
 

THEME ARTICLE 

Pervasive Data Science on 

the Edge 

Proliferation of sensors into everyday environments is 

resulting in a connected world that generates large volumes 

of complex data. This data is opening new scientific and 

commercial investigations in fields such as pollution 

monitoring and patient health monitoring. Parallel to this 

development, deep learning has matured into a powerful 

analytics technique to support these investigations. 

However, computing and resource requirements of deep 

learning remain a challenge, often forcing analysis to be 

carried at remote third-party data centres. In this article, we 

describe an alternative computing as a service model where 

available smart devices opportunistically form micro-data 

centres that can support deep learning-based investigations 

of data streams generated by sensors. Our model enables smart homes, smart buildings, 

smart offices, and other types of smart spaces to become providers of powerful computation as 

a service, enabling edge analytics and other applications that require pervasive (in-space) 

decisioning.  

INTRODUCTION  

Pervasive data science is an emerging research field in the intersection of pervasive computing and data 

science 1 that builds on the increased proliferation of sensors into everyday environments. These sensors 

produce large volumes of complex, real-time data streams, which are opening scientific investigations at 

an unprecedented scale. Examples of the adoption of pervasive computing and sensors abound, with pol-

lution monitoring 2 and patient health monitoring 3 being examples of domains benefiting from pervasive 

sensor data. Besides scientific benefits, data generated by pervasive computing deployments has large 

commercial potential. Indeed, an increasing fraction of the big data market – estimated to be over $65 

billion worldwide in 2018 4 – operates on data resulting from pervasive computing deployments.  

Parallel to the emergence of pervasive data science, computing has witnessed a paradigm shift towards 

big data. This shift is characterized by computing becoming reliant on ever-increasing volumes of data 

with datasets containing dozens of terabytes or even exabytes of measurements being increasingly com-

monplace. Despite significant advances in analysis techniques, including emergence of efficient and 

easy-to-use deep learning frameworks (e.g., TensorFlow), the massive scale of these datasets necessi-

tates the use of powerful computing infrastructure beyond the capabilities of individual devices. Indeed, 

most data scientific investigations operate on remote data centres that offer access to powerful large-

scale (big data) computing infrastructure. While this suffices for traditional data science, it is insufficient 

for pervasive data science due to two main limitations. Firstly, data collected through pervasive compu-

ting deployments tends to have short time span, making it necessary to analyse the measurements near 
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real-time. With current pricing structures this would be prohibitively costly, resulting in monthly costs 

that exceed thousands (academic) or even tens of thousands of dollars (commercial). Secondly, sensor 

data streams are characterized by high data velocity and need for (near) interactive response rate. Satis-

fying these interactivity requirements requires processing infrastructure to be located close to the data 

source, rendering remote data centres unsuitable. Even when data centres are located physically close to 

the end user, they remain distant in networking terms. Indeed, locating data centres close to end users 

can reduce latency but not eliminate it. Latencies below 100ms 5 are rare, meaning only 10 interactions 

per second can be achieved. Such latency is insufficient for applications with high interactivity require-

ments (e.g., augmented reality or other applications operating on interactive video) or large volume com-

bined with high velocity (e.g., autonomous cars, surveillance cameras, or augmented cognition 

solutions). For example, autonomous cars are estimated to generate data at nearly 1GB/s for making 

real-time driving decisions. 6  To tailor analysis to the needs of these applications and investigations, 

computing infrastructure needs to be located close to the devices producing data. 

In this article, we propose a computing as a service model where unused computing resources of availa-

ble smart devices are opportunistically harnessed to form micro-scale data centres for processing perva-

sive data science investigations. By locating processing closer to the sensors and by taking advantage of 

low-latency connectivity technology, such as Bluetooth low energy (BLE), the generated data can be 

analysed promptly by avoiding the multiple network hops needed to transmit data to cloud data centers. 

