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Abstract— The increasing ubiquity of the Internet of Things (IoT) has the potential to drastically alter the way healthcare 

systems are utilized at home or in a care environment. Smart things offer new ways to assist in general patient wellness, such 

as promoting an active and healthy lifestyle and simplifying treatment management. We believe smart health things bring new 

requirements not typically addressed in traditional IoT systems, and that an architecture targeting these devices must address 

such requirements to fully utilize their potential and safe usage. We believe such an architecture will help improve adoption and 

efficacy, closing gaps between the variety of emerging health IoT systems. In this paper, we present a number of requirements 

we consider integral to the continued expansion of the digital health IoT ecosystem (Health IoT). We consider the current 

landscape of IoT in relation to these requirements and present solutions that address two pressing requirements: 1) 

democratizing mobile health apps (giving users control and ownership over their app and data), and 2) making mobile apps act 

and behave like any other thing in an IoT. We present an implementation and evaluation of these Health IoT requirements to 

show how health-specific solutions can drive and influence the design of more generalized IoT architectures. 

Index Terms— Emerging technologies, Health, Requirements/Specifications, Ubiquitous computing 

——————————   ◆   —————————— 

1 INTRODUCTION

n The Importance of Being Thing Or the Trivial Role of 
Powering Serious IoT Scenarios [1], we argued for the the 

importance of having explicit architectures for things in the 

Internet of Things, and pointed out that without first 

settling the quest for what a thing is or could be or do, we 

run the risk of presumptuous visions, or hypes, that can 

only fail the realities and limits of what is actually possible, 

leading to customer and consumer confusion as well as 

market hesitations. The article focused on the domain of 

“Personal” IoT and addressed key new requirements for 

thing architecture aiming at enabling their 

programmability into IoT applications. In this paper, we 

expand on our work in [1] and argue that for certain IoT 

application domains, additional, domain-specific 

requirements must be met and architected to enable IoT 

application development in that domain. We focus on the 

health application domain in which IoT is utilized, referred 

to as “Health IoT.”  

Let us first give a motivating example to explain why a 

thing architecture is needed. Imagine hosting a symposium 

for all the greatest minds in the world, with the ambitious 

task of curing diabetes. Large teams of people arrive, each 

from their own section of the world, each with their own 

area of interest and each with their own skillset. All are set 

to work, teams busily trying to progress their problem. But 

quickly, it is realised that the teams continue to work in their 

silos, unable to bridge the barrier of communication, 

unaware of the duplication of work and failing to benefit 

from the collective creation of the symposium. Any findings 

are passed through directly via set channels of 

communication. This is the current approach to the Internet 

of Things. We have many very smart things limited to their 

silos with the user unable to exploit the greater value of the 

whole. Now imagine the same scenario again, however, this 

time we ensure there are some essential requirements to 

maximise the productivity and achievements of the groups. 

For instance, we define a common scientific language for 

all attendees to display each team’s interests, strengths, 

and studies. Team-defined mechanisms of interaction 

would then enable collaboration, sharing, and 

understanding among team members. In this environment, 

relationships develop, similar teams with analogous 

interests can discover mutually beneficial strength, or even 

work together on seemingly contradictory results seeking 

the truth to avoid scientific errors. Such relationships could 

lead to new ideas and outputs, where the symbiosis 

benefits the whole of the symposium.  

Keeping the above example in mind, we argue that 

Health IoT things bring special and specific requirements 

not typically addressed in traditional IoT systems. We 

believe that any thing architecture targeting these devices 

must address such requirements to fully utilize their 

potentially collective and safe usage. We believe such an 

architecture will help improve adoption and efficacy, 

closing gaps between the variety of emerging health IoT 

systems in a highly fragmented and evolving market. Like 

the motivating example above, a successful architecture 

would enable the collective utility derived from the 

combined use of subsets of the things in the Health IoT. 

xxxx-xxxx/0x/$xx.00 © 200x IEEE        Published by the IEEE Computer Society 

———————————————— 

• Wyatt Lindquist is with the School of Computing and 
Communication, Lancaster University, Lancaster LA1 4WA, UK. E-mail: 
w.lindquist@lancaster.ac.uk 

• Sumi Helal is with the School of Computing and Communication, 
Lancaster University, Lancaster LA1 4WA, UK. E-mail: 
s.helal@lancaster.ac.uk 

• Ahmed Khaled is with the Computer Science department, 
Northeastern Illinois University, Chicago, IL 60625, USA. E-mail: 
aekhaled@neiu.edu 

• Wesley Hutchinson is with the School of Computing and 
Communication and the School of Medicine, Lancaster University, 
Lancaster LA1 4WA, UK. E-mail: w.hutchinson@lancaster.ac.uk 

 

I 



2 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING,  MANUSCRIPT ID 

 

Otherwise, each thing will have its offering in isolation. We 

refer to this figure of merit in such architectures as IoTility 

or the ability to increase the collective utility of the Health 

IoT.  

In section 3, we describe requirements for Health IoT 

that we broadly categorize into “device interactivity” and 

“user interactivity”. In the former we address requirements 

that enable thing-to-thing interaction and autonomous 

inter-relations. In the latter, we address requirements for 

user-thing interactions that must be met to ensure proper, 

meaningful and safe use of the devices, the empowerment 

and enablement of users to easily use the devices, and the 

establishment of trust between the user and the Health IoT 

elements. In section 6, we present a high IoTility 

architecture for Health IoT emphasizing only parts that are 

most relevant to the requirements presented in section 3 

through 5. This includes the IoT-Device Description 

Language (IoT-DDL), a machine- and human-readable 

language to provide the basis of cross communication and 

the establishment of inter-thing relationship. Section 7 

presents implementation and evaluation of parts of the 

architecture. In this section, we present two unique 

frameworks/toolsets that meet the architectural 

requirements. The Runtime Development Environment 

(RIDE), allows end-users to dictate the high-level 

functionality of Health IoT applications they easily compose 

out of existing Health IoT devices; and the Mobile Apps As 

Things (MAAT) framework, allows developers of health 

mobile apps to utilize actionable keywords (AKWs) to 

enable the future IoTility of their mobile application, 

without the having to predict or plan for all potential future 

interactions. We conclude the paper in section 9. 

