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Abstract

This thesis reports on the integration of ground-penetrating radar (GPR) and gamma-

ray detectors to improve the non-intrusive localisation of radioactive wastes buried in

porous materials such as soil and concrete.

The research was undertaken in two phases. In the first phase, a new non-intrusive

technique for retrieving the depth of a buried radioactive source from two-dimensional

raster radiation images was developed. The images were obtained by moving a

gamma-ray detector in discrete steps on the surface of the material volume in which

the source is buried and measuring the gamma spectrum at each step. The depth

of the source was then estimated by fitting the intensity values from the measured

spectra to an approximate three-dimensional gamma-ray attenuation model. This

procedure was first optimised using Monte Carlo simulations and then validated us-

ing experiments. The results showed that this method is able to estimate the depth

of a 658 kBq caesium-137 point source buried up to 18 cm in each of sand, soil and

gravel.

However, the use of only gamma-ray data to estimate the depth of the sources

requires foreknowledge of the density of the embedding material. This is usually

III
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difficult without having recourse to intrusive density estimation methods or historical

density values. Therefore, the second phase of the research employed integrated GPR

and gamma ray detection to solve this density requirement problem. Firstly, four

density models were investigated using a suite of materials and the best model was

then used to develop the integration method. Results from numerical simulations

showed that the developed integration method can simultaneously retrieve the soil

density and the depth and radius of disk-shaped radioactive objects buried up to 20

cm in soil of varying conditions with a relative error of less than 10%. Therefore,

the integration method eliminates the need for prior knowledge of the density of the

embedding material.

This work represents the first time data from these two systems i.e., GPR and

gamma-ray detector, will be integrated for the detection and localisation of radioac-

tive sources. Furthermore, the results from the developed methods confirm that an

integrated GPR and gamma-ray detector system is a viable tool for non-intrusive

localisation of buried radioactive sources. This will enable improved characterisation

of buried radioactive wastes encountered during the decommissioning of nuclear sites

and facilities.
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Chapter 1

Introduction

1.1 Radioactive wastes

The period following the Second World War was characterised by a dramatic increase

in nuclear activities both for military and civil applications. In the UK, the first

Magnox reactor for the generation of electricity and production of weapon-grade plu-

tonium was opened in 1956 [1]. This was rapidly followed by 25 additional Magnox

reactors by 1971, 14 advanced gas-cooled reactors by 1989, 1 pressurised water reac-

tor in 1995 and several supporting nuclear facilities [1]. This high volume of nuclear

activities, in addition to lack of well-developed standards, resulted in the generation

of large volumes of radioactive wastes.

Radioactive wastes generated from nuclear activities can generally be classified

into low-level wastes, intermediate-level wastes and high-level wastes depending on

the half-life of the radioisotopes, the activity concentration and the amount of heat

generated. In addition, the waste category determines its level of hazard and corre-

1
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sponding regulatory requirements. For example, high-level wastes have the highest

risks and consequently the most stringent regulatory requirements.

1.2 Sources of buried radioactive wastes

A significant amount of radioactive wastes generated from human activities can inad-

vertently become buried in the shallow subsurface and other porous materials. The

following subsections discuss examples and pathways through which this can occur.

1.2.1 Radioactive fallout

Nuclear accidents and weapons testing in the last 74 years have been one of the major

sources of radioactive land contamination. One of the earliest of these accidents is the

Windscale fire in 1957, which resulted in the release of about 3.4 PBq of radioactivity

across England, Wales and parts of Northern Europe [2]. The Chernobyl accident in

1986 remains the worst nuclear accident with the release of an estimated 5,300 PBq

of radioactivity into the environment, which is greater than the 340-800 PBq released

during the Fukushima accident in 2011 [3]. In addition, about 2.38 × 106 PBq of

radioactivity were released into the environment as a result of atmospheric weapons

testing mostly between 1945 to 1985 [4]. The main radionuclides in these emissions

include isotopes of iodine, caesium, strontium, plutonium and uranium. These were

released as particulates that were deposited in significant concentration around areas

closer to the incident. These particulates eventually permeated into the soil and

became buried due to rainfall and erosion.
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1.2.2 Poor disposal methods

Irradiated fuel fragments buried at depths of mostly less than 50 cm were discovered at

the beaches of Dounreay in Northwest Scotland [5, 6]. These were wastes discharged

into the ocean from the nearby Dounreay nuclear site, and washed ashore by tides

and waves. These grain-sized fragments were generated during milling to remove the

aluminium fuel claddings and they contain mainly caesium-137 radioisotope. Further-

more, the fragments were found randomly scattered over an area of about 200,000 m2

and have activities ranging from 103 to 108 Bq. Another example of poor radioactive

waste disposal in the soil is the reported case of 32 cobalt-60 sources found buried

within 32 cm of the ground surface in a Cambodian hospital [7]. These orphan sources

are thought to have been supplied by the Soviet Union during the communist era and

were used for cancer treatments [7].

1.2.3 Underground pipelines

Extensive networks of underground pipelines are used to transport liquid radioactive

wastes such as sludge, liquor etc. in nuclear facilities. The main contamination

from these pipelines are due to leakage of the liquid waste from the buried pipes

and subsequent contamination of the surrounding soil. For example, the UK has

approximately 760 km of pipelines on nuclear sites some of which are known to have

leaked [8]. In addition, long-term accumulation of highly active particles inside the

pipe due to scale build up can lead to significant radiation levels above the ground

for pipes buried less than 50 cm below the ground surface [9].
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1.2.4 Irradiated building materials

Another category of buried radioactive waste are waste entrained in porous building

materials such as concrete and bricks. Concrete is the major material used in building

nuclear structures such as reactor containments, silos, fuel ponds etc. because it

provides good shielding and is inexpensive [10, 11]. These concrete structures become

contaminated when irradiated either by the neutron flux produced during fission or by

high-level liquid wastes from leaks and spills [10]. Furthermore, this contamination can

penetrate deep into the concrete over time especially through defects such as cracks

[12]. Irradiated building materials can be a significant part of the waste volumes

encountered during decommissioning of nuclear plants [13].

1.3 Risks and challenges of buried radioactive wastes

1.3.1 Human exposure to ionising radiation

The short-term effects of human exposure to ionising radiation include ulceration of

the skin and internal organs (in case of ingestion), while long-term effects include

cancer, gene mutation and death [5, 6]. Consequently, sources of human exposure to

ionising radiation are major public health risks.

Shallow buried radioactive sources can induce high levels of radiation above the

ground. For example, one of the cobalt-60 sources found buried at the Cambodian

hospital [7] induced radiation levels of up to 60 mSv h-1 above the ground. This is

about 26,000 times higher than the stipulated effective dose limit of 20 mSv per year
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[14]. Also, buried radioactive sources in beaches like the Dounreay particles can be

inadvertently dug up by beachgoers resulting in direct contact and even ingestion.

Another risk associated with buried radioactive waste is their absorption by plants.

For instance, caesium-137 is highly soluble and is easily taken up by plants as a

substitute for potassium [15]. This can lead to ingestion of caesium-137 either through

direct consumption of these plants or through consumption of products from animals

that graze on these plants. In addition, the dissolution of these underground wastes

can lead to contamination of underground water.

1.3.2 Nuclear decommissioning challenges

Nuclear decommissioning is the systematic shutdown, removal or reduction of radi-

ological hazards to regulatory levels and restoration of a nuclear site to unrestricted

use [10]. This is an expensive process that can last for decades. For instance, the

ongoing decommissioning of the Sellafield nuclear site is expected to be completed by

2120 at a cost of about £53 billion [16]. One of the first critical tasks in nuclear de-

commissioning is radiological characterisation. This is the identification of the type,

category, quantity and location of all radioactive sources in the nuclear site. Charac-

terisation is critical because the entire decommissioning process is heavily influenced

by the nature and quantity of wastes and their regulatory requirements [10].

The characterisation of buried radioactive wastes poses a unique decommission-

ing challenge mainly because of the difficulty in estimating the burial depth of these

wastes. Knowledge of the burial depth is important because it determines the best

waste decontamination method. For instance, the decontamination of concrete struc-
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tures is usually a choice between removal of the contaminated layer (e.g. scarification)

and designation of the entire structure as waste [13]. However, removal of the con-

taminated layer is expensive and laborious if the contamination is too deep. On the

other hand, designation of the entire structure as waste unnecessarily increases the

volume and cost of wastes to be disposed if the contamination is shallow.

1.4 Buried radioactive wastes characterisation meth-

ods and limitations

The risks and challenges of buried radioactive wastes discussed in the previous section

underscores the need for effective characterisation to ensure their prompt and safe

disposal. The traditional methods of characterising buried radioactive sources are:

1.4.1 Gamma logging and core sampling

Gamma logging involves lowering sensing probes (consisting of a gamma-ray detector

and associated electronics) into boreholes to measure the variation of radioactivity

with depth along the borehole. This technique is commonly used in geological ex-

ploration to investigate variations in natural radioactivity when searching for mineral

deposits such as petroleum and uranium [17, 18]. Gamma logging have also been used

in estimating the depth and activity of buried waste during decommissioning and land

remediation [7, 19]. Figure 1.4.1 is an example of a gamma log plot of a radioactive

source buried at about 32 cm.

Core sampling is related to gamma logging however, instead of lowering the
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gamma-ray detector into the borehole, columns of the soil or concrete are extracted

and analysed [20]. The analysis could be simply moving a gamma-ray detector along

the extracted core or dividing the core into sections for detailed analysis. Core sam-

pling is useful when the detector is to be protected from contamination.

Figure 1.4.1: Gamma log showing variation of dose rate with depth of a buried cobalt-

60 source [7]. The maximum dose rate is at 32 cm which indicates the likely depth of

the source.

Gamma logging and core sampling usually yield accurate results however, they

are intrusive and time consuming. They also have limited sampling extent because

subsurface contaminations often span a wide area. In addition, the gamma logging

probe can easily become contaminated during operation and become an additional

radioactive waste.
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1.4.2 Radiation imaging

Radiation imaging techniques are also used in the detection and localisation of ra-

dioactive sources [21–24]. The radiation cameras used in the localisation of radioactive

sources can be broadly divided into two namely: collimated and Compton cameras.

Collimated cameras use a collimator to limit the gamma rays reaching the detector to

those only in the direction of interest. They include pin-hole cameras that have only

a single tiny aperture into the collimator [21], and coded-aperture cameras that have

multiple apertures arranged in a pattern [22]. Compton cameras use the Compton

scattering principle to reconstruct an image of the source in order to find its location

[24].

The images produced by radiation cameras are two-dimensional (2D) spatial dis-

tribution of the intensity of a radioactive source on a plane. When overlaid on a

visual image of the scene, the radiation images provide a rapid way of localising a

buried radioactive source on the surface of the material volume in which it is buried.

However, the burial depth remains unavailable thereby limiting the usefulness of these

images in three-dimensional (3D) localisation of buried sources.

1.5 Research objectives and contributions

To overcome the limitations of the aforementioned methods, this thesis proposes to

integrate gamma-ray detectors and ground-penetrating radar (GPR) to improve the

non-intrusive localisation of buried radioactive wastes. The key objectives are:
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• Develop a method for estimating the depth of buried radioactive sources from

radiation images.

• Identify contextual information obtainable from GPR that is relevant to the

localisation of buried radioactive sources.

• Identify and develop suitable models for the contextual parameter(s).

• Develop a method to integrate the contextual data from the GPR, and the

radiation data from the gamma-ray detectors for non-intrusive depth estimation

of buried radioactive sources.

The main research contributions are:

• Development of a new method for non-intrusive depth estimation of buried

radioactive sources using 2D raster radiation images.

• Development of a new method for integrating data from GPR and gamma-ray

detectors for non-intrusive depth estimation of buried radioactive sources.

1.6 Achievements

1.6.1 Peer-reviewed journal publications

1. I. K. Ukaegbu, K. A. A. Gamage and M. D. Aspinall. Integration of Ground-

Penetrating Radar and Gamma-Ray Detectors for Non-intrusive Characterisa-

tion of Buried Radioactive Objects. Sensors, 19(12):2743, 2019.
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2. I. K. Ukaegbu, K. A. A. Gamage and M. D. Aspinall. Non-intrusive Depth

Estimation of Buried Radioactive Wastes Using Ground Penetrating Radar and

a Gamma Ray Detector. Remote Sensing, 11(2):141, 2019.

3. I. K. Ukaegbu and K. A. A. Gamage. A Model for Remote Depth Estimation of

Buried Radioactive Wastes Using CdZnTe Detector. Sensors, 18(5):1612, 2018.

4. I. K. Ukaegbu and K. A. A. Gamage. A Novel Method for Remote Depth

Estimation of Buried Radioactive Wastes. Sensors, 18(2):507, 2018.

5. I. K. Ukaegbu and K. A. A. Gamage. Ground Penetrating Radar as a Contex-

tual Sensor for Multi-Sensor Radiological Characterisation. Sensors,17(4):790,

2017.

1.6.2 Conference publications

1. I. K. Ukaegbu, K. A. Gamage, M. Aspinall. Estimating the Depth of Buried

Radioactive Sources using Ground Penetrating Radar and a Gamma Ray De-

tector. In Proceedings of the 2019 IEEE International Symposium on Antennas

and Propagation and USNC-URSI Radio Science Meeting, Atlanta, US, 7-12

July 2019.

2. I. K. Ukaegbu, K. A. Gamage. Validation Of A Model For non-intrusive Depth

Estimation Of Radioactive Wastes. In Proceedings of the 2018 IEEE Nuclear

Science Symposium and Medical Imaging Conference, Sydney, Australia, 10-17

November 2018.
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3. I. K. Ukaegbu, K. A. Gamage. Real-Time Non-Intrusive Depth Estimation Of

Buried Radioactive Wastes Based On Approximate Three-Dimensional Relative

Attenuation Model. In Proceedings of the 21st IEEE Real Time Conference,

Virginia, USA, 9-15 June 2018.

4. I. Ukaegbu, K.A.A. Gamage. Radiological Characterisation Using Radiation

Imaging And Ground Penetrating Radar. In Proceedings of the 10th Interna-

tional Topical Meeting on Industrial Radiation and Radioisotope Measurement

Applications (IRRMA-X), Chicago, USA, 9-13 July 2017.

5. I. K. Ukaegbu and K. A. A. Gamage. Parametric Analysis and Bandwidth

Optimisation of Hybrid Linear-exponential Tapered Slot Vivaldi Antennas. In

Proceedings of the IET Loughborough Antenna and Propagation Conference,

Loughborough, UK, 13-14 November 2017.

1.7 Chapter outline

• Chapter 2: This chapter presents the relevant radioactivity and GPR theories

that were used in this thesis.

• Chapter 3: This chapter is a critical review of existing literature on the in-

tegration of gamma-ray detectors with a wide variety of sensors to improve

the characterisation of radioactive sources. It identifies the limitations of these

sensors and proposes GPR as a contextual sensor for characterising buried ra-

dioactive sources.
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• Chapter 4: The development of a non-intrusive method for estimating the

depth of a buried radioactive source from 2D raster gamma images is presented

in this chapter. The method is based on an approximate 3D gamma-ray atten-

uation model. The results from Monte Carlo simulations and experiment using

an organic liquid scintillator gamma-ray detector are presented and discussed.

• Chapter 5: Further investigation of the depth estimation method developed in

Chapter 4 is presented in this chapter. The experiments were undertaken using

a cadmium zinc telluride (CZT) gamma-ray detector which has better energy

resolution compared to the organic liquid scintillator detector. The use of the

CZT detector increased the maximum detectable depth by 50% using only 14%

of the average count rate compared to organic liquid scintillator detector.

• Chapter 6: The combination of GPR and gamma-ray detector for the non-

intrusive estimation of buried radioactive sources is presented in this chapter.

The role of the GPR was to enable non-intrusive estimation of the bulk density

required by most depth estimation methods including that developed in Chap-

ters 4 and 5. Four density models were investigated and the results showed that

the exponential mixing model with an exponential value of 0.65 gave the best

bulk density estimates across a suite of materials.

• Chapter 7: This chapter presents the development of a method for integrating

GPR and gamma-ray detector for rapid characterisation of buried radioactive

objects. The method exploits the density relationship between the flux mea-

sured by the gamma-ray detector and the density model identified in Chapter
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6 to simultaneously estimate the radius and depth of a disk-shaped radioactive

object, and the density of the material in which it is buried. The results from

Monte Carlo simulations using experimentally validated detector models are

presented and discussed.

• Chapter 8: Discussions and summary of the thesis is presented in this chapter

in addition to suggestions on further improvements on the methods developed

in the thesis.



Chapter 2

Background

2.1 Introduction

This chapter presents the theories underlining the principles used in this thesis and is

broadly divided into two parts. The first part introduces the concept of radioactivity

with special focus on gamma rays which is the radiation of interest in this thesis.

It also discusses the interaction of gamma rays with matter which is important in

understanding the operations of gamma-ray detectors and the behaviour of gamma

rays emitted by radioactive sources buried inside materials. The last section in this

part introduces gamma-ray spectroscopy which is the process of measuring gamma

rays. The second part of this chapter presents the electromagnetic theories pertinent

to GPR and derives some of the key GPR equations used in this thesis.

14
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2.2 Gamma rays

Gamma rays are high-energy electromagnetic (EM) radiation emitted when the nu-

cleus of an atom transits from a higher to a lower excitation state [25]. This is typically

preceded by the emission of alpha or beta rays from the nucleus of the unstable atom

in the process known as radioactivity. Alpha rays are positively charged atoms of

Helium (42He) while beta (β) rays can either be negatively charged (i.e. electrons)

or positively charged (i.e. positrons). For a given radioactive source, the number of

unstable nuclei decreases exponentially over time by a characteristic factor known as

the decay constant [26], i.e.,

N = N0e
−λt (2.2.1)

where N is the number of nuclei at time t, N0 is the number of nuclei at t = 0 and λ is

the decay constant. Furthermore, the time taken for the number of unstable nuclei to

reduce by one-half is known as the half-life T1/2 and is related to the decay constant

by

T1/2 =
ln 2

λ
(2.2.2)

The rate at which a given radioactive sample decays is known as the specific activity

or decay rate and is given by [26]

Dr =
λAv

M
(2.2.3)
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where Dr is decay rate (decays s-1 g-1), Av is the Avogadro’s number and M is the

sample’s molecular weight.

Gamma rays were first identified in 1900 by Paul Villard as part of the stream

of emissions from radioactive materials earlier observed by Henri Becquerel in 1896

[27]. In his experiments, Paul Villard observed that gamma rays easily penetrate

thick black paper and are chargeless, i.e. they do not respond to magnetic fields. In

addition to having no charge, gamma rays are also massless and exist as packets of

EM energy commonly referred to as photons. This makes them to have significantly

higher penetrability compared to alpha and beta particles. For instance, alpha and

beta rays are stopped by thin layers of paper and aluminium respectively, while thick

blocks of lead are required to stop gamma rays. Consequently, gamma rays are the

primary radiation of interest in buried radioactive waste detection and is the focus of

this research.

Finally, radioactive elements that emit gamma rays can be naturally occurring, e.g.

radium-226, which undergoes alpha decay (Equation (2.2.4)), or artificially synthe-

sised e.g. caesium-137, which undergoes beta decay (Equation (2.2.5)). However, the

synthesised radioisotopes constitute most of the gamma-emitting radioactive wastes

encountered during nuclear decommissioning.

226
88 Ra −→ 222

86 Rn + 4
2He + 0

0γ (2.2.4)

137
55 Cs −→ 137

56 Ba + 0
−1β (2.2.5)
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2.2.1 Gamma-ray interactions with matter

The energy of a gamma ray is an important factor in its interaction with matter

because it determines the type of interaction the gamma ray undergoes [26]. This

energy is measured in electron volts (eV) where 1 eV = 1.60217657 × 10-19 J is the work

done when an electron moves through a potential difference of one volt. Gamma rays

undergo three major types of interactions namely: photoelectric absorption, Compton

scattering and pair production [26].

Photoelectric absorption

In photoelectric absorption, the incident gamma ray transfers all of its energy upon

interaction with the orbital electron of an atom and goes into extinction. A small

percentage of the gamma-ray energy is used to dislodge the electron from its orbit

however, most of the energy is transferred to the dislodged electron as kinetic energy.

The probability of photoelectric absorption depends on the energy of the gamma ray,

the binding energy of the electron and the atomic number. Tightly-bound electrons,

i.e. electrons closer to the nucleus, have a greater probability of causing photoelectric

absorption. Consequently, a large percentage of photoelectric absorption interactions

involve K-shell electrons [28]. In addition, the dependence of photoelectric absorption

on the atomic number Z is approximately of the order of Zn where n varies between

4 and 5 [26]. Therefore, materials with high atomic numbers are commonly used

as gamma-ray shields and detectors. Finally, the almost complete transfer of the

gamma energy makes photoelectric absorption an important process in the detection
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of gamma ray. This is because the pulses induced by the freed electrons result in a

full-energy peak in the generated gamma spectrum.

Compton Scattering

The main feature of Compton scattering is the partial transfer of the gamma-ray

energy upon interaction with the electrons of an atom. This occurs when the gamma

ray collides with outer shell electrons that are weakly bonded to the nucleus. Since

the binding energy of these electrons are much less than the energy of the gamma ray,

only part of the gamma-ray energy is transferred due to the law of conservation of

energy and momentum. Consequently, the gamma ray does not cease to exist, rather

it is scattered at an angle and continues travelling with decreased energy (Figure

2.2.1). The new energy of the scattered gamma ray, Es, is:

Es =
Ei

1 +
(

Ei
m0c2

)
(1− cos θ)

(2.2.6)

where Ei is the energy of the incident gamma ray, m0c
2 is the mass of an electron at

rest (0.511 MeV) and θ is the scatter angle. The probability of Compton scattering

depends mainly on the electron density and only slightly on the atomic number since

it involves electrons relatively far away from the nucleus.
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Figure 2.2.1: Compton scattering of an electron by a photon.

Pair production

Pair production interaction occurs when the energy of the incident gamma ray is

greater than 1.022 MeV, i.e. twice the rest-mass energy of an electron. In this inter-

action, the gamma ray ceases to exist and is replaced by an electron-positron pair.

Any excess energy left after the creation of the pair is shared between the electron

and positron as kinetic energy. The positron will eventually be slowed down by

the material medium and combine with an electron in an annihilation process. The

annihilation process mostly produces two gamma rays with energies of 0.511 MeV,

which may escape or be absorbed in the material. In addition, the probability of pair

production increases with the square of the atomic number (i.e. Z2).

2.2.1.1 Gamma ray attenuation in matter

When gamma rays pass through a bulk of material, some lose part or all of their

energy and cease to exist due to the interaction mechanisms already described. The
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cumulative effect of these atomic interactions is the attenuation of the gamma rays as

they travel through the material. This attenuation was discovered to be exponential

by Soddy and Russel in 1909 [29] and is the basis of the gamma-ray attenuation law

which states that the intensity I of gamma rays after passing through a material of

thickness z is:

I = I0e
−µz (2.2.7)

where I0 is the intensity of the gamma rays at the point of incidence with the material

and µ is the linear attenuation coefficient (cm-1). The linear attenuation coefficient is

a composition of the attenuation effects of the three atomic interaction mechanisms.

This is illustrated in Figure 2.2.2 which shows the relative contribution of each of the

interactions to the linear attenuation coefficient. The mass attenuation coefficient µm

(Equation (2.2.8)), is the ratio of the linear attenuation coefficient and the material’s

bulk density ρb and is constant for all physical states of a material at a given energy

[26].

µm =
µ

ρb
(2.2.8)
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Figure 2.2.2: Contribution of photoelectric absorption, Compton scattering and pair

production to the linear attenuation coefficient of NaI [28]

2.2.2 Detection of gamma rays

The presence of gamma rays is detected by means of the electrons liberated when

they interact with the atoms of matter [26]. The liberated electrons usually go off

to free more electrons within the surrounding material volume. This results in the

building up of charges which can be collected and converted into an electrical pulse

whose amplitude is proportional to the energy deposited by the incident gamma ray.