In other words, processing becomes available at the edge of the network. While some edge computing 

models, such as cloudlets 7, specifically have targeted processing close to the end user, they are insuffi-

cient for pervasive data science as they require dedicated processing hardware in proximity of the sen-

sors. Besides limited incentives for deploying such hardware, individual devices unlikely have sufficient 

processing power, necessitating dense deployments that can interact with each other – in line with the 

vision of fog computing 8. Due to costs associated with this kind of scenario, this is unlikely to happen – 

at least beyond specialised commercial scenarios (such as wind farms and power grids) where commer-

cial and other benefits (such as security) would drive deployments. Instead, we consider a model that 

harnesses idle computing power of available smart devices for the purpose of pervasive data scientific 

investigations. The objective of this article is to demonstrate the viability of this model as a potential re-

search direction that can provide the necessary system support for pervasive data science. Indeed, our 

proposed computing model supports data streams with both high velocity and volume, and provides a 

mechanism for distributing computing in a way that enables devices to optimize resource consumption. 

Besides demonstrating the potential of our model, we identify and highlight key research challenges, 

aiming to act as catalyst for research in this area. 

EXAMPLES OF APPLICATION DOMAINS 

To illustrate the potential of our approach as a foundation for a wide range of everyday computing sce-

narios, we highlight potential application domains that can benefit from opportunistically formed smart 

device micro-data centres. To highlight the range of opportunity, we consider scales from a handful of 

devices (3-5) to ones involving tens or even hundreds of devices simultaneously.  

Smart Homes: The most intuitive example of smart device data centres is a smart home that provides a 

small number of smart devices (3-5) ranging from personal devices to household appliances, such as 

smart TVs, smart fridges or even smart washing machines. The combined processing power of these de-

vices suffices for boosting personal computational needs and exceeds those of a dedicated edge device, 

such as cloudlet, without the need to purchase and deploy a separate device for this purpose. As an ex-

ample, smart device data centres can run deep learning models for multimodal activity recognition (e.g., 

audio and motion data). Alternatively, smart home data centres can operate within a larger cluster, e.g., a 

city-wide virtual data centre consisting of buildings data centres, which in turn consists of individual 

homes’ micro-data centres. The availability of these devices varies. Household appliances typically have 

idle resources throughout the day whereas other devices, such as smart TVs, may need to be turned on to 

allow resources to be utilized. Note that even if the devices are used for their primary use, some re-

sources typically remain free, suggesting that devices could perform computations on the background 

even when operated normally. This is particularly the case for devices with constant power supply.  

Smart Offices: Business spaces often are proliferated with smart devices with varying computing capa-

bilities. For example, employees are likely to have, smartphones and laptops, and smart displays, routers 

and other programmable devices. These devices could be used to support business intelligence opera-

tions of the company. This is particularly relevant with start-ups and early-stage SMEs that have limited 

resources, but where most employees will have one or several smart devices. Note that while this re-

quires operating computations on a heterogeneous pool of devices, it reduces the need to buy expensive 

in-house infrastructure, pay for leased cloud services, or share data with third party provides. Smart of-

fices represent a larger source of processing power. Besides business intelligence, they would be suitable 
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for tasks such as object recognition and labelling from live surveillance footage, or augmented reality 3D 

object design. 

Smart Campuses: One of the early motivators for our research was to support developing countries 

where access to high-end computing services is infeasible due to high cost. However, smartphone own-

ership tends to be high, and hence it would be possible to use devices or employees and students for sup-

porting campus-wide computing jobs. Similarly, in developed countries, many campuses offer laptops or 

other devices to their students. Requiring a fraction of computing time of the laptop as a condition to 

receive the device could thus be used to augment the computational resources that are available on cam-

pus. Examples of suitable campus-wide computing jobs include weather models, air quality sensing, and 

diverse neural network use cases. 

Sporting Events: Large events with thousands of people, such as sporting events, concerts, 

demonstrations, and political campaigns have the potential of a thousand devices in the same location. 

This could be used for e.g. super-resolution imaging 9, augmenting the resolution of videos taken at the 

event for the benefit of all participants. Investigations that support safety and well-being of the attendees, 
such as air quality modelling, could also take advantage of this enormous but short-lived concentration 

of computing power. 