2 RELATED WORK 

Managing an IoT ecosystem in a specialized environment 

requires a structured architecture fit for the job. Works such 

as NIST’s Network of Things (NoT) [2] propose a 

foundational design for an IoT system. NoT defines a set of 

primitives describing the functionality of individual sensors 

and groups of devices, as well as how they may 

communicate. Laplante et al. [3] present another structured 

approach, specifically targeting IoT healthcare systems. The 

authors consider various use cases, such as managing 

dementia, and describe a set of privacy and safety 

requirements for a Health IoT system. 

Catarinucci et al. [4] offer an architecture 

implementation, again targeting healthcare systems, that 

focuses on the interoperation of a variety of wireless 

protocols to collect and monitor patient data in a smart 

hospital scenario. The data can be accessed uniformly by 

healthcare providers, or monitored to send push 

notificaions to caregivers on critical sensor events. Our 

Atlas architecture [5] is another specialized IoT system, 

focusing on peronal IoT and the potential for interaction 

between devices. This architecture is described in further 

detail in section 6. 

Facilitating interactions between IoT devices and things 

is a primary goal of many of these systems. The Social 

Internet of Things (SIoT) [6] describes group of smart object 

as a social network to mimic human behavior. Devices form 

social relationships over similar functionalities, vendors, or 

physical locations. If This Then That (IFTTT) [7] in the cloud 

and Things Talk to Each Other (TTEO) [8] on the device 

allow similarly allow users to compose services into rule 

based applications through a set of “if-then” triggers. These 

forms of interaction are expanded on in section 4.2. 

Another goal of these IoT systems focuses on enabling 

interoperable usage of heterogenous devices. Initiatives 

such as the Continua Design Guidelines [9] provide a set of 

standards with an open implementation that 

manufacturers can follow in their health devices, creating a 

uniform base API across brands. In a similar fashion, the 

Solid [10] and MyData [11] services aim to improve health 

data accessibility, utilizing concepts such as decentralized 

storage and standardized formats. The importance of these 

features is discussed in section 4.1. 

Within these goals, trust, privacy, and security also play 

a major role. NIST’s NoT considers thing security at each 

level of their architecture, from sensors to user 

communication and triggers. Mahale et al. [12] present an 

access control system that calculates trust values based on 

parameters captured from a smart space. These trust values 

can then be used to manage user identity. Lomotey et al. 

[13] create a health information system to associate user 

identity with the various data streams gathered from 

sensors in a smart space. Section 5.3 furher details these 

issues. 

3 REQUIREMENTS FOR HEALTH IOT 

We identify a set of requirements we consider highly 

relevant to future thing architectures targeting Health IoT 

systems. We do not claim to provide a complete list of 

these requirements, but a selection of those we believe will 

allow such a thing architecture to maximize its IoTility in 

utilizing new digital health devices and the interactions and 

applications they enable. We group these requirements 

into two categories: 1) device interactivity, or how a device 

can expose its capabilities programmatically to application 

developers as well as cybernetically to other devices in a 

smart space, and 2) user interactivity, or how a device 

enables and guides an end user to properly (and safely) use 

it. 

When considering the significance of device 

interactivity, one may reflect on the state of health data 

platforms such as Apple HealthKit [14]. This platform allows 

a user’s phone to interact with supported devices, storing 

and displaying data in a unified interface. A user is provided 

with a level of assurance when buying a supported 

device—it will “just work” through its integration in the 

HealthKit app. However, this assurance hinges on this 

platform support: a device supporting only Google Fit or 

Samsung Health, for example, will be unable to interact 

with other HealthKit devices. These platforms offer users 

more control over their data and devices, but only in the 

context of their supported and closed ecosystem. 

When considering the importance of user interactivity, 

one should look towards the plethora of personal health 

devices collecting precision data, which may generate 
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erroneous or noisy data if used improperly or 

inaccurately—often a challenging task for the user. For 

instance, the Kardia [14] device can collect an 

electrocardiograph (EKG) sequence as the user places two 

fingers on each side of the device; proper finger placement 

is critical in receiving a quality reading. To facilitate this, the 

Kardia app exposes a familiar “signal strength”-style metric 

(figure 1), providing at-a-glance, feedback and guidance on 

finger placement to the user. Unfortunately, Kardia is an 

outlier in this regard; most devices lack the facilities to 

detect or react to inaccuracies and accept such interactions 

unconditionally.  
Fig. 1. The Kardia device and app interface. 

To highlight both of these requirements, we consider the 

following near-future scenario throughout this section: 

following consultation with their physician, a patient’s risk 

of diabetes is highlighted as significantly raised. 

Suggestions are made for the patient to make lifestyle 

adjustments to reverse this risk. Just as medicine is 

prescribed, the physician also prescribes various IoT 

devices for the patient to obtain. The patient fulfills the 

prescription for a body-weight and body-fat sensing scale, 

a blood pressure monitoring device, and a glucose monitor. 

The patient chooses running as a means of exercise and so 

purchases smart soles to compliment the community of 

devices, as well as a pulse oximeter and a temperature 

monitor advertised as a more accurate measure of 

metabolic rate. Finally, the patient downloads a dieting 

mobile app to his smartphone. We use the elements of this 

scenario in the next sections to derive and explain our 

requirements for Health IoT. 

4 DEVICE INTERACTIVITY 

A thing must have the ability to send information and 

receive commands before it can be useful in a digital health 

smart space. Many things have no physical user interface 

and limited potential for physical configuration; instead, 

they must utilize a more feature-complete parent device 

(such as an edge device or mobile phone) to act as the 

point of interaction with the user. A thing relies on this 

ability to interact with a parent device to fully represent its 

capabilities. To do this, the underlying thing architecture 

must provide not only hardware and software interfaces 

within the thing, but also the basis for communication with 

other devices. This architecture therefore becomes critical 

for the successful integration of that thing within a smart 

space. 

To achieve this goal across the wide range of potential 

devices in health IoT, an architecture must be cognizant of 

how things may manifest themselves. For example, a thing 

may be a simple sensor, a higher-level device with a REST 

API, or even a full software system such as a mobile 

application. All of these thing types may perform the same 

functionality, such as reading a sensor value; however, the 

similarities stop there. Beyond utilizing different protocols, 

these things may perform their interactions in an entirely 

different way. The sensor thing may continuously emit its 

value as an electrical signal, the REST API device may 

perform its reading when an endpoint is invoked, and the 

mobile app may record a measurement based on the 

context of the phone's user's actions. 