Therefore, a gamma-ray detector typically consists of a material that is sensitive to

gamma-ray interactions, and appropriate electronics to convert the resulting freed
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charges to voltages.

2.2.2.1 Gas-filled detectors

Gas-filled detectors have a sensitive volume of gas between two electrodes which create

an electric field that collects the electrons liberated when the gamma rays interact

with the gas molecules. There are three types of gas-filled detectors depending on

the voltage supplied to the electrodes. These are ionisation chamber, proportional

counter and Geiger-Mueller (GM) detector. Ionisation chambers operate at the lowest

voltage that ensures that only the primary electrons liberated by the gamma rays are

collected. Proportional counters operate at a higher voltage compared to ionisation

chambers. This results in secondary ionisation which helps to amplify the output

signal [26]. Both ionisation chambers and proportional counters produce outputs that

are proportional to the energy deposited by the incident gamma rays. GM detectors

operate at the highest voltage level for gas-filled detectors. This high voltage causes

ionisation saturation resulting in an output signal that is not proportional to the

deposited energy.

Ionisation chambers and proportional counters are mostly used in low-energy

gamma ray monitoring and spectroscopy in medicine and physics research [30, 31].

GM detectors are employed as dosimeters in radiation monitors as they lack the en-

ergy information required for spectroscopy. Gas-filled detectors are commonly not

used in non-destructive gamma-ray assay because scintillation and solid-state detec-

tors provide significantly better performance.
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2.2.2.2 Scintillation detectors

Scintillation detectors consist of a luminescent material (scintillator) that emits light

upon interaction with gamma rays. The scintillator is optically coupled to a light

sensitive device called a photomultiplier tube (PMT) as shown in Figure 2.2.3. Light

emissions striking the photocathode of the PMT release electrons, which are acceler-

ated across the PMT by a strong electric field. As the electrons are accelerated, they

collide with each dynode thereby liberating more electrons. The cumulative effect of

this multiple collisions is the amplification of the electron flux that finally arrives at

the anode. The output pulse at the anode is proportional to the energy deposited by

the gamma ray if light loss is kept at minimum [32].

Figure 2.2.3: Scintillator optically coupled by a light guide to the PMT.

The scintillator material can be organic or inorganic. Common inorganic scintil-

lators include thalium doped sodium iodide (NaI(Tl)) and caesium iodide (CsI(Tl)).

These are the workhorse of the of the nuclear industry and are widely used in de-

commissioning, medicine, safety and security, and physics research [33–37] because



CHAPTER 2. BACKGROUND 24

they are relatively cheap and have reasonably good spectroscopic qualities. Other

common inorganic detectors include bismuth germanate (Bi4Ge3O12) [38], cerium bro-

mide (CeBr3) [39], and cerium doped lanthanium bromide (LaBr3(Ce)) [40]. Organic

scintillators are hydrocarbon compounds which can be liquid e.g. EJ309 [41] or solid

crystals e.g. Anthracene and Stilbene [42]. Organic liquid scintillators can also be

solidified into plastics using polymerising solvents. These plastic scintillators are pop-

ular alternatives to the liquid and crystal scintillators because they are inexpensive,

and can easily be machined into various shapes and sizes [43]. Organic scintillators

have a characteristic fast decay time making them suitable for detecting mixed gamma

and neutron fields using pulse shape discrimination techniques [44].

Despite their popularity, scintillation detectors have limited energy resolution.

The energy resolution of a detector is defined as the ratio of the full width at half

maximum of the photo-peak to the photo-peak energy [45]. The resolution of scin-

tillation detectors is typically between 3 to 10 % [26]. This limited resolution makes

them unsuitable for high resolution applications such as the verification of nuclear

fuel materials e.g. plutonium-239 and uranium-235.

2.2.2.3 Solid-state detectors

The sensitive material in a solid-state detector is a semi-conductor that produces

electron-hole pairs when incident by a gamma ray. When a bias voltage is applied,

an electric field is created which forces the liberated electrons and holes to migrate

to the corresponding electrodes. This flow of charges is converted to a voltage pulse

that is proportional to the energy of the incident gamma ray using a charge amplifier.
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Solid-state detectors are at the highest end in the grade of gamma-ray detectors

because of their superior energy resolution (typically below 1 % [26]). A common

example is high-purity germanium (HPGe) which has the high resolution required for

verification of nuclear materials such plutonium-239 and uranium-235 [46, 47]. How-

ever, one major limitation of HPGe detectors is the need for cooling during operation.

Consequently, they are always bundled with bulky cooling systems which decreases

their portability. Other solid-state detectors such as cadmium telluride (CdTe) and

cadmium zinc telluride (CZT) operate at room temperature but have lower energy

resolution compared to HPGe. However, they are suitable alternatives to HPGe when

portability is a priority e.g. hand-held gamma cameras [24, 48, 49].

2.2.3 Gamma-ray spectroscopy

The rate and energy of the gamma rays emitted by a nucleus are characteristic of

the decaying radioisotope. This means that information about the radioisotope can

be obtained by measuring and studying the range of energies of the emitted gamma

rays. This is referred to as gamma-ray spectroscopy and is an indispensable tool

in gamma-ray assay. The key components of a gamma-ray spectroscopy system are

shown in Figure 2.2.4. The preamplifier converts the low amplitude current pulse

from the detector to a voltage pulse that is proportional to the energy deposited by

the gamma ray. This voltage pulse is further amplified and shaped by the amplifier

to meet the input requirements of the multichannel analyser (MCA).

The MCA digitises and sorts the voltage pulses into a histogram of amplitudes

called the pulse height spectrum [50]. The digitisation is done by an ADC which
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accepts the analogue pulse and outputs a binary number that is proportional to the

pulse’s amplitude. The binary outputs of the ADC are then sorted into appropriate

channels by other components of the MCA to generate the spectrum. The MCA can

also operate in other modes such as multichannel scaling mode where the number

of pulses over a given time is counted in order to generate a histogram of counts

[50]. A comprehensive description of the gamma-ray spectroscopy instrumentation

and method used in this research is presented in Subsection 5.3.3. In addition, a

description of the custom programme developed for data acquisition and a MATLAB

implementation of the pulse height spectrum algorithm are given in Appendices B

and C respectively.

Figure 2.2.4: Components and process of gamma-ray spectroscopy.

2.3 Ground-penetrating radar

Ground-penetrating radar is a geophysical technique that employs radio detection

and ranging (radar) for non-intrusive subsurface investigation. It uses EM waves to

actively interrogate the medium under investigation in order to extract information

about its internal properties and objects that may be buried therein. It is widely used

in fields such as mining and mineral exploration [51], monitoring of soil properties in
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agriculture [52], unexploded ordinance survey [53], non-destructive testing [54] and

monitoring of utilities [55].

Figure 2.3.1: Operational principles of the GPR technique. The transmitted signals

are reflected by any intervening objects and are captured by the receiving antenna.

Adapted from [56]

In general, the operation of the GPR involves transmitting an EM signal into

the medium under investigation(Figure 2.3.1). As the signals propagate inside the

medium, they are reflected when they encounter a boundary, i.e. an object or a

different material layer. These reflected signals are then measured by the receiving

antenna for processing and analysis. The time between transmission and reception of

the signal is related to the distance of the cause of the reflection, while the amplitude

of the received signal is also related to the electromagnetic properties of the reflector.
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2.3.1 GPR Systems

The most common type of GPR system is the impulse GPR, which operates in the

time domain using an ultra-wide bandwidth pulse [57]. A high-level block diagram

of the key components of a typical impulse GPR system is shown in Figure 2.3.2.

The transmitter unit consists mainly of the pulse generator which generates a high

amplitude pulse upon initiation by the timing unit. The generated pulse have a very

short duration (in the order of micro and nano seconds) and is centred on the operating

frequency of the GPR system. Typical centre frequencies for GPR systems range from

a few hundred megahertz to about 5 GHz [58]. The generated pulse is fed into the

transmitting antenna. The antenna plays the role of a transducer and is a critical

component of any GPR system. This is because it determines the characteristics of

the pulse that is eventually transmitted. In other words, the output signal from the

GPR system is a convolution of the transfer function of the pulse with that of the

antenna [57]. Therefore, the choice and design of the antenna should ensure desirable

properties such as high gain and narrow beamwidth across the bandwidth of the pulse

[59]. Common types of antennas used in GPR systems include bow-tie [60], Vivaldi

[61] and horn [62] antennas.
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Figure 2.3.2: Block diagram showing key components of an impulse GPR system.

Adapted from [56]

The reflected pulse captured by the receiving antenna is a significantly attenuated

version of the transmitted pulse and needs to be amplified in the receiver unit. This

is done using a low noise amplifier (LNA) to minimise the amplification of system

noise. After amplification, the pulse is sampled and digitised by the analogue to

digital converter (ADC) and stored for display and post processing.

2.3.2 Electromagnetic theory related to GPR

The application of GPR relies on the interaction between EM waves and the con-

stituent materials of the surrounding medium. The two interaction mechanisms rele-

vant to GPR are EM wave propagation and EM wave scattering.
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2.3.2.1 Propagation of electromagnetic waves

The properties of an EM wave propagating through a medium depends on the source

of the field and the EM properties of the medium [63]. The EM properties of a medium

are permittivity, conductivity and permeability. The permittivity is a measure of the

resistance offered by a material to the influence of an electric field and has unit of

farad per meter (F m-1). The permeability is a magnetic property of a material that

indicates its ability to allow the formation of magnetic fields. It is the magnetic

equivalent of the permittivity and has unit of henry per meter (H m-1). However,

in GPR applications, the influence of permeability is minimal because the materials

often investigated are non-magnetic. Consequently, permeability is usually assumed

to be equal to that of free space (i.e. 4π× 10−7 H m-1). Conductivity is a measure of

a material’s ability to allow the flow of charges under the influence of electric fields

and is measured in siemens per meter (S m-1).

The relationship between these aforementioned EM material properties and the

electric field induced by the EM wave is described by the Maxwell’s equations and

constitutive relations. Furthermore, for a source-free lossy homogeneous medium with

permittivity, ϵ, conductivity, σ, and permeability ϱ, the Maxwell’s equations can be

reduced to the Helmholtz equation of a propagating wave [63], i.e.

∇2E⃗ + ω2ϱϵ
(
1− j

σ

ωϵ

)
E⃗ = 0 (2.3.1)

where E⃗ is the electric field vector and ω is the angular frequency (assuming a time

dependency of the form ejωt). Equation (2.3.1) can further be simplified by considering
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the x component of a plane wave that varies only in the z direction. This yields

δ2Ex

δz2
+ ω2ϱϵ

(
1− j

σ

ωϵ

)
Ex = 0 (2.3.2)

The solution to Equation (2.3.2) is

Ex(z) = E+
0 e

−kz + E−
0 e

kz (2.3.3)

where k is the known as the wave number and is given by

k = jω

√
ϱϵ
(
1− j

σ

ωϵ

)
(2.3.4)

The first term in Equation (2.3.3) represents a wave travelling in the +z direction

while the second term represents a wave travelling in the −z direction. If a complex

propagation constant is defined for the medium such that

k = jω

√
ϱϵ
(
1− j

σ

ωϵ

)
= a+ jb (2.3.5)

where a is the attenuation constant (nepers per meter) and a is the phase constant

(radians per meter), then the +z travelling wave can be rewritten as

Ex(z) = E0(e
−aze−jbz) (2.3.6)

which has a time domain equivalent of

Ex(z, t) = Re{E0(e
−aze−jbz)ejωt} = E0e

−az cos (ωt− bz) (2.3.7)

It can be seen from Equation (2.3.7) that the wave is exponentially attenuated by a

factor of a as it propagates through the medium. Furthermore, if the phase of the

wave is set to a constant and differentiated with respect to time, the velocity v of

propagation will be obtained as

v =
ω

b
(2.3.8)
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Also, the expansion of Equation (2.3.5) will yield the expressions for a and b as

a = ω
√
ϱϵ

√√√√0.5

(√
1 +

( σ

ωϵ

)2
− 1

)
(2.3.9)

and

b = ω
√
ϱϵ

√√√√0.5

(√
1 +

( σ

ωϵ

)2
+ 1

)
(2.3.10)

The velocity of the EM wave in the investigated medium is important in GPR ap-

plications because it enables the estimation of the depth of buried objects. Therefore,

an expression of the velocity in terms of the medium’s EM properties (i.e. permittiv-

ity, conductivity and permeability) is useful. This can be obtained from Equations

(2.3.8) and (2.3.10) as

v =
1

√
ϱϵ

√
0.5

(√
1 +

(
σ
ωϵ

)2
+ 1

) (2.3.11)

Furthermore, for most materials such as soil and concrete, and for frequencies used in

GPR applications, the
(

σ
ωϵ

)2 term in Equation (2.3.11) is much less than 1. Also, both

the permittivity and permeability are usually expressed as relative quantities, i.e. as

a ratio of their corresponding free space values, ϵ0 and ϱ0 respectively. Therefore,

Equation (2.3.11) can be approximated as

v =
1

√
ϱϵ

=
c√
ϱϵ

ϱ0ϵ0

=
c

√
ϱrϵr

(2.3.12)

where c is the free space velocity (299,792,458 m s-1), ϱr and ϵr are the relative

permeability and permittivity respectively. Equation (2.3.12) plays a very important

role in GPR applications because it enables the velocity of the transmitted GPR signal

to be characterised only by the medium’s permittivity. This is because the relative
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permeability of the materials typically investigated using GPR (e.g. soil, concrete,

ice etc.) can be assumed to be equals to 1 since they are non-magnetic.

2.3.2.2 Scattering of electromagnetic waves

A propagating EM wave undergoes scattering when it encounters a boundary or in-

terface, i.e. a change in the EM properties of the traversed medium. This scattering

phenomenon causes a portion of the wave to be reflected while the remaining portion

is transmitted through the interface. The proportion of the reflected and transmitted

waves is determined by the reflection and transmission coefficients, which depends on

the geometry of the interface and the EM properties of the two media at the interface.

For a planar interface between two media e.g. air-ground interface, the scattering of

an incident EM wave is illustrated in Figure 2.3.3.

(a) (b)

Figure 2.3.3: Scattering of an EM wave at the interface between two media. (a)

Transverse electric (TE) scattering (b) Transverse magnetic (TM) scattering

As can be observed in Figure 2.3.3, there are two canonical cases: transverse elec-
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tric (TE) and transverse magnetic (TM), depending on which field is in the interface

plane. By applying the boundary conditions for the tangential fields at the interface

[63], the reflection and transmission coefficients, R and T respectively, for the TE and

TM cases can be determined as:

RTE =

√
ϵr,2
ϱr,2

cos θi −
√

ϵr,1
ϱr,1

cos θt√
ϵr,2
ϱr,2

cos θi +
√

ϵr,1
ϱr,1

cos θt
(2.3.13)

TTE =
2
√

ϵr,2
ϱr,2

cos θi√
ϵr,2
ϱr,2

cos θi +
√

ϵr,1
ϱr,1

cos θt
(2.3.14)

RTM =

√
ϵr,2
ϱr,2

cos θt −
√

ϵr,1
ϱr,1

cos θi√
ϵr,2
ϱr,2

cos θt +
√

ϵr,1
ϱr,1

cos θi
(2.3.15)

TTM =
2
√

ϵr,2
ϱr,2

cos θi√
ϵr,2
ϱr,2

cos θt +
√

ϵr,1
ϱr,1

cos θi
(2.3.16)

where ϵr,1, ϵr,1, ϱr,2 and ϱr,2 are the relative permittivities and permeabilities of the

media, and θi and θt are the incident and transmission angles respectively. At normal

incidence (i.e. θi = θt = 0) and using the fact that ϱr,1 = ϱr,2 = 1, the transmission

and reflection coefficients reduces to

R =

√
ϵr,2 −

√
ϵr,1

√
ϵr,2 +

√
ϵr,1

(2.3.17)

T =
2
√
ϵr,2

√
ϵr,2 +

√
ϵr,1

(2.3.18)

Equations (2.3.17) and (2.3.18) are important in GPR applications because it enables

the estimation of the relative permittivity of a homogeneous media if that of the

second media is known e.g. air which has a known relative permittivity of 1.
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3.1 Abstract

Radioactive sources exist in environments or contexts that influence how they are de-

tected and localised. For instance, the context of a moving source is different from a

stationary source because of the effects of motion. The need to incorporate this con-

textual information in the radiation detection and localisation process has necessitated

the integration of radiological and contextual sensors. The benefits of the success-
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ful integration of both types of sensors is well known and widely reported in fields

such as medical imaging. However, the integration of both types of sensors have also

led to innovative solutions to challenges in characterising radioactive sources in non-

medical applications. This paper presents a review of such recent applications. It also

identifies that these applications mostly use visual sensors as contextual sensors for

characterising radiation sources. However, visual sensors cannot retrieve contextual

information about radioactive wastes located in opaque environments encountered at

nuclear sites, e.g., underground contamination. Consequently, this paper also exam-

ines ground-penetrating radar (GPR) as a contextual sensor for characterising this

category of wastes and proposes several ways of integrating data from GPR and ra-

diological sensors. Finally, it demonstrates combined GPR and radiation imaging for

three-dimensional localisation of contamination in underground pipes using radiation

transport and GPR simulations.

3.2 Introduction

The detection of ionising radiation is critical in fields such as medicine, security and

monitoring, and decommissioning of nuclear sites and facilities. While every ionis-

ing radiation is associated with some level of hazard, highly penetrating neutron and

gamma radiations are of particular interest. This is because their high penetrability

makes them to be both harmful and beneficial: harmful because they pose significant

dosage risks to both humans and materials even from far off distances, and beneficial

because they can be used to detect and image objects located in opaque environ-
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ments, such as internal body organs [64], buried mines [65], etc. Furthermore, their

high penetrability enables them to be detected from stand-off distances, thereby al-

lowing appropriate safety measures to be implemented. Consequently, a wide range of

radiological sensors [21–24] have been developed for stand-off non-destructive detec-

tion of both neutron and gamma radiations. These sensors exploit the effects of the

interactions (i.e. absorption, scattering and pair production) of these radiations with

special materials to detect and image the sources of these radiation, thereby enabling

them to be characterised [26].

However, radiation sources exist in an environment referred to as context. This

refers to surrounding extrinsic factors that influence the detection, localisation and

subsequent retrieval of these sources of radiation. For instance, the context of a sta-

tionary source is different from a source in motion because the motion of the source

imposes additional challenges to its detection. Similarly, characterising sources lo-

cated on visible surfaces is different from characterising sources embedded in materials

because of the difficulty in obtaining the depth of contamination and the increased in-

fluence of background radiation. Furthermore, the relative location of diseased organs,

induced with radiation, with respect to other vital organs is critical in proper treat-

ment planning. Other contextual factors include, material and geometry of surround-

ing objects and weather condition, e.g., rainfall, pressure, etc. [66]. Unfortunately,

radiation detectors are unable to measure these extrinsic factors, hence the need for

integration with a host of contextual sensors, e.g., visual, ultrasonic, microwave, lo-

cation, etc. This enables the creation of a holistic view of the environment under

investigation, thereby enabling the detection and characterisation of the radioactive
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sources of interest.

Furthermore, the benefits of integrating radiological and contextual sensors in

medical imaging have been extensively researched and reported [67]. However, inte-

gration of both types of sensors have also resulted in interesting and innovative solu-

tions to challenges in characterising radioactive sources in non-medical applications,

such as security, non-proliferation and decommissioning of nuclear sites and facilities.

However, this latter category of applications is dominated by the integration of radia-

tion and visual sensors. Furthermore, visual sensors are unable to retrieve contextual

information about radioactive wastes located in opaque and hard to access environ-

ments commonly encountered in nuclear sites and facilities. These wastes include:

contaminated underground pipelines used to transport liquid waste; leaked effluents

from such pipes and storage ponds; and radioactive contaminant ingress into porous

materials, such as concrete [8, 13]. Consequently, there is need to integrate radiation

data with contextual data from geophysical sensors such as ground-penetrating radar

(GPR).

Therefore, this paper presents a comprehensive review of non-medical applications

of the integration of radiological and contextual sensors. Furthermore, it proposes sev-

eral ways of integrating contextual data from GPR with radiological data in light of

the techniques presented in the reviewed works and with particular focus on nuclear

decommissioning applications. In addition, it also demonstrates the effectiveness of

combined GPR and radiation imaging for three-dimensional (3D) localisation of con-

tamination in underground pipes using radiation transport and GPR simulations.

The remaining part of the paper is divided into four sections. Section 3.3 is a review
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of the integration of radiological and contextual sensors in non-medical applications

with the aim of highlighting the key role played by contextual sensors. Section 3.4

proposes GPR as a contextual sensor for radiological characterisation of hard to access

wastes in nuclear sites. Section 3.5 presents modelling and simulation of combined

radiation and GPR for 3D localisation of contamination in buried pipes. Finally,

concluding discussions and future directions are presented in Section 3.6.

3.3 Integration of radiological and contextual sen-

sors

The reported techniques used in integrating data from radiological and contextual

sensors can be broadly classified into passive and active depending on the integration

process and the role played by the contextual data in the final output. In passive

techniques, the integration process is not based on any mathematical or logical for-

malism, and the contextual data only serve as a passive backdrop for the radiation

data. A classic example is the superimposing of radiation images over visual images of

the scene (Figure 3.3.1b,d). On the other hand, active techniques are based on some

mathematical or logical model where both the radiation and contextual data actively

contribute in determining the final outcome of the integration process. Specific ap-

plications of both classes of integration techniques will be described in the following

subsections.
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Figure 3.3.1: (a) CARTOGAM imaging system. The detector head beside the PC is

mounted on a tripod [68]. (b) Superimposed radiation and visual images from the

CARTOGAM [69]. (c) GAMPIX gamma camera (small visual camera attached on

the left). (d) Superimposed radiation and visual images from the GAMPIX camera

[22].

3.3.1 Passive integration of radiological and contextual sen-

sors

Superimposing of the images of the detected sources over a visual image of the

environment [21, 22, 24, 68, 69] is perhaps the default scheme for combining radiation

and contextual data because of its simplicity. This quickly identifies the object(s) to

which the radiation sources are attached. Both images could be obtained by the same
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camera since a gamma detector is sensitive to both gamma and visible photons. For

instance, the CARTOGAM gamma camera (Figure 3.3.1a) is able to operate in both

visible and gamma image mode. During gamma imaging, a thin shutter closes the

collimator and prevents the entrance of visible light so that scintillation is only caused

by gamma photons penetrating the shutter. To capture visible images, the shutter

is opened, and a small lens is remotely placed at the collimator centre. This makes

both images be accurately aligned spatially with respect to the imaged scene. How-

ever, capturing both gamma and visual images with the same camera increases the

overall image acquisition time as both images cannot be captured simultaneously be-

cause they require different camera settings [21]. Other cameras, such as [22, 24, 70],

employ a separate visual camera co-located with the detector (Figure 3.3.1c). Such

configurations are able to take advantage of advances in visual camera technology

(e.g., panoramic imaging) and video imaging to give a more realistic and real-time

visual rendering of the imaged scene over which the gamma image is subsequently

overlaid (Figure 3.3.1d). However, the radiation and visual cameras will have to be

physically aligned for accurate superimposing of both images.

Advances in stereo imaging and light or laser detecting and ranging (LiDAR) has

enabled the development of systems [71, 72] that can generate 3D visual maps of the

environment. These systems have also been used as contextual sensors, in a passive

sense, for radiation imaging. In [73, 74], the authors demonstrated the effectiveness of

combining a 3D design information verification (DIV) system with a Compton camera

for nuclear safeguard applications. The 3D DIV system consisted mainly of a LiDAR

system, dolly and associated algorithms that is able to generate high precision 3D
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visual maps of rooms and identify any modification or changes in object position [72].