RESEARCH CHALLENGES 

Novel system architectures that can support high volume and high velocity analysis, while supporting 

offloading or other techniques for reducing resource drain of devices producing data, has been identified 

as one of the key system design research challenges for pervasive data science 1. Opportunistically 

formed smart device data centres address this challenge without requiring any additional infrastructure. 

Enabling this vision, however, comes with its own research challenges. We next highlight and contextu-

alize these challenges relative to current solutions. 

Data Volume and Velocity: Large volumes of real-time data with high sampling rates that require im-

mediate analysis are produced by smart and other sensor-enabled devices. Examples range from real-

time object recognition to sensor analysis for autonomous cars and cognitive assistance. The capabilities 

of a smart device, or even a dedicated edge/fog node, unlikely suffice for these tasks. For example, ob-

ject recognition in 30-60 frame per second (FPS) 4K video streams is difficult for an individual device. 

Handling these streams requires mechanisms that can distribute tasks between participating devices 

while taking velocity and volume into consideration. For example, high volume requires contributing 

devices to be sufficiently powerful to ensure communication bandwidth does not become an issue. When 

volume is smaller, but velocity is high (e.g., audio or motion data), distribution becomes more efficient 

and devices with less computational power can be considered. Current frameworks for data science, are 

insufficient as they do not consider different characteristics of the tasks – or requirements of individual 

devices, such as ensuring they do not run out of battery while processing computing tasks.  

Distribution of Machine Learning: Training deep learning models requires significantly more re-

sources than running pre-trained models. While model training could be done directly on the device, 

e.g., using distributed deep learning tools, 10 the main benefits of our approach result from distributing 

inference as this allows local processing of high velocity data streams. Distribution of inference can be 

achieved by partitioning input measurements and running the model for different partition on each de-

vice (followed in our experiments) or separating data streams and giving each device one sub-stream. 

Device Heterogeneity: Computing infrastructures commonly employed in data science rely on high-

power devices with large memory capacity. This contrasts with smart devices which tend to have power-

ful computational resources but are limited in battery, memory, and I/O resources. While some research 

has investigated using smart devices (especially smartphones) as part of larger distributed computing 

infrastructure (see Related Work sidebar), these solutions simply see smart devices as constrained nodes 

without optimizing task allocation according to characteristics of the devices. Addressing device hetero-

geneity requires solutions that can embrace this diversity of smart devices and best take advantage of 

their individual capabilities instead of considering it as limitation. For example, computation can be dis-

tributed to most powerful devices, while other devices can provide networking or storage capabilities. 

However, supporting this requires programming models that offer finer-grained control of task distribu-

tion amongst participating devices. Additionally, smart device programming models that support multi-

threading and continuous background processing need to be available for a wide range of smart devices. 

For example, smart fridges and smart TVs would need to allow applications that can operate even when 

the devices are in standby without requiring the user to launch a dedicated app.  

Incentives: Would people contribute computing resources is a common critique aimed at solutions that 

bring computing onto smart devices. While valid concern, it is not unique to computing. Similar con-

cerns have been raised, e.g., in crowdsourcing and opportunistic networking, and solutions from these 
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fields could be adopted. One solution has been to rely on micro-payments to users contributing re-

sources. Indeed, research has shown that users would be willing to contribute parts of their computa-

tional power in exchange for money 11. Another alternative would be enforcement. For example, a 

company could require employees to allow a fraction of their device’s computational power for pro-

cessing tasks during work hours – or a smart city could rent smart homes with reduced price in exchange 

for access to computational power offered by smart devices installed into the home. We note that simply 

motivating users to offer resources is insufficient as this is likely to affect other stakeholders. For exam-

ple, coffee shops, airports and other venues might suffer from higher electricity costs when users charge 

their devices at the same time as they offer computational support for payments. Thus, solutions that 

look beyond concerns of individual users need investigation.  