These different possibilities may be viewed as different 

"tiers" of interaction within the same system, where a thing 

architecture may always operate on, say, the REST API level 

of the interaction. However, with new devices constantly 

entering the IoT space, it is unreasonable to assume they 

will all operate in the same manner and expose the same 

capabilities. A health thing may not use a physical sensor 

or may be entirely represented within a mobile application. 

Instead, a thing architecture targeting digital health should 

consider the potential for inter-thing interaction across all 

of these forms. 

4.1 Common Programming Interfaces (APIs) 

Regardless of the context of its interactions, a thing must 

expose some form of API to allow it to communicate with 

the whole of the smart space. We believe the availability 

and utility of such an API is a key piece in determining how 

easily a new thing may be integrated into an existing smart 

space. Without an API, there is likely little to no way for a 

smart space to interact with said device. Rather, only the 

functionalities and system the device was explicitly 

programmed to utilize can be exploited. 

Many devices in the current digital health landscape 

tend towards this pattern [14]. Lacking a true independent 

API, the device is tied to a specific ecosystem or subset 

thereof, creating "silos" of functionality segmented 

between manufacturers and vendors. While the potential 

for interaction inside the silo may be rich, such interactions 

cannot take place with devices outside that silo. If a user 

wants to fully utilize the potential of their smart space, they 

must stay within a silo of compatible devices. Such a 

situation is especially problematic when a specific device 

type does not exist within a user's chosen silo; the user is 

forced to use a device with potentially decreased 

functionality, or consider using a different silo. 

Such an effect can be seen within the ecosystem of 

companion mobile apps for health IoT devices. A user with 

a collection of smart devices likely has a similar collection 

of apps on their mobile phone, with each device requiring 

its specialized app to make full use of its features. The 

natural progression of these silos is an ever-increasing 

number of apps on a user's phone as they acquire more 

devices: making it harder for the user to find the 

information they want, and making tasks such as showing 
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multiple measurements from different devices at once 

more complicated. 

Of course, eliminating these silos through a single 

standardized API is unlikely; vendors will always want to 

prioritize interactions between their own devices. However, 

even a limited subset of API compatibility, such as that 

defined by the Continua guidelines [9], could greatly 

improve a thing's ability to interact with its smart space. 

Consider the patient’s temperature sensor from the 

scenario at the start of the section. Such a device is meant 

to be attached directly to the body, meaning it likely has 

little in terms of a physical interface (i.e., no integrated 

display to show the current temperature), and limited 

capacity for physical interaction (i.e., a sole button for 

toggling power). 

The temperature readings and any needed 

configuration are instead exposed through a companion 

mobile app, which the user is required to download to use 

the sensor. Imagine, however, a user with accessibility 

concerns, where the companion app does not work 

properly on their specialized device. Without the app, the 

health device cannot be used properly, even though the 

hardware itself is functioning. However, in this case, the 

device exposes a minimal standard API with basic 

functionality. Perhaps the user holds their mobile device 

near the sensor, and receives usage instructions as well as 

the ability to perform a basic read from the sensor (thereby 

receiving their body temperature as desired). More 

advanced configuration features are not exposed through 

this API, but the user is still able to use the device, despite 

being unable to use the app. 

Introducing more open APIs, however, does have 

implications regarding the safety and security of these 

smart devices [15]. Such concerns must also be carefully 

addressed; once a device provides data and receives 

commands more openly, the thing architecture must “pick 

up the slack” and ensure these APIs are not abused. Even 

when the API is being used properly, health devices must 

consider who is using the API; a primary user may be able 

to see readings from a device through its API, but these 

readings should not be available freely. These are other 

important requirements for the health IoT that are 

discussed in later sections. 

We believe at least a minimal shared API is essential in 

mitigating the segmentation of thing devices. Ensuring 

functionality across a larger portion of users, in addition to 

providing users with more control over their data (such as 

with Solid [10] or MyData [11]) is essential when creating 

an effective thing architecture targeting digital health. 

While APIs give vendors less control over how their devices 

are used, they also have their own business cases: either 

making devices more desirable to consumers, or creating 

opportunities for platform services.  

4.2 Relationships Between Things 

Communication between things is a substantial part of an 

IoT ecosystem. The standardization discussed above is less 

impactful if considering only user-thing relationships. Once 

things are able to "speak" some level of a common 

language, they can interact not only with the user and 

edge, but also with each other. We believe this thing-to-

thing interaction to be another critical part of a functional 

health IoT system. A thing with the potential to cooperate 

and utilize the capabilities of the smart space increases the 

capacity for meaningful interactions to occur. 

As the number of devices in a smart space increases, 

explicitly programming them becomes more difficult; this 

is especially true in a health environment with a wide 

variety of medical sensors and devices. Even if all of the 

devices share a common interface, they still must be 

individually considered and programmed for. Beyond 

receiving data or sending controls directly, considering the 

potential for synergy between devices in a large smart 

space quickly becomes unreasonable. Allowing things to 

communicate between themselves has the potential to 

alleviate this burden. 

Relationships, or logical links between functionalities 

offered by two or more things, allow for the creation of 

implicit interactions between smart space devices. A 

relationship may allow a thing to become a conditional 

element within a logic matrix, its output used as an input 

or to control another thing, as in IFTTT [7] and TTEO [8]. We 

believe that a thing's ability to form these types of 

relationships (especially when they can be formed as 

suggested by the thing, rather than explicit user 

intervention, such as the SIoT [6]), will allow users to focus 

on the high-level functionality of their smart space, leaving 

the low-level details to be taken care of by the architecture 

itself. 

These kinds of relationships are especially useful in a 

health environment, where sensors may only record a part 

of a larger metric (such as how body temperature, blood 

pressure, etc. make up a patient's general vital signs), or 

may record the same measurement in conjunction with 

other sensors (such as reading pulse in different places on 

the body). Such grouping of information can be handled or 

specified between things through relationships, reducing 

the need for explicit programming and simplifying the use 

of the smart space at the edge, especially for personal 

health scenarios where the user may not want or know how 

to effectively manage their array of smart devices. 

Using the initial scenario, consider the patient’s blood 

pressure measuring device and pulse oximeter. Both of 

these devices are capable of recording, among their other 

measurements, the patient’s pulse. In the traditional case, 

the user would be presented with two pulse readings, and 

would likely choose to use one over the other, possibly 

hiding or removing the second measurement. Imagine 

instead that these devices look to form relationships with 

other devices (whose specific form may not be known) that 

provide a pulse reading, allowing them to combine 

readings or keep each other in check. Such a situation 

improves usability and allows for a form of reliability across 

devices taking the same measurement (where services only 

need to be aware of the measurement itself, not the source 

device). 