The contaminated environment was simulated by two mock-up pipes (Figure 3.3.2a),

one of which contained a line source (i.e. Europium-152). Integration of the images

from both systems was accomplished by backprojecting the gamma image from the

Compton camera into the 3D visual map. Consequently, objects and regions coinci-

dent with the gamma image are identified as contaminated (Figure 3.3.2b). In another

similar experiment, the authors in [75] combined a coded aperture gamma camera and

a LiDAR system for 3D radiation imaging. However, since the coded aperture cam-

era provides no direction or depth information, a stereo camera was used as a bridge

between the two systems. The stereo camera was attached to the gamma camera’s

mask to align with the optical axis of the gamma camera so that the images from both

cameras are automatically aligned. Then 3D points on the stereo image were then

aligned to 3D points in the LiDAR image using software algorithms. After the align-

ment process, the 2D gamma image was then projected into the 3D image of the scene

(Figure 3.3.2c).
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Figure 3.3.2: (a) Zoomed-in picture of the experimental contaminated environment.

The contaminated pipe is indicated in yellow colour [73]. (b) Gamma image projected

into the 3D LiDAR image of the scene in (a) [73]. (c) Gamma image projected into

the 3D LiDAR image of another contaminated environment described in [75].

Passive integration of radiological and contextual sensors described so far is rela-

tively simple to implement and certainly gives a better understanding of the contam-

inated environment. However, simply overlaying or projecting the radiation image

into the images generated by the contextual sensors does not fully account for the

underlying dissimilarities between both systems especially in terms of resolution. This

results in ambiguities as uncontaminated nearby objects or regions are indicated as
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contaminated, as seen in Figure 3.3.2b,c. Furthermore, such ambiguities will require

human intervention to be resolved since the process is not quantified, thus preventing

the automation of the process, which is very desirable in nuclear environments.

3.3.2 Active integration of radiological and contextual sen-

sors

In order to fully harness the potential of contextual sensors for improved radiation

detection/imaging, the data from these sensors need to play an active role in the final

result of the combination process and not serve only as a passive backdrop over which

the radiation image is overlaid. Such integration can be realised in the context of

multi-sensor data fusion (MSDF). MSDF can be described as a well-defined organisa-

tion of sensors, data acquisition and processing techniques and decision support algo-

rithms governed by a fusion architecture [76]. This enables the creation of a holistic

view of an observation of interest and inferencing of additional information that will

otherwise be impossible using only the individual sensors. The participating sensors

in the fusion could be similar sensors measuring the same physical phenomenon from

the same point in a kind of competitive fashion [77]. In such organisation, the goal of

fusion is to increase the reliability and signal to noise ratio with the redundant data.

The participating sensors can also be similar sensors measuring the same phenomenon,

but from different points or different types of sensors measuring different phenomena

from different points [77]. Fusion of radiation and contextual sensors belong to this

latter organisation where the complementary data from the multiple sensors are used
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to create a holistic understanding of the point of interest.

Furthermore, fusion of data from different sensors can be accomplished at broadly

three different levels of data abstraction, namely: low (signal or pixel), medium (fea-

ture) and high (decision) levels [78, 79]. Low-level fusion techniques operate on the

raw signal or in most cases on the image representations of the raw signals; hence, it

is also referred to as signal- or pixel-level fusion. The output of pixel-level fusion is

another image, which can be the input to higher fusion levels [79]. Medium- or feature-

level fusion techniques operate on characteristic features extracted from the raw data.

These features are representative of the observed physical phenomena and can be

geometrical, statistical, structural or spectral features [79]. The extracted features

are combined into a single feature vector to enable classification usually by auto-

mated reasoning algorithms that find correlations among the features [76]. In high-

or decision-level fusion, the data from each sensor is fully processed to arrive at an

intermediate decision about the phenomenon measured by that sensor. These deci-

sions are then combined using automated reasoning algorithms to arrive at a global

decision with a higher confidence [76]. It is important to note that feature and de-

cision fusion levels are closely related, and it is a matter of design choice whether to

fuse the extracted features before deriving a decision or to fuse the different decisions

derived from the different features [79].

Finally, the fusion of radiological and contextual sensors have been extensively re-

searched and applied in the field of medical imaging where images from positron emis-

sion tomography (PET) and single photon emission computer tomography (SPECT)

are fused with X-rays, ultrasound, magnetic resonance imaging (MRI), etc., images
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for improved diagnosis and localisation of diseased tissues [67]. These applications

employ a plethora of techniques and algorithms that cuts across the three levels of

MSDF. However, of interest in this paper is the relatively recent fusion of data from

radiological and contextual sensors in non-medical applications [66, 80–85]. Further-

more, since the interest is on the key role played by the contextual sensors in radiation

detection and imaging, applications with the fusion of multiple datasets from only ra-

diation detectors [86–88] are not included in the following review.

3.3.2.1 Low-level fusion of radiological and contextual sensors

Most fusion techniques operate at this level because of time efficiency and avoidance

of loss of information associated with higher fusion levels as a result of extracting

only part of the raw data [79]. Consequently, most reported fusions of radiological and

contextual sensors are low-level fusions. In addition, these applications are dominated

by the fusion of data from radiological and visual sensors, and can be broadly divided

into three application areas, namely: (1) detection and tracking of moving sources; (2)

motion compensation of images of moving sources; (3) 3D volume fusion of radiation

and visual images of the environment.

Detection and tracking of moving sources

The trajectories of moving radioactive sources in a security scenario are not prede-

fined, e.g., a suspect carrying a radioactive source in a moving crowd. In addition, the

trajectories also intersect with those of nearby objects and must be identified in real

time with a minimum false alarm rate. A simple and low cost solution to this problem
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was proposed and demonstrated in [80]. The authors employed signal-/pixel-level fu-

sion of a commercial depth sensor (Microsoft Kinect) and radiation detectors in order

to track moving radiation sources. The method was based on extending traditional

camera calibration [89] by attaching a radiation source to a chequerboard pattern

and using the pattern to calibrate both sensors. This enabled the estimation of the

radial distance of the radiation detector from the source using an integrated model

of the detector’s count rate and the depth sensor’s calibration data. Consequently,

the authors were able to track a source hidden amongst multiple moving targets by

finding the target whose trajectory most closely matches the trajectory of the source

(Figure 3.3.3).

Figure 3.3.3: (a) Normalised depth trajectories of three targets (solid lines) and a

radiation source (dotted lines). The trajectory of Target 3 closes matches that of

the radiation source therefore he is identified as the suspect; (b) Picture of the three

targets with the suspect highlighted [80].

In another, but more elaborate solution, the authors in [82] combined a detector

array of gamma imagers [90] with stereo cameras to demonstrate a portal-less highway
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radiation monitoring system. The classical radiation portal monitors are associated

with several limitations amongst which are: interference with the flow of traffic as

vehicles need to slow down at the portals; ease of evasion by smugglers because the

portal location is always fixed; and susceptibility to background variation caused by

shielding of the detectors as vehicles pass in front of them [82]. Therefore, the portal-

less system was designed to overcome these limitations.

The system consisted of two identical sets of equipment fitted on two mobile

trailers positioned on either side of the highway (Figure 3.3.4a). Vehicle detection

and tracking algorithms [91] were applied to image frames from the video cameras to

track the location of the vehicle from frame to frame as it traverses the camera’s field

of view. These algorithms look for vehicle cues (e.g., regions with high gradients)

that are consistent across these frames. After reconciliation of the video data from

both trailers, the information was used to generate a sequence of video events that

were in turn used to select the subset of gamma events from the gamma cameras that

corresponds to the tracked vehicle. These gamma events were then used to generate

a high statistic gamma image of the vehicle where radioactive sources are indicated

by pixels whose significance is greater than a predefined threshold (Figure 3.3.4b).

Results from field trials proved that the system was able to detect unshielded 27-

MBq gamma point sources on five-lane highway traffic moving at speeds of up to 113

km/h. Also, adaptation of this same system for autonomous radiation monitoring of

small vessels in a maritime environment was also reported in [81].
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Figure 3.3.4: (a) Two trailers (painted in white) were both equipped with radiation

detectors and video cameras and positioned on opposite sides of the road. (b) Output

of the fusion algorithm. The top row pictures are frames from the video camera

showing the moving vehicle (bounded by the white square). The bottom graphs are

the corresponding gamma count per pixel of the generated gamma image. The first

vehicle contains a source hence its gamma count is above the threshold (red line) [82].

Motion compensation of images of moving sources

Another challenge associated with imaging moving radioactive sources is the smearing

of the source image across several pixels. This results in a blurred image where the

source becomes indistinguishable from background radiation (Figure 3.3.5a). For

instance, Compton imaging relies on the fact that Compton cones formed by photons

from the same source will overlap coherently, thus forming a point in the image of

higher intensity than the background. However, if the source is in motion, the apex of

the cones end up in several pixels along the direction of motion; therefore, very few will

overlap, resulting in the blurred image. A solution to this problem was demonstrated

in [83] by combining video and Compton cameras. In the system, frames from the
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video cameras were analysed by a two-stage detection and tracking process in order

to estimate the trajectory of the moving vehicle. The estimated trajectory was then

used to adjust the position of the Compton cone during reconstruction so that the

moving source appears stationary with respect to the detector, thus allowing the cones

to overlap in a distinguishable hotspot on the image (Figure 3.3.5a).

Figure 3.3.5: (a) Reconstructed image of moving source without (top) and with (bot-

tom) motion compensation [83]; (b) 3D tomographic radiation source image on a

stationary volume collapsed to the x-y, y-z, x-z planes [92].

The use of video camera image data to correct blurring of moving source im-

ages was also applied in [92] for ship to ship inspection in order to detect maritime

smuggling of nuclear materials. The blurring of the image in this case is a result of

wave action, which keeps both the inspection and target vessels in continuous motion.

The key components of the system were a stereo video camera and a coded aperture

gamma camera. Using both video and disparity images (which give the distance of

points in the image from the camera plane) from the stereo camera, the relative lo-

cation and orientation of both vessels were tracked in 3D across video frames. Using
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this information, a stationary reconstruction volume was then defined on a new coor-

dinate system fixed at the target vessel. Voxels from this volume were then projected

onto 2D images generated from the gamma camera from different position around the

target vessel. Finally, gamma events from pixels in the 2D image closest to the centre

of each of the projected voxels were accumulated into gamma events for that voxel

resulting in a 3D tomographic radiation image (Figure 3.3.5b).

3D volume fusion of the radiation image with the visual image of the

environment

Instead of simply projecting radiation images into already reconstructed 3D visual

images of the environment, the data from both systems can be fully integrated during

reconstruction to yield a 3D radiation image that is fused with the environment. This

was demonstrated in [84] using a Compton camera and a 3D Design Information

Verification system consisting mainly of a LiDAR system. First, the 3D data from

the LiDAR were used to build a sparse 3D image space model divided into voxels.

Then, backprojection weights were calculated for each photon event from the Compton

camera image. Finally, a list-mode maximum likelihood algorithm [93] was then used

to reconstruct the image by assigning weighted radiation intensity values to each

voxel that was intersected by the surface of the Compton cone. This resulted in a

spectroscopic 3D gamma-ray image of the scene, as shown in Figure 3.3.6a, which is

the image of the same contaminated environment shown in Figure 3.3.2a. It can be

clearly observed that the radioactive source is well localised in the pipe compared to

the image in Figure 3.3.2b. The poor rendering of the surroundings is due to the use
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of a sparse image space in order to reduce computational resources. Figure 3.3.6b is

a plot of the intensity of voxels around the pipe from top to bottom, which confirms

that the gamma image is fused with the scene. Further application of this technique

using other types of radiation cameras and Microsoft Kinect were also presented in

[94].

Figure 3.3.6: (a) Reconstructed image of contaminated environment shown in Figure

3.3.2a using the MSDF of the Compton camera and LiDAR images; (b) intensity of

voxels from top to bottom around the pipe containing the line source [84].

3.3.2.2 Higher-level fusion of radiological and contextual sensors

In general, the decision on the presence or otherwise of radioactive sources of interest

in any radiation detection scheme is determined by the value of a threshold. The

specific value of this threshold is derived from the measured data, and it defines the

boundary above which the influence of naturally-occurring radiation (referred to as

background radiation) is minimal. This is to ensure acceptable false alarm rates.

However, large variations in background radiation across different environments in-

creases uncertainty in the measurements (e.g., statistical noise), thereby making it
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difficult to select a suitable threshold value for a constant false alarm rate across dif-

ferent environments [95]. These variations are due to environmental factors, such as

weather conditions, natural and man-made structures, e.g., roads, buildings, soil, etc.

Furthermore, this variation cannot be well accounted for by assuming a Poisson back-

ground distribution [96]. A more robust solution will involve measuring background

radiation in a variety of environments and finding correlations between the probabil-

ity distribution of each environment with other environmental information, such as

location, weather condition, material properties of both natural and man-made sur-

rounding objects, etc. [66]. This implies the fusion of radiation data with data from a

wide variety of sensors that measure these contextual factors in order to classify the

background distributions from these environments. Furthermore, establishing mean-

ingful relationship between datasets with such a high degree of heterogeneity is only

possible at higher levels of data abstraction.

Such an elaborate and exotic fusion described in the previous paragraph has been

the objective of a series of researches [66, 94, 96, 97] using the Radiological Multi-

sensor Analysis Platform (RadMap). RadMap (Figure 3.3.7a) is a truck-mounted

platform fitted with a variety of radiological and contextual sensors for large-scale

acquisition of radiological and associated contextual data across different environ-

ments [96]. Results from a routine survey of districts in California [66] showed inter-

esting correlations between identifiable features in the contextual data (i.e. places,

objects, level of rainfall, etc.) and the background gamma spectra. For instance, Fig-

ure 3.3.7b shows the probability distribution of background radiation of four different

environments categorised based on GPS locations. In addition, atmospheric pres-
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sure was confirmed to be the most dominant factor affecting variability in neutron

background radiation [96]. This fusion of different features of the various datasets

accurately captures the variability in the background radiation across different envi-

ronments. Therefore, a detector system can simply adjust its detection threshold to

the corresponding environment, thus maintaining a constant false alarm rate. Fur-

thermore, such fused dataset can be used for advanced simulation of the performance

of detector systems in real world using the concept of source injection where simulated

radioactive sources are injected into real-world models of background radiation [97].

Figure 3.3.7: (a) Radiological Multi-sensor Analysis Platform (RadMap) [96]; (b)

background radiation distribution classified by location [66].

Another example of the high level fusion of radiological and contextual sensor

was presented in [85] where decision-level fusion was used to integrate radiation and

electromagnetic induction (EMI) data in order to detect and distinguish between

buried depleted uranium (DU) and its oxide. Distinguishing between DU and DU

oxide is important because DU oxides present a higher nuclear hazard; hence, their

removal needs to be prioritised [85]. However, radiation detection techniques [98] are
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not able to distinguish between these two metals, hence the need for complementary

information from the EMI data. First, the radiation data, collected over a gridded

survey area, were processed by two anomaly detection algorithms. Each algorithm is

able to come to an independent decision (i.e. radiation or non-radiation) about the

presence or otherwise of a radiation target by using various background suppression

methods. The quadrature components of the H-field measured by the EMI were

analysed and compared with a database of known metals to produce three possible

decisions, namely: DU metal, non-DU metal and non-metal.

Fusion of the decisions from both sensors followed a two-stage process (Figure

3.3.8a) after re-gridding the survey area so that mismatched survey paths of both

systems can fall into the same cell (Figure 3.3.8b). The first stage was to fuse multiple

radiation decisions from a single cell into one radiation decision and multiple EMI

decisions from the same cell into one EMI decision. This was done using the maximum

vote (MV) and weighted maximum vote (WMV) fusion methods [99]. The next stage

combined the single decisions from each of the systems using eight fusion rules. These

rules were if-then conditions that define the outcome for the desired combinations of

both sets of decisions. For instance, two of the rules are: (1) if the EMI decision

is “DU” and the radiation decision is “radiation”, then final decision is “DU”; (2) if

the EMI decision is “non-DU metal” and the radiation decision is “radiation”, then

the final decision is “oxide”. Experimental results confirmed the effectiveness of this

fusion framework with over a 90% detection rate.
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Figure 3.3.8: (a) Decision-level fusion framework for radiation and electromagnetic

induction (EMI) data fusion (MV = mean vote, WMV = weighted mean vote); (b)

re-gridding of the survey area [85].

MSDF of radiological and contextual sensors at the pixel level yields high quality

images with richer information content. However, the most significant advantage of

MSDF is the quantification of the fusion process both at lower and higher levels. This

enables the definition of metrics, such as root mean square error, entropy, fusion fac-

tor, etc. [100], for signal/pixel fusion, and the receiver operator characteristic (ROC)

for higher level fusion. These metrics provide an analytical basis for evaluating and

optimising the outputs so as to reduce false alarm rates. Furthermore, arriving at

a decision on the presence or otherwise of a radiation target in MSDF is inherently

an automated process, thereby eliminating human errors. However, accurately cal-

ibrating and synchronizing the operations of the participating sensors in the fusion

remains a challenging task. In addition, supervised classifiers used in higher level

fusion require training with large datasets in order to perform at acceptable levels.
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3.4 GPR as a contextual sensor for radiological

characterisation of nuclear sites

Radiological characterisation involves the identification of the location, type and other

physical properties of radioactive wastes. It is a critical stage in decommissioning po-

tential nuclear contaminated sites and facilities as it provides input to other stages of

the decommissioning process [10]. However, some of these wastes are often located in

opaque and hard to access areas such as below the ground and inside concrete struc-

tures, as noted in Section 3.2. Traditional methods of characterising such wastes, e.g.,

gamma logging and core sampling, involve excavation, which leads to the generation

of secondary wastes and increases the risks of exposure of personnel and equipment

to ionising radiation. However, since these wastes are usually liquids or solids (i.e.

the radioisotopes are usually attached to liquid or solid matter), contextual informa-

tion about these liquids and solids (e.g., depth, volume, material type, etc.) inside

these opaque areas can be obtained using non-intrusive geophysical methods. This

contextual information can then be integrated with data from radiological sensors

for enhanced non-intrusive characterisation of these wastes. The fusion of radiation

and EMI sensors discussed in Section 3.3.2.2 tries to solve the case of radiation waste

buried underground. However, EMI sensors can only detect metals and provide lim-

ited and unreliable target depth information [101]. Nevertheless, the successful fusion

of both sensors shows the possibility of integrating radiological sensors with more

advanced geophysical sensors like GPR.
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GPR is a non-destructive geophysical technique for obtaining subsurface snapshots

of visually opaque structures, thereby revealing hidden objects or internal property

changes in the structure, such as defects and cavities. It is important to note that

the term GPR is commonly used to refer to both the technique and the device.

Figure 3.4.1 shows the block diagram of a typical GPR unit in a reflection survey.

The transmitter generates a series of excitation voltages, which are transformed into

a radiating electromagnetic (EM) field by the transmitting antenna. As the signal

propagates through the subsurface, it undergoes different types of distortions, such as

reflection, attenuation, etc., due to changes in the permittivity and conductivity of the

subsurface. These changes are indicative of the presence of objects or discontinuities

due to the transition from one material layer to another. The reflected signals are

captured by the receiving antenna and processed in order extract useful information

about the subsurface.

Figure 3.4.1: Block diagram of GPR operation showing reflections from different layers

and an object underground. Adapted from [56].
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GPR is widely used for non-destructive subsurface investigation across a wide

range of application areas [102]. However, of interest are: (1) non-destructive investi-

gation of underground pipes; (2) non-destructive investigation of concrete structures.

This is because these application areas are directly relevant to the challenges of char-

acterising wastes in the identified hard to access areas. These application areas will

further be discussed in the following subsections with the aim of highlighting where

and how GPR and radiation detection/imaging can be integrated for radiological char-

acterisation.

3.4.1 Non-destructive investigation of underground pipes

Underground utility pipes and cables form a complex network of pipes, cables and

drains in the subsurface [103]. This complexity in addition to their underground lo-

cation makes their maintenance difficult without prior knowledge of their location.

Furthermore, it has been shown that third party damages to utility pipes and ca-

bles during excavation is one of the major causes of increasing construction costs

[104]. Consequently, GPR is widely used in location, classification and conditional

assessment of underground pipelines [55, 105, 106]. Methods for locating buried pipes

exploit the characteristic hyperbolas (Figure 3.4.2a) formed by buried objects in GPR

radargrams. These hyperbolas are formed by the spreading of the EM waves (beam)

as they leave the antenna, thereby illuminating the target before the target is directly

under the antenna (Figure 3.4.2b). The equation for this hyperbola can be readily

derived from Figure 3.4.2b (Equations (3.4.1) and (3.4.2)). It can be deduced from

Equation (3.4.2) that by fitting synthetic hyperbolas to suitable points on a radar-
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gram (Figure 3.4.2c), the pipe’s radius, the wave velocity and the pipe’s depth can be

estimated [107–109]. In addition, the retrieved wave velocity is an important parame-

ter used in GPR reconstruction algorithms, such as matched filtering, backprojection,

migration and tomographic inversion [53, 110]

Figure 3.4.2: (a) GPR image showing three hyperbolas [111]; (b) formation of diffrac-

tion hyperbola; (c) hyperbola curve fitting [112].

d20 = (x− x0)
2 + d2 (3.4.1)

Substituting d0 = v×t0/2 +R and d = v×t/2 +R into Equation 3.4.1 yields:

(t+ 2R
v
)2

(t0 +
2R
v
)2

− [2(x− x0)]
2

(vt0
2
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(3.4.2)

Extensive pipeline networks, both underground and encased in concrete, are com-

mon features of nuclear facilities and are used for transporting liquid wastes [8]. There-

fore, they constitute a significant amount of potential radioactive wastes that need

to be characterised for effective decommissioning. However, their location in addi-

tion to inaccurate records makes their characterisation difficult. For instance, the
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UK has approximately 760 km of pipelines on nuclear sites out of which only about

26% have been characterised [8]. Typical detection of significant contamination in

shallow buried pipes consists of a ground-level survey along the length of the pipe

with a sensitive radiation detector [9]. However, the depth of the radiation source is

required in order to know the intensity of the radiation at the pipe location, so as to

implement the required safety measures before and during decommissioning. Further-

more, knowledge of the condition of the pipe is important so as not to destroy the pipe

during excavation, thereby contaminating the surrounding soil. However, this contex-

tual information is not available from a simple ground-level radiation measurement,

thereby making pipeline decommissioning particularly challenging.

However, this required contextual information can be readily supplied by GPR.

For instance, the depth of the pipes can be obtained from the GPR and used for

3D localisation of the contaminated hot spot (see Section 3.5). This can be used to

guide automated systems, such as robots, to carry out the decommissioning operation.

Furthermore, since the intensity of a radioactive source varies with the inverse of the

square of the distance, a high level fusion framework can be design to integrate the

radiation and GPR datasets to automatically identify and classify hot spots using the

estimated radiation intensity. Such a system can be trained with historical data to be

able to identify and distinguish significant contamination in pipes from background

radiation in a variety of underground environments.
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3.4.2 Non-destructive investigation of concrete structures

GPR is widely used as a non-destructive technique in monitoring the health of concrete

structures such as bridges, dams, tunnels, etc. Some of these applications include:

moisture and chloride ingress; detection of reinforced steel bar (rebar) corrosion; and

detection of voids and cracks [54, 112, 113]. GPR techniques for detecting mois-

ture and chloride in concrete are based on energy loss by the GPR signals to water

molecules and chloride ions due to increased conductivity. This is can be detected as

an increase in the attenuation of the reflected signals (Figure 3.4.3a). GPR detection

of concrete rebar corrosion makes extensive use of hyperbola detection techniques de-

scribed in Section 3.4.1. This is because reflections from corroded rebar are weaker

than reflections from non-corroded rebar and are displayed as lighter hyperbola traces

in GPR images (Figure 3.4.3b). This information can then be processed to produce

a deterioration map of the concrete structure [112].

Figure 3.4.3: (a) GPR signal attenuation with varying moisture content in a concrete

sample where α = attenuation (dB m−1), y = moisture content (%) [54]; (b) GPR im-

age of concrete showing weak reflections from possibly corroded rebar [112].

