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Abstract

Fierce competition between airlines has led to the need of minimising the operating costs while also ensuring quality
of service. Given the large proportion of operating costs dedicated to aircraft maintenance, cooperation between
airlines and their respective maintenance provider is paramount. In this research, we propose a framework to develop
commercially viable and maintenance feasible flight and maintenance schedules. Such framework involves two multi-
objective mixed integer linear programming (MMILP) formulations and an iterative algorithm. The first formulation,
the airline fleet maintenance scheduling (AMS) with violations, minimises the number of maintenance regulation
violations and the number of not airworthy aircraft; subject to limited workshop resources and current maintenance
regulations on individual aircraft flying hours. The second formulation, the AMS with tail assignment (TA) allows
aircraft to be assigned to different flights. In this case, subject to similar constraints as the first formulation, six
lexicographically ordered objective functions are minimised. Namely, the number of violations, maximum resource
level, number of tail reassignments, number of maintenance interventions, overall resource usage, and the amount
of maintenance required by each aircraft at the end of the planning horizon. The iterative algorithm ensures fast
computational times while providing good quality solutions. Additionally, by tracking aircraft and using precise
flying hours between maintenance opportunities, we ensure that the aircraft are airworthy at all times. Computational
tests on real flight schedules over a 30-day planning horizon show that even with multiple airlines and workshops
(16000 flights, 529 aircraft, 8 maintenance workshops) our solution approach can construct near-optimal maintenance
schedules within minutes.
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1. Introduction

There are a number of operational decisions associated with airlines, from ticket prices to flight times, crew ros-
ters, and aircraft maintenance. When making these decisions, airlines have to take into account their own economic
interests influenced by demand, costs, and sometimes even the actions of their competitors. In such a competitive
environment, airlines aim to minimise their operating costs while providing competitive services. Significant propor-
tion of operating costs are dedicated to maintenance. For instance, 20.5% of the average direct operating cost per
medium-haul trip are dedicated to maintenance on an Airbus A330-200 (Aircraft Analysis & Fleet Planning, 2005).
Therefore, it is of paramount importance to develop decision making tools that will allow airlines to optimise their
aircraft maintenance decisions.

Maintenance types are classified according to: short, medium and long-term interventions. Short-term or line
maintenance does not require modelling or advanced planning as they are carried out as standard procedures at airport
gates. Medium and long-term maintenance interventions include:
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1. Airframe checks (A, B, C and D);
2. Engine performance restoration (EPR) and life limited parts replacement (ELR);
3. Landing gear overhaul (LG), and;
4. Auxiliary power unit (APU) performance restoration.

Civil Aviation Authorities Regulations impose that maintenance has to be performed after a certain number of
months (MO), flying hours (FH), or flight cycles (FC), at certified maintenance workshops. In the medium-term,
A checks have to be performed every 80-100 FH (every 7 to 9 days), requiring 10-20 man-hours, while B checks
typically occur every 500-600 FH (every two months), requiring 100-300 man-hours (Department for BIS, 2016).
However, in practice, Type B checks are included as part of a longer A check, or a bundle of A checks (Qantas, 2016).
Long-term maintenance, including C and D checks, LG, EPR, ELR, and APU are performed once every 1–6 years and
can last over 10 days (Ackert, 2011). It is worth noting that there is a large variability in the duration of maintenance
checks due to the fact that different aircraft types have different maintenance requirements.

Table 1 shows the frequency of the four airframe checks for various aircraft types. As one would expect, the
time between checks increases for more modern aircraft and B checks disappear, being contained in longer A checks.
Maintenance is performed before any of the three criteria (MO, FH or FC) is met. For instance, for the B737-200, a
C check is performed after 18 MO, 6000 FH, or 3000 FC, whichever occurs first. The justification for this practice
is to ensure coverage of overused aircraft operating short-haul flights. In these cases, FC are accumulated faster than
FH (Cook and Tanner, 2008). Moreover, usual frequencies of long-term maintenance, for the A320, for instance, are
13500 FC for both the EPR and the ELR, 120 MO/20000 FC for the LG, and 75000 FH for the APU (Ackert, 2011).

Table 1: Typical maintenance frequencies in calendar months (MO), flying hours (FH), or flight cycles (FC) (Cook and Tanner, 2008; Martins,
2016).

Aircraft A check B check C check D check

B737-300 275 FH 825 FH 18 MO 48 MO
B737-400 275 FH 825 FH 18 MO 48 MO
B737-500 275 FH 825 FH 18 MO 48 MO
B737-800 500 FH n/a 4000-6000 FH 96-144 MO
B757-200 500-600 FH n/a 18 MO/6000 FH/3000 FC 72 MO

F100 500 FH n/a 5000 FH 12000 FH
B767-300ER 600 FH n/a 18 MO/6000 FH 72 MO

B747-400 600 FH n/a 18 MO/7500 FH 72 MO
A319 600 FH n/a 18-20 MO/6000 FH/3000 FC 72 MO
A320 600 FH n/a 18-20 MO/6000 FH/3000 FC 72 MO

For maintenance to be performed effectively, there is an essential underlying process, airline fleet maintenance
scheduling (AMS). The AMS problem deals with the construction of a schedule that minimises maintenance costs,
resource usage, and the disruption to airline operations, while satisfying current safety regulations by different civil
aviation authorities (Sriram and Haghani, 2003). Given the frequency of the maintenance checks, the decision horizon
for medium-term maintenance should be a month, and, at least, six months for long-term maintenance.

A challenge for the AMS problem is to allocate maintenance-related resources in a cost-effective fashion. These
resources are geographically dispersed throughout distant and distinct maintenance workshops. Some examples of
resources include limited specialised tools, spare parts, and certified technicians. Additionally, regulated checks
depend on the state of the aircraft and employ different resources.

The major contribution of this paper is the framework that deals with the requirements introduced by 30-day
planning horizon instances, with multiple airlines and workshops, and tight resource availabilities. Such framework
can be broken down into three steps. Firstly, the preprocessing step identifies maintenance opportunities (MOPs).
These opportunities arise when flights have large turnaround times during which aircraft can be maintained. This
preprocessing allows us to formulate and solve the problem efficiently. Next, in the case when not enough MOPs are
found and maintenance regulations are violated, we identify when these occur and we reassign aircraft to different
flights to generate more MOPs. In other words, we re-solve the tail assignment (TA) problem. Lastly, to preserve
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tractability and improve the quality of solutions, we provide a two-stage iterative algorithm. The first stage selects
a conflicting period which identifies the smallest number of flights whose reassignment might lead to a maintenance
feasible solution. Such period starts from the maintenance regulation violation, and ends at the next available MOP.
The second stage makes the timeline more granular to improve resource allocation. Further contributions introduced
by this work are: the presentation of a new type of multi-objective optimisation formulation for the AMS which
copes with single and multi-workshop cases, the focus on workshop resource allocation, the consideration of different
fleet types and their respective maintenance requirements, and, the introduction of a solution framework that solves
problems of realistic size in short time. Showing the potential of this framework which promotes cooperation between
airlines.

The remainder of this paper is organised as follows: Section 2, discusses the relevant literature. Section 3 presents
the proposed modelling approaches and the corresponding underlying concepts. The first model, minimises the num-
ber of maintenance regulation violations, adhering to the criteria presented in Table 1. The second model solves a
reduced TA problem within the AMS considering violations. Section 4 presents the solution methodology and the
model application. Computational experiments are given in Section 5, while Section 6 summarises the conclusions
and provides recommendations for future research.

2. Literature Review

The airline planning process or airline scheduling problem involves several stages: flight scheduling, sometimes
referred to as schedule design; fleet assignment, which assigns fleet types to flights (Hane et al., 1993); TA, sometimes
called aircraft routing or aircraft rotation and involves assigning individual aircraft to flights (Clarke et al., 1997);
maintenance scheduling (MS); and, finally, crew scheduling. These were traditionally modelled by formulating each
stage separately and solving them sequentially, i.e. the output of one stage is the input for the next. Figure 1 presents
the order of solving the different types of problems identified above (solid lines), along with some common feedback
loops (dashed lines) and the associated typical planning horizons.

The sequential modelling and solution of the airline scheduling problem does not take into consideration the
restrictions of the subsequent problems. The benefit of the sequential approach is the reduction in computational
complexity. Even though the sequential feedback system is a close approximation, the solution can be improved by
modelling the interdependence of each stage in an integrated model (Cordeau et al., 2001). Integrated models have
been developed to provide better quality results and consider the combination of two or more stages into a single
problem (Desaulniers et al., 1997; Clarke et al., 1997; Barnhart et al., 1998; Cohn and Barnhart, 2003; Sriram and
Haghani, 2003; Mercier et al., 2005; Sarac et al., 2006; Liang and Chaovalitwongse, 2013; Safaei and Jardine, 2018).
In particular, MS is frequently contained within the TA, in which case it is called aircraft maintenance routing (AMR)
problem (Gopalan and Talluri, 1998).