We believe relationships between things can play a large 

role in the effective programming and use of a health IoT 

system. When dealing with many devices in a smart space, 

allowing them to consider their position inside the smart 
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space and the other functionalities being offered becomes 

valuable for both the end user and the operation of the 

smart space itself. An architecture handling these 

relationship-based behaviors can help supplement or 

simplify the creation of meaningful interactions in a smart 

space.  

4.3 Thing-Like Mobile Applications 

In much of the above discussion, the mobile app plays a 

prominent role in a smart space system. The number of 

these apps targeting digital health is significant: over 

300,000 as of 2017 [16], [17], and still growing. In addition 

to self-contained health apps, many health IoT devices 

require a mobile device to host their companion app. 

However, despite their close interaction with things and the 

smart space, these mobile apps are not utilized fully: we 

believe they can be further integrated as things themselves. 

Considering mobile applications as "software things" (as 

opposed to hardware things, such as sensors, actuators, or 

other personal health devices) can open up new potential 

for meaningful interactions within a smart space. 

In most situations, the mobile app either acts as a 

controller for other smart things, such as requesting data 

or sending commands, or manages information for the 

user, such as the aforementioned diet app. In terms of a 

smart thing, this is only half of the picture. Other things in 

a smart space cannot consider the app for any interactions 

beyond what it is programmed to do. Even if a health app's 

information could be used by another thing (especially one 

unrelated to the purpose of the app), the app most likely 

lacks a way to channel data to that thing. The app is missing 

a concrete API like those of other physical things, simply 

because most mobile apps are not designed to work this 

way. 

For example, consider the patient’s dieting app and their 

smart soles from the initial scenario. The user eats a meal, 

enters the information into their app, and receives an 

updated exercise plan. The user then must use another 

mobile app or other method for updating their smart soles’ 

configuration to reflect their exercise parameters. Even 

though all the information is available implicitly within the 

smart space, the user must manually “transfer” parameters 

between the app and the thing, because the developer of 

the app did not consider this potential for interaction. 

If the diet app had a thing-like API, the interaction could 

have progressed differently: after the user enters their 

information into the app, the smart soles see that the 

exercise plan has changed, updating their parameters 

automatically. In this case, the thing becomes the driver of 

the interaction, where it asks the mobile app for 

information through its thing-like API. Although the app 

was not developed with smart soles in mind, it was able to 

provide its information to the smart space and enable the 

interaction. 

Compared to a normal hardware thing, a mobile app is 

likely much more capable in terms of features and the 

ability for the user to interact. Things in the smart space can 

potentially utilize a wide variety of sensors (for example, 

accelerometer and GPS) or engage the user through a 

touchscreen interface. This is especially interesting for 

lightweight hardware things with minimal physical 

interfaces, like the body temperature sensor mentioned 

above. Such functionality makes higher-level interactions 

available to things without the need for physical interfaces 

or a specially programmed app (thereby reducing the need 

for the "silos" of companion apps described in section 4.1. 

We believe positioning mobile apps to behave more like 

things to be another critical requirement in an effective 

digital health thing architecture. As mobile applications 

become more prevalent in smart spaces, allowing them to 

behave like any other thing device will solidify them as an 

integral part of an IoT system. Such a feature creates new 

potential for meaningful interactions with the things in a 

smart space, allowing for things to easily interact and form 

relationships with mobile apps. Thing-like relationships 

between apps could allow users to “combine” app 

functionalities, or easily create new apps with the exact 

functionality they desire.  

5 USER INTERACTIVITY 

Things in a smart space offer limited utility unless they can 

interact with and convey information to their users. While 

some health IoT systems may, for example, be set up 

professionally or pass their readings to the cloud for 

analysis before being viewed, many systems (especially in 

personal health situations) will see their data and 

functionality being accessed directly by users (coming from 

readings such as vitals and indicators of activity). In this 

case, interaction with the user is critical: aspects such as 

data acquisition are dependent on correct use of the 

device. In fact, it may be argued that proper user-thing 

interaction (with factors such as ease of use and required 

knowledge) constitutes a significant barrier hindering 

digital health adoption [18], [19]. 

In addition to using a device incorrectly, a thing 

architecture should consider the potential for lack of use as 

well. A user may interact with a device properly in terms of 

API and physical use, but not use it often enough, at the 

right times, or at all. In this case, a thing must have a 

concept of user motivation; that is, how the thing can 

interact to increase its chance of being used when needed. 

A thing may utilize markers such as a schedule or the 

behavior of other things in the smart space to hint at these 

opportunities. 

To achieve this, an effective health IoT architecture 

should be able to understand and manage the potential for 

unreliability or error when dealing with input and output 

between a user and a thing. This includes validating input 

data and its proper acquisition, along with maximizing 

accessibility of the output data. We believe a health thing 

architecture needs to have the ability to monitor and 

correct the interaction process to ensure an interaction is 

completed properly and successfully: such an ability will 

allow the architecture to maximize its effectiveness across 

the spectrum of lay users in a health environment. 

5.1 Input and Output Safety 

Ensuring correct and reliable interactions with devices is a 

basic requirement of any IoT device. This requirement is 
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especially critical in health IoT systems, where a sensor 

malfunction or other errors with the device could generate 

noisy or erroneous data—with potentially serious 

consequences. In addition to device reliability, proper 

acquisition of data is equally important in a digital health 

environment. For sensors, this means ensuring the user is 

using the device correctly (for example, such as proper 

placement of EKG electrodes). As mentioned previously, 

many sensor devices have limited ability to physically 

interact; they may not be able to signal proper use 

themselves. 

Obviously, to monitor for proper use, a health thing 

must be architected to detect erroneous values or improper 

use symptoms in the first place. Depending on the specific 

sensor, this could be feedback in the form of binary 

information (such as valid or invalid), instantaneous 

feedback on accuracy (such as “signal strength” feedback), 

or others (such as instructions and corrections). If a thing 

can detect these parameters, it could provide feedback to 

the user, requesting that a reading be taken again or 

offering help on correct usage, rather than just recording 

these erroneous values as-is for the user or edge to handle 

later. 