Concrete is a ubiquitous construction material used extensively in nuclear sites
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due to its shielding ability [11, 13]. Therefore, it is the main component of many

structures, such as reactor containments and biological shields at nuclear sites. Con-

tamination of these concrete structures is as a result irradiation from fission products

and from leaks and spills of liquid contaminants during operations [10]. Further-

more, interaction between the concrete and these contaminants results in defects [11],

thereby enabling the contamination to penetrate deep into the concrete, and can even

lead to neutron activation of the concrete rebar. Decontamination of concrete for

free release is done by removing the contaminated layers using methods such as scar-

ification [13]. However, without knowledge of the depth of the contamination, the

amount of material to be removed can only be known by continuous radiation survey

after each pass of the equipment, which is expensive and time wasting. In addition, if

the contamination is beyond certain depths, it is usually more cost effective to adopt

complete removal of the structure rather than scarifying [10].

The use of GPR to detect the state of the rebar might be a useful technique for

estimating the depth of contamination. However, this assumes that the contaminant

has penetrated to the rebar, which is not always true. A more robust solution is to

analyse the changes in the electrical properties (i.e. permittivity and conductivity)

of concrete as a result of the presence of radioactive sources and finding correlations

between these changes and reflected GPR signals. This is because GPR signals are re-

sponsive to changes in the electrical properties of the medium in which they propagate.

These correlations can then serve as a basis for fusing the GPR and radiation data

in order to develop new techniques for non-destructive characterisation of internal

contamination in concrete structures.
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3.5 Combined GPR and radiation imaging for 3D

localisation of radioactive contamination in un-

derground pipes

Localisation of radiation sources in 3D space is an important part of radiological

characterisation. This section uses MCNPX (Version 2.7) [114] and gprMax (Version

3.0) [115] modelling and simulations to demonstrate the inadequacy of ground-level

radiation imaging for localising underground contamination and how additional in-

formation from GPR can help to localise the contamination in 3D, thereby resolving

ambiguities.

3.5.1 Methodology

The modelled environment (Figure 3.5.1a) is a section of two underground pipes used

for transporting liquid radioactive wastes. Both pipes are separated vertically and

horizontally with contamination located at their crown beneath the points (1 and 2)

indicated in the figure. This type of internal contamination is mostly due to scale

build- up on the internal surfaces of pipes or accumulation of sludge and silt in pipes

and can be detected at the ground surface for shallow buried pipes [8, 9]. The MCNPX

model (Figure 3.5.1b) consisted of two cast iron pipes (internal radius = 4 cm, exter-

nal radius = 5 cm, density = 7.15 g cm−3) buried in dry sand (density = 1.7 g cm−3).

The contaminated points were modelled as Co-60 point sources (a common radioac-
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tive contaminant in pipes [8]) with relative strengths of 0.15 and 0.85 for Sources 1

and 2, respectively. In gprMax, the environment was modelled as a 2D slice along

section x-x, which is centred at the y-axis (Figure 3.5.1c). A 2D GPR model was used

because the modelled environment is symmetrical about the x-axis. Furthermore, the

pipes were modelled as two perfect electrical conducting cylinders buried in dry sand

(relative permittivity = 3.89).

Figure 3.5.1: (a) Modelled contaminated environment (dimensions in cm); (b) MC-

NPX model with grid of detectors (section x-x); (c) gprMax model (section x-x).

The radiation image was acquired by a 29 × 15 grid of detectors (Figure 3.5.1b)

placed 40 cm above the ground and centred at the x-y plane. This is equivalent to

moving a single detector in 29 × 15 discrete positions on the ground surface. This

number of grids was chosen because they were enough to cover the area occupied by

both pipes. Each detector (Figure 3.5.1b inset) consisted of a cylindrical cell (radius

= 0.5 cm and height = 3 cm) surrounded by 0.5 cm-thick tungsten collimator, which

is 14 cm long. The MNCPX F2 tally was placed at the bottom of the detector cell
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to record all gamma photon events at that surface. The GPR data were obtained by

a co-located transmitter-receiver Hertzian dipole pair at 256 locations along section

x-x. It should be noted that in practice, the path along which to acquire the GPR

measurements can be determined from the acquired radiation image. Furthermore,

the GPR transmitter was excited with a Gaussian wavelet centred at 1 GHz because

of the relatively shallow depth of the pipes. In order to minimise dispersion errors,

the GPR simulation used a spatial resolution of ∆x = ∆y = 0.002 m, which is less

than one tenth of the smallest wavelength present in the model. Finally, the temporal

resolution ∆t was calculated to be 4.7 ps using the Courant, Freidrichs and Lewy

stability condition given by (3.5.1), where c is the wave velocity in free space.

∆t ≤ 1

c
√

1
∆x2 +

1
∆y2

(3.5.1)

3.5.1.1 Matched filter synthetic aperture radar imaging

The GPR data was processed using the matched filter synthetic aperture radar (SAR)

imaging algorithm [110]. Consider the monostatic linear collection scenario in Figure

3.5.2. The data d(u, t) collected along the cross range are the time delayed, ampli-

tude scaled version of the point spread response (PSR) s(u, t − td) of the stationary

scatterer at (x, y) where the time delay td is given by (3.5.2) (v is the wave velocity

in the medium). However, for a signal corrupted with additive white Gaussian noise,

the optimum match filter is the conjugate of the time reversed version of the signal of

interest [110]. Therefore, the matched filtered output at a given location is given by

the convolution of the collected data and the conjugate of the PSR at that location.
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This convolution operation is given by (3.5.3).

Figure 3.5.2: Monostatic linear SAR data collection.

td =
2

v

√
(u− x)2 + y2 (3.5.2)

I(x, y) = d(u, t) ∗ s∗(u, t− td) =

∫ ∞

−∞

∫ ∞

−∞
d(u, t)s∗(u, t− td) dudt (3.5.3)

In matched filter SAR imaging, the PSR is calculated for each pixel and applied to

the collected data using (3.5.3). This results in an image where pixels in the location of

scatterers have higher signal to noise ratios compared to surrounding pixels. Finally,

even though the matched filter SAR algorithm requires significant processing power

for large datasets, it is however robust and has practical applications for small and

moderate datasets.

3.5.2 Simulation results

The radiation image is shown in Figure 3.5.3a after resampling and smoothing with

a 25 × 25 pixel Gaussian window [21]. As expected, the vertical separation between

the two pipes is not observable in the radiation image because of the lack of depth

information. Furthermore, the fact that Source 2 is measured as having a higher inten-

sity could easily be misconstrued to imply that Source 2 is closer to the surface than
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Source 1. Figure 3.5.3b shows the GPR image after processing with the matched filter

SAR imaging algorithm described in Section 3.5.1.1. This yields the required depth

information, as it shows the points where the GPR signals were reflected by the pipe

surfaces. Using this depth information, the radiation image can be projected into the

ground to yield a 3D localised radiation image (Figure 3.5.3c), thereby resolving any

ambiguity associated with the lack of depth information. Note that only pixels with

normalised intensity ≥0.7 for both sources were projected back to the pipe locations.

This integration of GPR and radiation imaging is similar to the passive integration

methods described in Section 3.3.1 where the radiation image is projected into a 3D

visual image of the environment. However, the use of GPR rather than visual sensors

enabled the detection of the pipe beyond the ground surface, thereby allowing the

contaminated spot to be localised on the pipe surfaces. Furthermore, this 3D image

can be used to guide automated systems, such as robots, during decommissioning of

the contaminated pipes.
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Figure 3.5.3: (a) Ground level image of radiation sources; (b) matched filtered GPR

image of pipes; (c) 3D localised image of radiation sources.

However, it must be noted that these simulations assume an idealised scenario

where the effects of noise, both from background radiation and clutter in the radi-

ation and radar images, respectively, were not considered. However, techniques for

dealing with noise encountered both in radiation and radar images from the field have

been presented in the literature [85, 109]. In addition, the retrieved depth of the con-
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tamination assumes that each pipe’s thickness is negligible so that the distances from

the ground surface to both the pipe’s surface and the pipe’s crown (actual location

of the contamination) are approximately the same. This is a practical assumption

as the thickness of typical metallic and PVC pipes used in nuclear pipelines are be-

tween 5 and 12 mm [8]. Finally, another potential improvement is the simultaneous

reconstruction of the GPR and radiation data at the point of reflection (i.e. the pipe

surfaces). This will require acquisition of GPR measurements at multiple slices along

the y-axis (i.e. 3D GPR data) so that points in the radiation data that correlate with

points in the GPR data can be backprojected during reconstruction of the GPR im-

age. The output of such an algorithm will be a 3D fused image of the radiation and

GPR data at the pipe surface similar to the output of the 3D volume fusion technique

described in Section 3.3.2.1.

3.6 Conclusion

Recent applications of integrated radiological and contextual sensors techniques for

detecting and localising radioactive sources in non-medical field have been reviewed.

The use of contextual sensors enabled the retrieval of additional contextual infor-

mation about the radiation source, thereby enabling characterisation of radioactive

sources in challenging scenarios. However, these applications are dominated by the

use of visual sensors as contextual sensors. Furthermore, visual sensors cannot retrieve

contextual information about radioactive wastes in visually-inaccessible locations typ-

ically encountered at nuclear sites and facilities. Therefore, GPR was proposed and
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examined as a contextual sensor for characterising such wastes in light of the tech-

niques presented in the reviewed literature.

Furthermore, it was identified that integration of GPR and radiological sensors will

potentially enable non-intrusive characterisation of radioactive wastes in nuclear sites

and facilities especially in two critical areas namely: (1) contaminated pipelines buried

underground or encased in concrete and (2) contamination ingress into porous mate-

rials, such as concrete. This will enable rapid characterisation of wastes in these hard

to access areas while reducing dosage risks and the generation of secondary wastes.

However, more research is required in order to understand and identify correlating

attributes in both GPR and radiation datasets acquired from these contaminated en-

vironments. This is because multi-sensor integration techniques rely on establishing

relationships among the data from the participating sensors.

Finally, the presented simulation results have demonstrated the effectiveness of

combined GPR and radiation imaging for 3D localisation of contamination in buried

pipelines by projecting the radiation image back to the pipe location. 3D localisation

is an important part of the characterisation process, and such 3D localised images

can be used to guide automated systems, such as robots, during decommissioning of

the contaminated pipes. However, a 3D reconstruction algorithm needs to be devel-

oped in order to enable simultaneous reconstruction of the radiation and GPR data

at the point of reflection. This will yield a fused radiation and GPR image with

improved localisation of the contaminated region compared to simply projecting the

radiation image back to the location of the pipes. Furthermore, the implementation

of the reconstruction algorithm can take advantage of available fast microprocessors
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to enable real-time reconstruction of the underground contaminated environment.
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4.1 Abstract

Existing remote radioactive contamination depth estimation methods for buried ra-

dioactive wastes are either limited to less than 2 cm or are based on empirical models

that require foreknowledge of the maximum penetrable depth of the contamination.

These severely limits their usefulness in some real life subsurface contamination sce-

narios. Therefore, this work presents a novel remote depth estimation method that

73
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is based on an approximate three-dimensional linear attenuation model that exploits

the benefits of using multiple measurements obtained from the surface of the material

in which the contamination is buried using a radiation detector. Simulation results

showed that the proposed method is able to detect the depth of caesium-137 and

cobalt-60 contamination buried up to 40 cm in both sand and concrete. Further-

more, results from experiments show that the method is able to detect the depth of

caesium-137 contamination buried up to 12 cm in sand. The lower maximum depth

recorded in the experiment is due to limitations in the detector and the low activity

of the caesium-137 source used. Nevertheless, both results demonstrate the superior

capability of the proposed method compared to existing methods.

4.2 Introduction

A significant amount of radioactive waste is generated during the life cycle of a typ-

ical nuclear facility e.g., nuclear power plant [10]. These wastes can be by-products

of radioactive materials such as nuclear fuels or previously non-radioactive materi-

als that become contaminated either through contact with radioactive materials or

through activation by ionising radiation. Characterisation of these wastes is criti-

cal in decommissioning these facilities because it provides vital information required

for effective planning, dismantling, transporting and storage of these wastes to meet

nuclear regulatory standards [116, 117].

A key step in the characterisation process is the localisation of these wastes [118].

However, some of these wastes can be in difficult to access areas, which causes their
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localisation to be particularly challenging. Examples of such wastes commonly en-

countered during decommissioning of nuclear facilities include wastes buried inside

porous materials such as concrete and soil. The contamination of concrete structures

is usually due to ingress of radioactive contaminants as a result of irradiation or leaks

and spills [10]. Furthermore, these contaminants can also interact with the constituent

of the concrete resulting in cracks that allow the contaminants to penetrate deeper

into the concrete structure over time [11]. There are several pathways through which

anthropogenic radiological contaminants can end up in the soil. This include leaks

from underground waste transportation pipes and storage pounds [8], deliberate burial

of wastes in the soil [7] and particles from radiological fallouts that precipitate into

the soil [119]. For instance, the reported contamination at the beaches of Northern

Scotland covers an area of about 200,000 m2 and consists mainly of caesium-137 fuel

fragments with activities of up to 108 Bq buried at depths of less than 1 m [5, 6].

The major difficulty in localising wastes buried in concrete or soil is the deter-

mination of the depth of penetration of the contamination. This is because of the

visually opaque nature of these porous materials. However, knowledge of the depth

of penetration of these contaminants is vital in choosing the most cost-effective de-

commissioning strategy. For instance, decommissioning concrete structures is usually

a trade-off between scarification and designation of the entire concrete structure as

waste [13]. However, scarification is expensive and time wasting if the contamination

is found to have penetrated deeper than expected. On the other hand, designation

of the entire concrete structure as wastes significantly increases the volume and cost

of wastes to be disposed if the contamination is shallow. Therefore, the importance
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of effective depth profiling methods for entrained contamination cannot be over em-

phasised. Traditional depth profiling methods include: Logging, Micro drilling and

Core sampling [7, 20]. However, these methods are destructive and time-consuming.

In addition, they also have limited spatial extent for sampling.

Consequently, various remote depth profiling methods have been investigated and

reported in literature. These include: the relative attenuation method [12, 120, 121]

and principal component analysis (PCA) method [122–124]. The relative attenuation

method exploits the relative difference in the attenuation of two prominent peaks

(typically the X-ray and gamma photo peaks) in the measured energy spectrum of

the buried radionuclide. However, the use of the X-ray photo peak limits the maximum

detectable depth to less than 2 cm due to high attenuation of the X-rays. Furthermore,

the technique is not effective for radionuclides such as cobalt-60 (Co-60) that do not

emit sufficient X-rays [120]. The PCA method is based on a non-linear regression

model that correlates a derived variable referred to as the synthetic angle with the

depth of the buried radionuclide. The synthetic angle is the inverse tangent of the ratio

of the first two principal components of a set of measured spectra of the radioactive

source for different burial depths. However, such empirical models are data dependent.

Consequently, the model parameters change whenever a new spectra is added to the

original data [124]. This makes the model useful only when the maximum penetrable

depth of the contamination is known a priori.

Therefore, this paper presents a novel remote depth estimation method for buried

radioactive contamination based on an approximate three-dimensional (3D) linear

attenuation model. Both simulation and experimental results have shown that the
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method has significantly improved depth profiling ability in both concrete and soil

compared to existing remote techniques thereby increasing its range of application.

The next section presents the derivation of the 3D linear attenuation model and

the simulation and experimental setups. The results and discussions are presented in

Sections 4.4 and 4.5, respectively, while conclusions and future directions are presented

in Section 4.6.

4.3 Materials and methods

4.3.1 The approximate 3D linear attenuation model

Consider a point source S buried in a section of a material at a depth z from the

front surface as shown in Figure 4.3.1. The intensity I(x,y,z) of the source measured

by a collimated detector at any position on the x–y plane (i.e. the material surface)

is given by:

I(x,y,z) = I(x,y,0)e
−µ(x2+y2+z2)

1
2 , (4.3.1)

where I(x,y,0) is the intensity at any position on the x–y plane when the source is at

z = 0 and µ is the linear attenuation coefficient. Equation (4.3.1) is the well-known

linear attenuation model [26] in 3D coordinates. Furthermore, Equation (4.3.1) can

also be re-written as:

I(x,y,z) = I(x,y,0)e
−µz(1+x2+y2

z2
)
1
2
. (4.3.2)
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Figure 4.3.1: A point radioactive source buried in a section of a material.

Expanding the index of the exponential term in Equation (4.3.2) using the bino-

mial theorem and retaining only the first two terms of the binomial expansion results

in:

I(x,y,z) ≈ I(x,y,0)e
−µ(z+x2

2z
+ y2

2z
). (4.3.3)

However, it can be observed in Figure 4.3.1 that the intensity at the centre position

of the x–y plane (i.e. x = y = 0) is given by:

I(0,0,z) = I(0,0,0)e
−µz. (4.3.4)

Therefore, dividing Equation (4.3.3) by Equation (4.3.4) results in Equation (4.3.5),

which can be rewritten as Equation (4.3.6):

I(x,y,z)
I(0,0,z)

≈
I(x,y,0)
I(0,0,0)

e−
µ
2z

(x2+y2), (4.3.5)

loge(J(x,y,z)) ≈ − µ

2z
(x2 + y2) + loge(K(x,y,0)),

where: J(x,y,z) =
I(x,y,z)
I(0,0,z)

and K(x,y,0) =
I(x,y,0)
I(0,0,0)

.

(4.3.6)

Equation (4.3.6) is the approximate linear attenuation model of the intensity mea-

sured at any position on the x–y plane normalised by the intensity measured at the
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central position on the same plane. This is valid for x2 + y2 < z2, which is the

validity condition of the binomial expansion. Therefore, it can be deduced that,

for a source buried at some depth z, the graph of loge(J(x,y,z)) against x2 + y2 for all

x2+y2 < z2 should be a straight line passing through the origin since loge(K(x,y,0)) = 0

at x = y = 0. However, since z is not known, the normalised intensities from all the

measured positions can be plotted and a weighted curve fitting method used to fit

a straight line through the best points. The approximate depth of the radioactive

source from the surface of the material can then be calculated from the slope of the

fitted line. However, it is important to account for the dependence of the linear at-

tenuation coefficient on the energy of the emitted photons. This can be done by using

only gamma photons from a section of the measured energy spectrum over which

the linear attenuation coefficient can be assumed to be constant. Theoretically, any

region of the spectrum can be used since Equation (4.3.6) is a ratio of two spectra.

However, the ideal region of interest is obviously the characteristic photo-peak region

of the buried radionuclide.

4.3.2 Monte Carlo modelling and simulation

In order to validate the derived model, Monte Carlo modelling and simulations were

performed using MCNPX version 2.7 (Los Alamos National Laboratory, Los Alamos,

New Mexico, USA). MCNPX is a radiation transport code used to simulate the trans-

portation and interaction of atomic particles in different media using Monte Carlo

statistics [114]. A sketch of the MCNPX model used for the simulations is shown in

Figure 4.3.2. It consists of an array of n × n detectors placed on the surface of a
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section of a material of uniform density where n depends on the grid (or detector)

size and the total surface area to be measured. This configuration is equivalent to

moving a single detector in n× n discrete locations across the material surface. Each

detector (Figure 4.3.2 inset) is made up of a cylindrical detector cell surrounded by a

0.1 cm-thick square collimator. The MCNPX F2 tally was used to record all gamma

photons crossing the front surface of the detector cell. The MCNPX F2 tally measures

the average flux over a given surface area, i.e. number of particles per cm2 [114]. In

order to prevent crosstalk among neighbouring detectors, the collimator was set to be

completely impenetrable by gamma photons.

Figure 4.3.2: Sketch of the MCNPX simulation model.

Two radionuclides, namely: caesium-137 (Cs-137) and Co-60, were used in the

simulations. These are by-products of the nuclear fuel cycle commonly encountered

during decommissioning [124]. Both radionuclides were modelled as radioactive point

sources. Furthermore, three different materials, namely: sand, ordinary dry concrete

and high density concrete, were investigated. The properties of these materials are as
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shown in Table 4.3.1. Finally, for each material, a radionuclide was buried at varying

depths ranging from 2 to 40 cm at 2 cm increments. At each depth, a total of 108

gamma particles were generated and the total number of gamma rays crossing each

detector surface were recorded together with their corresponding energies.

Table 4.3.1: Densities and elemental composition of the three materials used in the

simulation. The information was obtained from [125].

Elements

Weight Fraction

Sand Ordinary Concrete High Density Concrete

(density = 1.7 g cm−3) (density = 2.18 g cm−3) (density = 3.35 g cm−3)

H 0.007833 0.004000 0.003585

C 0.003360 - -

O 0.536153 0.482102 0.311622

Na 0.017063 0.002168 -

Mg - 0.014094 0.001195

Al 0.034401 0.069387 0.004183

Si 0.365067 0.277549 0.010457

K 0.011622 0.013010 -

Ca 0.011212 0.080229 0.050194

Fe 0.013289 0.057461 0.047505

S - - 0.107858

Ba - - 0.463400

1.000000 1.000000 1.000000
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4.3.3 Experiment setup

The experiment setup is as shown in Figure 4.3.3a. It consists of a sandbox filled with

fine silica sand in which a radioactive source was buried. The sandbox was constructed

using 0.8 cm thick Perspex sheets (Direct Plastics Ltd., Sheffield, UK) because of its

relative transparency to gamma radiation. This ensures that the scattering of the

gamma radiation is almost exclusively due to the sand matrix. The radioactive source

used was a sealed 392 kBq Cs-137 radioactive point source. The source was attached

to one end of a graduated Ploy vinyl chloride pipe whose other end protrudes behind

the sandbox (Figure 4.3.3b). This enables the distance of the source from the front

of the sandbox (i.e. scanning surface) to be easily varied and the value read off from

the pipe.

The detector used in the experiment consists of an organic liquid scintillator and

a photomultiplier tube enclosed in a cylindrical aluminium case whose diameter is

3.5 cm and height is 9.13 cm. The organic liquid scintillator is the EJ-301 from

Eljen Technology (Sweetwater, Texas, USA) with a scintillation efficiency of 12,000

photons/MeV [126]. The entire detector assembly was placed inside the tungsten

collimator shown in Figure 4.3.3a. The collimator is a hollow cylinder open at both

ends with an internal diameter of 4 cm, thickness of 1 cm and length of 25 cm.

The use of the tungsten collimator was to ensure that only gamma photons within

the detector′s field of view are detected. However, since no material can provide 100%

shielding, some gamma photons are still able to penetrate through the walls of the

collimator. For instance, the collimator has a penetration of 14.4% at 662 keV for
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photons striking the curved surface at 90◦. However, it is obvious from the experiment

setup that none of the photons leaving the sandbox will strike the curved surface of

the collimator at 90◦. Therefore, assuming a maximum striking angle of 45◦, a photon

will travel a minimum thickness of 1.4 cm resulting in a significantly lower penetration

of 6.4%. Finally, the collimator was mounted on a custom fabricated motorised mount

to enable automated and accurate positioning at specified x–y coordinates.

(a) (b)

Figure 4.3.3: (a) Experiment setup; (b) Graduated pipe for adjusting the distance of

the source from the front of the sandbox.

During the experiment, the source was positioned at the centre of the scanning

surface while its distance from this surface was varied from 2 cm to 14 cm at 2 cm

intervals. At each distance, the spectrum of the source was measured on a total scan

area of 28× 28 cm2, which was divided into 4× 4 cm2 cells where a cell represents the

area covered by the detector at that position. This yields a total of 49 spectra per

distance. Finally, a scanning time of 10 min per position was used in the experiment.
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4.4 Results

4.4.1 Simulation results for Cs-137 buried in sand

The normalised radiation image of the Cs-137 point source buried in sand and acquired

using a cell size of 4× 4 cm2 and a maximum scan area of 36× 36 cm2 are shown in

Figure 4.4.1. The intensity of each pixel is the number of gamma photons with energy

between 640 and 662 keV detected by the detector at that position. This part of the

energy spectrum was chosen because it contains the characteristic photo-peak of Cs-

137. As expected, the intensities of the images gradually spreads out to neighbouring

pixels as the depth of the source increases. This is mainly due to increasing spreading

of the emitted gamma rays and scattering of the photons by the sand matrix. This

makes the photons be detected by an increasing number of detectors as the source

depth increases.
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The graph of the model (i.e. Equation (4.3.6)) for each of the images in Figure 4.4.1

are shown in Figure 4.4.2. As predicted by the model, it can be observed that the data

points approach a straight line with negative slope as the depth increases. This is

because more cells meet the validity condition of the binomial expansion at lower

depths. Furthermore, the effects of attenuation at lower depths can be observed

where the points become increasingly scattered at random about the straight line.