Flight Scheduling

Fleet Assignment

Tail Assign-
ment (TA)

Crew Scheduling

Maintenance
Scheduling (MS)

1-4 weeks
in advance

1-7 days
in advance

12 months
in advance

12 months
in advance

Figure 1: Stages of the airline scheduling problem.
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The most common types of mixed integer programming formulations for the integrated airline scheduling problem
can be classified into three groups,

String-based models: a type of formulation that models the problem using strings, i.e. sequences of connected flights
that begin and end at a maintenance workshop, and, that satisfy flow balance and maintenance regulations
(Desaulniers et al., 1997).

Time-Space Network (TSN) models: in a TSN network, each airport is represented by a time line showing the
planning horizon. Nodes show every departure/arrival at the corresponding airport time line and arcs show
flights and connections (Hane et al., 1993). For example, in Figure 2, there are two airports, A and B. Solid arcs
represent scheduled flights, while grey dashed arcs represent deadhead flights. A flight path between the two
timelines, shown in blue, starts at airport A at time period 1 (node A1), flies to airport B arriving at time period
2 (node B2), then is grounded at airport B until time period 3 (node B3), and so on;

Multi-Commodity Network Flow (MCNF) models: based on a fleet-flow time-space network (layered TSN mod-
els), each aircraft represents separate commodities and flow has to be preserved. Formulations of this type
typically include constraints regarding capacities (passengers and fleet) and flow conservation (aircraft, flight,
and airport) (Levin, 1971).

Timeline for Airport B

Timeline for Airport A A1 A4 A5

B2 B3 B6

Figure 2: Time-Space Network (TSN) example.

The first string-based formulations were introduced by Desaulniers et al. (1997), for the FA problem, and Barnhart
et al. (1998), for the TA problem. They both implemented a branch and bound scheme as their solution method. Even
though they included maintenance regulations, workshop resources or FH were not considered. Sarac et al. (2006);
Cohn and Barnhart (2003); Papadakos (2009) used the same type of formulation for the AMR problem. Papadakos
(2009) produced a computational case study for a medium-sized data set (700 flights, 167 aircraft). The heuristic
algorithm used required 16 hours to solve the problem under consideration. Sarac et al. (2006) implemented a branch-
and-price algorithm and used legal remaining FH to influence decisions. Aside from the excessive solution times,
string-based formulations are not capable of generating all strings even for small instances. Furthermore, these models
do not include resource usage for maintenance activities.

The TSN formulation, introduced by Hane et al. (1993), has been used widely within the integrated airline schedul-
ing framework, (Clarke et al., 1997; Hicks et al., 2005; Orhan et al., 2012; Haouari et al., 2013; Liang and Chaoval-
itwongse, 2013). However, given that TSNs do not allow individual aircraft to be tracked, aggregated maintenance
constraints are implemented. This means that models are forced to, for instance, minimise total weekly maintenance
operations. More recently, Safaei and Jardine (2018) examined the AMR problem with generalised maintenance con-
straints and legal remaining FH considerations. They used test instances for a single airline. The computational study,
for a relatively large data set (7 days, 772 flights, 18 aircraft), solutions show financial impact but computational times
are not provided.

Using the MCNF formulation, introduced by Levin (1971), the problem can be solved using column generation
(Yan and Tseng, 2002; Sriram and Haghani, 2003; Mercier et al., 2005). Particularly, Sriram and Haghani (2003),
presented some influential work, based on the TA formulation by Feo and Bard (1989), which solved the AMR
incorporating A and B checks. They used a heuristic algorithm that solved a small test instance (58 flights, 75
airports) in 5 minutes.
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All the publications mentioned thus far are limited to daily or weekly schedules and assume cyclical repetitions
of the flights and hence maintenance operations. Khaled et al. (2018), however, considered individual maintenance
requirements for a 30-day plan. They used an improved TSN formulation for the AMR problem, which allowed
them to effectively schedule A checks, constrained by individual aircraft legal remaining FH. They assumed that
maintenance is generally performed at night. Due to the type of formulation, solution times increased noticeably for
a large number of flights (timed out at 3 hours for 1494 flights and a single airline). Li et al. (2016), dealt with the
AMR problem for fighter jets. This formulation, which relied on a single workshop assumption, also employed legal
remaining FH to determine the frequency of maintenance. Further assumptions included: no resource considerations,
only one type of maintenance, and the disregard of aircraft “health” at the end of the planning horizon. The test set
considered is of 25 days and 200 aircraft but no solution times are provided. In addition, the timeline is discretised by
splitting each day into two 12 hour intervals, clearly, this incurs a huge loss in accuracy.

In different context, we find formulations that account for long-term planning horizons; specifically, in the resource
constrained project scheduling problem (RCPSP) literature. The RCPSP is a generalisation of machine scheduling
problem where jobs are scheduled according to some predefined order, or precedence, subject to different resource
demands and capacity constraints. Usually, the objective is to minimise the duration of the project (collection of
ordered jobs), commonly, under a non-preemption assumption (jobs have to processed fully) (Koné et al., 2011;
Brucker and Knust, 2012; Kopanos et al., 2014; Naber, 2017). The reader may refer to a recent and thorough review
article by Habibi et al. (2018). On the long-term RCPSP, Koné et al. (2011) proposed two formulations which they
named “event-based RCPSP” formulations. Events correspond to start and/or end times of activities. Since their
formulations involve fewer variables than the formulations indexed by time, they have the capacity to deal with longer
planning horizons.

Table 2: Summary of selected literature. MS = inclusion of maintenance scheduling, FH = use of legal remaining flying hours, RC = workshop
resource considerations, H = time horizon (days), Sched. Type = scheduling type, Airlines = number of airlines considered, W = number of
workshops considered, F = number of flights (in largest test instance), A = number of aircraft (in largest test instance), T = computational time (of
largest test instance).

Article MS FH RC Sched. Type Airlines W H F A T

Desaulniers et al. (1997) × × × cyclical single 1 1 383 91 1 h
Barnhart et al. (1998) X × × cyclical single 1 7 1124 89 10 h

Sriram and Haghani (2003) X × × cyclical single 20 7 rand. 13 4.5 h
Mercier et al. (2005) X × × cyclical two NS 1 707 143 13 h
Sarac et al. (2006) X X X cyclical single 5 1 175 32 2 h
Papadakos (2009) X × × cyclical single 6 7 705 167 16 h

Haouari et al. (2013) X × × cyclical single 16 1 344 138 10 s
Liang and Chaovalitwongse (2013) X × × cyclical single 6 7 1780 110 4 h

Khaled et al. (2018) X X × adaptive single 9 30 1494 40 3 h
Present paper X X X adaptive single 1 30 3869 49 1.2 h
Present paper X X X adaptive multiple 8 30 16000 529 1.8 h

As can be seen in the summary of the literature in Table 2, no publications have addressed the long-term AMS
problem with multiple airlines, workshops and resource considerations, while providing fast solution times. Addi-
tionally, we take into account individual aircraft maintenance requirements and their respective flight operations. The
key contributions of the present paper are,

Reassignment. We include the option of reassigning some flights to obtain longer maintenance opportunities.

Efficient resource allocation. Maintenance models do not always consider the different resources available through-
out maintenance workshops. Therefore, we incorporate workshop resource restrictions.

Individual aircraft considerations. Different aircraft may have different maintenance duration and requirements,
and different accumulation of FH. Hence, we include this in our model.
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Long-term planning horizon. Short-term, or operational planning, is not suitable for most aircraft maintenance.
Further, personnel and equipment hire are significantly expensive. Thus, it is extremely useful for maintenance
operators to plan longer in advance.

Two-stage iterative algorithm. We employ a two-stage algorithm that provides good solutions for large instances in
reasonable computational time.

Single and multi-workshop tests cases. Our generic framework, allows us to model both single and multi-workshop
cases.

3. The Proposed Modelling Approach

In order to be able to adequately model the problem, we first state the necessary assumptions, highlight the
concepts used and define the appropriate notation. After this, we propose two multi-objective mixed integer linear
programming (MMILP) formulations that schedule different types of maintenance for a medium/long-term planning
horizon e.g. airframe checks A and C. To check if regulation requirements are being fulfilled, we employ different
maintenance requirement (MR) variables for each type of maintenance and aircraft type, which vary with FH.

In the first formulation, given an input flight schedule, we aim to determine whether a feasible maintenance
schedule exists. We call this the AMS formulation. If a feasible maintenance schedule does not exist, we seek to
minimise the number of infeasibilities, or violations. Such violations represent the cases when the limit imposed
by the regulations on the FH are exceeded. To minimise the violations, we introduce the second formulation which
extends the AMS formulation to account for an appropriate TA problem.

3.1. Assumptions

To ease the formulation of the problem, we make some modelling assumptions.

1. Maintenance can only be performed in the pre-identified MOPs;
2. Maintenance can be done at any workshop, if the aircraft has a MOP there; unless otherwise specified by an

airline;
3. Maintenance cannot be preempted;
4. To extend MOPs, we may reassign flights to different aircraft, i.e. we may modify the airlines’ preferred TA;
5. Resources can be shared amongst different airlines at the maintenance workshops.