This user feedback becomes increasingly important in a 

health IoT ecosystem when considering the large number 

of health devices that may be in use. As a lay user acquires 

more devices, it becomes harder to stay familiar with all of 

the devices and their proper use instructions. Consider how 

the patient was prescribed health things in the initial 

scenario. A user setting up a device they did not choose 

personally may be less likely to initially understand its 

proper use. While they could read an instruction manual for 

the device, offering feedback directly through their Health 

IoT device would likely increase the chances of the user 

seeing the information and using the device properly.  

Like sensors, actuator things depend on proper use by 

the user. While (simple) actuators do not transmit data, they 

receive commands that, when used improperly, could 

physically damage components or expose the user to 

potential harm. For example, a hybrid closed-loop insulin 

pump provides the user with an insulin dose dependent on 

the reading from their continuous glucose monitoring 

device [20], [21]. Improper use or placement of the monitor 

or pump could result in an incorrect dose being delivered. 

Preventing these actuations from occurring is another 

important requirement in a digital health smart space; as 

mentioned above, when a user is unfamiliar with a device, 

the potential for error or malfunction must be limited. 

Actuation commands may be validated through 

constraints, or limitations on the frequency, magnitude, etc. 

of an API invocation. These run-time enforcements could 

be provided by developers, vendors, or owners to help 

govern safer things interactions that can be fine-tuned for 

specific smart space deployments. Such enforcements 

would help prevent issues (at least those that could be 

caused by the user) before the device fails—in the case of 

the hybrid insulin pump, hardware constraints have 

resulted in an impressive safety profile in testing [21], [22]. 

Additionally, in the case that a device does fail, constraints 

can also be capable of defining a “fail-safe” mode [23], 

where the final resting state of a device has minimal 

potential for harm. 

The hybrid insulin pump is just one example of how 

automated devices can be safe despite controlling high-

risk activities. More closed-loop monitoring and dosing 

devices are beginning to emerge, such as activity sensors 

providing input for levodopa dosing in Parkinson’s disease. 

The use of objective sensor data to dictate medication 

dosing must be undertaken with careful consideration, but 

has the potential to provide personalized treatment 

regimens with better safety outcomes [24]. 

Current work focuses mainly on data validation and 

monitoring of sensor data in health scenarios. O’Donoghue 

et al. [25] present a Data Management System that focuses 

on data validation and consistency of different IoT sensors, 

as well as on how to choose which information is relevant 

to the user. Yang et al. [26] focus on data validity and 

reliability in a set of wearable health devices and mobile 

apps. 

We believe an architecture should carefully consider 

how data and commands enter and leave a smart device. 

Providing feedback on the quality of produced data and 

validating inputs for safety and correctness are two facets 

that are likely to be valuable components of a health IoT 

smart space. These would allow things to handle 

problematic interactions before they are utilized by the 

target device or other devices in the smart space, 

strengthening assurance to the user and trust in the device. 

Integrating these can help simplify user interactions and 

allow the user to better understand their smart space. 

5.2 Notifications and Reminders 

When considering the relationships between user 

interactions and validating device input/output, another 

requirement becomes prominent: notifications. The 

previous section discusses providing feedback and 

assistance to users based on their use of a device. Often, 

the user may not be viewing the output of a sensor real 

time; therefore, during events such as abnormal or 

erroneous readings, the device may need to interact with 

the user another way. Depending on a device’s ability to 

convey information, it may be more efficient to broadcast 

a notification where a more capable thing, such as one with 

a screen, sound, or other output could display the 

information. This is especially relevant when considering 

the potential of mobile apps as things. 

As mentioned above, a critical part of a sensor 

monitoring its data quality or an actuator limiting its input 

is displaying this information to the user. That information 

can then be used to adjust how the device is being utilized, 

improving these interactions with the device. A concept of 

notifications would allow this information to be viewed by 

the user in a uniform way. In situations like these where this 

error data is ephemeral, notifications allow the user to 

review the information after the fact, without having to 

store it permanently.  Notifications could also be extended 

outside of a local smart space, to provide family or care 

practitioners info on critical events. 

A specific form of notifications, reminders, is especially 

important for user empowerment in a health IoT smart 
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space. In addition to conveying its data, a device may want 

to assist the user in performing actions at certain points in 

time. For a health device, this may include notifications for 

proper use, maintainance, calibration, etc. These events are 

time sensitive, and likely to be known by the device before 

hand. By sending a notification at the appropriate time, a 

device does not need to rely on the user remembering a 

schedule and can increase the likelihood of proper use. 

For example, consider the glucose monitor from the 

initial scenario. To take an optimal reading, the user must 

measure their blood sugar about 20 minutes after eating. 

The burden of remembering to measure at the appropriate 

time, even though meal information is likely available 

within the smart space, through the dieting app. A thing 

architecture with notification and reminder support could 

enable the dieting app to schedule a reminder for the 

glucose monitor after the user inputs a meal. After 20 

minutes, the reminder would appear on the user’s 

smartphone, increasing the likelihood of proper use. 

In addition to interacting with the user, notifications can 

also be used between devices to help signal and trigger 

more complex interactions. A sensor that normally only 

sends out the values it records may also be able to send 

information about its state, such as information about itself 

and its functioning or when the user changes how it is 

being used. These notifications could be picked up by other 

devices that rely on the user performing a specific action 

before they should begin their own interaction. These 

events, along with the inter-thing relationships mentioned 

above, can provide the groundwork for enabling 

meaningful interactions within a smart space. 

Phone-based notifications are a popular component in 

architectures targeting health today. Catarinucci et al. [4] 

present a system for a smart hospital that uses push 

notifications to send sensor events to caregivers. Tcarenko 

et al. [27] introduce a system to send notications remotely 

to caregivers on critical health events, such as a fall. Some 

systems integrate mobile-like notifications further; Kubitza 

et al. [28] describe an architecture that allows notifications 

to be displayed contextually through capable smart 

devices, reducing reliance on the mobile phone. 

We believe an architecture should include some form of 

notifications or message passing between things in 

addition to the normal means of sending commands or 

receiving data. The above sections discuss allowing things 

to react to smart space events even when the source or 

target device is not explicitly known or programmed for. 

Notifications are a convenient way to achieve this, in 

addition to providing an additional way for users to view 

important information about their smart space. Building off 

of the idea of mobile apps as things, notifications are 

already a familiar concept to users that could be extended 

to work between things and mobile devices. 