In order to estimate the approximate depth from the slope of the fitted line in

the model plots (Figure 4.4.2), the mean linear attenuation coefficient for sand at

640–662 keV is required. This was calculated using (4.4.1), where ρ is the density

of sand, µm,i is the mean mass attenuation coefficient between 640–662 keV for each

element i of the sand mixture and Wi is the weight ratio of each element i of the sand

mixture. The elements that constitute the sand mixture, their weight ratios and mass

attenuation coefficients were obtained from standard published tables [127]:

µ = ρ
n∑

i=1

µm,iWi. (4.4.1)

The estimated and real depths for the Cs-137 point source buried in sand are

shown in Figure 4.4.3a. It can be observed that the real depth is well approximated

by the estimated depth for depths of up to 5 cm. However, the estimated depth in-

creasingly deviates from the real depth at lower depths. This seems counter intuitive

at first glance because it is expected that more cells should fulfil the validity condi-

tion of the binomial expansion at lower depths; consequently, lower depths should

be better approximated than shallow depths. However, this increasing error at lower

depths is as a result of the exponential increase in the truncation error caused by se-
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lecting only the first two terms of the binomial expansion. However, of more practical

importance is the linear relationship between the real and estimated depths as shown

in Figure 4.4.3b. This shows that the real depth can be predicted from the estimated

depth by a simple calibration.
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(a) (b)

Figure 4.4.3: (a) Real and estimated depths for Cs-137 buried in sand. Index is the

position of each depth value in the depth array; (b) Linear fit of real and estimated

depth for Cs-137 buried in sand.

4.4.1.1 Effects of scan area and grid cell size

The two parameters that affect the estimated depth using the proposed method are

the size of the grid cells and the total scan area. This is because they determine the

depth beyond which the binomial expansion used in the derivation of (4.3.6) becomes

valid. For instance, smaller cell sizes increase the number of cells that meet this

validity condition, thereby yielding more valid points, which increases the accuracy of

the fitted line from which the approximated depth is estimated. However, as can be

observed from Figure 4.4.4a, larger cell sizes result in smaller errors in the estimated

depth compared to smaller cell sizes. This suggests that the number of gamma photons

detected per cell is an important factor because larger cell sizes (i.e. larger detectors)

detect more gamma rays per cell compared to smaller cell sizes. However, cell sizes

beyond 3 × 3 cm2 yield only marginally smaller errors. Figure 4.4.4b shows the
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error per depth for different scan areas using a fixed cell size of 4 × 4 cm2. As

expected, larger scan areas yield smaller errors with a consistent linear relationship

with the depth. However, a sudden drop in the error for depths above 30 cm can

be observed for the smaller scan area of 20 × 20 cm2. This is probably due to error

in the Monte Carlo statistics as the same trend is not observed for Co-60 buried

in sand (see Subsection 4.4.3). Finally, though a larger scan area will yield better

estimates, practical limitations such as available space and time may place a limit on

the maximum surface area that can be scanned.

(a) (b)

Figure 4.4.4: (a) Error per depth for different cell sizes for Cs-137 buried in sand; (b)

Error per depth for different scan areas for Cs-137 buried in sand.

4.4.2 Simulation results for Cs-137 buried in concrete

Figure 4.4.5a,b shows the linear fit of the estimated and real depths for the two types

of concrete, respectively. The effects of attenuation of the emitted gamma rays in both

types of concretes can be observed. This corresponds to the region where the data

points begin to lose their linearity. Furthermore, as expected, this loss of linearity is



CHAPTER 4. 91

more pronounced in the higher density concrete. This shows that Equation (4.3.6)

correctly models the attenuation behaviour of gamma rays in different materials.

(a) (b)

Figure 4.4.5: (a) Linear fit of estimated and real depth for Cs-137 buried in concrete

of density = 2.18 g cm−3; (b) Linear fit of estimated and real depth for Cs-137 buried

in concrete of density = 3.35 g cm−3.

4.4.3 Simulation results for Co-60 buried in sand and con-

crete

Co-60 is known to have two prominent photo-peaks at 1.17 MeV and 1.33 MeV on its

energy spectrum. The results using photon counts from both photo-peak regions are

shown in Figure 4.4.6a,b. The same error pattern in the estimated depth as seen in Cs-

137 can also be observed. This proves the consistent behaviour of the proposed model.

Furthermore, there is no significant difference in the estimated depth using photon

counts from either photo-peaks. This is because the probability of Co-60 emitting

gammas with either energies is almost equal in addition to the fact the difference
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between both energies is not substantial. It can be observed in Figures 4.4.7a,b that

larger cell sizes and scan areas yield better estimates similar to the results obtained

for Cs-137. This shows that the behaviour of these parameters is independent of the

energy of the gamma rays.

(a) (b)

Figure 4.4.6: (a) Real and estimated depths for Co-60 buried in sand. Index is the

position of each depth value in the depth array; (b) linear fit of real and estimated

depth for Co-60 buried in sand.

(a) (b)

Figure 4.4.7: (a) Error per depth for different cell sizes for Co-60 buried in sand; (b)

Error per depth for different scan areas for Co-60 buried in sand
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The linear fit of the estimated and real depths for Co-60 buried in the two types

of concrete are shown in Figure 4.4.8. As can be observed, the depth at which there is

significant uncertainty in the estimated depth due to attenuation is lower compared

to the case of Cs-137 (4.4.5). This is as expected because attenuation decreases

with increasing gamma energy. Consequently, Co-60 should have a higher maximum

detectable depth compared to Cs-137 when buried in the same material.

(a) (b)

Figure 4.4.8: (a) Linear fit of estimated and real depth for Co-60 buried in concrete

of density = 2.18 g cm−3; (b) Linear fit of estimated and real depth for Co-60 buried

in concrete of density = 3.35 g cm−3.

4.4.4 Experiment results

As pointed out in Section 4.3.1, any region of the measured energy spectrum can

theoretically be used in the depth estimation. This is especially useful for detectors

that cannot detect the characteristic photo-peak of the entrained radionuclide such as

the detector used in the experiment. Therefore, gamma photons from the Compton
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peak were used in estimating the depth from the measured spectra. This corresponds

to the energy range between 451 to 500 keV. The radiation images and corresponding

model plots for selected source depths from the experiment are shown in Figure 4.4.9.

The same trend seen in the simulation results can be observed. However, one or

two outlier data points due to measurement errors can be seen in the model plots

(Figure 4.4.9 bottom row).

Figure 4.4.9: Normalised 2D radiation images using photons from the Compton peak

region (top row) and corresponding model plot (bottom row) for selected depths

from the experiment.

The real and estimated depths from the experiment are shown in Figure 4.4.10a.

It can be observed that the real depth is well approximated by the estimated depth

up to 10 cm. Beyond 12 cm, the effect of attenuation becomes significant, resulting in

large errors in the estimated depth. This is also observed in the linear fit between the

real and estimated depths (Figure 4.4.10b), where a depth of 29 cm was estimated
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from the model when the real source depth is 14 cm. Due to this large error, this data

point was not included in fitting the data. Therefore, the maximum detectable depth

for the experiment setup is 12 cm with an adjusted R-squared value of 0.79. However,

this depth is lower compared to that obtained from the simulation results. This can

be attributed to three main factors, the first of which is the weak activity of the

sealed Cs-137 point source used in the experiment. Secondly, unlike the simulation,

the experiment used a realistic collimator therefore, its estimates will be affected by

the uncertainties caused by photons that penetrate through the walls of the collimator;

and, finally, the simulation used photons from the photo-peak region which are higher

in number and energy compared to photons in the Compton peak region and are

therefore less susceptible to attenuation.

(a) (b)

Figure 4.4.10: (a) Real and estimated depths from experiment. Index is the position

of each depth value in the depth array; (b) Linear fit of real and estimated depths

from experiments.
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4.5 Discussion

The simulation and experiment results show that the proposed technique has signifi-

cant advantages compared to existing remote contamination depth estimation meth-

ods. First, it has significantly higher maximum detectable depth, thereby increasing

its range of applications. For instance, in a recent technical report [9], it was identi-

fied that significant internal contamination in pipes buried up to 50 cm deep can be

detected on the ground surface using a radiation detector. The proposed method will

enable non-intrusive monitoring and characterisation of such pipelines through remote

3D localisation of internal contamination. Secondly, the experiment results showed

that the method can be used with non-spectroscopic gamma radiation detectors such

as plastic scintillators [128]. This is advantageous because these type of detectors are

cheaper compared to other type detectors.

The main limitation of the proposed method is in the estimation of the linear

attenuation coefficient of the material in which the radionuclide is buried. This is

because it requires foreknowledge of the mass attenuation coefficient and density of

the entraining material (see Equation (4.4.1)). However, Table 4.5.1 shows that the

average mass attenuation coefficient for a given energy range is relatively constant

for different materials. Therefore, the problem of estimating the linear attenuation

coefficient is reduced to that of finding only the density of the entraining material.

While a table of the densities of common materials can be prepared, such a solution

does not take into account the changes the material may have undergone overtime

due to environmental factors. Therefore, a better solution will be to integrate data
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from other non-intrusive techniques such as ground penetrating radar as proposed

in [129]. This multi-sensor data fusion solution will enable real-time determination of

the entraining material properties and also potentially improve the accuracy of the

estimated depth.

Table 4.5.1: Average mass attenuation coefficients for different materials at the photo-

peak region of Cs-137 and Co-60 calculated from [127].

Material
Cs-137 Co-60

600–700 keV 1.1–1.2 keV 1.3–1.4 keV

Sand 0.0800 0.0606 0.0557

Concrete 1 (2.18 g cm−3) 0.0795 0.0602 0.0553

Concrete 2 (3.35 g cm−3) 0.0809 0.0576 0.0526

4.6 Conclusion

A novel method for remote depth estimation of radioactive contamination has been

presented. The method is based on a derived approximate 3D linear attenuation model

and exploits the information obtained from multiple measurements of the intensity of

the radiation on the surface of the material in which the contamination is buried. Re-

sults from simulations and experiments of Cs-137 and Co-60 contaminations in sand

and concrete showed significantly improved remote depth estimation capabilities com-

pared to existing methods. Finally, the proposed method will significantly enhance

the non-intrusive characterisation of buried radioactive wastes commonly encountered
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during the decommissioning of nuclear sites and facilities.
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5.1 Abstract

This paper presents the results of an attenuation model for remote depth estimation

of buried radioactive wastes using a CZT detector. Previous research using an organic

liquid scintillator detector system showed that the model is able to estimate the depth

of a 329-kBq Cs-137 radioactive source buried up to 12 cm in sand with an average

count rate of 100 cps. The results presented in this paper showed that the use of the

99
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CZT detector extended the maximum detectable depth of the same radioactive source

to 18 cm in sand with a significantly lower average count rate of 14 cps. Furthermore,

the model also successfully estimated the depth of a 9-kBq Co-60 source buried up

to 3 cm in sand. This confirms that this remote depth estimation method can be

used with other radionuclides and wastes with very low activity. Finally, the paper

proposes a performance parameter for evaluating radiation detection systems that

implement this remote depth estimation method.

5.2 Introduction

Wastes generated during the nuclear fuel cycle can end up in the soil, resulting in large-

scale land contamination. This is the case in the beaches of Dounreay in Northern

Scotland where wide-spread radioactive soil contamination has been reported [5, 6].

This was caused by the so-called Dounreay particles resulting from the processing

of the fuels from the Material Test Reactor at the Dounreay nuclear facility. These

particles consist mainly of caesium-137 (Cs-137) fuel fragments buried at depths less

than 40 cm and extending over an area of about 200,000 m2. Other sources of shal-

low subsurface radioactive contamination include: leaks from waste pipes [8, 9] and

radioactive fallout from nuclear tests [119]. The characterisation of these subsurface

wastes has continued to be a major nuclear decommissioning challenge [121]. This

is mainly because of the difficulty in estimating the depth of penetration of these

contaminants without having recourse to destructive methods such as logging or core

sampling [7, 20]. Furthermore, reported non-intrusive depth estimation methods for
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such wastes are either based on empirical models [123, 124] or are limited to a maxi-

mum depth of 3 cm [12, 120].

Consequently, a novel remote depth estimation method for buried waste was re-

cently developed [130]. This method is based on an approximate three-dimensional

linear attenuation model that makes use of multiple radiation measurements obtained

from the surface of the material in which the radioactive contaminant is buried. The

results from simulation showed that the method is able to estimate the depth of ra-

dioactive point sources buried up to 40 cm in both sand and concrete. Furthermore, re-

sults from initial experiments using an organic liquid scintillator (EJ-301) from El-

jen Technologies (Sweetwater, TX, USA) and a high-speed multichannel analyser

MFAx1.3 from Hybrid Instruments Limited (Lancaster, Lancashire, U.K.) achieved

a maximum detectable depth of approximately 12 cm at an average count rate of

100 cps, where the average count rate is defined as the average of the count rates at

each depth when the detector is located axially with the source. These preliminary

results indicate that improved results can be obtained using a radiation detector with

a better gamma spectral response. This is because the gamma spectral response of

the EJ-301 scintillator is limited to the Compton continuum.

Therefore, this paper presents improved results from the depth estimation method

using a CZT detector. The CZT detector is a semiconductor detector that is well

known for its good spectral response at room temperature [131]. Consequently, it

is widely used in the characterisation of nuclear materials in fields such as nuclear

safeguarding and decommissioning [24, 132]. The paper also reports on the effect of

data acquisition time on the depth estimation performance of the method and pro-
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poses a performance parameter for evaluating systems that will implement the depth

estimation method. The next section gives a detailed description of the materials and

methods used in the research. The experimental results are presented and discussed

in Section 5.4, while the conclusions and future directions are presented in Section

5.5.

5.3 Materials and methods

5.3.1 The approximate three-dimensional linear attenuation

model

Let I(x,y,z) be the radiation intensity measured at any position (x, y) on the surface of

a material volume in which a radiation source is buried at depth z. The ratio of this

intensity to that measured from a reference position (i.e. (x, y) = (0, 0)) on the same

surface is given by:

loge(J(x,y,z)) ≈ − µ

2z
(x2 + y2) + loge(K(x,y,0)) (5.3.1)

where J(x,y,z) =
I(x,y,z)
I(0,0,z)

, µ = linear attenuation coefficient and K(x,y,0) =
I(x,y,0)
I(0,0,0)

. Equa-

tion (5.3.1) is the approximate three-dimensional linear attenuation model derived in

a previous work [130]. It expresses the ratio of the intensity measured at any position

on the surface of the material volume to that measured at the reference position on

the same surface. Furthermore, it can be deduced that the approximate depth of the

source can be estimated from the gradient of the model. The gradient can be obtained

by fitting a linear polynomial to the graph of the model for a set of spectra acquired
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from multiple positions on the surface of the material volume in which the source is

buried. The simulation result of this procedure for Cs-137 buried in sand at depths

from 2 cm to 20 cm at 2-cm intervals is shown in Figure 5.3.1. The deviation ob-

served at increasing depth is as a result of the approximation made in the derivation

of Equation (5.3.1). The details of the model derivation and a comprehensive analysis

of the simulation results have been reported in [130].

Figure 5.3.1: Estimated depth from the simulation of the Cs-137 point source buried

in sand [130]

5.3.2 Experiment

The experimental setup (Figure 5.3.2) consisted of a sandbox filled with sand in which

the radiation source was placed at varying distances from the front surface. The walls

of the box were 0.8 cm thick and were constructed using acrylic plastic sheets. The

density of the sand was 1.66 g cm−3, and the weight fractions of its composite elements

obtained using Scanning Electron Microscopy (SEM) are shown in Table 5.3.1. The

radiation source was attached to one end of a plastic pipe whose other end protruded

behind the box. This was used to vary the position of the source along the z-axis.
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The detector was placed inside the cylindrical tungsten collimator shown in Figure

5.3.2 so that only gamma rays within the detector’s field of view were detected at each

x-y position. The collimator was 1 cm thick, 25 cm tall and had an internal diameter

of approximately 4 cm. Furthermore, the collimator was attached to a motorised

mount for automated positioning of the detector at each specified position on the

front surface of the sandbox.

Figure 5.3.2: Setup for the experiment. The Cs-137 point source was placed at

varying positions along the z-axis using a pipe that protruded behind the box, while

the intensity was measured at the grid positions marked on the surface of the sandbox.
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Table 5.3.1: Elemental composition from SEM analysis of the sand used in the exper-

iment.

Element Weight Fraction

C 0.1714

O 0.5163

Na 0.0013

Al 0.0151

Si 0.2755

K 0.0072

Ca 0.0006

Fe 0.0072

P 0.0003

S 0.0004

Ti 0.0005

Cu 0.0009

Mg 0.0020

Zn 0.0014

1.0000

In order to acquire the data, the total scanning area was set to 28 × 28 cm2,

which was divided into 4 × 4 cm2 grids. The size of the grids were chosen to be

approximately equal to the internal diameter of the collimator. The radiation source
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was then positioned at distances (i.e. depths) varying from 2 cm to 20 cm at 2-cm

intervals from the front of the sandbox. At each depth, the detector was moved across

the scanning area, and the spectrum of the buried source was measured at each grid,

thereby yielding a total of 49 spectra per depth.

5.3.3 Spectrum acquisition and pre-processing

The detector used in the experiment was the CZT/500S detector from Ritec (Riga,

Latvia). It is a quasi-hemispherical CZT detector with a sensitive volume of 0.5

cm3 and is enclosed in a cylindrical casing of diameter 2.2 cm and height 3.3 cm.

Therefore, it was able to fit inside the collimator used in the experiment. The out-

put from the detector was connected to a charge-sensitive low noise preamplifier

(PA101C also from Ritec), and the output pulses were sampled by an oscilloscope

(sampling rate = 500 kS/s) controlled by a Personal Computer (PC). After digitisa-

tion by the oscilloscope, the pulses were then transferred to the PC via Ethernet for

Pulse Height Analysis (PHA). The stages of the PHA are as shown in Figure 5.3.3.

It consists of a fast and a slow processing channels whose outputs are used by the

pile-up rejector to estimate the height of suitable pulses. The details of the PHA are

discussed as follows:
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Figure 5.3.3: Pulse height spectrum analysis algorithm used in the experiment where

MWD is the Moving Window Deconvolution and MAF is the Moving Average Filter.

(a) Moving window deconvolution:

The moving window deconvolution (MWD) is an efficient filter proposed by Georgiev

et al. [133] for the retrieval of the amplitude of the step pulse from the output of the

preamplifier. The charge collected when a photon strikes the CZT crystal creates a

fast rising step in the output of the preamplifier with an amplitude that is proportional

to the amount of charge collected. However, the step decays exponentially at a rate

determined by the time constant of the preamplifier. This delay of the signal to return

to baseline prevents the accurate measurement of the amplitude of subsequent voltage

steps. However, since the output from the preamplifier is a convolution of the charge

distribution function and the impulse response of the preamplifier, deconvolving this

output signal will enable the reconstruction of the original charge distribution function

while eliminating poles from the preamplifier transfer function [133]. The MWD
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performs this deconvolution in a moving time window and is given by:

MWD(i) = X(i)−X(i−M) +
1

τ

i−1∑
j=i−M

X(j) (5.3.2)

where X(i) is the value of the signal at the i-th sample, M is the window size and

τ is the preamplifier time constant in units of sample time. It can be observed that

the MWD is a differentiator followed by an integration term that compensates for the

exponential decay using the time constant of the preamplifier.

(b) Moving average filter:

The moving average filter is an optimum constant weight smoothing filter suitable for

reducing random noise. It was applied to the output of the MWD so as to reduce the

noise level without affecting the energy resolution [134]. It is given by:

MAF (i) =
1

L

i−1∑
j=i−L

MWD(j) (5.3.3)

where L is the filter length. The value of L in relation to the MWD window size

M determines the output pulse shape. For instance, L < M results in trapezoidal

shaping, while L = M results in triangular shaping.

(c) Pile-up rejection:

Pile-up is caused by two or more events occurring within the duration of the length

of the shaping filter (i.e. the window size of the MWD). This causes the events

to be processed into a single pulse resulting in the wrong estimation of the pulse
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amplitude. The need to reduce pile-ups is usually in conflict with the need to ensure

complete charge collection. This is because while long shaping times increase the

probability of complete charge collection, they also increase the occurrence of pile-ups,

especially at high count rates. Pile-up rejection was implemented in PHA by having

two processing channels: a slow channel with a longer shaping time for increased

probability of complete charge collection and a fast channel with a shorter shaping

time for resolving closely occurring events. Therefore, any pulse from the slow channel

with more than one pulse within the same duration in the fast channel is rejected as

a pile-up.

The PHA algorithm was implemented in MATLAB (Natick, MA, USA) and used

to process the pulses transferred from the oscilloscope. The Cs-137 spectrum obtained

after 50,000 counts using long and short filter shaping times of 10 µs and 7 µs, re-

spectively, is shown Figure 5.3.4. It can be observed that all the key features of the

Cs-137 gamma spectrum can be clearly identified.

Figure 5.3.4: Cs-137 spectrum from the Pulse Height Analysis (PHA) algorithm after

50,000 counts.
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5.3.3.1 Photo-peak fitting

One of the problems with the spectrum produced by CZT detectors is the elongated

low-energy tail of the photo-peak. This is because of incomplete charge collection

caused by early carrier recombination due to low hole mobility within the CZT crys-

tal [135]. Consequently, the obtained spectrum photo-peaks are often asymmetric

and cannot be adequately described by conventional Gaussian functions. Therefore,

Montreau et al. [135] proposed a more robust peak fitting function given as:

F (i) = G(i) + S(i) +D(i) +B(i) (5.3.4)

where i is the channel number, and G is a Gaussian function given by:

G(i) = Agexp[−(i− i0)
2/2ς2] (5.3.5)

where Ag is the amplitude of the Gaussian function, i0 is the centroid and ς is the

standard deviation. S(i) is a step function given by:

S(i) = AsAgerfc[(i− i0)/
√
2ς] (5.3.6)

where As is the height of the step. D(i) is an exponential tailing function described

as:

D(i) = AtAgexp[(i− i0)/Tsς]× erfc[(i− i0)/
√
2ς] + 1/(

√
2Ts) (5.3.7)

where Ts is the inverse slope of the exponential tail. The last component of the fitting

function B(i) represents background radiation; however, it can be neglected if back-

ground subtraction is performed before fitting the function to the photo-peak. Figure

5.3.5 shows the application of Equation (5.3.4) to the 662-keV photo-peak of the ac-

quired Cs-137 spectrum. The contribution of each component of the fitting function
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to the accuracy and robustness of the fit can be observed. Therefore, this photo-peak

fitting function was used to analyse the spectra obtained from the experiments after

background subtraction.

Figure 5.3.5: Cs-137 662-keV photopeak fitting using Equation 5.3.4.

5.4 Results and discussion

5.4.1 Results for caesium-137

The two-dimensional radiation image for some selected depths between 2 cm and

20 cm for a 329-kBq Cs-137 point source buried in the sandbox are shown in Figure

5.4.1. The pixel values of each image are the photon count at 662 keV of the spectrum

acquired at that position on the front surface of the sandbox. In addition, the spectra

were acquired using a scanning time of 25 min per x-y position. It can be observed that

the images show an increasing defocussing of the intensity from the centre towards the

edges as the depth increases. This shows that the distribution of the intensity across

the image pixels contains information about the depth of the source. Furthermore, it
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can be observed that at the depth of 20 cm, the pixel intensities become randomly

distributed. This is because of significant attenuation, which causes some pixels to

have zero values. These zero-valued pixels represent positions where the photo-peak

fitting function failed due to its inability to detect a peak. This distribution of the

intensities across the image in addition to the decrease in the photon count due to

attenuation are the two pieces of information exploited by this method to estimate

the depth of the buried radioactive source.

Figure 5.4.1: Normalised radiation images of Cs-137 buried in sand for selected depths.