3.2. Concepts

The integrated airline scheduling literature reveals that the models used for short-term planning are not easily
scalable for our 30-day planning horizon. Additionally, not much attention is paid to either resource usage for main-
tenance activities or aircraft health-state monitoring. However, as mentioned in the literature review section, Koné
et al. (2011) presented a formulation for the long-term resource constrained project scheduling problem (RCPSP) that
challenged the classical discretisation of time. Instead, they index the variables using some pre-defined “events”.

Koné et al. (2011), independently formalised the same idea as Sousa and Wolsey (1992), and refer to this type of
formulation as an “event-based RCPSP”. Events represent either the start or the end of an activity. Compared to tra-
ditional time indexation, their formulations involve considerably fewer variables, therefore, being ideal for problems
with long planning horizons. Koné et al. (2013) extended the formulation to account for non-renewable resources.
More authors have used a similar indexation of continuous time. Naber (2017) focused on removing the assumption
regarding fixed resources per activity in the RCPSP by allowing flexibility of resource usage.

In the present paper, events represent turnaround times, the time between arrival and departure, at a certain main-
tenance workshop where the total time is sufficient to perform at least one type of maintenance. We regard these as
MOPs. Thus, provided with a flight schedule, MOPs are easily identified and pose no restrictive assumption on the
aircraft or airlines considered. For more information on how these are created, see Section 4.1.
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3.3. Airline Fleet Maintenance Scheduling with Violations

The AMS with violations model checks, subject to regulations, whether a feasible maintenance schedule exists
given a flight schedule. Violations of regulations, contrary to most other works, are not included as constraints but as
an objective which we try to minimise. Hence, the impasse that infeasibilities bring is avoided and more conclusions
can be inferred about the process. First, the necessary sets, parameters and variables are defined, then we introduce
the MMILP formulation.

3.3.1. Notation
To formulate the problem, we introduce the following notation. The set of all aircraft is denoted byK and indexed

with k. In order to distinguish aircraft by type and airline, we introduce the set T with function t : K → T ; t(k) maps
a specific aircraft k ∈ K to its corresponding fleet type and airline. Each aircraft has its own corresponding MOPs
contained in the set MOPk which we can index with j. Moreover, we can subdivide each MOP into time intervals.
These provide an alternative discretisation of time and represent either the start or end time of some MOP. All time
intervals are contained in the set I, indexed by i. Each element i, has a start and end time, denoted with sti and eti

respectively, and a maintenance workshop W i. Some common maintenance checks are collected in the set C, indexed
by c. Resources are contained in the set R. The demand for resource r ∈ R varies per check c ∈ C, this is denoted by
brc. Moreover, the duration of maintenance may vary within aircraft types. Hence, for an aircraft k, of type t(k), we
define the duration of a single check c ∈ C to take ∆t(k),c time units to complete.

For convenience, we can identify the following subsets. Let Ik be the subset of intervals where aircraft k is
available for maintenance. Similarly, let K i be the subset of aircraft available for maintenance at interval i. The
resources available at the maintenance workshop of interval i, W i, are contained in the set RW i ⊆ R.

Each MOP can be represented by a set of consecutive intervals. For j ∈ MOPk, we can identify the corresponding
intervals as i ∈ MOP j

k ⊆ Ik. This idea is illustrated in Figure 3, where an example for an aircraft k with three MOPs is
shown. The numbering indicates the interval number. Each of MOP is labelled with a different j = 1, 2, 3. It is worth
noting that every interval is assigned to exactly one MOP. We can identify the interval sets Ik = {1, 2, 3, 7, 8, 11, 12} ⊂
I = {1, . . . , 12}. Thus, given the definition of MOPs, intervals in I \ Ik = {4, 5, 6, 9, 10} must belong to another
aircraft (not pictured). Moreover, if i is part of a MOP for aircraft k, i ∈ Ik, we can say that aircraft k is not flying at
interval i, hence, is available for maintenance. Conversely, if i is not part of any MOP for aircraft k, i < Ik, we can
say that aircraft k is flying at interval i.

1 2 3 4 5 6 7 8 9 10 11 12

time
I

Ik

MOP1
k MOP2

k MOP3
k

Intervals
Flights

Figure 3: Timeline showing the deconstruction of three MOPs into sets of consecutive intervals.

In order to employ FH accurately in the model, we introduce two additional parameters. Let FHi
k be the FH for

aircraft k at interval i, and, Lt(k),c be the limit on FH imposed by regulations for aircraft of type t(k) and check c.
In order to update the FH parameter, we consider the flights between consecutive MOPs. For a given interval i and
aircraft k, interval i is bounded by

sup{MOP j−1
k } < i ≤ sup{MOP j

k} , (1)

for some MOP j
k provided that j , 1, i > sup{MOP1

k} and i ≤ sup{MOPJ
k } (J = |MOPk |) (proof provided in Appendix

A). That is, provided that the interval under consideration starts after the end of the first MOP and before the end of
the last MOP. If this is the case, we define FHi

k to consider only the flights that aircraft k operates between MOP j−1
k

and MOP j
k. Otherwise, if i starts before the end of the first MOP, i.e. i ≤ sup{MOP1

k}, we define FHi
k to consider only

the flights that aircraft k operates between the beginning of the planning horizon and MOP1
k . Conversely, if i starts

after the end of the last MOP, i.e. i > sup{MOPJ
k }, we define FHi

k to consider only the flights that aircraft k operates
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between MOPJ
k and the end of the planning horizon. In Figure 3, if i ∈ {7, 8} = MOP2

k ⊂ Ik, or i ∈ {4, 5, 6} < Ik, we
have sup{MOP1

k} < i ≤ sup{MOP2
k}, then, FHi

k considers the flights between MOP1
k and MOP2

k . If i ∈ {9, 10} < Ik,
we have sup{MOP2

k} < i ≤ sup{MOP3
k}, then, FHi

k considers the flights between MOP2
k and MOP3

k .
Using the previous two parameters, we can define the deterioration that a certain number of FH incurs on an

aircraft for a specific check type. For an interval i, check c and aircraft k, the deterioration parameter is defined as,

DRi
kc =

FHi
k

Lt(k),c
. (2)

In the next subsection, we provide the notation needed to describe the proposed mathematical model. However,
it is useful to discuss two of the variables in detail. To account for the legal remaining FH, we define a variable,
wi

kc ∈ [0, 1], that tracks the MR at the beginning of interval i, for check type c and aircraft k. Where a value close to
0 represents that no maintenance is required, and a value close to 1 represents that maintenance is urgently required.
This variable is updated by using the deterioration parameter DRi

kc. We define a binary variable to identify regulation
violations, vi

kc gets the value 1 if the regulation for check c is violated at interval i by aircraft k, while it is 0 otherwise.

3.3.2. Definitions
Sets

C: Set of checks indexed by c;

I: Set of intervals indexed by i;

Ik: Set of intervals where aircraft k is available for maintenance, Ik ⊆ I;

K: Set of all aircraft indexed by k;

K i: Set of aircraft available for maintenance at interval i, K i ⊆ K ;

MOPk: Set of MOPs for aircraft k, indexed by j;

MOP j
k: Set of intervals that constitute the j-th MOP for aircraft k, MOP j

k ⊆ Ik;

R: Set of resources indexed by r;

RW i : Set of resources available at the workshop of interval i, W i, RW i ⊆ R;

T : Set of aircraft types with t : K → T .

Parameters

brc: Demand of resource r to process check c;

DRi
kc: Deterioration (per flying hour) at interval i for check c and aircraft k;

∆t(k),c: Duration of check c for an aircraft of type t(k);

sti/eti: Start/end time of interval i ∈ I.

Variables

Bi
r: The capacity for resource r at interval i.

wi
kc: A continuous variable with values between 0 and 1 to represent the MR for aircraft k for check c at the beginning

of interval i. 0 means that the aircraft requires no maintenance, 1 means that the aircraft requires maintenance
urgently.

mi
kc: 1, if a maintenance check c for aircraft k starts/continues at the beginning of interval i; 0, otherwise.

vi
kc: 1, if regulation for check c is being violated at interval i for aircraft k; 0, otherwise.

zi
kc: 1, if there is a change between the consecutive variables, mi

kc and mi−1
kc ; 0, otherwise.
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3.3.3. Formulation
Model 3.1. Interval MMILP formulation for AMS with violations.

min
∑

k

∑
c

∑
i

vi
kc (3)

min
∑

k

∑
c

wsup{Ik}

kc (4)

Subject to
Maintenance Requirement

vi
kc = 0 ∀k, c, i < Ik; (5)

mi
kc = 0 ∀k, c, i < Ik; (6)

wi
kc ≥ wi−1

kc + DRi
kc

(
1 − mi

kc

)
− mi

kc − vi
kc ∀k, c, i , inf{I}; (7)

w
sup{MOP j

k}

kc ≤ DR
inf{MOP j+1

k }

kc ∀k, c, j , |MOPk |; (8)
Maintenance∑

c

mi
kc ≤ 1 ∀k, i ∈ Ik; (9)∑

i′∈MOP j
k

(eti′ − sti′ )mi′
kc ≥ ∆t(k),cmi

kc ∀k, c, j, i ∈ MOP j
k; (10)

Transitivity Constraints

z
inf

{
MOP j

k

}
kc ≥ m

inf
{
MOP j

k

}
kc ∀k, c, j; (11)

zi
kc ≥ mi

kc − mi−1
kc ∀k, c, j; i, i − 1 ∈ MOP j

k; (12)∑
i∈MOP j

k

zi
kc ≤ 1 ∀k, c, j; (13)

Resources∑
k∈K i

∑
c

brcmi
kc ≤ Bi

r ∀i, r ∈ RW i ; (14)

Variables

wi
kc ∈ [0, 1] ∀k, c, i; (15)

Bi
r ∈ R+ ∀k, i, r ∈ RW i ; (16)

mi
kc, zi

kc, vi
kc ∈ {0, 1} ∀k, c, i. (17)

The proposed formulation is a MMILP with two lexicographically ordered objective functions. The functions
involved minimise the following objectives (in order of importance), the number of violations, and the total MR at
the last interval. Objective 3 minimises the number of regulation violations. Objective 4 minimises the total MR at
the end of the planning horizon. Recall that a value close to 0 for the wi

kc variable indicates that the aircraft requires
no maintenance; hence, minimising wsup{Ik}

kc corresponds to minimising the amount of maintenance required by each
individual aircraft at the end of the planning horizon.