5.3 Managing Identity 

Many health IoT things are designed with a single user in 

mind (for example, wearable sensors). However, some 

devices (such as larger, non-wearable ones) may be 

designed to be used concurrently by multiple users. This is 

especially true in personal health scenarios, where in a 

single smart space, a device may be used by a group, such 

as a family or entire household. In these cases, the thing 

must have some notion of who it is being used by, so that 

the data it produces or the functionality it performs can be 

associated with the correct user within the smart space. 

Even things made for single users may utilize some form of 

identity, especially in relation to health IoT. In a multi-user 

smart space, a specific smart thing may be concerned with 

privacy: only a specific user should have access to the 

device’s data or functionality. 

This understanding of identity is another important 

component of a thing architecture targeting health IoT. A 

sensor device that changes users would likely see a 

different range of normal values (for example, blood 

pressure), which could create issues if the device is unaware 

the readings are now from a different user. Even if the smart 

space edge or cloud is capable of handling multiple users, 

a shared device must also be aware of this logic: at a 

minimum, the device must be able to inform the smart 

space about the current user identity. 

Building upon the initial scenario, consider when the 

user receives all their prescribed devices. Upon activating 

each device, it is assigned with some form of secure user-

specific identifier. During use, the devices may only 

communicate with other devices using the same user 

identifier, preventing unauthorized access. This concept of 

identity is necessary for the user, who lives with a 

roommate in a shared dwelling. Even though both have 

smart things on the same network, the roommate is unable 

to access the APIs of the user’s things because the 

architecture controls access based on the user identifier. 

Identity management for a health thing consists of two 

main stages: provisioning and use. During provisioning, or 

setup of the device, a user identity must be assigned or 

created. This identity could potentially be created with little 

user intervention, sourcing parameters from the user or the 

smart space [12]. For single-user devices, this involves 

associating a specific user with the device and its data, 

while for multi-user devices, this might involve the creation 

of separate data profiles for each user. For example, a 

simple temperature sensor may be configured to send its 

data to a user-specific endpoint. The other stage, use, 

involves identifying who the current user is, whether they 

are authorized, and how any generated data or received 

commands should be handled, such as in the system by 

Lomotey et al. [13]. For example, a smart watch may require 

a password or nearby unlocked phone before it can be 

used. 

We believe an architecture targeting digital health 

should be able to understand and manage user identity. 

User privacy and information security are critical parts of a 

health IoT system, both of which have a basis in the 

appropriate handling of user identity. Considering how 

devices are initially set up and configured, and how they 

could be used by members of a smart space is another 

important role of a digital health IoT architecture. 

6 HIGH IOTILITY ARCHITECTURE FOR HEALTH IOT 

In response to the above, we present our Atlas Thing 
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Architecture, which includes functionality we believe begins 

to satisfy some of these new requirements. The Atlas 

architecture consists of several works focusing on different 

issues in IoT; however, we will focus only on the subset that 

relates directly to the above requirements. This includes the 

architecture itself, focusing on communication between 

things, the IoT Device Description Language (IoT-DDL), 

handling dynamic thing APIs, and the Inter-Thing 

Relationships framework, defining a concrete set of 

relationships between things. 

6.1 IoT-Device Description Language (IoT-DDL) 

In the absence of a device description language, significant 

effort is required to interact and manage the wide 

heterogeneity of things that can exist in a smart space. At 

the same time, the thing description should be part of the 

thing itself to facilitate a thing’s smooth migration between 

smart spaces and to enable thing-to-thing ad-hoc 

interactions. The IoT-DDL [29] is a machine- and human-

readable XML-based descriptive language used to 

describe, through a set of attributes, values, and 

parameters, a thing in a smart space. The IoT-DDL 

describes the thing in terms of the thing’s identification 

information, resources, inner entities (for example, sensors, 

actuators, and software-based functionalities), along with 

the services such a thing offers to other smart space users 

and devices. Each thing entity provides a subset of these 

services through a set of well-defined interfaces (APIs). 

Such configuration scheme is then uploaded to the thing 

to enable it to self-discover its capabilities and engage with 

the surrounding IoT ecosystem. 

A thing can also use the IoT-DDL to describe how it is 

socially related and linked to other things. Using 

identification attributes such as model, vendor, etc., the 

thing can describe how offered services can be logically 

and functionally tied. Such a social network of logically 

connected things can help guide the creation of new 

meaningful interactions. The IoT-DDL also enables explicit 

description of such logical social bonds and functional 

relationships. 

The IoT-DDL uses this human- and machine-readable 

format to provide the basis for a uniform API across thing 

devices. It limits the creation of silos between groups of 

devices (as mentioned in the above requirements), by 

enabling thing interfaces to be defined and modified by the 

vendor, developers, and end users. This helps ensure a 

greater compatibility among smart things, even if they 

were not originally programmed for each other explicitly. 

6.2 Atlas Thing Architecture 

 
Fig. 2. The Atlas Thing Architecture. 

The current IoT platforms and architectures link the access 

of things to a central point (for example, cloud platforms or 

the edge) where direct communication between things is 

hardly supported. These vendor-constricted connections 

narrow down the opportunity to integrate things from 

different vendors seamlessly into the smart space. This 

restricted paradigm ignores the potential for devices to 

communicate with each other, in addition to cloud 

platforms and the edge. The Atlas Thing Architecture [5] is 

a set of software operating layers and modules that utilizes 

the capabilities of the IoT-DDL (discussed in the previous 

section), mounted onto a thing to provide new 

functionalities it requires to engage and interact with other 

things, platforms, and IoT scenarios. 

The architecture, illustrated in figure 2, consists of three 

main layers: Atlas IoT platform, host interface layer, and IoT 

OS services. The IoT OS services are the basic services 

provided by the thing’s OS (e.g. process execution and 

management, network modules, memory units, and I/O 

interfaces). The Atlas IoT platform represents the logical 

layer of the architecture and provides new IoT services not 

currently provided by the thing’s OS. Such new services 

focus on the descriptive and semantic aspects of things to 

better enable engagement, interaction, and 

programmability in an IoT. Such services enable a thing to: 

1) self-discover its characteristics, resources, and 

capabilities through the uploaded IoT-DDL, 2) dynamically 

generate outward services and formulate their appropriate 

APIs based on information in the IoT-DDL, and 3) enable 

secure interactions between things and users in new IoT 

applications and scenarios, including those in which smart 

things speak different “languages,” using a protocol 

translator attachment [30]. The host interface layer, the 

middle layer of the architecture, shields the platform and 

provides the portability and interoperability features 

needed. This layer manages the internal interactions 

between the Atlas IoT platform and the set of services 

provided by the underlying OS. 

