Cole, Justin and Bezanson, Rachel and Wel, Arjen van der and Bell, Eric and D'Eugenio, Francesco and Franx, Marijn and Gallazzi, Anna and Houdt, Josha van and Muzzin, Adam and Pacifici, Camilla and Sande, Jesse van de and Sobral, David and Straatman, Caroline and Wu, Po-Feng (2020) Stellar Kinematics and Environment at z~0.8 in the LEGA-C Survey : Massive, Slow-Rotators are Built First in Overdense Environments. Astrophysical Journal Letters, 890 (2): L25. ISSN 2041-8205
2001.02695v1.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial.
Download (715kB)
Abstract
In this Letter, we investigate the impact of environment on integrated and spatially resolved stellar kinematics of a sample of massive, quiescent galaxies at intermediate redshift (0.6 < z < 1.0). For this analysis, we combine photometric and spectroscopic parameters from the UltraVISTA and Large Early Galaxy Astrophysics Census surveys in the COSMOS field and environmental measurements. We analyze the trends with overdensity (1+δ) on the rotational support of quiescent galaxies and find no universal trends at either fixed mass or fixed stellar velocity dispersion. This is consistent with previous studies of the local universe; rotational support of massive galaxies depends primarily on stellar mass. We highlight two populations of massive galaxies () that deviate from the average mass relation. First, the most massive galaxies in the most underdense regions ((1 + δ) ≤ 1) exhibit elevated rotational support. Similarly, at the highest masses () the range in rotational support is significant in all but the densest regions. This corresponds to an increasing slow-rotator fraction such that only galaxies in the densest environments ((1 + δ) ≥ 3.5) are primarily (90% ± 10%) slow rotators. This effect is not seen at fixed velocity dispersion, suggesting minor merging as the driving mechanism: Only in the densest regions have the most massive galaxies experienced significant minor merging, building stellar mass and diminishing rotation without significantly affecting the central stellar velocity dispersion. In the local universe, most massive galaxies are slow rotators, regardless of environment, suggesting minor merging occurs at later cosmic times (z ≲ 0.6) in all but the most dense environments.