofer, “Evolving fuzzy systems–fundamentals, reliability, inter-
pretability, useability, applications,” in Handbook on Computational In-
telligence, P. Angelov, Ed. New York: World Scientific, 2016, pp. 67–135.

[3] L. Maciel, R. Ballini, and F. Gomide, “Evolving possibilistic fuzzy mod-
eling for realized volatility forecasting with jumps,” IEEE Transactions
on Fuzzy Systems, vol. 25, no. 2, pp. 302–314, 2017.

[4] A. B. Asghar and X. Liu, “Adaptive neuro-fuzzy algorithm to estimate
effective wind speed and optimal rotor speed for variable-speed wind
turbine,” Neurocomputing, vol. 272, pp. 495–504, 2018.

[5] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in International Symposium on Micro Machine and Human
Science, 1995, pp. 39–43.

[6] R. Eberhart and J. Kennedy, “Particle swarm optimization,” in IEEE
international conference on neural networks, 1995, pp. 1942–1948.

[7] P. P. Angelov, X. Gu, and J. C. Principe, “Autonomous learning multi-
model systems from data streams,” IEEE Transactions on Fuzzy Systems,
vol. 26, no. 4, pp. 2213–2224, 2018.

[8] I. S̆krjanc, G. Andonovski, A. Ledezma, O. Sipele, J. A. Iglesias, and
A. Sanchis, “Evolving cloud-based system for the recognition of drivers’
actions,” Expert Systems with Applications, vol. 99, pp. 231–238, 2018.

[9] N. Anh, S. Suresh, M. Pratama, and N. Srikanth, “Interval prediction
of wave energy characteristics using meta-cognitive interval type-2 fuzzy
inference system,” Knowledge-Based Systems, vol. 169, pp. 28–38, 2019.

[10] J.S. Jang, “Anfis: adaptive-network-based fuzzy inference system,” IEEE
transactions on systems, man, and cybernetics, vol.23 no.3, pp. 665-685,
1993.

[11] N. K. Kasabov and Q. Song, “DENFIS: dynamic evolving neural-fuzzy
inference system and its application for time-series prediction,” IEEE
Transactions on Fuzzy Systems, vol. 10, no. 2, pp. 144–154, 2002.

[12] R. Bao, H. Rong, P. P. Angelov, B. Chen, and P. K. Wong, “Correntropy-
based evolving fuzzy neural system,” IEEE Transactions on Fuzzy Sys-
tems, vol. 26, no. 3, pp. 1324–1338, 2018.

[13] M. Pratama, W. Pedrycz, and E. Lughofer, “Evolving ensemble fuzzy
classifier,” IEEE Transactions on Fuzzy Systems, vol. 26, no. 5, pp.
2552–2567, 2018.

[14] P. P. Angelov and D. P. Filev, “An approach to online identification of
Takagi-Sugeno fuzzy models,” IEEE Transactions on Systems, Man, and
Cybernetics - Part B: Cybernetics, vol. 34, no. 1, pp. 484–498, 2004.

[15] M. Pratama, S. G. Anavatti, M. J. Er, and E. D. Lughofer, “pClass: an
effective classifier for streaming examples,” IEEE Transactions on Fuzzy
Systems, vol. 23, no. 2, pp. 369–386, 2015.

[16] E. D. Lughofer, “FLEXFIS: a robust incremental learning approach
for evolving Takagi-Sugeno fuzzy models,” IEEE Transactions on Fuzzy
Systems, vol. 16, no. 6, pp. 1393–1410, 2008.

[17] H. J. Rong, N. Sundararajan, G. Bin Huang, and P. Saratchandran,
“Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system
identification and prediction,” Fuzzy Sets and Systems, vol. 157, no. 9,
pp. 1260–1275, 2006.

[18] K. Subramanian, A. K. Das, S. Sundaram, and S. Ramasamy, “A meta-
cognitive interval type-2 fuzzy inference system and its projection based
learning algorithm,” Evolving Systems, vol. 5, no. 4, pp. 219–230, 2014.

[19] M. Pratama, J. Lu, and G. Zhang, “Evolving type-2 fuzzy classifier,”
IEEE Transactions on Fuzzy Systems, vol. 24, no. 3, pp. 574–589, 2016.

[20] M. Pratama, S.G. Anavatti, P.P. Angelov, and E. Lughofer, “Panfis:
a novel incremental learning machine,” IEEE Transactions on Neural
Network and Learning Systems, vol. 25, no. 1, pp. 55-68, 2014.

[21] M. Pratama, S. G. Anavatti, and E. Lughofer,“Genefis: toward an
effective localist network,” IEEE Transactions on Fuzzy Systems, vol.
22, no. 3, pp. 547–562, 2014.