Security: Since performing shared computation implies disclosing valuable information between de-

vices, it is critical for devices to implement mechanisms that ensure that a shared computation does not 

disclose the result to others, but just to the one that initiated the data computation request. Similarly, for 

owners of the devices that contribute resources, it is essential that access to computational resources 

does not allow malicious access to data on their device. Traditional security solutions, such as sandbox-

ing, provide partial solution for securing the client devices whereas file systems offering time-limited 

access to data helps to reduce risks of malicious use for the task initiators.  

CASE STUDY: OBJECT REGONITION 

We demonstrate the feasibility and potential of smart device data centres through a case study of deep 

learning-based object recognition from real-time video. Examples of real-world applications that benefit 

from real-time capability to detect objects range from visual surveillance to activity recognition, and 

crowd monitoring.  

 

FIGURE 1: Left: Object recognition experiment running on Smart TV and two smartphones, coordi-

nated by the laptop. Right: Screenshot of a smartphone running the experiment. 

Experiment and Prototype Description 

We run deep learning experiments using the MobileNet 12 model to recognize objects from a video feed. 

We implement a proof-of-concept prototype that uses a master/worker topology, analogously to current 

big data frameworks, where each node in the topology is a device. A master device is elected to coordi-

nate the execution of tasks, parts of the overall job. The remaining devices act as workers that contribute 

to the overall job by running one or more tasks. In our prototype, each device has a background service 

with a persistent low-power connection. Smart devices with excess performance register resources they 

wish to make available by communicating them to the master. Devices can allocate a fraction of their 

maximum computing power. Smaller values can be used to reduce battery life effects for devices that are 

powered by a battery, and to limit performance impact for devices currently in use. To handle devices 

leaving or becoming unresponsive, speculative execution can be used, submitting each task to multiple 
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devices, and the result is only accepted from the first device to complete the task; duplicates of the task 

are cancelled as the first result is received. This incurs an overhead of extra task scheduling and cancel-

lation on multiple devices, so speculative execution is usually reserved for situations where a task has 

already been running for longer than expected on a computing device. 

Implementation 

We developed an Android application that performs the object recognition on images distributed by a 

master node responsible for coordinating the task of annotating the entire video feed. For deep learning, 

we use TensorFlow Lite (https://www.tensorflow.org/lite/). The application, including cluster formation 

and task distribution functionality, consisted of 1,000 lines of code (Android and NodeJS). We use a 

subset of 1,000 images with a resolution of 224x224 from the ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC2012) 13 to benchmark the performance of the system. Note that our goal is not to 

improve accuracy of object recognition, but to demonstrate the benefits of using opportunistic smart de-

vice data centres for a real-world task.  

We utilize a pre-trained and quantized Convolutional Neural Network (CNN) model, Mo-

bileNet_1_0.5.25_224. Each device concurrently calculates and returns results for the object detection 

tasks they receive from the master. We conduct the experiment on a cluster of 1-4 smart devices and a 

laptop, which serves as a master node that distributes image paths among the smart devices contributing 

to the experiment. We use a simple round-robin algorithm for distributing the images. The experiment 

setup is shown in Figure 1. As smart devices, we consider a Philips Smart TV and three smartphone 

models: Samsung Galaxy S4, OnePlus 3, and Huawei Honor 7. To provide context for our results, we 

repeat the experiment on medium to high range Amazon EC2 virtual machines. The choice of master 

device is arbitrary and could as well be any other network enabled device, such as a smartphone. A lim-

ited queue of tasks minimizes idle time as well as waiting for tasks to complete on slower devices. The 

master continues to distribute new tasks to computing nodes until the job is complete.  

Results 

Results of our experiments are summarized in Table 1. The columns correspond to the name of the de-

vice, or devices, the total time taken for processing 10,000 images, and the speed in frames per second 

for image recognition. We use the FPS of the cluster as our main evaluation metric since it affects both 

how fast the analysis can operate and how interactive the resulting application is.  

Using more than one device always improves processing speed, but with slower devices (S4 and the 

smart TV) the combined speed in FPS is close to the sum of individual speeds. When more powerful 

devices were included, there is more variation; adding the TV to three powerful devices did not improve 

execution time, even though running the experiment with the TV and any other smart device signifi-

cantly improved execution speed from that of individual devices. In the best case, performance improves 

from 37 FPS (on Honor 7) to 74 FPS, i.e., a two-fold increase. This performance is well within interac-

tivity requirements and which would support higher resolution images. In other words, we can both im-

prove interactivity and support higher velocity and volume of data than what individual devices can 

handle on their own.   