The next step in the depth estimation process is the evaluation of the model

(i.e. Equation (5.3.1)) using the radiation images. The graphs of the model for

the same selection of depths whose images are shown in Figure 5.4.1 are shown in

Figure 5.4.2. It can be observed that the graphs have negative gradients as predicted

by the model. Furthermore, it can also be observed in the graphs in Figure 5.4.2
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that the gradient of the fitted polynomial tends to zero as the depth increases. This

shows that the model aptly preserves the attenuation behaviour of gamma rays in

materials. In addition, it also implies that the gradient of the data points contains

information about the depth of the source and that the quantity of depth information

in the gradient decreases as the gradient value tends to zero where a zero gradient

value means no depth information. However, it must be noted that zero represents an

absolute limit because the reliability of the depth estimates will become significantly

reduced even before the gradient value becomes zero.
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The depths of the source estimated from the gradient of the model are shown in

Figure 5.4.3a. The linear attenuation coefficient µ at 662 keV for sand was calcu-

lated using the weight fractions in Table 5.3.1 and the mass attenuation coefficients

published by the National Institute of Standards and Technology (Gaithersburg, MD,

USA) [127]. It can be observed that the estimated depth approximates the real depth

up to 6 cm well, after which the expected deviation from the real depth begins. As

explained in [130], this deviation is a result of using only the first two terms of the

binomial expansion in the derivation of the model. This deviation continues up to 16

cm, after which a slight upward jump can be observed at 18 cm. This slight jump

at 18 cm indicates the depth at which the effects of attenuation begin to introduce

errors to the estimate. This slight jump is followed by a complete divergence of the

estimated depth from the real depth at 20 cm due to large errors in the estimate

caused by significant attenuation of the gamma rays. This complete divergence in the

estimated depth at 20 cm is corroborated by the complete defocussing of the radiation

image at 20 cm (Figure 5.4.1) and the almost zero gradient of the fitted polynomial

in the model graph also at 20 cm (Figure 5.4.2).
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(a) (b)

Figure 5.4.3: (a) Real and estimated depths for Cs-137 buried in sand. (b) Linear fit

of real and estimated depth for Cs-137 buried in sand.

Figure 5.4.3b shows that there is a linear relationship from which the real depth

can be predicted from the estimated depth up to 18 cm with an adjusted R-squared

value of 0.98. A weighted linear regression was used for the polynomial fitting to limit

the effect of the slight error in the estimate at 18 cm on the regression parameters.

In addition, the estimate at 20 cm was not included in the polynomial fitting due to

the large error in the estimate as already mentioned. The average corrected count

rate obtained for this experiment was 14 cps due to the slow communication link

between the PC and the oscilloscope. However, this result is a significant improvement

compared to the result previously obtained using the EJ-301 scintillator [130], which

achieved a maximum detectable depth of 12 cm with a significantly higher average

count rate of 100 cps. In addition, this result also suggests that using the CZT detector

with a commercial multichannel analyser rather than the improvised setup employed

in this experiment, this depth estimation method can achieve a maximum detectable
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depth greater than 18 cm using less than 25-min per x-y position scanning time.

This improved result is mainly due to the high atomic number of the CZT detector,

which enabled the use of photon counts from the photo-peak in the depth estimation.

Conversely, the experiment with the EJ-301 scintillator used photon counts from the

Compton peak because the caesium-137 gamma spectrum from EJ-301 is limited to

the Compton continuum due to the low atomic number of the scintillator. Finally,

this result confirms that while photon counts from any part of the spectrum can be

used with the model, photon counts from the photo-peak will yield the best results.

5.4.1.1 Effect of scanning time

The estimated depths for different scanning times per x-y position, namely 15, 20 and

25 min, are shown in Figure 5.4.4a. A gradual, but progressive improvement in the es-

timated depth at 16 cm and 18 cm can be observed as the scanning time increases (see

the points indicated on the graph). This progressive improvement in the estimated

depth results in the progressive restoration of the graph to the expected deviation

pattern as the scanning time increases. The gradual rate at which the estimates im-

prove with time indicates that this relationship is exponential. This is confirmed by

Figure 5.4.4b, which is the graph of the absolute error in the estimate as a function of

the count rate for the 20-min scanning time experiment. The decay rate of this graph

indicates how quickly the error in the estimated depth decreases as the count rate in-

creases, and it is independent of the scanning time. Furthermore, dividing this decay

rate by the density of sand will make it also independent of the material in which the

source is buried. This will result in a value that is dependent only on the efficiency of
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the instrumentation (i.e. detector and related electronics) used. Therefore, this value

can be used as a parameter for evaluating and selecting appropriate instrumentation

for field application of this remote depth estimation method.

(a) (b)

Figure 5.4.4: (a) Estimated depths for three different scanning times.; (b) Exponential

decrease of the absolute error in the estimated depth with increasing count rate.

The gradients and intercepts for the linear fit between the real and estimated

depths for the three scanning times and those from simulation (reported in [130])

are shown in Table 5.4.1. The “Depths” column in the table refers to the range

of depths over which the parameters were estimated. It can be observed that the

values of these parameters are relatively constant and do not vary significantly with

depth. This means that the values of these parameters can be assumed to be constant

for any given material and gamma energy. Therefore, this method can be used to

investigate radioactive wastes buried at any depth in a given material without the

need for calibration. This is not the case with the empirical model proposed in

[123, 124], where new model parameters must be obtained in order to estimate depths
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outside the range of depths used to develop the model.

Table 5.4.1: Parameters for the linear fit between the real and estimated depth from

experiments and simulation.

Depths (cm) Gradient Intercept

Experiment

15 min 2–14 1.4 ± 0.1 −1.6 ± 0.9

20 min 2–16 1.4 ± 0.1 −1.5 ± 1.2

25 min 2–18 1.5 ± 0.2 −2.2 ± 1.6

Simulation [130] 2–40 1.6 ± 0.1 −2.0 ± 0.6

5.4.2 Results for cobalt-60

The experiment was also carried out using a 9-kBq Co-60 point source. Due to the low

activity of the source, the scanning area was reduced to 20×20 cm2, while the scanning

time was increased to 40 min per x-y position. The results for both the 1.77-MeV

and 1.33-MeV photo-peaks of the Co-60 gamma spectrum for depths from 1 cm to 4

cm at 1-cm intervals are shown in Figures 5.4.5a,b. The similarity in the estimated

depths from both peaks can be observed up to 3 cm, after which both graphs differ

dramatically. This is not expected because gamma rays from both energy peaks have

similar mass attenuation coefficients, i.e. 0.059 for 1.17-MeV gamma rays and 0.0552

for 1.33-MeV gamma rays. In addition, gamma rays from both energy peaks have

the same probability of being emitted from the Co-60 nucleus. Due to these reasons,
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estimates after 3 cm were considered to be erroneous and were thus excluded from

the linear fit between the real and estimated depths shown in Figure 5.4.5b. This

maximum detectable depth of 3 cm achieved for 9-kBq Co-60 source buried in sand

is a significant improvement over the technique reported in [120], which achieved a

similar maximum depth limit for a 40-kBq Co-60 source also buried in sand. Finally,

this result confirms that this method can be used both with other radionuclides and

with low level buried wastes.

(a) (b)

Figure 5.4.5: (a) Real and estimated depths for Co-60 buried in sand.; (b) Linear fit

of real and estimated depths for Co-60 buried in sand.

5.5 Conclusion

Improvements in the depth estimation results of the approximate 3D attenuation

model using a CZT detector have been presented. The results showed that the model

was able to non-intrusively estimate the depth of a 329 kBq Cs-137 radioactive source

buried up to 18 cm in sand with a significantly lower average count rate of 14 cps
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compared to previous results of 12 cm with an average count rate of 100 cps. This

will enable the rapid non-intrusive localisation of buried radioactive wastes. Further-

more, the results also confirmed that the depth limit depends on the data acquisition

time. Therefore, increasing the data acquisition time will enable the estimation of the

depth of wastes buried deeper in the sand. In addition, the result from the experiment

using a 9-kBq Co-60 radioactive source confirmed that the model can be used with

any gamma radiation source and is also capable of estimating the depth of buried

sources with very weak activity. Furthermore, the explicit dependence of the model

on the density of the material means that this method can be extended to any mate-

rial, e.g., concrete, by substituting the material’s density in the model. Consequently,

the method will find wide application in nuclear decommissioning, land remediation,

nuclear security and non-proliferation activities. Finally, areas of further research in-

clude investigation of the method’s performance using non-point sources and multiple

hot spots within the scanning area. These will further improve the robustness of this

non-intrusive depth estimation method.
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6.1 Abstract

This study reports on the combination of data from a GPR and a gamma-ray de-

tector for non-intrusive depth estimation of buried radioactive sources. The use of

GPR was to enable the estimation of the material density required for the calcula-

122
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tion of the depth of the source from the radiation data. Four different models for

bulk density estimation were analysed using three materials, namely: sand, gravel

and soil. The results showed that the GPR was able to estimate the bulk density

of the three materials with an average error of 4.5%. The density estimates were

then used together with gamma ray measurements to successfully estimate the depth

of a 658 kBq caesium-137 radioactive source buried in each of the three materials

investigated. However, a linear correction factor needs to be applied to the depth

estimates due to the deviation of the estimated depth from the measured depth as

the depth increases. This new application of GPR will further extend the possible

fields of application of this ubiquitous geophysical tool.

6.2 Introduction

Knowledge of the depth of penetration of radioactive contaminants is critical in char-

acterising and decommissioning porous materials such as soil and concrete. This is

because it determines the expected volume of wastes and subsequent choice of retrieval

and disposal strategy [10]. This can have significant impact on the decommissioning

cost because these materials are usually present in large volumes in contaminated sites

[13]. Sources of contamination of this porous materials especially soil include fall out

from nuclear weapons testing; nuclear accidents e.g., the Chernobyl and Fukushima

accidents; and poor disposal of nuclear wastes [7, 119, 136]. In addition, the presence

of these contaminants in the soil constitute a major public hazard due to their long

half-life and chemical behaviour. For instance caesium-137 (Cs-137), which is one
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of the most predominant anthropogenic radioactive contaminants, is highly soluble

and easily taken up by plants as a substitute for potassium thereby contaminating

the food chain [15]. Therefore, there is a need to continuously monitor the depth of

penetration of these contaminants in suspected sites.

However, traditional methods of depth estimation such as core sampling and log-

ging are slow and have limited spatial sampling extent because of their intrusive

nature. Furthermore, the non-intrusive methods reported in [12, 121–124, 136–139]

are either based on regression models whose parameters typically have no physical

significance or are limited to specific radioactive sources. Also, other non-intrusive

methods reported in [140, 141] use specialised shielding and collimator arrangements

while those that employ machine learning [19, 142, 143] require significant amount of

data to train the algorithms.

Therefore, a new non-intrusive depth estimation method based on an approximate

three-dimensional (3D) attenuation model was recently developed [130]. The method

is simple to setup and can be used to estimate the depth of any gamma emitting

radioactive source. However, the method requires the density of the material in which

the radioactive source is buried to be known before it can be used. This is usually

not possible in practice without having recourse to intrusive density measurement

methods [144]. Furthermore, the use of predefined or historical density values can

result in misleading depth estimates because these values do not account for the

changes undergone by the material over time due to environmental factors. Hence,

there is the need for an in situ density estimation technique that is non-intrusive.

GPR has been extensively used for the non-intrusive estimation of the soil moisture
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content of materials such as concrete and soil [145–148]. Therefore, it can potentially

be used as a complementary sensor to provide this density information to the depth

estimation process.

Consequently, this study reports on the combined use of a GPR and a gamma ray

detector to estimate the depth of a buried radioactive source. Four different models

for the estimation of bulk density from GPR were investigated using three different

materials. The results from the best model were then used together with the data

from the gamma ray detector to estimate the depth of a Cs-137 radioactive source

buried in each of the materials. The rest of this article is divided into four sections.

The next section describes the theoretical framework of the research while Section

three presents the material and methods adopted for the research. The results and

discussions are presented in Sections 6.5 and 6.6 respectively and the conclusion is

presented Section 6.7.

6.3 Theoretical framework

6.3.1 Approximate 3D linear attenuation model

Given a radioactive source S buried inside a material at depth z as shown in Figure

6.3.1, the ratio of the intensity I(x,y,z) measured at any position (x, y) on the surface

of the material to that measured from a reference position (i.e. (x, y) = (0, 0)) on the

same surface is given by [130]:

loge(J(x,y,z)) ≈ −µmρb
2z

(x2 + y2) + loge(K(x,y,0)) (6.3.1)
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where J(x,y,z) =
I(x,y,z)
I(0,0,z)

, µm = mass attenuation coefficient, ρb = bulk density and

K(x,y,0) =
I(x,y,0)
I(0,0,0)

. Equation (6.3.1) is referred to as the approximate 3D attenuation

model and can be used to estimate the depth of a buried gamma radiation source by

fitting it to the data of intensities at a given gamma ray energy measured from discrete

positions on the surface of the material volume. Both µm and ρ are properties of the

material in which the source is buried. However, while µm is known to be relatively

constant for different materials for a given photon energy, ρb must be estimated for the

material under investigation before the attenuation model can be applied. Therefore,

the use of GPR for non-intrusive estimation of ρb is the main aim of this study.

Figure 6.3.1: Radioactive point source S buried in a material volume.

6.3.2 Principles of GPR

GPR is a geophysical technique for non-intrusive investigation of a wide variety of

structures and materials e.g., soil, concrete etc. It does this by exploiting the response

of these materials to propagating electromagnetic waves as illustrated in Figure 6.3.2.

Electromagnetic waves from the transmitting antenna propagates into the surrounding

medium at a velocity which is dependent mainly on the permittivity of the medium.
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The permittivity is a measure of the resistance offered by a material to the electric field

induced by the waves. Furthermore, the measured permittivity of mixtures such as soil

and concrete is referred to as the effective or bulk permittivity ϵb. This is because the

measured permittivity of these materials is a combination of the permittivities of their

constituents. In addition, the permittivity of a material is typically given as a relative

quantity, i.e. the ratio of the material’s permittivity to that of free space. Therefore,

all use of permittivity in this study refers to its relative value unless otherwise stated.

Figure 6.3.2: Principles of GPR. Reflected waves from boundaries a recorded by the

receiver and displayed as a time varying signal called an A-scan.

When the propagating waves encounter a boundary or interface, i.e. a layer with a

different permittivity, part of the waves is reflected while the remaining is transmitted

through the second layer. The proportion of the reflected wave is determined by the

layer’s reflection coefficient R which is given by:

R =

√
ϵb,0 −

√
ϵb,1

√
ϵb,0 +

√
ϵb,1

(6.3.2)

where the ϵb,0 and ϵb,1 are the bulk permittivities of the first and second layers re-

spectively. However, it should be noted that total reflection of the waves can occur
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if the second layer is a highly conductive material such as metal. The reflected waves

are captured by the receiving antenna after which it is digitised by the receiver and

displayed as a time varying signal commonly referred to as an A-scan (Figure 6.3.2).

Interfaces encountered by the propagating waves are indicated by pulses in the A-scan

while the time of arrival of each pulse is an indication of the distance of the interface

from the antennas.

6.3.3 Bulk density estimation using GPR

The estimation of the bulk density of a material using GPR consists of two steps,

namely: Estimation of the material’s permittivity, and estimation of the bulk density

from the permittivity using permittivity mixing formulas. These steps are further

discussed in the following subsections.

6.3.3.1 Estimation of the material’s permittivity

If the medium of propagation is considered to be made up of layers with different

permittivities, then the relative amplitude of the reflected pulse from the nth layer is

given by [149]:

An

Ainc

=

√
ϵb,n −

√
ϵb,n+1

√
ϵb,n +

√
ϵb,n+1

[
n−1∏
i=0

(1−R2
i )

]
e
−η0

∑n
i=0

σidi√
ϵb,i , (6.3.3)

where An is the amplitude of the reflected pulse from the nth layer, η0 is the free

space impedance, σi is the layer conductivity, di is the layer thickness, and Ainc is the

amplitude of the incident pulse from the GPR system. The value of Ainc is usually

obtained by measuring the reflection amplitude due to a flat metal surface placed at a
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fixed distance from the GPR system. This is because the metal surface is considered

to be perfect electrical conductor with a reflection coefficient of −1. Therefore, the

reflected pulse from the metal surface is the same as the inverse of the incident pulse

from the GPR system.

For a two layer medium where the first layer is made up of air which has a permit-

tivity of 1, the permittivity of the second layer can be obtained from Equation (6.3.3)

by substituting n = 0, i.e.

ϵb,1 =

(
1 + [A0/Ainc]

1− [A0/Ainc]

)2

(6.3.4)

where A0 is the reflection amplitude from the interface between the first and second

layer. This formula is widely used as the surface reflection method for the estimation

of the permittivity and other properties of soils [52, 150] and asphalt pavements [151–

153]. Finally, Equation (6.3.3) can be used with a medium with any number of layers

by iteratively applying it to all significant pulses in the A-scan to obtain the vertical

variation of the medium’s permittivity with depth.

6.3.3.2 Permittivity mixing formulas

Porous media such as soil and concrete can be considered as a mixture of several

materials in different phases. For example, soil is typically modelled as a mixture of

solid particles, water and air where the solid particles acts as a background material

into which water and air are added as inclusions [154]. Permittivity mixing formulas

express the bulk permittivity of these porous media as function of the permittivities of

their constituents and the internal structure of the mixture. A number of permittivity
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mixing formulas have been proposed in the literature and these can be broadly divided

into two categories.

The first category of formulas are those derived from the relationship between the

induced electric field and the flux density. Since these category of formulas are derived

from the physical laws of electromagnetism, they incorporate the microstructural

properties of the mixture albeit with some simplifications. The general expression for

this category of formulas is given by [155]:

ϵb − ϵ0
ϵb + 2ϵ0 + v(ϵb − ϵ0)

=
n∑

i=1

fi
ϵi − ϵ0

ϵi + 2ϵ0 + v(ϵb − ϵ0)
(6.3.5)

where ϵ0 is the permittivity of the background material, ϵi is the permittivity of

other constituents of the mixture, fi is the volume fraction of each constituent and

v is a positive constant which indicates the effect of the polarisation induced in the

medium as a result of the propagating electric field. Furthermore, it was proved in

[155] that most of the mixing formulas proposed under this category can be obtained

from Equation (6.3.5) by substituting appropriate values for v. The second category

of mixing formulas are the exponential or power law formulas which have the general

form:

ϵαb =
n∑

i=1

fiϵ
α
i (6.3.6)

where α is a geometric parameter whose value is obtained by fitting the model to

experimental data. The common reported values for α are 0.5 [156–158] and 0.65

[159, 160]. Furthermore, Equation (6.3.6) with α = 0.5 is also referred to as the

complex refractive index model (CRIM).

In estimating the density of asphalt pavements using GPR, Leng et al. [152]
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used three permittivity mixing formulas namely: Rayleigh [161], Bottcher [162] and

CRIM. Therefore, these three models were also adopted for this study. Both the

Rayleigh and Bottcher formulas can be derived from Equation (6.3.5) using v = 0 and

v = 2 respectively while the CRIM is obtained from Equation (6.3.6) with α = 0.5 as

mentioned in the previous paragraph. In addition, Equation (6.3.6) with α = 0.65 was

also included in this study and will henceforth be referred to as the Dobson mixing

formula.

In summary, for a porous medium consisting of solid particles, air and water, the

Rayleigh, Bottcher, CRIM and Dobson mixing formulas for the bulk permittivity are

given by:
ϵb − ϵs
ϵb + 2ϵs

= (ϕ−Wc)
ϵa − ϵs
ϵa + 2ϵs

+Wc
ϵw − ϵs
ϵw + 2ϵs

, (6.3.7)

ϵb − ϵs
3ϵb

= (ϕ−Wc)
ϵa − ϵs
ϵa + 2ϵb

+Wc
ϵw − ϵs
ϵw + 2ϵb

, (6.3.8)

ϵ0.5b = (1− ϕ)ϵ0.5s + (ϕ−Wc)ϵ
0.5
a +Wcϵ

0.5
w , (6.3.9)

ϵ0.65b = (1− ϕ)ϵ0.65s + (ϕ−Wc)ϵ
0.65
a +Wcϵ

0.65
w , (6.3.10)

respectively where ϵs, ϵw, ϵa are the permittivities of solid particles, water and air

respectively, θ is the water content of the medium and ϕ is the porosity of the medium

which is related to the bulk density by:

ϕ = 1− ρb −Wc

ρs
(6.3.11)
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where ρs is the specific density of the solid particles. It should be noted that the

volume fractions f of the air, water and solid particle depend on the porosity and

water content of the medium consequently, they were replaced in Equations (6.3.7)–

(6.3.10) with their respective expressions from [157].

6.4 Materials and methods

The three materials investigated in this study are shown in Table 6.4.1. The bulk

densities of each of the material was measured using three different subsamples and

the average value recorded. The elemental composition of the sand and soil samples

were obtained using Scanning Electron Microscopy while that of the gravel sample was

obtained from [125]. Furthermore, the mass attenuation coefficients of all the elements

in the three sample were obtained from tables published by the National Institute of

Standards [127]. These were then used together with the elemental compositions to

calculate the mass attenuation coefficients of the three materials at 662 keV, which

is the gamma ray energy at the photo peak of the Cs-137 radioisotope used in this

study. It can be observed from Table 6.4.1 that the mass attenuation coefficient is

relatively constant for all three materials therefore, an average value of 0.0775 was

used in this study. The solid permittivity of soil and sand were obtained from [159],

while that of gravel was obtained from [163]. In addition, a specific density of 2.65 g

cm−3 [164] was adopted for all three materials. Finally, both the sand and gravel were

dry samples while the water content of the soil was measured using the oven drying

method.



CHAPTER 6. 133

Table 6.4.1: Properties of the materials used in the study.

Sand 10 mm Gravel Soil

Bulk density (ρb) (g cm−3) 1.52 1.54 1.26

Mass attenuation coefficient (µm) at 662 keV 0.0776 0.0775 0.0773

Solid permittivity (ϵs) 4.7 6.5 4.7

Specific density (ρs) (g cm−3) 2.65 2.65 2.65

Water content (Wc) (%) 0.0 0.0 6.0

6.4.1 Gamma-ray data acquisition and processing

The experiment setup for the acquisition of the gamma ray intensity data is as shown

in Figure 6.4.1. The material volume is represented by a box in which the different

materials were placed. The dimension of the box is 40 cm × 50 cm × 40 cm (length

× width × height) and it was constructed with acrylic sheets with a thickness of

0.8 cm. Acrylic sheet was used because it is relatively transparent to gamma rays.

The front of the box was divided into 4 × 4 cm2 grids in order to identify each

measurement position. The gamma-ray detector used in the experiment was the

CZT/500(s) detector from Ritec (Riga, Latvia). This is a cadmium zinc telluride

detector which has a sensing volume of 0.5 cm3 and is sealed in a casing with a

diameter of 2.2 cm. Furthermore, the detector was placed inside a hollow cylindrical

tungsten shield opened at both ends in order to eliminate background radiation from

the laboratory environment.
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Figure 6.4.1: Setup for the gamma ray measurements. The Cs-137 point source was

placed at varying position along the z-axis using a pipe that protruded behind the

box, while the intensity was measured at the desired positions on the surface of the

box.

During the experiment, the box was filled with one of the materials and a 658

kBq Cs-137 radioactive point source was buried at varying depths from 2 cm to 22

cm at 4 cm intervals along the z-axis starting from the origin. This procedure was

repeated for each of the materials. At each depth, the pulses from the detector were

acquired using an oscilloscope (sampling rate = 500 kSa/s) from the desired number

of grids. An acquisition time of 25 min per grid was used throughout the experiment.

The acquired pulses were then stored and processed in a personal computer using

the pulse height analysis algorithm described in [165] to generate the spectrum of the

source at each grid. Therefore, a total of n spectra was acquired per depth where

n is the number of grids. In addition, the background spectra for each of the three

materials were also measured and subtracted from each of the generated spectrum.

Finally, the photo peak function described in [135] was used to extract the number of
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gamma ray photons (i.e. intensity) at 662 keV from each of the generated spectrum.