This communication between devices exists as a set of 

information- and action-based interactions. Information-
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based interactions (referred to as tweets) enable a thing to 

announce its metadata, API, and knowledge of the smart 

space to nearby things. A thing can use these tweets to 

describe what it is, what it does, and what it knows. Action-

based interactions are utilized to execute relationships and 

provide notification-like messages to things and users. 

The Atlas Thing Architecture focuses on enabling 

device interactions; by utilizing different communication 

standards and a uniform API interface, the chances for 

meaningful inter-thing interactions are increased. The 

architecture can run on a range of devices, from sensor 

boards to Linux-based systems to Android devices, 

enabling intercations between things with varying 

capabilities. 

6.3 Inter-Thing Relationships Framework 

The Inter-Thing Relationships Programming Framework 

[31] utilizes both the Atlas Thing Architecture and the IoT-

DDL to build a distributed programming ecosystem for the 

social IoT. The framework broadens the social bonds (thing-

level relationships) between things according to their 

identification attributes (for example, vendor or things 

collocated in the same space) and utilizes a new set of 

relationships between the offered services (for example, a 

competitive relationship or a relationship that extends 

functionalities) that we believe can empower developers to 

program a much wider class of meaningful applications. 

A thing can also use the IoT-DDL to describe how it is 

socially related and linked to other things. Using 

identification attributes such as model, vendor, etc., the 

thing can describe how offered services can be logically 

and functionally tied. Such a social network of logically 

connected things can help guide the creation of new 

meaningful interactions. The IoT-DDL also enables explicit 

description of such logical social bonds and functional 

relationships. 

The framework introduces services (abstractions of the 

functions offered by a thing), relationships (abstractions of 

how services are linked together), and recipes (abstractions 

of how services and relationships build up an interaction) 

as the primitives for an Atlas IoT application. The 

framework also defines filter, match, and evaluate as three 

operators that functionally define how the primitives are 

wired. The description of an IoT application within the 

framework utilizes a set of semantic rules that evaluate the 

correctness of the developer’s established application. 

These relationships within the framework can be 

utilized by vendors in the IoT-DDL, defined by developers 

while building IoT apps, or dynamically inferred from the 

exchanged knowledge (tweets) between things. This ability 

to discover and infer new links between thing services 

allows more meaningful interactions to develop with less 

intervention needed from the user. 

7 IMPLEMENTATION AND EVALUATION 

In addition to the core Atlas architecture components, we 

also present two extensions to the core architecture that 

have been developed to satisfy a specific requirement 

mentioned within the previous sections. The first extension, 

the Runtime Development Environment (RIDE), focuses on 

utilizing relationships between things, allowing users to 

develop new smartphone apps composing their things. The 

second, Mobile Apps As Things (MAAT), focuses on 

providing smartphone apps with thing-like capabilities and 

making them available to the smart space. A brief 

description of each is provided, along with some 

preliminary evaluations and results. 

7.1 Runtime Development Environment (RIDE) 

 
Fig. 3. High-level architecture for Atlas RIDE. 

RIDE is a development environment, runtime system, and 

interactive tool for end users to develop and build IoT apps. 

It extends the Inter-Thing Relationships framework 

described in section 6.3, utilizing the Atlas architecture and 

IoT-DDL to build a distributed programming ecosystem 

that utilizes a set of concrete relationships for the 

development of a wider class of domain-related IoT apps. 

Using RIDE, a developer can: 1) continuously listen to 

the things in the smart space, visualizing available services 

and relationships; 2) establish new relationships and 

applications; 3) infer new opportunities from existing 

services and relationships; and 4) set preferences for 

functionalities and services to guide the inferences of these 

new opportunities. RIDE also accepts a description for a 

new application and generates an independent Android 

mobile app that communicates with the smart space. The 

IDE, as illustrated in figure 3, targets smartphone users with 

no programming experience to easily create new smart 

space IoT apps with a touchscreen interface. 

The developer uses the Development Interface, utilizes 

primitives (from the Inter-Thing Relationships framework) 

from the Repository to establish new IoT applications, while 

the Inference Engine discovers new relationships, recipes, 

and programming opportunities from existing primitives. 

The Inference Engine also holds developer preferences 

based on feedback from previously inferred applications, 

which guides future inference. The Application Engine 

checks the validity and correctness of a created application 

(either established manually or inferred by the IDE) before 

generating an Android app executable through an external 

on-cloud service, based on an XML description of the 

chosen primitives. Each generated application, shown in 

figure 4, is governed by a set of semantic rules. 
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Fig. 4. The structure of a generated IoT mobile app. 

The Atlas RIDE prototype is built for Android-based 

smartphones, where generated IoT applications are fully 

independent Android apps. We performed a set of 

experiments using a Nexus 9 Android device to evaluate 

and benchmark the feasibility of the proposed IDE. The 

energy consumption of RIDE under various conditions was 

measured and compared against that of the background 

OS processes and tablet hardware. The difference in these 

values was used to determine the energy consumption of 

the IDE. 

One such measurement is shown in figure 5. This 

measurement shows the runtime energy consumption of a 

generated application—that is, the power required to 

communicate back and forth with the APIs of the other 

Atlas smart space things offering the required services. 

Parameters are sent to a thing and a response value is 

received before repeating this interaction with the next 

endpoint, until all services and relationships in the recipe 

have been executed. As the number of services increases, 

the energy consumption increases as well, but remains 

negligible overall.  

In our DIY Health IoT Apps demo [34], we utilized RIDE 

in a health IoT scenario. The scenario simulated a health 

smart space with a temperature sensor thing, a pulse 

oximeter thing, a bodyweight scale thing, and a fitness 

mobile app with thing capabilities. Atlas RIDE was used to 

generate two applications: 1) an app that displayed 

combined readings from the temperature sensor and pulse 

oximeter; and 2) an app that automatically passes the 

reading from the bodyweight scale into the fitness app for 

calculations. None of the things were pre-configured for 

these interactions; they are both handled through the Inter-

Thing Relationships framework. 