[22] P. Angelov and D. Filev, “Simpł˙eTS: A simplified method for learning
evolving Takagi-Sugeno fuzzy models,” in IEEE International Conference
on Fuzzy Systems, 2005, pp. 1068–1073.

[23] R. M. Johnstone, C. Richard Johnson, R. R. Bitmead, and B. D.
O. Anderson, “Exponential convergence of recursive least squares with
exponential forgetting factor,” Systems and Control Letters, vol. 2, no. 2,
pp. 77–82, 1982.

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. XX, XX 2019 12

[24] E. Lughofer and P. Angelov, “Handling drifts and shifts in on-line data
streams with evolving fuzzy systems,” Applied Soft Computing, vol. 11,
no. 2, pp. 2057–2068, 2011.

[25] D. Ge and X. J. Zeng,“Learning evolving T-S fuzzy systems with both
local and global accuracy - a local online optimization approach,” Applied
Soft Computing, vol. 86, pp. 795–810, 2018.

[26] X. Gu, P. Angelov and H. J. Rong, “Local optimality of self-organising
neuro-fuzzy inference systems,” Information Sciences, vol. 503, pp. 351-
380, 2019.

[27] H. J. Rong, P. Angelov, X. Gu, and J. M. Bai, “Stability of evolving fuzzy
systems based on data clouds,” IEEE Transactions on Fuzzy Systems, vol.
26, no. 5, pp. 2774–2784, 2018.

[28] X. Gu and P. Angelov, “Self-boosting first-order autonomous learning
neuro-fuzzy systems,” Applied Soft Computing, vol. 77, pp. 118–134,
2019.

[29] X. Xia, C. Xie, B. Wei, Z. Hu, B. Wang, and C. Jin, “Particle
swarm optimization using multi-level adaptation and purposeful detection
operators,” Information Sciences, vol. 385–386, pp. 174–195, 2017.

[30] R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle
swarm: Simpler, maybe better,” IEEE Transactions on Evolutionary
Computation, vol. 8, no. 3, pp. 204–210, 2004.

[31] M. S. Nobile, P. Cazzaniga, D. Besozzi, R. Colombo, G. Mauri, and
G. Pasi, “Fuzzy self-tuning PSO: a settings-free algorithm for global
optimization,” Swarm and Evolutionary Computation vol. 39, pp. 70–85,
2018.

[32] Z. H. Zhan, J. Zhang, Y. Li, and H. S. H. Chung, “Adaptive particle
swarm optimization,” IEEE Transactions on Systems, Man, and Cyber-
netics - Part B: Cybernetics, vol. 39, no. 6, pp. 1362–1381, 2009.

[33] K. Chen, F. Zhou, L. Yin, S. Wang, Y. Wang, and F. Wan, “A hybrid
particle swarm optimizer with sine cosine acceleration coefficients,”
Information Sciences, vol. 422, pp. 218–241, 2018.

[34] H. L. Shieh, C. C. Kuo, and C. M. Chiang,“Modified particle swarm
optimization algorithm with simulated annealing behavior and its numer-
ical verification,” Applied Mathematics and Computation, vol. 218, no.
8, pp. 4365–4383, 2011.

[35] H. Wang, Y. Jin, and J. Doherty, “Committee-based active learning for
surrogate-assisted particle swarm optimization of expensive problems,”
IEEE Transactions on Cybernetics, vol. 47, no. 9, pp. 2664–2677, 2017.

[36] T. Peram, K. Veeramachaneni, and C. K. Mohan, “Fitness-distance-
ratio based particle swarm optimization,” in IEEE Swarm Intelligence
Symposium, 2003, pp. 174–181.

[37] Y. J. Gong, J. J. Li, Y. Zhou, Y. Li, et al., “Genetic learning particle
swarm optimization,” IEEE Transactions on Cybernetics., vol. 46, no. 10,
pp. 2277–2290, 2016.

[38] A. Lin, W. Sun, H. Yu, G. Wu, and H. Tang,“Global genetic learning
particle swarm optimization with diversity enhancement by ring topol-
ogy,” Swarm and Evolutionary Computation, vol. 44, 2018, pp. 571–583,
2019.

[39] M. Alswaitti, M. Albughdadi, and N. A. M. Isa, “Density-based particle
swarm optimization algorithm for data clustering,” Expert Systems with
Applications, vol. 91, pp. 170–186, 2018.

[40] A. Moharam, M. A. El-Hosseini, and H. A. Ali, “Design of optimal
PID controller using hybrid differential evolution and particle swarm op-
timization with an aging leader and challengers,” Applied Soft Computing,
vol. 38, pp. 727–737, 2016.