6.4.2 GPR data acquisition and processing

As mentioned in Subsection 6.3.3, the first step in bulk density estimation using

GPR is the estimation of the bulk permittivity using Equation (6.3.4). This will

require the measurement of the amplitudes of the reflected pulses from each of the

material and that from a metallic surface. The setup for the acquisition of the reflected

pulses is shown in Figure 6.4.2. The orientation of the setup was kept the same with

that of the gamma ray data acquisition to ensure consistency between the data from

both experiments. The GPR system used is the MALA CX12 from GuidelineGeo

(Sundbyberg, Sweden) with a central frequency of 1.2 GHz. In addition, a sampling

frequency of 37 GHz and time window of 8.4 ns was used throughout the experiment.

Figure 6.4.2: Setup for the GPR reflected pulse measurements. The antenna was

placed 15 cm from the surface of the box.

During the experiment, the GPR antenna was centrally positioned fifteen centime-

tres (15 cm) away from the front of the box while the reflected pulse was measured.
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This was repeated each time the box was filled with a different material. Furthermore,

since the bulk permittivity was assumed to be uniform throughout the material vol-

ume, all the pulses were measured from this fixed position. In addition, the reflected

pulse when the box was empty was also measured and subtracted from the reflected

pulses measured when the box was filled with each of the material. This procedure

removed the contributions of both the direct wave and box to the measured reflected

pulses from the materials. Finally, the reflected pulse from a flat metal sheet was also

measured in order to complete the data required to estimate the bulk permittivities

of the materials.

After acquisition, the pulses were filtered using a finite impulse response bandpass

filter with lower and upper frequencies of 0.5 GHz and 2.5 GHz respectively to remove

unwanted frequency components. The filtered pulses from both the soil and metal

sheet are shown in Figure 6.4.3a. The amplitude values of the pulses were obtained

from the peak of the envelope of the Hilbert transform of the pulses. This is also shown

in Figure 6.4.3b for the pulses from the soil and the metal sheet. Having obtained the

required amplitude values, the bulk permittivities of the three materials were then

estimated using Equation (6.3.4) and are shown in Table 6.4.2. The bulk permittivities

of both the sand and gravel are consistent with the values reported in [163, 166], while

that of the soil is higher than both materials because of the water content. Also, note

that the bulk permittivity of the gravel is higher than that of the sand despite both

materials having approximately the same measured bulk densities. This difference is

due to the solid permittivity of gravel which is higher than that of sand. Finally, using

the estimated bulk permittivities, the bulk densities of each of the materials were then
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estimated using the four permittivity mixing formulas, i.e. Equations (6.3.7)–(6.3.11)

where the permittivities of water and air were taken to be 80.1 and 1 respectively.

These results are presented and discussed in the next section.

(a) (b)

Figure 6.4.3: (a) Measured reflected pulses from the air-soil and air-metal interfaces

without time-offset correction. Both pulses can be seen to arrive between 1.4–2.6 ns;

(b) Envelope of the Hilbert transform of both pulses.

Table 6.4.2: Estimated bulk permittivity for the three materials using Equation

(6.3.4).

Sand Gravel Soil

Bulk permittivity (ϵb) 2.93 3.57 4.84
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6.5 Results

6.5.1 Bulk density estimation

The error in the estimated bulk densities for the four mixing formulas are shown

in Figure 6.5.1. It can be observed that all the formulas yielded reasonably good

estimates for both sand and gravel with an average error of 5% and 3.75%, respectively.

However, the Rayleigh and Dobson formulas had the best performance for sand with

an error of 3% and 2%, respectively. Conversely, the Bottcher and CRIM formulas

had the best performance for the gravel with an error of 3% and −1% (negative errors

means that the bulk density was underestimated). However, the significant difference

in the performance of the formulas can be observed in the result for soil where all the

formulas except the Dobson formula performed very poorly. The overestimation of

the bulk density of soil by over 70% by both the Rayleigh and Bottcher formulas can

be attributed to the fact that both formulas assume that the mixture is homogeneous

[155] which is relatively true for both the sand and gravel samples. Conversely, soil

is typically a complex mixture of sand, clay, silt, water, organic matter and other

inorganic minerals consequently, the assumption of homogeneity is not valid.

The very good performance of the Dobson formula for soil compared to the poor

performance of the CRIM formula is likely due to the inclusion of the effect of bound

water by Dobson et al. [159] in their estimation of the value of α in Equation (6.3.6).

This is because at low water content (as is with the case of the soil used in this

study), the water in the soil exists predominantly as bound water [159], i.e. as a thin
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film around the solid soil particles. Due to their restricted molecular motion, these

bound water have a lower permittivity compared to free water in the pore of the soil

matrix [157]. Therefore, the assumption that all the water in the soil behaves as free

water (see [158]) which is the basis for arriving at a value of 0.5 for α is not correct.

However, this assumption can be valid at high water content where the behaviour of

free water dominates. This was further confirmed by [154] who observed that an α

value of 0.5 seems to be appropriate for fully water-saturated porous media. Finally,

since the Dobson formula had the least average error of 4.5% for all materials, its bulk

density estimates were used in the subsequent sections to calculate the depth of the

buried Cs-137 source.

Figure 6.5.1: Error in the estimated bulk densities of the three materials under inves-

tigation.

6.5.2 Depth estimation of the buried Cs-137 radioisotope

The measured gamma ray intensities when the source was buried at 14 cm in the
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three materials are shown in the top row of Figure 6.5.2 as normalised raster images.

The intensities were measured from a total of 7 × 7 grids covering a total scan area

of 28 × 28 cm2. Furthermore, each pixel value of the image represents the number

of gamma ray photons at 662 keV recorded by the detector at that position. The

fitting of the attenuation model (i.e. Equation (6.3.1)) to the data from each of raster

images using the density estimates from the Dobson mixing formula are shown in the

corresponding bottom row of Figure 6.5.2. A good model fit can be observed for all

three materials as indicated by the high adjusted r-squared values.

Figure 6.5.2: Normalised raster images of the Cs-137 source buried at a depth of 14

cm for each of the material (top row). Corresponding fit of the attenuation model for

each of the depth images (bottom row).

The estimated depths of the buried Cs-137 radioisotope from the fitted attenuation

model are shown in Figure 6.5.3 for all three materials. A consistent linear deviation of

the estimated depth from the measured depth as the depth increases can be observed
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in all three materials. This deviation can be attributed to the fact that the attenuation

model does not account for the inverse square reduction in the gamma ray intensity

as the depth increases. However, a linear correlation between the estimated and

measured depths can be visually observed in the figure for all three materials. This

means that the measured depth can be predicted from the estimated depth by fitting

a linear polynomial to the scatter graph. The fitted linear polynomials for the three

materials are given in Table 6.5.1. The high adjusted r-squared values is indicative of

the good linear correlation between the estimated and measured depths. Finally, it

was shown in [165] that the parameters of these linear polynomials i.e., the gradient

and intercept can be obtained using simulation tools such as MCNPX[114] and then

used to correct estimated depths measured from field data.

Figure 6.5.3: Estimated depths of the buried Cs-137 source for the three materials.
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Table 6.5.1: Linear polynomials fitted to the scatter graph of Figure 6.5.3 where zest is

the estimated depth and zmea is the measured depth. This can be used as calibration

equations to correct for the deviation of the estimated depth from the measured depth.

Material y = ax + b ±error R2
adj

Sand zest = 0.64zmea + 2.2 ±1.1 0.99

Gravel zest = 0.63zmea + 1.9 ±1.2 0.99

Soil zest = 0.59zmea + 1.5 ±1.9 0.95

6.6 Discussion

The results presented in the previous section has proven the potential of GPR as a

tool for estimating the material bulk density required for non-intrusive estimation of

the depth of buried radioactive sources. This in situ density estimation will improve

the accuracy in determining the depth of penetration of radioactive contaminants

in materials such as soil and concrete compared to the use of historical density val-

ues. Furthermore, the non-intrusive nature of GPR will ensure that the contaminated

material subsurface is not disturbed thereby preventing further spreading of the con-

tamination.

However, one of the potential challenges in applying this depth estimation tech-

nique in the field is the time required to move a single gamma detector across the

scan area. This can be eliminated by using a square array of gamma detectors since

each detector and its shielding covers only a relatively small area of 4 × 4 cm2. The
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detector array can then be mounted on a trolley to scan the ground surface of the

contaminated area. It should also be noted that the 25 min per grid measurement

time taken to measure the gamma rays is due to the fact that each signal from the

detector was first digitised by an oscilloscope and then transferred to a computer for

processing. This time will be substantially reduced by using commercial multichannel

analysers. These are dedicated high-speed electronics that process the output from a

gamma detector and generate the spectrum of the radioactive source in real-time.

Another difficulty that maybe encountered in the field is the fact that Equation

(6.3.4) depends only on the change in permittivity at the air-material interface. Con-

sequently, it is unable to measure the vertical variation in the bulk permittivity inside

the material which can occur when investigating at greater depths, e.g., up to 1 m.

This difficulty can be resolved by iteratively applying Equation (6.3.3) to every sig-

nificant pulse identified in the measure A-scan. This will yield the vertical variation

of the permittivity inside the material from which the variation in density can be

obtained using the Dobson mixing formula.

6.7 Conclusion

The use of GPR as a complementary sensor to provide in situ material density data

required for the non-intrusive estimation of the depth of buried radioactive sources

from radiation data has been demonstrated using three different materials. The results

showed that the Dobson permittivity mixing formula provided the best bulk density

estimates across the range of materials investigated. Therefore, its results were used
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with the radiation data to estimate the depth of a buried Cs-137 source using an

approximate 3D attenuation model. However, a linear correction factor needs to be

applied to the depth estimates to account for deviation of the estimated depth from

the measured depth as the depth increases. This limitation will be further investigated

in order to make the attenuation model more robust.

Finally, the benefits of combining GPR and radiation detectors are not limited

to material density estimation. It also opens the possibility of non-intrusive three

dimensional reconstruction of the contaminated subsurface by fusing GPR and ra-

diation images. This will enhance visual monitoring of these type of contaminated

environments and provide guidance for autonomous decommissioning systems.
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7.1 Abstract

The characterisation of buried radioactive wastes is challenging because they are not

readily accessible. Therefore, this study reports on the development of a method for

integrating GPR and gamma-ray detector measurements for non-intrusive characteri-
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sation of buried radioactive objects. The method makes use of the density relationship

between soil permittivity models and the flux measured by gamma-ray detectors to

estimate the soil density, depth and radius of a disk-shaped buried radioactive ob-

ject simultaneously. The method was validated using numerical simulations with

experimentally-validated gamma-ray detector and GPR antenna models. The results

showed that the method can simultaneously retrieve the soil density, depth and radius

of disk-shaped radioactive objects buried in soil of varying conditions with a relative

error of less than 10%. This result will enable the development of an integrated GPR

and gamma-ray detector tool for rapid characterisation of buried radioactive objects

encountered during monitoring and decontamination of nuclear sites and facilities.

7.2 Introduction

The presence of radioactive objects in the shallow subsurface is a major public health

risk because these objects can induce high levels of radiation above the ground. For

example, a cobalt-60 source found buried at a depth of about 32 cm in a Cambodian

hospital induced radiation levels of up to 60 mSv h−1 above the ground [7]. This is

about 26,000-times the stipulated effective dose limit of 20 mSv per year [14]. Fur-

thermore, chemical reactions in the soil can lead to the dissolution of these objects and

subsequent contamination of groundwater. For example, the high energy penetrators

used in ammunition are usually made from depleted uranium, which is a by-product

of the nuclear fuel enrichment process. Many of these penetrators get lodged in the

ground during military operations and become potential sources of groundwater con-
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tamination because of their high solubility in sand and other volcanic rock [167].

Therefore, it is important to promptly detect, and safely dispose these objects.

The first stage in the disposal of these buried radioactive objects is their charac-

terisation. However, this process is challenging because of the difficulty in estimating

the depth of these objects using traditional intrusive methods such as logging and

core sampling [19, 20]. Therefore, a number of non-intrusive depth estimation meth-

ods have been developed. These can be broadly divided into three categories, namely:

empirical model methods; multiple photo peak methods; and shielding and collimator

methods. The empirical model methods are based on establishing correlations be-

tween distinguishable features in part or all of the gamma spectrum and the depth

of the buried radioisotope. They include: peak-to-valley ratio [136, 139], peak-to-

scatter ratio [121, 138], principal component analysis [122–124], and machine learning

[19, 142, 143] methods. However, these methods result in models whose parameters

typically have no physical significance. Furthermore, the use of machine learning

requires a significant amount of data for training. The multiple photo peak meth-

ods [12, 120, 137] exploit the difference in the attenuation of two energy peaks in the

gamma spectrum in order to estimate the depth of the source. Consequently, they are

limited to radioisotopes with two or more photo peaks that are sufficiently separated

in the gamma spectrum.

The shielding and collimator methods [140, 141, 168] use different shielding and

collimator configurations to obtain multiple measurements from which the depth of

the radioactive source can be estimated. These methods have been shown to yield

more accurate results compared to other methods [168] and can be used with any
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radioisotope. However, the required multiple measurements can only be acquired

sequentially. This can significantly increase the data acquisition time because the

acquisition of the spectrum of a buried source usually requires a long dwell time

due to significant attenuation. In addition, in order to limit the minimum number

of measurements required to estimate the depth to only two, the value of the bulk

density of the soil is typically assumed to be known. However, the bulk density of

soil depends on the current condition of the soil, and this varies from one location to

another. Therefore, assuming a constant or generic value will result in errors in the

estimated quantities. Furthermore, the use of historical values will not account for the

changes in the soil density that would have occurred over time due to environmental

factors such as rain fall and temperature changes.

Therefore, this work presents the development of a method for integrating gamma-

ray detectors and GPR for the retrieval of the soil density, depth and radius of a

buried radioactive object. This eliminates the need for the soil density value to be

known a priori. The method also used two horizontally-separated detectors to enable

simultaneous acquisition of the required measurements, thereby solving the problem

of sequential data acquisition. This will improve the rapid characterisation of buried

radioactive wastes.
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7.3 Theoretical framework

For a radioactive point source buried in an air-soil half-space as shown in Figure 7.3.1,

the flux Fp measured by the detector placed above the ground is given by [169]:

Fp =
SpAr(E , θ)Ce(E)

4π
(
h+d
cos θ

)2 e−µm(E)ρa h
cos θ e−µm(E)ρb d

cos θ (7.3.1)

where E is the energy of the point source (eV), θ is the angle of incidence of the

source with the detector (radians), d is the depth of the source in the soil (cm), Sp

is the activity of the source (Bq) and Ar(E , θ) is the angular response of the detector

to a point source of energy E incident at angle θ. This is a dimensionless quantity

and is obtained by measuring the response of the detector to a point source at angles

varying from 0–π/2. This calibration should be done with the collimator in place

if the detector is to be used with a collimator. Ce(E) is the detector’s centreline

efficiency (cps cm2 Bq−1) and is calculated from the flux due to a source of known

activity placed at a known distance z along the centreline, i.e.

Ce =
Fp4πz

2

Sp

(7.3.2)

µm is the mass attenuation coefficient of the point source at energy E (cm2 g−1), ρa

is the density of air (g cm−3), h is the distance from the ground surface to the centre

of the detector and ρb is the bulk density of soil (g cm−3).
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Figure 7.3.1: Geometry and parameters for estimating the flux (measured by the

detector) due to the point source Sp in the soil.

If the buried object is assumed to be disk-shaped and the contamination is at

most 1–2 mm below the object’s surface, then it can be approximated as a planar

disk source, and the flux Fa measured by the detector is obtained by integrating

Equation (7.3.1) over the area of the disk, i.e.

Fa =

∫ 2π

0

∫ r

0

SaAr(E , θ)Ce(E)
4π
(
h+d
cos θ

)2 e−µm(E)ρa h
cos θ e−µm(E)ρb d

cos θ r drdφ (7.3.3)

where r and φ are the radius (cm) and angle (radians) of the disk source in polar

coordinates and Sa is activity per unit area (Bq cm−2).

In most buried radioactive source surveys, the quantities of interest are the activity

and depth of the source of the radiation; both of which are estimated from the ratio

of two measurements [141]. In other words, the ratio of two measured fluxes F1 and

F2 acquired using different detector configurations is a function that depends only on

the source depth, i.e.
F2

F1

= ratio(d) (7.3.4)
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The depth estimated from Equation (7.3.4) can then be used to estimate the source

activity using Equation (7.3.1) or (7.3.3) for a point or planar source. However, this

two-measurement procedure assumes that the bulk density of the soil is known. This

requirement can be eliminated by acquiring a third measurement [141]; however, this

will increase the data acquisition time.

GPR has the potential of solving this density-dependency dilemma. A GPR sys-

tem operates by sending electromagnetic signals into the ground and measuring any

portion of the signal that is reflected by interfaces or objects in the signal propagation

path. Using the illustration in Figure 7.3.2, the time t between the reception of the

reflection from the ground and that from the disk source is given by:

t =
2d

v
=

2d
c√
ϵb

(7.3.5)

where v is the speed of the signal in the soil (m s−1), c is the speed of light (299,792,458

m s−1) and ϵb is the relative bulk permittivity of the soil (unitless). It should be noted

that Equation (7.3.5) assumes that both the transmitting (Tx) and receiving (Rx)

antennas are close to each other.

Figure 7.3.2: Operation of a GPR system. Signals from the transmitter (Tx) are

reflected by objects and detected by the receiver (Rx).
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Porous materials such as soil can be considered as a three-phase mixture of air,

water and solid particles [154]. Therefore, their bulk permittivity is a function of

the permittivities of these phases and their proportional composition in the mate-

rial. Various formulas have been proposed to express this relationship; however, in

a comparative study [170], it was shown that the formula based on the exponential

mixing rule [154] with the exponent value of 0.65 gave the best result across a variety

of materials. This formula is given by:

ϵ0.65b =

(
ρb −Wc

ρs

)
ϵ0.65s +

(
1− ρb −Wc

ρs
−Wc

)
ϵ0.65a +Wcϵ

0.65
w (7.3.6)

where the exponent value of 0.65 was obtained from the work of Dobson et al. [159],

ρs = 2.65 g cm−3 is the solid particle density for soils, Wc is the volumetric water

content (%), ϵs = 4.7 is the solid particle relative permittivity for soils [159, 160],

ϵa = 1 is the relative permittivity of air and ϵw is the relative permittivity of water,

which is given by the real part of the modified Debye’s equation [160], i.e.

ϵw = ϵw,∞ +
ϵw,0 − ϵw,∞

1 + (2πfτw)2
(7.3.7)

where ϵw,∞ = 4.9 is the relative permittivity of water at infinity, ϵw,0 is the static

relative permittivity of water, f is the frequency of the GPR (Hz) and τw is the water

relaxation time (s). Both ϵw,0 and τw depend on temperature T (◦C) and are given

by Equations (7.3.8) and (7.3.9), respectively [171, 172].

ϵw,0 = 88.045− 0.4147× T + 6.295× 10−4 × T 2 + 1.075× 10−5 × T 3 (7.3.8)

τw =
1

2π
(1.1109×10−10−3.824×10−12×T +6.938×10−14×T 2−5.096×10−16×T 3)

(7.3.9)
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Combining Equations (7.3.5) and (7.3.6) will yield Equation (7.3.10), which can

be solved simultaneously with Equation (7.3.4) to estimate both the soil bulk density

and the depth of the source. This integration of the data from the GPR and gamma-

ray detectors can be considered as a type of low-level multi-sensor data fusion where

data from different sensors are combined using physical models to enable or improve

the estimation of physical parameters [129].

(
2d

ct

)1.3

=

(
ρb −Wc

ρs

)
ϵ0.65s +

(
1− ρb −Wc

ρs
−Wc

)
ϵ0.65a +Wcϵ

0.65
w (7.3.10)

Another important consideration is how to arrange the sensors (i.e. the gamma-

ray detectors and GPR antenna) for efficient data acquisition. Preferably, the ar-

rangement should be such that the sensors can operate simultaneously. Two ways

of positioning two gamma-ray detectors for the measurement of the radiation fluxes

are illustrated in Figure 7.3.3. In the first arrangement, both detectors are verti-

cally displaced by a fixed distance. However, this configuration makes it difficult to

simultaneously measure the fluxes from both detectors because the field of view of

the upper detector is completely or significantly occluded by the lower detector for

small objects. This problem does not occur in the second arrangement where the

second detector is horizontally displaced from the reference detector. This arrange-

ment also has the additional advantage of allowing the GPR antenna to be mounted

between both gamma-ray detectors thereby creating a more compact sensor arrange-

ment. However, the calculation of the angle of incidence (θ in Equation (7.3.3)) for

the second detector needs to be modified to account for the horizontal separation.
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The modified expression is given by:

θ = arctan

(
a

h+ d

)
where a =

√
(x+ r cosφ)2 + (r sinφ)2

and x is the horizontal separation.

(7.3.11)

Figure 7.3.3: Two ways of arranging two detectors to measure the flux from the disk

source. The horizontally-separated arrangement allows both fluxes to be measured

simultaneously because none of the detectors is obstructed.

7.4 Materials and methods

The numerical modelling and simulation tools used were Monte Carlo N-Particle Ver-

sion 5 (MCNP5) [114] and gprMax Version 3.1.4 [115]. MCNP5 is a collection of

software codes that is used to simulate the transportation of subatomic particles,

e.g., gammas, neutrons, etc., and their interaction with materials using Monte Carlo

statistical techniques. It is widely used in the modelling and analysis of nuclear radia-

tion structures and systems and has been extensively proven to have good agreement
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with experimental results. gprMax is an open source software code used to simulate

the propagation of GPR signals. At its core, gprMax is a finite-difference time-domain

electromagnetic wave solver that uses Yee’s algorithm to solve the three-dimensional

Maxwell’s equations. Its results have also been extensively validated with experiments

[173].

7.4.1 Selection and modelling of sensors

The gamma-ray detector used in the study was the CZT/500S from Ritec (Riga,

Latvia). It is a hemispherical CZT semiconductor detector with a sensitive volume

of 0.5 cm3 (Figure 7.4.1a). The detector was chosen because of its size and good

spectroscopic properties. In addition, unlike HPGe detectors, CZT detectors do not

require a cooling system; therefore, they are very portable and easy to integrate with

other systems. Figure 7.4.1b shows the simulated and experimental Cs-137 spectrum

from the model and real detectors, respectively. A very good alignment of the spec-

trum key features can be observed. The tailing effect in the Compton valley of the

spectrum from the experiment was due to incomplete charge collection caused by poor

electron-hole mobility. This is a characteristic feature of CZT detectors. This feature

was not modelled because of the additional complexity required. However, this will

not affect the results of the study because the ratio of the area under the photo peak

for two simulated spectra will be the same as that for two experimental spectra. The

difference in the position of the Compton peak was likely due to nonlinearity in the

real detector, while the higher background below 300 keV in the spectrum from the

experiment can be attributed to backscatter from surrounding objects.



CHAPTER 7. 156

(a) (b)

Figure 7.4.1: (a) MCNP5 model of the gamma-ray detector. The crystal volume is

1 cm × 1 cm × 0.5 cm; (b) Experimental and simulated Cs-137 spectrum from the

model and real detector.

The selected GPR antenna for the study was the 1.5-GHz antenna (Model 5100)

from GSSI Inc. (Nashua, NH, USA). The gprMax model of this antenna is shown

in Figure 7.4.2. The antenna consists of a pair of transmitter and receiver bow-tie

antennas printed on a circuit board. The antennas are surrounded by microwave

absorbers, which in turn are surrounded by a metallic shield. The entire assemble

is enclosed in a polypropylene case. The development and experimental validation

of the model can be found in [60, 173]. It should be noted that the actual centre

frequency of the antenna model was 1.71 GHz with a fractional bandwidth of 103%.
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Figure 7.4.2: gprMax model of the 1.5-GHz antenna from GSSI Inc. The antenna

dimensions are 17 cm × 10.8 cm × 4.3 cm (L×W×H). The skid plate underneath

the casing has been removed to show the inside of the antenna.