The first two MR constraints 5 and 6 ensure that neither a violation nor maintenance occur when an aircraft is
operating flights. Precisely, constraints 5 and 6 ensure that if aircraft k is flying at interval i, i.e. i < Ik, then, for any
check c, neither a violation nor maintenance intervention may occur.

Constraints 7 enforce a recurrence relation for the MR variable. For time interval i, aircraft k, and check type c,
we update the MR variable depending on whether or not aircraft k is flying at interval i. If aircraft k is not flying
at interval i, i.e. i ∈ Ik and i ∈ MOP j

k for some j; the current MR, wi
kc, is updated using the previous MR, wi−1

kc ,
plus the appropriate deterioration, DRi

kc (the deterioration incurred by the flights between MOP j−1
k and MOP j

k, as

9



defined in equation 2), or drops to 0 if either a violation or maintenance occur. Please recall that the first priority
objective minimises the number of violations. On the other hand, if aircraft k is flying at interval i, i.e. i < Ik, then,
by constraints 5 and 6, mi

kc = 0 and vi
kc = 0, hence, the recurrence relation is enforced.

Constraints 8 ensure that the MR variable at the end of a MOP stays within the regulation limits (captured within
the deterioration parameter) at least until the next MOP. That is, for a given aircraft k, check type c and MOP j (with

j , |MOPk |), the MR at the end of the MOP, w
sup{MOP j

k}

kc , should remain feasible to operate the upcoming flights

between MOP j
k and MOP j+1

k . Using the definition of the deterioration parameter, this is encapsulated in DR
inf{MOP j+1

k }

kc ,
since, by equation 1, sup{MOP j

k} < inf{MOP j+1
k } ≤ sup{MOP j+1

k }.
Constraints 9 and 10 enforce the maintenance restrictions. Constraints 9 assure that no more than one maintenance

type is scheduled for the same interval. Constraints 10 guarantee that the aircraft is available for the minimum time
required for each maintenance type. More precisely, the sum of the duration of consecutive intervals has to be greater
than the minimum prespecified duration of the check.

Transitivity constraints, 11, 12, and 13, ensure that if we decide to maintain in MOP j
k, preemptions are not allowed

(proof provided in Appendix A). Constraints 11 initialise the auxiliary variable using the first interval in the MOP.
Constraints 12 establish that when a maintenance starts, i.e. the difference between consecutive maintenance variables
is 1, the auxiliary variable is 1. Constraints 13 ensure that at most one auxiliary variable is 1, or equivalently we cannot
start a maintenance more than once. Hence, wherever we terminate maintenance, all auxiliary variables thereafter must
be 0.

Constraints 14 ensure that a maintenance intervention of some type is only scheduled if there are sufficient re-
sources available at the workshop. The total number of checks over all aircraft present at a given interval cannot
exceed the capacity for each resource. The last four constraints 15 – 17 define the domains of the variables.

3.4. Airline Fleet Maintenance Scheduling with Tail Assignment

In this section we extend the AMS formulation previously discussed, to include reassignment variables for the
periods where regulations are being violated. In order to determine where this occurs, we solve Model 3.1, and
identify which violation variables, vi

kc, have the value 1. Using this information we efficiently select reassignable and
preassigned flights which allow us to solve the joint AMS and TA problem.

3.4.1. Notation
To formulate the AMS with TA, we first expand the notation introduced for Model 3.1. All flights are contained

in the set F , which we can index with f . More precisely, it contains flight legs (sequence of multiple flights) between
MOPs. Also, let I f be the subset of intervals at which flight f ∈ F occurs, and K f be the subset of aircraft free to
operate flight f .

Additionally, for a given interval i, we can identify the set of flights that either, depart at the end of interval i, or,
arrive at the start of interval i. Let us denote the departure set with

F i
dep =

{
f : f ∈ F , inf{I f } = i

}
,

and, the arrival set with
F i

arr =
{
f : f ∈ F , sup{I f } = i

}
.

In order to control the number of reassignment variables, we can identify the subsets of flights which are re-
assignable and those which are fixed or preassigned. Such that, if a flight is reassignable, then we can reassign it
to another aircraft; in contrast, if a flight is preassigned, then it is operated by the preassigned aircraft. Let FR ⊂ F

and FR ⊂ F be two (disjoint) subsets (with FR ∪ FR = F ), that contain those flights which are reassignable and
preassigned, respectively. Also, let O f for flight f ∈ FR, with O f ⊆ K f , contain the aircraft preassigned to flight
f . To preserve efficiency and minimise the changes in the airlines’ preferred TA, instead of setting all flights to be
reassignable, we select an appropriate subset of flights. More details on the selection process can be found in Section
4.2.1.

We can redefine the deterioration parameter in terms of flights, DR f
kc, which represents the deterioration for the

operation of flight f for check c and aircraft k. Similarly, as for the previous model,

10



DR f
kc =

FH f

Lt(k),c
,

where FH f are the FH that correspond to flight f . Lastly, the violation variable can also be expressed in terms of
flights, v f

kc gets the value 1 if a regulation is being violated before flight f for aircraft k and check c, while it is 0
otherwise.

3.4.2. Definitions
Sets
F : Set of all flights indexed by f ;

FR: Set of reassignable flights, FR ⊂ F ;

FR: Set of preassigned flights, FR ⊂ F ;

F i
dep: Set of flights which are scheduled to depart at the end of interval i;

F i
arr: Set of flights which are scheduled to arrive at the start of interval i;

I f : Set of intervals occupied by flight f , I f ⊆ I;

K f : Set of aircraft available to operate flight f , K f ⊆ K ;

O f : Set of aircraft preassigned to operate flight f ∈ FR, O f ⊆ K f .

Parameters
DR f

kc: Deterioration for the operation of flight f for check c and aircraft k.

Variables
a f

k : 1, if the flight f is (re)assigned to aircraft k; 0, otherwise.

Br: The maximum capacity for resource r.

v f
kc: 1, if the regulation for check c is being violated before flight f for aircraft k; 0, otherwise.

3.4.3. Formulation
Model 3.2. Interval MMILP formulation for AMS with TA.

min
∑

f

∑
k∈K f

∑
c

v f
kc (18)

min
∑

r

Br (19)

min
∑

f

∑
k∈K f \O f

a f
k (20)

min
∑

k

∑
c

∑
i

(
eti − sti

)
mi

kc (21)

min
∑

i

∑
r

(
eti − sti

)
Bi

r (22)

min
∑

k

∑
c

wsup{Ik}

kc (23)
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Subject to
Preassigned Flights

a f
k = 1 ∀ f ∈ FR, k ∈ O f ; (24)∑
c

v f
kc = 0 ∀ f ∈ FR, k ∈ O f ; (25)

Maintenance Requirement

wi
kc ≥ wi−1

kc +
∑

f∈F i
arr

(
DR f

kca f
k − v f

kc

)
− mi

kc ∀k, c, i , inf{I}; (26)

w
sup{MOP j

k}

kc ≤
∑

f∈F
sup{MOP j

k }

dep

DR f
kca f

k ∀k, c, j; (27)

Reassignment

mi+1
kc ≤ 1 −

∑
f∈F i

dep

a f
k ∀k, c, i , sup{I}; (28)

∑
k

a f
k = 1 ∀ f ; (29)

Maintenance
Constraints 6, 9 and 10
Transitivity Constraints
Constraints 11 − 13
Resources
Constraints 14

Bi
r ≤ Br ∀i, r ∈ RW i ; (30)

Variables

a f
k ∈ {0, 1} ∀k, f ; (31)

v f
kc ∈ {0, 1} ∀k, c, f ; (32)

Br ∈ R+ ∀r (33)
Constraints 15 − 17

The proposed formulation is a MMILP with six lexicographically ordered objective functions. The functions
involved minimise the following objectives (in the order of importance), the number of violations, maximum resource
level, number of reassigned flights, number of maintenance interventions, overall resource usage, and total MR.
Objective 18, with largest priority, minimises the number of regulation violations. Objective 19 minimises the sum of
maximum level for each resource. Objective 20 minimises the number of strictly reassigned flights (i.e. assigned to an
aircraft different from the one in the input TA), thus minimising the number of changes in the airlines’ preferred TA.
Objective 21 minimises the number of maintenance interventions weighted with the duration of intervals. Objective
22 minimises the resource level per interval, again, weighted with the duration of intervals. Finally, as in the previous
model, with least priority, objective 23, minimises the total MR at the last interval.