 
Fig. 5. Energy consumption of generated personal IoT applications. 

7.2 Mobile Apps As Things (MAAT) 

The Atlas architecture as described in section 6 has mainly 

focused on enabling hardware devices to be things. To 

complement this, we introduced MAAT, a framework that 

allows mobile apps to behave as traditional things and 

seamlessly communicate with existing hardware things in a 

smart space. While the framework does not provide an app 

with the full feature set of the hardware Atlas platform, it 

achieves parity with core features such as API-ing and inter-

thing interaction. The framework also considers the role of 

the mobile developer, who may not be familiar with IoT or 

want to waste time adding complex IoT support. To this 

end, MAAT also introduces a programmable description 

called an Actionable Keyword (AKW), along with an IDE 

plugin to minimize changes to a developer’s workflow. 

 

 
Fig. 6. The Actionable Keyword lifecycle. 

Receiving capabilities from a thing in the form of API 

declarations, as was utilized in our previous apps-as-things 

demo [33], provides the app with the information it needs, 

but places a large burden on the mobile developer. The 

developer must know the exact API to integrate with before 

hand, and must anticipate how the thing will manifest 

within the UI and behavior of the app. If these parameters 

are not known, the context of the interaction likely must be 

handled “on top” of the existing UI, such as in a pop-up or 

entirely new interface. 

Consider, for example, the scenario from section 3. The 

smart soles have a function to track how much of a meal 

the patient has burned off by exercising. To calculate this, 

the soles require the total calorie count of the meal. The 

dieting app can provide this value; however, the developer 

did not consider the potential for interaction with smart 

soles. Even if the app can give the soles calorie information 
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based on its API, it still lacks the context of when and where 

this value might come from. 

Instead, MAAT allows the developer to specify potential 

data from their app to be used in a smart space. In this 

situation, the developer knows the calorie information from 

the user’s recent meals could be useful, but does not have 

a target device in mind. MAAT allows the developer to say, 

“the user is interested in this calorie count,” rather than wait 

for a device to announce, “I can do calculations with 

calories.” By specifying the data, the developer announces 

that each listed meal is potential input for a thing. 

This data and context information is represented within 

an actionable keyword. A single piece of data (one of the 

recent meals) is associated with a user interface element (a 

button) to trigger a future thing service. This relationship is 

represented in figure 6; the developer configures an AKW 

containing calorie information from a single meal. The 

trigger button remains hidden until the data is associated 

with a thing service. Once the smart soles discover this 

opportunity and offers its tracking service, the button 

appears (with a label specified by the soles), which will send 

the specific calorie value to the sole’s service when tapped. 

 
Fig. 7. Keyword search within the IDE plugin. 

Finding the association between an AKW and a 

potential thing service, however, is difficult. To solve this, 

along with the input data, and AKW also specifies a set of 

keywords that are semantically compared by the thing. For 

example, the smart soles might look for numeric input with 

“calorie” and “food” keywords. These keywords build off of 

the descriptive keywords from Atlas; MAAT also includes an 

IDE plugin to search a repository of keywords and input 

data scraped from a database of IoT-DDL specifications. 

This interface is shown in figure 7. 

Due to their direct interaction with the mobile app’s UI, 

actionable keywords must be able to be processed quickly. 

Any delays could be confusing or cause the app to appear 

sluggish; potential relationships should appear smoothly as 

the user navigates throughout the app. In figure 8, we 

analyze the total time between broadcast and formation of 

a relationship, for varying numbers of AKWs. Even with a 

very large number of AKWs, the total response time 

remains reasonable at about half a second. 

 
Fig. 8. Total response time of multiple active AKWs. 

8 DISCUSSION AND FUTURE WORK 

In this section, we discuss several issues of scope, 

limitations, and future work. First, the presentation of the 

requirements introduced in this paper is deliberately 

focused on the ideas behind them, the reasons they are 

needed, and the motivations of their potential impact. 

However, they can be further formalized and tested using 

a requirement engineering process [34], which is outside 

the scope of this paper. Formalizing the requirements will 

facilitate communication with personal health devices 

standards such as the IEEE 11073 and Continua Alliance [9] 

in the hope that such requirements may be adopted and 

included within the standard bases. Engaging standards 

organizations in our work will ensure practical pathways to 

widespread adoption, and more importantly, tests and 

certifications that these requirements are met; processes 

which are often within the remit of these organizations. 

Second, while we engage general practitioners as a key 

stakeholder in arriving at the user interactions 

requirements in this paper, additional stakeholders, 

including other health professionals and the end users 

themselves, can further refine our requirements or add to 

them. We are currently conducting a large-scale study on 

user interaction with digital health involving a multitude of 

commercially available devices and a sizable number of 

users and health professionals. We are hopeful this work in 

progress will capture more broadly any elements we may 

have missed in our work on user interaction requirements 

so far. 

Third, to best focus on the new requirements (especially 

in regard to user interactions), we limit the scope of the 

paper to users without special needs. However, additional 

accessibility requirements and special interface design for 

individuals with special needs remain important and should 

be further addressed. While such requirements are not 

discussed directly, considering they are their own area of 

specialization and outside the scope of this paper, we 

completely acknowledge their importance and the need to 

further develop them as Health IoT progresses into the 

future. 

9 CONCLUSIONS 

Health IoT things bring new requirements not typically 

addressed in traditional IoT systems. We presented numerous 

examples to demonstrate this argument, along with a detailed 
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analysis of new requirements, which we classified into device 

interaction requirements and user interaction requirements. 

The former is needed to enable inter-device interaction, 

communication, and most importantly inter-relationships. It is 

also needed to enable mobile apps to be and act as other 

health IoT things. This is important given the large number of 

health mobile apps. We also analyzed user interaction 

requirements showing how the device could support and 

empower the user to use the device properly and safely, and 

how users could gain control over their mobile apps and 

devices. We presented an architecture targeting Health IoT 

devices that address the analyzed requirements to fully utilize 

their collective and safe usage. We considered the current 

landscape of IoT in relation to these requirements and 

presented solutions that address two pressing requirements: 

1) democratizing mobile health apps (giving users control and 

ownership over their app and data), and 2) making mobile 

apps act and behave like any other thing in an IoT. We 

presented an implementation and evaluation of these Health 

IoT requirements to show how health-specific solutions can 

drive and influence the design of more generalized IoT 

architectures. 
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