Compared to Amazon EC2 VMs, smart devices perform comparably or even slightly better than the 

VMs. Performance of the top two smart devices was better than a medium Amazon EC2 VM ($0.0416 

per hour), and the fastest smart device was only 35% slower than a high-end CPU-only dedicated VM 

(c5.2xlarge: $0.34 per hour). The dedicated CPU-only VM was equalled and surpassed by two-device 

configurations (54 and 50 FPS vs 51). GPU-enabled VMs were required to get comparable performance 

to smart device clusters (p3.2xlarge: $3.06 per hour) and surpass it (p3.8xlarge $12.24 per hour). Run-

ning the weaker GPU-enabled VM for just seven days would result in a usage bill of over $500, enough 

to purchase at least one smart device of comparable power. Results for the cloud deployment were calcu-

lated by having all image data deployed in the cloud, i.e., latency was ignored and performance of inter-

active applications on VMs would be even worse.  

# Devices Device Model(s) Time (ms) Speed (FPS) 

1 Philips Smart TV (TV) 702,999 14 

1 Samsung Galaxy S4 (S4) 491,018 20 

1 OnePlus 3 (OP3) 416,327 24 

1 Huawei Honor 7 (Honor7) 266,939 37 
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2 Honor7 + TV 291,159 34 

2 OP3 + TV 243,926 41 

2 S4 + TV 226,668 44 

2 Honor7 + S4 226,262 44 

2 OP3 + S4 201,348 50 

2 OP3 + Honor7 182,736 54 

3 Honor7 + S4 + OP3 146,658 68 

4 Honor 7 + S4 + OP3 + TV 135,644 74 

Amazon EC2: t3.medium VM 397,563 25 

EC2: c5.2xlarge (CPU only) 197,365 51 

EC2: p3.2xlarge (without GPU) 287,364 35 

EC2: p3.8xlarge (without GPU) 265,634 38 

EC2: p3.2xlarge (with GPU) 132,548 75 

EC2: p3.8xlarge (with GPU) 111,329 90 

TABLE 1: Image recognition time for 1,000 images and speed in FPS of different devices and clusters 

of devices. 

Performance in Real World Scenarios 

Environment Devices FPS Investigations 

Smart home 3-5 42 – 185 0.7 – 3.08 

Smart office 10 – 50 140 – 1,850 2.33 – 30.83 

Smart campus 100 – 500 1,400 – 18,500 23.33 – 308.33 

Sporting event 500 – 2,000 7,000 – 74,000 116.67 – 

1,233.33 

TABLE 2: Number of simultaneous investigations of high data rate streams supported in various 

environments. Investigations refers to number of cameras that can be processed and annotated at 60FPS.  

We next consider practical feasibility by extrapolating the results of the investigation onto representative 

examples of device clusters that would be available in real world scenarios. We consider four representa-

tive examples of application domains: smart home, smart office, smart campus, and sporting event. The 

number of smart devices available and the resulting number of high data rate streams (Investigations) 

supported is estimated in Table 2. Generally, the computational capacity of existing data centres is lim-

ited by available on-site infrastructure, e.g., number of servers. On the other hand, small-scale data cen-

tres created with our system can dynamically augment their computational power to rival or exceed the 

level of processing of existing data centre deployments (even for a short span of time). For instance, a 

cluster of 100 devices can easily be formed to provide computational services during the lunch hour at a 

university campus, or a cluster of 1,000 devices or more can be formed for more than one hour during 

sports events or concerts at stadiums. This suggests that the processing of tasks can be accelerated spon-

taneously when a powerful cluster is formed and the processing of tasks can be scheduled based on com-

plexity, such that tasks are processed depending on the amount of opportunistic computational power 

that is formed by devices throughout of the day. 
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SIDEBAR: RELATED WORK 

Cloudlets, defined as a resource-rich and trusted piece of infrastructure located in proximity to end users 

7, were among the first architectural models serving as inspiration to current edge computing initiatives. 