Constraints 24 ensure that if flight f is preassigned to aircraft k ∈ O f , then a f
k = 1. Similarly, constraints 25 ensure

that if flight f is preassigned to aircraft k ∈ O f , then a violation cannot occur v f
kc = 0 for any check c.

The MR constraints are a simple extension of those in Model 3.1. Constraints 26 enforce a recurrence relation
where the current MR, wi

kc, is updated using the previous MR, wi−1
kc , plus a deterioration term if the aircraft has been

assigned the flights prior to the interval under consideration, or drops to 0 if either a violation or maintenance occurs.
In the case when flight f is reassignable, i.e. f ∈ FR, and if flight f is not reassigned to aircraft k, a f

k = 0, then the MR
is only updated if a violation or maintenance occurs. On the other hand, in the case of either, flight f being reassigned
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to aircraft k, or, flight f being preassigned to aircraft k ( f ∈ FR and k ∈ O f ), we have, a f
k = 1. Thus, by constraints 25

and 28, v f
kc = 0 and mi

kc = 0, thus, the MR is deteriorated according to the appropriate deterioration, DR f
kc. Therefore,

the recurrence relation is enforced.
Constraints 27 ensure that the MR remains feasible for the operation of any of the flights that depart the end of

interval i. That is, for a given aircraft k, check type c and MOP j, the MR at the end of the MOP, w
sup{MOP j

k}

kc , should
remain feasible to operate whichever flights are assigned to aircraft k departing at the end of the MOP. Such flights

are contained in F
sup{MOP j

k}

dep .
As for the reassignment, constraints 28 ensures that maintenance is not performed if an aircraft departs. More

specifically, if an aircraft k is reassigned and due to depart on a flight after interval i , sup{I}, then, at interval i + 1
(after the aircraft has departed) maintenance cannot be performed, hence, mi+1

kc = 0. Constraints 29 ensure that all
flights have exactly one aircraft assigned to them.

Constraints 30 establish the value for the maximum resource level for each resource. The remaining constraints,
(maintenance, transitivity and resource constraints) as well as variable definitions, can be borrowed from Model 3.1.
The last constraints 31–33, define the domains of the extra variables.

4. Solution Methodology

The solution approach chosen only requires flight schedules, and resource capacities and demands for maintenance
services. To improve the efficiency of the solutions, after a preprocessing routine, we implement an iterative algorithm.
The algorithm is displayed in Figure 4 and pseudocode presented in Algorithm 1. The algorithm consists of two stages,
conflicting period selection and interval splitting. The conflicting period selection stage involves selecting the sets of
reassignable and preassigned flights, and resolving. This stage terminates when all the violations are removed or when
the size of the conflicting periods cannot be increased any further. During subsequent iterations, the interval splitting
stage identifies intervals where maintenance occurs, splits them and resolves the problem. Splitting time intervals
allows the model to assign more maintenance to the existing schedule since it makes time intervals more granular.

4.1. Preprocessing Routine

Flight schedules are crucial for the model as they give the initial TA and accurate FH in order to update the MR
throughout the planning horizon. We obtained flight schedules from Flightradar24 AB (2018) using pyflightdata,
the Pythonmodule (Allamraju, 2014). We gathered data globally for an extended period. Following the data gathering
stage, we preprocess the flight schedule data. Preprocessing involves filtering schedules through the nearest airport
to the maintenance workshops under consideration. After this, we identify airlines and aircraft types of interest so
we can track and update the aircraft’s FH appropriately. This gives a reduced network with accurate FH for each
aircraft. For eight maintenance workshops over a 30-day planning horizon (between dates 14/11/16 and 15/12/16),
prior to preprocessing, we have 23927 flights and 1643 aircraft of two types (Airbus A320 and Fokker 100). Then, we
proceed to identify MOPs i.e. turnaround times sufficient to perform at least the shortest maintenance type. We choose
a turnaround time of at least 5 hours to allow for at least a short maintenance intervention. Using aircraft MOPs, we
generate intervals by identifying all start and end times of the MOPs and storing them in an ordered set.

As part of this stage, we pre-determine which variables are not required in the model, hence, for efficiency, they are
not created. Specifically, all the variables involved in constraints 5 and 6 in Model 3.1, and constraints 24, 25, and 28
in Model 3.2, have known values and it is unnecessary to create them. Therefore, in practice, since the reassignment
variables that involve preassigned flights are not present in Model 3.2, when MR constraints involve preassigned
flights, we simply use MR constraints from Model 3.1. For this reason, the number of reassignment variables is
determined by selecting the sets of reassignable and preassigned flights.

4.2. Solution Procedure

To ensure efficiency and solution accuracy, we propose an iterative solution procedure which has two stages,
conflicting period selection, and interval splitting. The aim of the conflicting period selection stage is to, by using the
identification of regulation violations, select the number of reassignment variables. In each iteration, if the regulation
violations involved have not been removed, we increase the size of the conflicting period (which determines the
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Figure 4: Flow chart outlining the process of the iterative algorithm.

number of reassignment variables) and resolve Model 3.2. In the interval splitting stage, once all infeasibilites have
been removed or all reassignment variables have been introduced, we split intervals where maintenance takes place
and resolve Model 3.2. This ensures flexibility as it allows the additional generated intervals to be allocated to different
aircraft.

4.2.1. Conflicting Period Selection
An illustration of the conflicting period selection stage is given in Figure 5. For a certain violation, say at interval

i, with {k1, k2, k3, . . . , kK} ∈ K
i, we select the initial conflicting period as shown in red with j i

(1) as the upper bound, as

the next interval whereK i ⊆ K
j i
(1) . We classify flights either in the reassignable subset (FR), if they are involved in the

conflict, or in the preassigned subset (FR), otherwise. This regulates the number of reassignment variables, and keeps
the solution process of Model 3.2 efficient. If in the new solution, interval i still has a violation, we increase the size of
the conflicting period to reach j i

(2), the next interval where K i ⊆ K
j i
(2) . Again, we update the sets of reassignable and

preassigned flights and resolve the problem. If the violation has not been removed, we move on to the next interval
with matching aircraft. We continue this process until the violation is removed or the end of the planning horizon is
reached, in which case, all the reassignment variables, corresponding to violation i, would have been introduced.

In order to identify the conflicting period, we have to identify where violations occur. For the first iteration, the
set V that contain all intervals for which at least one violation occurs is given by,

V =

i : i ∈ I,
∑

k

∑
c

vi
kc ≥ 1

 ,
thereafter, it is given by,

V =
{
i : i ∈ I f , f ∈ F

}
,

where,
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Figure 5: Conflicting period selection.

F =

 f : f ∈ F ,
∑

k

∑
c

v f
kc ≥ 1

 .
For every interval with a violation, i ∈ V , we can identify the set of aircraft involved, K i. Then, we can find the

interval where the aircraft in K i will meet again, say K j, with K i ⊆ K j, where j > i. Hence, the reassignable flights,
FR, are those that occur between intervals i and j, the conflicting period, and for k ∈ K i. All the flights, outside of the
conflicting period are preassigned, thus, FR = F \ FR. More generally, the set of intervals Ji, which contain the set of
aircraft K i, can be written as,

Ji = { j : j ∈ I, j > i, K i ⊆ K j} . (34)

With this, we can write the first conflicting period as

CP(1, i) = {i′ : i′ ∈ I, i ≤ i′ ≤ j i
(1), ∃k ∈ K i′ ∧ k ∈ K i} , (35)

where j i
(1) is the first element in Ji. We use this to update the sets of reassignable and preassigned flights appropriately.

The set of reassignable flights is given by,

FR = { f : inf{I f } ≥ i, sup{I f } ≤ j i
(1)} ,

and K f = K i for f ∈ FR. The set of preassigned flights can be found using the updated set of reassignable flights,
while O f , the set of aircraft preassigned to operate flight f ∈ FR is given by the initial TA. Additionally, we need to
update the aircraft present at the intervals in the conflicting period. Thus, we set

K i′ = K i′ ∪ K i for i′ ∈ CP(1, i) .

By solving Model 3.2 after these updates, we can reassign the flights to any of the aircraft involved in the conflict.
In the next iterations, if the violation is removed, then without loss of generality, we may assume that the remaining
schedule can remain unchanged. However, if solving Model 3.2 has not led to the elimination of the violation, we
expand the conflicting period and resolve. For this, we use CP(m, i), for m = 2, . . . , |Ji|, which uses the m-th element
of Ji, j i

(m). Similarly, to update the set of reassignable flights, we set,

FR = { f : inf{I f } ≥ i, sup{I f } ≤ j i
(m)} ,

with, K f = K i for f ∈ FR, and,

K i′ = K i′ ∪ K i for i′ ∈ CP(m, i) .