[41] H. Yang, Q. Du, and G. Chen,“Particle swarm optimization-based hy-
perspectral dimensionality reduction for urban land cover classification,”
IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 5, no. 2, pp. 544-554, 2012.

[42] P. Ghamisi and J. A. Benediktsson, “Feature selection based on hy-
bridization of genetic algorithm and particle swarm optimization,” IEEE
Geoscience and Remote Sensing Letters, vol. 12, no. 2, pp. 309–313,
2015.

[43] C .F. Juang, C. M. Hsiao, and C. H. Hsu, “Hierarchical cluster-based
multispecies particle-swarm optimization for fuzzy-system optimization,”
IEEE Transactions on Fuzzy Systems, vol. 18, no. 1, pp. 14–26, 2010.

[44] T. Chen, Q. Shen, S. Pan and C. Shang, “Fuzzy rule weight modification
with particle swarm optimisation,” Soft Computing, vol. 20, no. 8, pp.
2923-2937, 2016.

[45] E. Camci, D. R. Kripalani, L. Ma, E. Kayacan and M. A. Khanesar,
“An aerial robot for rice farm quality inspection with type-2 fuzzy neural
networks tuned by particle swarm optimization-sliding mode control
hybrid algorithm,” Swarm and Evolutionary Computation, vol. 41, pp.
1-8, 2018.

[46] S. Mirjalili, S. Z. Mohd Hashim, and H. Moradian Sardroudi, “Training
feedforward neural networks using hybrid particle swarm optimization

and gravitational search algorithm,” Applied Mathematics and Computa-
tion, vol. 218, no. 22, pp. 11125-11137, 2012.

[47] A. Okabe, B. Boots, K. Sugihara and S. Chiu, “Spatial tessellations:
concepts and applications of Voronoi diagrams,” John Wiley and Sons,
2009.

[48] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its
applications to modeling and control,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 15, no. 1, pp. 116–132, 1985.

[49] S. Saremi, S. Mirjalili, A. Lewis, A. W. C. Liew, and J. S. Dong,
“Enhanced multi-objective particle swarm optimisation for estimating
hand postures,” Knowledge-Based Systems, vol. 158, pp. 175–195, 2018.

[50] P. Angelov and R. Yager, “A new type of simplified fuzzy rule-based
system,” International Journal of General Systems, vol. 41, no. 2, pp.
163–185, 2012.

[51] H. J. Rong, N. Sundararajan, G. B. Huang and G.S. Zhao “Extended
sequential adaptive fuzzy inference system for classification problems,”
Evolving Systems, vol.2, no. 2, pp. 71-82, 2011.

[52] K. Subramanian and S. Suresh, “A meta-cognitive sequential learning
algorithm for neuro-fuzzy inference system,” Applied Soft Computing,
vol. 12, no.11, pp. 3603–3614, 2012.

[53] P. Angelov, “Fuzzily connected multimodel systems evolving au-
tonomously from data streams,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 41, no. 4, pp. 898-910, 2011.

[54] M. Pratama, J. Lu, E. Lughofer, G. Zhang, and M.J. Er, “ An incremental
learning of concept drifts using evolving type-2 recurrent fuzzy neural
networks,” IEEE Transactions on fuzzy system, vol.25, no.5, pp. 1175-
1192, 2017.

[55] N.N. Nguyen, W.J. Zhou, and C. Quek,“Gsetsk: a generic self-evolving
tsk fuzzy neural network with a novel Hebbian-based rule reduction
approach,” Applied Soft Computing, vol.35, pp. 29-42, 2015.

[56] R.J. Oentaryo, M.J. Er, S. Linn, and X. Li, “Online probabilistic learning
for fuzzy inference system”, Expert Systems with Applications, vol. 41,
no.11, pp. 5082-5096, 2014.

[57] J. de Jesus Rubio,“SOFMLS: online self-organizing fuzzy modified
leastsquares network,” IEEE Transactions on fuzzy systems, vol. 17, no.
6, pp. 1296–1309, 2009.

[58] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning precise
timing with LSTM recurrent networks,” Journal of machine learning
research, vol. 3, no. 1, pp. 115-143, 2002.

[59] D. Ge and X. J. Zeng,“A self-evolving fuzzy system which learns
dynamic threshold parameter by itself,” IEEE Transactions on fuzzy
systems, vol. 27, no. 8, pp. 1625-1637, 2019.

[60] D. Ge and X. J. Zeng,“Learning data streams online- an evolving fuzzy
system approach with self-learning/adaptive thresholds,” Information Sci-
ences, vol. 507, pp. 172-184, 2020.