7.4.2 Measurement scenario modelling

The measurement scenario was modelled both in MCNP5 and gprMax. The MCNP5

model of the measurement scenario is shown in Figure 7.4.3a. The radioactive object

was modelled as a planar disk source with uniform activity. This is typical of stainless

steel objects whose surfaces become activated by neutron flux in nuclear reactors [174].

The radioisotope used was Cs-137 with a photo peak energy of 662 keV. Each gamma-

ray detector was placed in a cylindrical collimator with inner radius, thickness and

height of 2.4 cm, 1.0 cm and 3.3 cm, respectively. The collimator was modelled as an

alloy of tungsten (95% W, 3.5% Ni and 1.5% Fe) with a density of 18 g cm−3 [175].

The horizontal distance between the gamma-ray detectors was selected such that it

can fit the width of the GPR antenna. The antenna was modelled as a propylene box

since it was not an active component in the MCNP5 simulation. The soil used in the
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model was a typical soil (51.4% O, 0.6% Na, 1.3% Mg, 6.8% Al, 27% Si, 1.4% K, 5.1%

Ca, 0.5% Ti, 0.07% Mn and 5.6% Fe) with a dry density of 1.52 g cm−3 [125].

The gprMax model of the measurement scenario is shown in Figure 7.4.3b. This

is a replication of the MCNP5 model using the gprMax antenna model described

in Section 7.4.1. The detectors were modelled as metallic cylinders since only the

lead collimator part of the gamma-ray detectors will affect the GPR signals. The

radioactive object was modelled as a metallic disk of thickness 0.5 cm. The two

properties required to replicate the soil in gprMax were the bulk permittivity and

the bulk conductivity. The bulk permittivity was calculated using Equations (7.3.6)–

(7.3.9) at a temperature of 20 ◦C. The bulk conductivity was calculated using [176]:

σb =
σw(ϵb − 4.1)

ϵw
(7.4.1)

where σb is the soil bulk conductivity (Sm−1) and σw is the conductivity of pore water

(0.05 Sm−1 [177]).
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(a) (b)

Figure 7.4.3: Model of the measurement scenario. The radioactive object is a metallic

disk with Cs-137 radioactive contamination. (a) MCNP5 model of the measurement

scenario. The gamma-ray detectors are surrounded by 1 cm-thick lead collimators

with an inner radius of 2.4 cm and height of 3.3 cm; (b) gprMax model of the mea-

surement scenario. All labels and dimensions are the same as (a).

7.4.3 Simulation and data processing

Two sets of simulations were performed: MCNP5 simulations to measure the gamma

fluxes due to the buried radioactive object and gprMax simulations to measure the

time of flight (signal travel time) of the GPR signal to the buried radioactive object.

In the MCNP5 simulations, disk sources of radii of 3 cm, 9 cm and 15 cm were

separately buried in the soil at depths varying from 12 cm–28 cm at 4-cm intervals.

All the activities of the sources were normalised to 1 Bq cm−2, unless otherwise stated.

After simulation, a Gaussian function was fitted to the spectra from the gamma-ray
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detectors in order to estimate the number of full energy photons detected. This is

the required flux due to the buried radioactive object. The energy range used for the

estimation was from 655–672 keV.

In the gprMax simulations, the radioactive object was also buried in the soil at

depths varying from 12 cm–28 cm at 4-cm intervals. The GPR signal was then trans-

mitted and the reflected signals recorded for processing. The first step in processing

the GPR data was the subtraction of the antenna’s system response from that acquired

from the measurement scenario. The antenna’s systems response is the measured re-

sponse when the antenna is in air or free space. This subtraction process decoupled the

reflection due to the ground surface from the direct signal from the transmitter to the

receiver. This made the reflected signal from the ground surface to be easily identified.

The required signal travel time was then the time between the ground reflection and

the reflection due to the metallic disk. This process is illustrated in Figure 7.4.4a,b.

Using the estimated gamma fluxes and the signal travel times, Equations (7.3.4) and

(7.3.10) were simultaneously solved to obtain the soil density, depth and radius of the

buried radioactive object. These results are presented and discussed in the following

section.
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(a) (b)

Figure 7.4.4: GPR signal for metal disk of a radius of 3 cm buried at 24 cm in dry

soil, (a) Raw GPR signal with coupled direct wave and ground reflection; (b) GPR

signal after subtraction of the GPR antenna’s system response.

7.5 Results and discussion

The calculated (solid lines) and simulated (markers) ratios of the fluxes (i.e. Equation

(7.3.4)) from the gamma-ray detectors for disk sources of different radii buried at

different depths in the dry soil are shown in Figure 7.5.1. The uncertainty in the flux

ratio was calculated using Equation (7.5.1), where δF1 and δF2 are the uncertainties in

the fluxes from Detectors 1 and 2 as calculated by MCNP5. A decreasing dependency

of the ratios on depth can be observed as the depth increased. This is indicated by the

plateauing of the curves and the increasing error bars as the depth increased. This is

caused by the exponential attenuation of the gamma rays as the depth of the source

increased. This effect can be mitigated in practice by increasing the measurement

time or by using a detector with higher efficiency. A decrease in the dependency
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of the ratios on depth can also be observed as the source radius increases. This is

because the part of the source in the field of view of Detector 2 increases as its radius

increases. Therefore, its measured flux will become increasingly the same as that

measured by Detector 1 since the source has uniform activity.

Figure 7.5.1: Flux ratio (i.e. F2/F1) for sources of radii of 3 cm, 9 cm and 15 cm

buried at various depths in dry soil (ρb = 1.52 g cm−3). The solid lines are calculated

values, while the markers are the values from the simulation.

Flux ratio uncertainty =

∣∣∣∣F2

F1

∣∣∣∣
√(

δF2

F2

)2

+

(
δF1

F1

)2

(7.5.1)

The depths and densities obtained by simultaneously solving Equations (7.3.4)

and (7.3.10) using the flux ratios in Figure 7.5.1 and the signal travel time from GPR

measurements are shown in Table 7.5.1. The values in parentheses are the relative

error in percentage. It can be observed that the estimated depths are within 5% of

their actual values while most of the estimated densities are within 9% of their actual

values. The density estimates with high errors are those obtained when the sources
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were buried at 12 cm. This is likely caused by the fact that the sources have a large

incident angle with respect to Detector 2 when buried at shallow depths. This results

in the reduction of the geometric efficiency of Detector 2.
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Table 7.5.2 shows the depth and density estimates for a disk source (3 Bq cm−2)

of a radius of 3 cm buried at a depth of 20 cm in soil of different densities and and

volumetric water contents. The estimates in the first row were obtained using the

proposed integrated GPR and gamma-ray detectors approach. The values in the

second row were obtained using the measurements from only the two gamma-ray

detectors by minimising the following function:

minimise: (Rcalc −Rsim)
2

Rsim

(7.5.2)

where Rcalc and Rsim are the calculated and simulated flux ratios respectively. It

can be observed that the combination of the gamma-ray detector and GPR mea-

surements significantly improved the depth and density estimates especially at high

densities and water contents. This is because the additional measurement from the

GPR constrained the solution space to the correct values. The solution space can also

be constrained by using a third gamma-ray detector measurement; however, this will

either increase the data acquisition time if the measurements are acquired sequen-

tially or require the design of a complicated measurement geometry for simultaneous

measurement of all three fluxes. Conversely, this GPR integration approach is fast,

simple, and produces good results.
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Finally, the results presented so far assumed that the size (i.e. radius) of the

disk source is known. However, this is typically not the case in practice. Therefore,

the retrieval of the radius of the disk source was also investigated. Since this would

require the estimation of three unknowns using two equations, the problem was refor-

mulated as a constrained minimisation problem where Equations (7.3.10) and (7.3.7)

are the objective and constraint functions, respectively. The results for disk sources

of different radii buried in the soil at a depth of 12 cm are shown in Table 7.5.3.

Good estimates can be observed as all of the estimated values had relative errors of

less than 10% except the density and radius estimates for the disk source of radius

of 3 cm. This large error in the estimates for the disk source of radius 3 cm is likely

due to the large incident angle for Detector 2 at shallow depths, which reduced the

number of gamma rays reaching the detector. This reduction in the flux measured

by Detector 2 at shallow depths is more pronounced if the radius of the disk source

is small. However, the results confirmed the ability of the integrated gamma-ray de-

tector and GPR method to estimate the key parameters of soil density, depth and

radius of buried disk sources, simultaneously. Furthermore, this technique can also

be used with other radioisotopes (e.g., Co-60) by substituting the mass attenuation

coefficient at the photo peak energy of the radioisotope in Equation (7.3.3).
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Table 7.5.3: Estimated depths, densities and radii values for disk sources of varying

radii buried in the dry soil at a fixed depth of 12 cm. The values in parentheses are

the relative error in percentage.

Actual Values Estimated Values

d (cm) ρb (g cm−3) r (cm) d (cm) ρb (g cm−3) r (cm)

12 1.52 3 10.9 (9) 1.64 (8) 6.6 (120)

12 1.52 9 11.5 (4) 1.47 (3) 9.6 (7)

12 1.52 15 11.6 (3) 1.43 (6) 15.1 (1)

7.6 Conclusion

The integration of gamma-ray detectors and GPR for non-intrusive characterisation of

buried radioactive objects has been presented. The results showed that this integrated

approach is able to retrieve the key parameters of soil density, depth and radius of

disk-shaped radioactive objects buried in soil of varying conditions simultaneously. It

also showed that by using two horizontally-separated gamma-ray detectors, all the

measurements required for the estimation process can be acquired simultaneously,

thereby reducing the time associated with sequential data acquisition. However, the

method is currently limited to objects having surface radioactive contamination that

can be approximated by a disk. Therefore, there is a need to develop the method

further to account for objects of different shapes. Finally, this study will form the
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basis for the development an integrated gamma-ray detector and GPR system. Such

a system will enable the rapid characterisation of buried wastes encountered during

the decommissioning of nuclear sites and facilities.
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Chapter 8

Conclusion

8.1 Summary

The integration of gamma-ray detectors and visual sensors (e.g., LiDAR and video

cameras) have been used to solve some of the challenges in the detection and lo-

calisation of radioactive sources encountered during nuclear decommissioning. The

literature review in Chapter 3 identified that the main function of the visual sensors

was to provide the contextual information (e.g., velocity of the moving radioactive

source) needed to complement the measurements from the gamma-ray detectors to

enable detection and localisation of radioactive sources in these challenging scenarios.

However visual sensors are not useful if the radioactive source is buried in opaque

materials such as soil and concrete hence the need for GPR. Chapter 3 also identified

the properties (e.g. density) of the embedding material as one of the key contextual

information associated with buried radioactive sources obtainable from GPR.

In Chapters 4 and 5, a new non-intrusive depth estimation method for buried
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radioactive sources from 2D raster radiation images was developed. The 2D radiation

images were obtained by moving a gamma-ray detector in discrete steps across the

surface of the embedding material volume and measuring the gamma-ray spectrum at

each step. Accurate movement and positioning of the detector was achieved using the

bespoke motorised mount described in Appendix A. The depth of the source was then

estimated by fitting the intensity values from these spectra to an approximate 3D

gamma-ray attenuation model. However, the depth estimates showed an increasing

linear deviation from the actual depth as the depth of the source increases. Conse-

quently, an initial calibration is required to obtain the linear equation required to

correct this linear deviation. This new method was tested and validated using both

Monte Carlo simulations and experiments using caesium-137 and cobalt-60 sources

buried in sand and concrete.

Chapter 6 investigated four models for non-intrusive density estimation using

GPR. The aim was to find the best density model for integration with the data

from the gamma-ray detectors. The models were analysed using the reflected GPR

signal from three materials namely sand, gravel and soil. The results showed that the

exponential model with an exponent value of 0.65 gave the best density estimates with

an average relative error of 4.5% across the three materials. This density estimation

method was then combined with the depth estimation method previously developed

to successfully estimate the depth of a 658 kBq caesium-137 radioactive source buried

up to 18 cm in each of sand, gravel and soil.

The linearly increasing error in the result of the developed depth estimation

method was initially thought to be as a result of using only the first two terms of
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the binomial expansion during the derivation of the approximate 3D gamma-ray at-

tenuation model. However, it was later discovered that this error was caused by the

fact that the attenuation model did not account for the effect of the geometric ef-

ficiency. The geometric efficiency is the fraction of the gamma ray emitted by the

source that is incident on the detector [26]. This depends on the angle subtended

by the detector with respect to the source and the distance of the detector from

the source. Consequently, the geometric efficiency is different for each position of

the detector during the acquisition of the raster image. Also, the multiple measure-

ments required to obtain a suitable raster image can result in long acquisition times

especially if the buried source has low activity.

To overcome these limitations, an integrated gamma-ray detector and GPR method,

which accounts for the effects of geometric efficiency and requires only two gamma-

ray measurements was developed in Chapter 7. This new method makes use of the

density relationship between the density model identified in Chapter 6, and the flux

measured by gamma-ray detectors to simultaneously estimate the density of the em-

bedding material, and the depth and radius of disk-shaped buried radioactive objects.

The results from numerical simulations showed that this new method can simulta-

neously retrieve the soil density and the depth and radius of disk-shaped radioactive

objects buried up to 20 cm in soil of varying conditions with a relative error of less

than 10%. The results also showed that this new integration method solved the prob-

lem of increasing linear error in the estimated depth in addition to eliminating the

need for prior knowledge of the density of the embedding material.
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8.2 Significance of the research outputs

As discussed in Chapter 1, a significant amount of radioactive wastes still remain

buried both in the soil and inside the walls and floors of structures in nuclear sites.

These buried radioactive wastes constitute a major environmental and nuclear de-

commissioning challenge. Therefore, there is need for new and improved methods to

effectively characterise these wastes to ensure their prompt and safe disposal.

The non-intrusive depth estimation methods developed in this thesis are a sig-

nificant contribution to this need for improved characterisation methods for buried

radioactive wastes. Firstly, the non-intrusive nature of the methods will make them

faster to deploy thereby enabling rapid characterisation of large contaminated areas.

In addition, it will also prevent secondary contamination of the deployed equipment

and minimise the generation of secondary wastes associated with intrusive depth es-

timation methods.

Furthermore, the developed methods also have significant advantages compared to

other non-intrusive methods. For instance, unlike the multiple photo peak methods

[12, 120, 137], these new methods are not limited to radioisotopes with multiple

photo peaks in their gamma spectra. Consequently, they can be used to investigate

the entire range of possible gamma-ray emitting radioisotopes encountered during

decommissioning. Also, the method developed in Chapter 7 do not require initial

calibration to obtain model parameters. The derivation of depth estimation models

from existing gamma radiation data is a one of the main limitations of empirical

model depth estimation methods [123, 138, 139, 143]. This is because these empirical
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models can only be applied to radiation data with the same characteristics as the one

from which the model was derived.

Finally, the solution to the density dependency problem associated with non-

intrusive radioactive source depth estimation methods is another significant benefit of

the methods developed in this research. This will improve the accuracy of the depth

estimates in practice because the estimated depths will be based on the current state

of the embedding material and not on assumed or historical density values.

8.3 Future Work

The techniques developed in this thesis represents the first time gamma-ray detectors

and GPR will be integrated for the detection and localisation of buried radioactive

wastes. While the results are promising, there still remain potential areas of improve-

ment that need to be further explored. These are:

8.3.1 Different source geometries

The geometry of the radioactive sources investigated in this thesis were point and

planar source geometries with uniform activity. However, radioactive sources can

be of any shape and size therefore, there is need to extend the depth estimation

methods developed in this thesis so that they can be applied to sources that have a

volume and other simple geometries. Extension to arbitrary source geometries may

result in equations with intractable solutions. Therefore, it is suggested that complex

geometries be approximated to the nearest simple geometry.
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8.3.2 Multiple sources within the investigated area

The raster image method developed in Chapter 4 assumes only one radioactive source

in the raster image. However, multiple radioactive sources could be located within the

imaged area resulting in multiple hot spots in the acquired raster image. Therefore,

there is need to extend the method to account for this scenario. A suggested solution

is to use 2D Gaussian fitting techniques to isolate each hot spot in the image and then

apply the depth estimation method to each isolated hot spot in the image.

8.3.3 Estimation of water content

The results in Chapters 6 and 7 showed that the GPR signal is affected by the presence

of water in the embedding material. This can result in errors in the estimated den-

sity and depth of the embedding material and buried radioactive source respectively.

Therefore, there is need to estimate the water content of the embedding material to

prevent the breakdown of the methods for materials with significant water content.

A potential solution is to use GPR inversion techniques [145, 178] instead of the GPR

methods used in Chapters 6 and 7. GPR inversion have been shown to be able to

simultaneously retrieve multiple material properties therefore, it has the potential to

obtain both the density and water content of the embedding material. This will en-

able the developed integration methods to be extended to account for the effect of

water in the embedding material thereby extending their application to radioactive

sources buried in wet materials.
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8.3.4 Design and fabrication of an integrated gamma-ray de-

tector and GPR system

The gamma-ray and GPR data used in this thesis were acquired non-simultaneously

using separate gamma-ray detector and GPR systems. This arrangement will not

enable real-time implementation of the methods developed in this thesis. Therefore an

integrated gamma-ray detector and GPR system needs to be developed. A suggested

starting point is the system configuration used in Chapter 7 which consists of the GPR

antenna placed between two gamma-ray detectors. Some of the parameters that would

need to be optimised include the antenna size and shielding, the gamma-ray detector

sizes, the collimator sizes and material and the gamma-ray detectors separation. The

developed integrated system will find useful applications in nuclear decommissioning

and land remediation.



Appendix A

Bespoke motorised mount

The motorised mount shown in Figure A.0.1 was designed and fabricated in order

to automate the position of the detector during the experiments. The vertical and

horizontal motions are controlled by the respective threaded shafts which are con-

nected to servo motors. The horizontal and vertical resolutions are 3,237 and 3,125

steps per cm respectively. The operation of the mount was controlled via an arduino

micro-controller by a custom data acquisition programme developed in MATLAB.

Figure A.0.1: CAD of bespoke motorised mount used in data acquisition
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Data acquisition programme

The GUI of the custom MATLAB programme developed to automate the data ac-

quisition process is shown in Figure B.0.1. The programme is also able to work with

mixed field detectors to acquire both gamma and neutron radiation images.

Figure B.0.1: GUI of the custom MATLAB data acquisition programme
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Appendix C

Pulse height analysis code

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Pulse height analysis MATLAB function by Ikechukwu Ukaegbu

3 %

4 % pulseFile: input file containing the pulses from oscilloscope

5 % thresh: voltage thresh (mV)

6 % channels: number of channels

7 % samples: number of samples per pulse

8 % output: histogram output

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10 function output = pha(pulseFile ,thresh,samples,channels)

11 % Note: All constant values are specific to the experiment

12 % conditions used in the research in this thesis

13

14 % MWD (M) and MAF (L) windows for slow filter (in samples)

15 slow_M = 50; slow_L = slow_M -20;

16 slow_co = ones(1,slow_L)/slow_L; % coeffs for slow MAF

17 % MWD (M) and MAF (L) windows for fast filter (in samples)

18 fast_M = floor(slow_M/2); fast_L = fast_M -20;

19 fast_co = ones(1,fast_L)/fast_L; % coeffs for fast MAF
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20 pz = 205; % pole zero (in samples)

21 mpd = pz*100/37; % minimum peak distance for findpeaks function

22 histData = []; % histogram data

23 histDataCnt = 0; % count of pulses processed

24 % open pulse file

25 fid = fopen(pulseFile);

26 % read pulse

27 data = fread(fid,samples,'double');

28 while ~isempty(data)

29 % perform slow filter

30 slow = filter(slow_co ,1,mwd(data,slow_M,pz));

31 % perform fast filter

32 fast = filter(fast_co ,1,mwd(data,fast_M,pz));

33 % find voltage peaks above threshold

34 pk = findpeaks(slow,'SortStr','descend','NPeaks',1,'MinPeakHeight',

thresh);

35 if ~isempty(pk) % if there are peaks above threshold

36 % perform pile-up rejection and return valid peaks

37 [V,~,status] = pileupreject(slow,fast,mpd,fast_M-fast_L,thresh);

38 % process return peaks

39 for i=1:length(V)

40 if status(i) == 1 % if peak is valid

41 % increment number of processed pulse

42 histDataCnt = histDataCnt+1;

43 % store peak's voltage value in histogram data

44 histData(histDataCnt) = V(i);

45 end
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46 end

47 end

48 % read next pulse

49 data = fread(fid,samples,'double');

50 end

51 fclose(fid);

52 % return histogram

53 output = histcounts(histData ,channels);

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Moving Window Deconvolution (MWD) MATLAB function

3 % by Ikechukwu Ukaegbu

4 %

5 % x: signal

6 % win: Deconvolution window

7 % pz: pole zero

8 % output: Deconvoluted signal

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10 function output = mwd(x,win,pz)

11 n = length(x);

12 m = win;

13 output = zeros(1,n);

14 for i=m:n

15 d_m = x(i)-x(i-(m-1));

16 ma_m = 0;

17 for j=(i-(m-1)):i

18 ma_m = ma_m+x(j);

19 end
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20 output(i) = d_m+ma_m/pz;

21 end

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Pile-up rejection MATLAB function by Ikechukwu Ukaegbu

3 %

4 % slow: slow filtered signal

5 % fast: fast filtered signal

6 % slow_ft: slow filtered signal flat top

7 % fast_ft: fast filtered signal flat top

8 % amp: amplitude of peaks in slow signal

9 % status: pile of status of peaks in amp

10 % -1 for pile up and 1 for no pile up

11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

12 function [amp,status] = pileupreject(slow,fast,slow_ft,fast_ft,thresh)

13 % Note: All constant values are specific to the experiment

14 % conditions used in the research in this thesis

15

16 % get lowest peak above threshold

17 pk = findpeaks(slow,'MinPeakHeight',thresh,'MinPeakDistance',slow_ft,'

SortStr','ascend','NPeaks',1);

18 % get start and stop times (in samples) of

19 % peaks in the slow filtered signal

20 [x1,x2] = peakWidthCrossing(slow,1:length(slow),15,10,[0 pk]);

21 % initialise output variables

22 amp = zeros(size(x1));

23 status = ones(size(amp))*-1;

24 for i=1:length(x1)
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25 X1 = floor(x1(i));

26 X2 = ceil(x2(i));

27 % get slow peaks' value

28 amp(i) = max(slow(X1:X2));

29 % find number of peaks in the fast filtered

30 % signal that are within the duration of a

31 % peak in the slow filtered signal

32 pks = findpeaks(fast(X1:X2),'MinPeakHeight',thresh,'

MinPeakDistance',fast_ft);

33 % if number of peak in the fast filtered signal

34 % that are within the duration of a peak in the

35 % slow filtered signal is less than two, set slow

36 % peak's status to 1 (i.e. no pile-up)

37 if length(pks)< 2

38 status(i) = 1;

39 end

40 end

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % Peak width crossing MATLAB function by Ikechukwu Ukaegbu

3 %

4 % y: signal

5 % x: time (in samples)

6 % pctRefLevel: percentage reference level

7 % tolerance: tolerance

8 % stateLevel: state level

9 %

10 % Note: see MATLAB pulsewidth function documentation for
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11 % more explanation

12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

13 function [initCross ,finalCross] = pulseWidthCrossing(y,x,pctRefLevel ,

tolerance ,stateLevel)

14 % extract (absolute) reference levels

15 % from percent reference levels

16 amp = diff(stateLevel)/100;

17 low = stateLevel(1);

18 lwrBnd = low + tolerance * amp;

19 uprBnd = low + (100-tolerance) * amp;

20 refLevel = low + pctRefLevel*amp;

21 % extract the mid-crossings and polarities with the

22 % specified state boundaries and reference levels

23 [midCross , polarity] = signal.internal.getMidCross(y, x, uprBnd, lwrBnd

, refLevel);

24 % find the first transition that matches

25 % the specified input polarity

26 iStart = find(polarity==1, 1, 'first');

27 idx = iStart:numel(polarity);

28 initCross = midCross(idx(1:2:end-1));

29 finalCross = midCross(idx(2:2:end));
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