With the set of preassigned flights and aircraft being updated as previously, using the new set of reassignable flights.
We do this for every interval with a violation i ∈ V , until either the violation is eliminated or the end of the planning
horizon is reached.
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4.2.2. Interval Splitting
The interval splitting stage favours the redistribution of resources by using a more granular timeline with each

iteration. Resources are occupied for the duration of the interval if maintenance is being performed. When long
intervals occur, given the non-preemption assumption, resources can be held even after the maintenance has been
finalised (exceeding the minimum maintenance duration). Therefore, we consider the effect of splitting intervals,
using different criteria, and resolving the problem. For example, in Figure 6, given the intervals, in the first iteration
we have a MOP of 9 hours. Suppose that the maintenance scheduled for this MOP only takes 8 hours. So, in the first
iteration, the last hour of the last interval is being wastefully allocated. Splitting, therefore, allows for the resources to
be allocated to different aircraft. By splitting in half, in iteration 3, we see that the last hour is no longer being held.

3h 2h 4h

1.5h 1.5h 1h 1h 2h 2h

0.75 0.75 0.75 0.75 0.5 0.5 0.5 0.5 1h 1h 1h

iteration

1

2

3

MOP

Figure 6: Interval splitting stage for a 9 hour MOP using binary segmentation for three iterations.

Let us define three simple splitting methods. Suppose, after solving the problem, we have mi
kc = 1, so we split

interval i using the following,

1. Binary segmentation (split in half);
2. Golden ratio (split by Golden ratio);
3. Minimum cut (split that allows at least the shortest type of maintenance).

Methods 1 and 2 are well-known and are regularly employed in search algorithms (Nocedal and Wright, 2006).
Method 3 splits intervals that allows the shortest type of maintenance. Going back to the example in Figure 6, recall
that the duration of the maintenance is 8 hours, splitting using Method 3 would produce a single split at the 8th hour
in the second iteration.

To compare the splitting methods and identify good solutions, we compute an accuracy measure representing the
usage of MOPs. The accuracy measure can be expressed as the ratio of the minimum time required for a check over
the actual time scheduled for the check. That is,

A =

∑
c
∑

k
∑

j ∆t(k),c∑
c
∑

k
∑

j
∑

i∈MOP j
k
(eti − sti)mi

kc

. (36)

Given constraints 10, which specify that maintenance scheduled should be at least of the minimum required duration;
we have that A ≤ 1. Therefore, a schedule that has an accuracy value close to 1, is one that does not schedule more
maintenance than strictly required, and is, thus, efficient.

4.2.3. Algorithm
As outlined in Figure 4 and in the pseudocode of Algorithm 1, the algorithm requires some inputs. Specifically,

a set of intervals, set of aircraft, FH for each aircraft, maintenance regulations and durations, and, resource capacities
and demands. Once these are provided, in the first iteration, Model 3.1 is solved. If there are violations; i.e. there
is no feasible maintenance schedule or, equivalently, V , ∅; we implement the conflicting period selection stage and
resolve Model 3.2 until the violations have been removed. After this, we iterate the interval splitting stage and resolve
Model 3.2 until either, the resource allocation is good enough, equivalently, A ≥ 1 − ε (where ε is the tolerance), or,
no more intervals are added.

16



Algorithm 1 Solution procedure with conflicting period selection and interval splitting.

1: Initialisations
2: iter, A = 0 . Iteration counter and accuracy measure
3: ε = 0.01 . Set Tolerance
4: maxiter = 50 .Maximum number of iterations
5: Intervals = I . Interval set
6: V, CP, oldIntervals = [ ] . Empty array for violations, conflicting periods, and old intervals
7: while iter < maxiter and A < 1 − ε do
8: if iter = 0 then
9: Solve Model 3.1 . For the first iteration

10: else
11: Solve Model 3.2 . For iterations ≥ 1
12: end if
13: Update V and A . Update violations and accuracy measure using new solution
14: if V is not empty then . If violations have not been removed
15: SelectCP(V) . Call function to update conflicting periods
16: else
17: which = {i : i ∈ I,

∑
k
∑

c mi
kc ≥ 1} . Identify intervals with maintenance scheduled

18: oldIntervals = Intervals

19: SplitIntervals(which, Intervals) . Call function to split intervals
20: if |Intervals| = |oldIntervals| then . No intervals have been added
21: Break . Stop the algorithm
22: end if
23: end if
24: Increment iter
25: end while
26:
27: function SelectCP(V) . Updates the conflicting periods for all violations
28: for i in V do
29: Compute Ji

30: if i not in CP then . If the violation is new
31: CP = CP ∪ CP(1,i) . Update CP with first conflicting period
32: else . If violation has occurred at a previous iteration
33: for m in 2→ |Ji| do . Iterate through elements in Ji

34: if CP(m-1,i) in CP then . Find already used CP

35: CP = CP \ CP(m-1,i) . Remove it from conflicting periods
36: CP = CP ∪ CP(m,i) . Update CP with the next, m-th conflicting period
37: Break
38: end if
39: end for
40: end if
41: end for
42: Intervals = Intervals ∪ CP . Update intervals
43: end function
44:
45: function SplitIntervals(which, Intervals) . Splits intervals in which

46: for i in which do
47: Using Method 1, 2, or 3; split i into i1 and i2
48: Intervals= Intervals\{i} ∪ {i1, i2} . Update Intervals
49: end for
50: end function
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5. Model Application and Computational Tests

We tested the iterative algorithm using flight schedules obtained for the maintenance workshops under consider-
ation over the 30-day period selected. The results shown in this section use preprocessed flight data between dates
14/11/16 and 15/12/16 (see Section 4.1 for more information on the data gathering and preprocessing). The iterative
algorithm was written in Python, using Gurobi Optimization version 8.0 (2018) to solve the models. Two computa-
tional studies are presented, one for the single workshop case (five workshops treated independently) and one for the
multi-workshop case (up to eight workshops treated simultaneously).

As for the experimental set-up, we restrict the interval splitting stage of the algorithm such that the resulting
intervals are at least 5 seconds long. Solution times for each iteration are limited to 500 seconds for each objective. The
parameters used for the computational tests include the standard duration and frequencies for the regulated medium-
term maintenance checks, as mentioned in Section 1. Specifically, according to Table 1, for the two types of aircraft
under consideration, the values of regulation parameter, Lt(k),c, is given in Table 3. Here, we see the type of aircraft
(Airbus A320 and Fokker 100), check type (c = 1 or 2) and the corresponding maintenance regulation parameter
values, Lt(k),c. Using these values, c = 1 corresponds to an A check and c = 2 corresponds to a C check. Resource
demand and capacity bounds, shown in Table 4, vary for four different types of renewable resources. A realistic
interpretation of resources is as follows, r1 – number of hangar bays, r2 – certified technicians, r3, r4 – different types
of specialised tools. The value for the tolerance, ε, which determines the required accuracy level as A ≥ 1 − ε, is set
to be 0.01. The initial MR variable is sampled from a Uniform distribution as follows,

winf{Ik}

kc ∼ Uni f (0, 0.3) ∀k, c.

Sensitivity analysis around the chosen value produces distinct maintenance schedules and resource profiles but does
not affect the computational performance of the algorithm. For instance, higher values lead to more maintenance
being scheduled towards the start of the planning horizon; conversely, lower values lead to more maintenance being
scheduled towards the end of the planning horizon.

Table 3: Maintenance regulation parameter values for two check types (1 and 2) and two aircraft types (A320 and F100).

t(k) c = 1 c = 2

Airbus A320 Lt(k),c =600FH Lt(k),c =6000FH
Fokker 100 Lt(k),c =500FH Lt(k),c =5000FH

Table 4: Sample resource demands and limit capacities for four types of resources (ri for i = 1, 2, 3, 4) and two maintenance types (1 and 2).

r br1 br2 Br

r1 1 1 25
r2 3 5 25
r3 2 3 25
r4 1 2 25

In addition, the formulations are solved using lexicographic ordered objectives with priorities as suggested by
airline practitioners. In the order of importance, the objectives which are minimised, namely,

1. the number of violations (objective 18),
2. the maximum resource level (objective 19),
3. the number of strictly reassigned flights (objective 20),
4. the weighted number of maintenance interventions (objective 21),
5. the total MR at the end of the planning horizon (objective 23).

Given that we are seeking for a maintenance feasible schedule, assigning the number of violations, in any but the
highest priority level leads to infeasible maintenance schedules. Apart from this, as tests revealed, the order of the
other objectives does not affect the integrity of the solutions or the computational times.
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5.1. Single Workshop Case
In the case when maintenance workshops can be treated independently, we can solve the problem for each work-

shop individually. This situation can occur, for example, due to the geographical location of the workshops or upon a
particular airlines’ request or restrictions. In this case, we implement the algorithm in parallel for each maintenance
workshop under consideration. It is worth noting that due to the preprocessing routine, which leads to considering
only flights with large turnaround times and just two specific aircraft types, the number of flights and aircraft are
significantly reduced compared those seen in ordinary operations; for more information see Section 4.1. The details
for the five workshops, are as follows,

Atlanta Hartsfield-Jackson International Airport: with 1048 flights and 115 aircraft, produces 389 intervals;

Bangkok Suvarnabhumi Airport: with 3869 flights and 49 aircraft, produces 843 intervals;

Cairo International Airport: with 781 flights and 34 aircraft, produces 279 intervals;

Dubai International Airport: with 223 flights and 11 aircraft, produces 63 intervals;

Tokyo Haneda International Airport: with 978 flights and 10 aircraft, produces 162 intervals.