In the cloudlet model, dedicated computational infrastructure, e.g., laptops, displays or base stations, in 

fixed locations, e.g., restaurants or kiosks, are used as cloudlets that support end devices by augmenting 

their processing capabilities. The main benefit of a cloudlet is to provision services to users for low la-

tency applications, which allows end devices to improve their performance and battery life. A cloudlet is 

static by nature. Thus, it suffers from scalability (deploying physical hardware) and maintainability (up-

grading hardware). Since a dense cloudlet deployment is required to provide transparent support to de-

vices in the wild, cloudlets solutions have not been adopted in existing architectures. However, the 

vision of cloudlets has been extended as infrastructure at the edge of the network that can improve usa-

bility and user experience of remote applications. Cloudlets 7 have been investigated as promising solu-

tions that seek to support data analytics systems with critical response time requirements 5, e.g., video 

surveillance, health monitoring, and autonomous cars. While cloudlets have evolved during almost a 

decade, the key issues listed above have not been addressed. Since processing capacity of smartphones 

has increased considerably, several works have studied the feasibility of using them as edge infrastruc-

ture. Table 3 provides a qualitative comparison of frameworks that provide computational support using 

smart devices of users. The table shows the type of candidate infrastructure that can be used for pro-

cessing support (Co-located candidate infrastructure). Most of the work relies on smartphones for op-

portunistic computation 14,16.  Verbelen et al 15 used ad-hoc devices available in the environment, such as 

laptops, and servers. Contrary to our approach which allows fine-grained control over resource use, ex-

isting approaches tightly integrate resource-constrained devices with computing infrastructure, resulting 

in devices having limited control over their resource usage (Disruption of operations). 

In terms of computational infrastructure capacity, we can observe that most works rely on small cluster 

sizes (Formation scale size). Contrary to previous work, we explore the use of micro data centres that 

can be opportunistically created by merging the resources of smart devices. Our approach provides a 

flexible way to augment and upgrade processing capabilities on demand based on dynamic availability 

of devices. Since our approach requires no fixed hardware installation, it overcomes the scalability is-

sues of deploying computing facilities close to the user. Moreover, since the computational capabilities 

of the micro data centre can be increased dynamically, we are able to process data intensive tasks on the 

edge using sophisticated models for deep learning (Deep learning support). 

Frameworks Co-located 

candidate 

infrastructure 

Deep 

learning 

support 

Formation 

scale size 

Disruption 

of operations 

Dynamic  

Cloudlets15 

Ad-hoc devices No Small Yes 

Pocket  

Cloudlets16 

None No Same  

device 

Yes 

HyMobi11 Smartphones No Small Yes 

FemtoClouds14 Smartphones No Small Yes 

Our work Smart devices Yes Large No 

TABLE 3: Qualitative comparison of opportunistic computing frameworks using nearby infrastructure to 

support the user's activities. 

CONCLUSIONS 

Smart devices are increasingly powerful computing devices that can be exploited on the edge of the net-

work for collective processing. This paper highlighted challenges and opportunities that arise when us-

ing smart devices to support pervasive data science. We demonstrate the feasibility and potential of this 

idea through an example use case of deep learning-based object recognition on a data centre consisting 

of a laptop and up to 4 smart devices. Our platform and experiments highlight how performing pervasive 

data science on the edge can provide a cost-effective alternative to remote infrastructure, particularly for 

tasks characterized by high volume and velocity, but low I/O requirements. Indeed, comparison to cloud 

computing infrastructure demonstrated that clusters of smart devices can provide comparable, or even 

better, computational performance with a fraction of the cost and better response rate. This suggests that 
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smart device data centres would be a feasible solution for applications with both high volume and veloc-

ity, or that have strong interactivity requirements. Besides demonstrating the feasibility of this paradigm, 

we also identified key research challenges and application scenarios for opportunistic data centres 

formed by smart devices.  
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