In all cases under consideration, after a single iteration of the conflicting period selection stage, violations are
removed and the interval splitting stage begins. In order to compare the three splitting methods, we study four different
aspects, namely, the final number of intervals, total run times, accuracy measure, and objective function value. Table 5
breaks down the objective function for the largest workshop, while the results for the workshops under consideration
are shown in Table 6. Specifically, Table 6 shows the accuracy measure plots per iteration, final number of intervals,
and total run times. In the accuracy measure plots, as shown in the legend, Method 1 is represented with solid lines,
Method 2 with dashed lines, and Method 3 with dot-dashed lines.

The trend with the number of intervals per iteration is increasing for all methods, which is expected. The final
number of intervals, as shown in Table 6 , is the number of intervals at the last iteration. Method 3 offers the least final
number of intervals throughout, which is reflected in its solution times. Method 1 reveals a higher number of intervals
than Method 2.

The run times for the largest workshop, Bangkok, using Method 3 takes 72 minutes to terminate the algorithm.
For the remaining, small to medium-sized workshops, it takes between 0.36 seconds to 4 minutes to reach a good
solution. Computational times for Method 1 and Method 2 (both significantly larger than Method 3) with the latter
showing lower solution times.

The accuracy measure per iteration appears as a plot in the second column in Table 6. As can be seen, the accuracy
measure evolves differently depending on the workshop. It takes a varying number of iterations across workshops for
the algorithm to terminate. In all cases, more clear for Atlanta and Dubai, the required level of accuracy (0.99) is not
reached; the algorithm terminates due to no more intervals being created. For the cases of Tokyo and Dubai, using
Method 3, terminates the algorithm in very few iterations; whereas the rest take slightly more. Between Methods 1
and 2, both provide very similar quality solutions.

A breakdown of the different components of the objective function value for the Bangkok workshop is given
in Table 5. The table shows the different values for each objective per iteration and for the corresponding splitting
method. In each iteration, the best method is shown in green. This is determined by comparing objectives in decreasing
order of priority until differing objectives are found, and one method presents an objective value lower than the rest.
Note that objectives 18 (number of violations) and 20 (number of reassigned flights) remain constant. Objectives 21
(weighted number of maintenance interventions) and 22 (weighted overall resource usage) decrease, while objectives
19 (maximum resource level) and 23 (total MR at the end of the planning horizon) show some fluctuation. The
decrease in the fourth and fifth priority objectives is due to them being the only ones weighted with the duration of
the intervals, and, therefore, are the only ones that are decreasing as the duration of maintenance interventions also
decrease. The first iteration is the starting point where no splitting has occurred, hence, objectives have the same
values throughout the three splitting methods. In the second iteration, Method 2 is better than Method 3 as it presents
the same first three priority objectives (Obj. 18 - 20) and a lower value in the fourth priority objective (Obj. 21).
Iterations thereafter show that Method 3 dominates with a lower second priority objective (Obj. 19). Additionally,
Method 3 provides healthier fleet overall, as suggested by the consistently lower value of objective 23.
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Due to its good solution times, lowest objective values, and overall higher accuracy measure we can claim that, for
the single workshop case, the interval splitting stage performs better using Method 3. Furthermore, it is worth noting
that the aircraft are, also, kept in a healthier state at the end of the planning horizon. For this reason, we present more
detailed results using Method 3 for the largest workshop (Bangkok).

Figure 7 shows two resource profiles (first and last iteration) for resource r1 at the Bangkok workshop. From
Figure 7a to Figure 7b, we see that the resource profiles become considerably less populated and thinner. This means
that the resource usage is more efficient. Particularly, by the last iteration, the solution tends to have slightly higher
resource levels to avoid performing maintenance during busy flight periods. This leads to most maintenance occurring
during night and early morning shifts, as one would expect.

Since terminating the algorithm when A ≥ 1 − ε, or when no more intervals can be added, does not guarantee
an optimal solution we conducted some further testing. For the Atlanta workshop, we compare our solution (using
Method 3) to one obtained with a traditional discretisation method. We discretised time intervals using a varying time
step, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 minutes, and solved the problem once with a 5 hour time restriction per objective.
Figure 8 shows, on the left-hand y-axis, the percentage error when comparing the optimal objectives 21 (weighted
number of maintenance interventions) obtained using our method with the traditional discretisation for different time
steps. The right-hand y-axis, with a grey dashed line, shows the computational times when using the traditional
discretisation for different step sizes.

The percentage error for objectives 21, and 22, are shown using a solid red, and blue lines respectively. The corre-
sponding error for the lower bounds are shown in the same colours but with dot-dashed lines. As with previous cases,
objectives 18–20 remain constant, so they have not been included in the figure. It can be observed that the percentage
error increases as the time step decreases. This means that the solution obtained with the traditional discretisation is
improving, with respect to our optimal solution, as the step size is reduced. Our solution provides better solutions for
step sizes of 8 minutes and above (hence the negative percentage error values). The optimal solution for a time step
of 4 minutes (the smallest available as 2 and 3 minutes timed-out) shows only 0.6% improvement for both objectives.
While for the lower bounds for the smallest time step (2 minutes) show 6.6% improvement in objective 21, and 8% in
objective 22. Nevertheless, our solution gives a value 20% lower over all step sizes for the second priority objective
(objective 19). Thus, given the priority of the objectives, Method 3 dominates all the solutions studied produced using
traditional discretisation, thus, producing near optimal solutions.

The dashed line in Figure 8, plotted against the right-hand y-axis, reveals that implementing a traditional time
discretisation comes at a huge computational cost. Specifically, the discretisation with the smallest time step (2
minutes) is around 188 times slower than our solution. The reason why our method is significantly more efficient is
because it only makes time intervals more granular when it is required and where the solution is more sensitive.

Table 5: Objective function breakdown for the Bangkok workshop. The best method in each iteration is highlighted in green.

Iteration Method / Obj. Obj. 18 Obj. 19 Obj. 20 Obj. 21 Obj. 22 Obj. 23
1 Method 1 0 70 3 305 2184 54

Method 2 0 70 3 305 2184 54
Method 3 0 70 3 305 2184 54

2 Method 1 0 70 3 216 1559 62
Method 2 0 70 3 209 1509 52
Method 3 0 70 3 210 1523 60

3 Method 1 0 77 3 179 1304 66
Method 2 0 77 3 179 1303 60
Method 3 0 70 3 173 1258 60

4 Method 1 0 77 3 169 1231 71
Method 2 0 77 3 169 1234 101
Method 3 0 70 3 169 1233 55

20



Table 6: Comparison across 5 workshops during the interval splitting stage for the three different splitting methods.

Station Accuracy Measure (per iteration) Features Splitting Methods

Atlanta

1 2 3 4
Iteration

0.65

0.70

0.75

0.80

0.85

Ac
cu

rac
y M

ea
su

re

Method 1 Method 2 Method 3

Method 1 Method 2 Method 3

Final #
intervals 3343 3187 551

Total CPU
time (min) 60 52 4

Bangkok

1 2 3 4
Iteration

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

 M
ea

su
re

Method 1 Method 2 Method 3

Final #
intervals 2713 2653 919

Total CPU
time (min) 105 95 72

Cairo

1 2 3 4 5 6 7
Iteration

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

 M
ea

su
re

Method 1 Method 2 Method 3

Final #
intervals 3431 3117 349

Total CPU
time (min) 68 47 5.5

Dubai

1 2 3 4 5
Iteration

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

 M
ea

su
re

Method 1 Method 2 Method 3

Final #
intervals 473 457 85

Total CPU
time (s) 6.6 4.4 0.36

Tokyo

1 2 3 4 5 6
Iteration

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 M
ea

su
re

Method 1 Method 2 Method 3

Final #
intervals 845 771 189

Total CPU
time (min) 234 72 3.3
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(a) Resource profile for the first iteration.
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(b) Resource profile for the last iteration.

Figure 7: Resource profiles for the Bangkok workshop for the first and last (4th) iterations of the interval splitting stage using Method 3.
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Figure 8: Result comparison (objectives 21, 22) for Method 3 vs tradi-
tional discretisation for different time steps.

5.2. Multi-workshop Case

To allow for interdependence between airlines and workshops, we consider several multi-workshop cases. Here,
the algorithm solves the problem for all the workshops simultaneously. The first multi-workshop case considers four
of the workshops used in the single workshop case. Using Atlanta, Cairo, Dubai and Tokyo, we produce a multi-
workshop test set with 3002 flights and 167 aircraft, which produces 900 intervals. The interdependence for this case,
due to their close proximity, is between Cairo and Dubai.

After a single iteration of the conflicting period selection, all violations are removed. Hence, the interval splitting
stage begins. Table 7 shows, the intervals, computational time and accuracy measure value for each of the splitting
methods. In each iteration, the best method is shown in green. As with the single workshop, this is determined by
comparing objectives in decreasing order of priority until differing objectives are found, and one method presents an
objective value lower than the rest. To avoid repetition, these have not been included due to their resemblance with
the results in the single workshop case. The computational times reveal that Method 3 is the fastest (with a total of
1158 intervals and 9 minutes), followed by Method 2 (with a total of 4812 intervals and 58 minutes) and then Method
1 (with a total of 5020 intervals and 62 minutes). The highest accuracy measure, however, is no longer associated
with Method 3, but with Method 1.
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Table 7: Method comparison for the 4-workshop case.

Iteration Method Intervals CPU
time (s)

Accuracy
Measure

1 Method 1 900 59 0.72
Method 2 900 57 0.72
Method 3 900 61 0.72

2 Method 1 1384 610 0.86
Method 2 1390 414 0.83
Method 3 1076 123 0.84

3 Method 1 2556 1252 0.93
Method 2 2586 1258 0.92
Method 3 1134 148 0.90

4 Method 1 5020 1777 0.99
Method 2 4812 1739 0.98
Method 3 1158 200 0.94
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Figure 9: Computational comparison for Method 3 applied to dif-
ferent multi-workshop cases.

Given that it shows lowest solution times and objective values, provides a healthier fleet, and exhibits an acceptable
accuracy measure we suggest that, for the multi-workshop case, the interval splitting stage should be implemented
using Method 3. However, if more accuracy is sought, one can resort to Method 1 at the expense of higher com-
putational times. When compared with the average accuracy measure obtained individually for the four workshops,
Method 1 shows a 6% increase. This suggests that modelling interdependence between workshops, or, inter-airline
cooperation, leads to more efficient allocation of resources.

Figure 10 shows the maintenance schedules produced using Method 3 for the four workshops involved in the
multi-workshop test set. The x-axis represents the date and the y-axis shows each individual aircraft tail number.
Hence, the plot shows when in the planning horizon a specific aircraft is being served, which type of maintenance it
is receiving, and where the maintenance is taking place. Note that only one check 2 (c = 2 which corresponds to a C
check) is scheduled in the busiest workshop, Atlanta, on the first day (14/12). The rest of the maintenance shown are
checks c = 1 which correspond to A checks.

To study the scalability of the framework, four additional multi-workshop cases were created. They include, a 5
workshop case with 6871 flights and 216 aircraft, a 6 workshop case with 9681 flights and 260 aircraft, a 7 workshop
case with 12402 flights and 429 aircraft, and, the largest, an 8 workshop case with 16000 flights and 529 aircraft.
Additional to the five workshops considered in the single workshop case, the 8 workshop case considers workshops
based in Abu Dhabi International Airport, Beijing Capital International Airport, and, Madrid Barajas Airport. These
cases were solved using Method 3 and until the algorithm was terminated; the least accuracy level achieved was of
0.97. The resulting computational comparison, in Figure 9, shows the computational times (red line on the left-hand
y-axis) and final number of intervals (grey dashed line on the right-hand y-axis) for the different multi-workshop cases.
The evolution of the CPU time and number of intervals seems to increase linearly with the number of workshops; the
8 multi-workshop case finalises with 5292 intervals and in 108 minutes. Therefore, it is possible that the framework
is scalable for larger data sets. Clearly, this depends on the size and number of flights introduced each new workshop.
Nonetheless, given the size of the largest instance considered, we have managed to demonstrate the computational
efficiency and the potential of this framework.
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Figure 10: Maintenance schedules produced by using Method 3 for each aircraft and workshop in the first multi-workshop case.
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6. Conclusions

We have solved the airline fleet maintenance scheduling problem considering tail assignment. Previous studies
that tackle a similar problem have modelled a short-term planning horizon and tend to be computationally expensive
even for moderately sized data sets. By using aircraft individual legal remaining flying hours and our interval based
formulations, we tackle the problem while providing solutions in reasonable time. We present two multi-objective
mixed integer linear programming formulations for this purpose. The first acts as a feasibility check for an input flight
schedule and provides an initial set of variables for the tail assignment. If a feasible maintenance schedule was not
found, the second formulation employs the location of the regulation violations to formulate a combined maintenance
and tail assignment problem. This explores the different options across an aircraft journey and decides on the optimal
allocation of flights, maintenance and resources. Additionally, our approach accounts for multiple resources and for
generic types of maintenance.

In order to improve solutions, we implement a heuristic algorithm that consists of two stages: conflicting period
selection and interval splitting. The conflicting period selection stage increases the size of the tail assignment problem
gradually until we are able to produce a feasible maintenance schedule. After this, the interval splitting stage improves
resource allocation.

Test results show that the algorithm is efficient, since it can solve large instances in reasonable computational
time, for a 30-day planning horizon and provides good quality solutions. We solved a multi-workshop test case with
8 workshops, 16000 flights and 429 aircraft in under 2h. Highlighting the importance of developing new efficient for-
mulations. Solutions present airlines with alternatives to their initial tail assignment during the planning stage. These
solutions focus on satisfying maintenance regulations and keeping the aircraft healthy, while remaining commercially
viable for the airlines. Results promote inter-airline cooperation, which allows for workshop resource sharing between
airlines, since it provides a more efficient resource allocation per workshop.

Some limitations are worth noting. Stopping the iterative algorithm when the accuracy measure is maximal does
not guarantee an optimal solution. Clearly, if continued indefinitely, the algorithm would reach the optimal solution,
however, applying the stopping criterion gives a good quality solution in reasonable time. We compared the solution
obtained using our method to the one obtained using a traditional discretisation with a small time step. This revealed
that our solution is better and around 188 times faster, however, the theoretical proof remains to be done. Addition-
ally, we have not considered the complications that may arise from some of the long-term maintenance types. In
some cases, for example with life limited replacements, the inclusion of inventory control for spares and those being
fixed would be paramount. Further work includes the implementation of a rolling horizon and the application of
clustering for maintenance workshops with intersecting flights. Due to the lexicographic optimisation approach, the
optimal solution(s) of the higher order objectives determine the optimal values of the lower order objectives. The
solution space of the proposed formulation can be further expanded by relaxing the optimal value of the first priority
objective, i.e. allowing for tolerance. An alternative way to model the problem is to use a Goal Programming for-
mulation and seek to minimise the weighted sum of the deviation from the optimum value of each objective. It is
apparent that, the preferences of the decision maker(s) in terms of preference ordering (lexicographic optimisation) or
weights (Goal Programming) will drive the outcome of the optimisation process. Future research may involve further
experimentation of the decision maker(s) preferences in terms of the preferences of the decision maker(s).
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Appendix A. Supplementary Proofs

Proposition Appendix A.1 For a given interval i and aircraft k, the following inequality holds,

sup{MOP j−1
k } < i ≤ sup{MOP j

k} ,

for some MOP j
k provided that j , 1, i > sup{MOP1

k} and i ≤ sup{MOPJ
k } (J = |MOPk |). In other words, provided

that the interval under consideration starts after the end of the first MOP and before the end of the last MOP.

Proof. For a given i and aircraft k, either, i ∈ Ik or i < Ik.
In the first case, by definition i ∈ MOP j

k for some j, hence, clearly, i ≤ sup{MOP j
k}. Also, by definition, intervals

in MOPs are disjoint, i < MOP j−1
k , thus i > sup{MOP j−1

k }. Therefore, the inequality holds.
Otherwise, we have,

i < Ik ∧ i ≤ sup{MOPJ
k } =⇒ ∃ j = max

{
j : j ∈ MOPk, j ≤ J, i < inf{MOP j

k}
}
.

Hence, i ≤ sup{MOP j
k}, and, therefore, i > sup{MOP j−1

k }. This completes the proof.

Proposition Appendix A.2 Transitivity constraints 11 – 13 in Model 3.2, ensure non-preemption for all MOPs.

Proof. We want to prove the following relationship,

Transitivity constraints =⇒ Non-preemption,

or, equivalently,
Preemption =⇒ Transitivity constraints do not hold.

Suppose that, maintenance begins at an interval i ∈ MOP j
k, or,

mi−1
kc = 0 ∧ mi

kc = 1 for some i, i − 1 ∈ MOP j
k .

Using constraints 12, we have that zi
kc = 1. Now, assume there is a preemption, that is,

mi′−1
kc = 0 ∧ mi′

kc = 1 for some i′ ∈ MOP j
k, i′ > i .

By constraints 12, we have that zi′
kc = 1. However, given constraints 13 and zi

kc = 1, we have a contradiction. Therefore,
we must have

mi′
kc − mi′−1

kc ≤ 0 ∀i′ ∈ MOP j
k, i′ > i .

Hence, within an MOP, once maintenance has started, we can either continue, in which case mi′
kc − mi′−1

kc = 0, or end
it, where mi′

kc − mi′−1
kc = −1. We cannot start another maintenance intervention within the same MOP.

For the boundary condition, if i is the first interval in the MOP, i = inf{MOP j
k}, then by constraints 11 and 13, the

claim still holds. This completes the proof.
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