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Abstract

People’s activities naturally involve the coordination of gaze and hand. Research in

Human-Computer Interaction (HCI) endeavours to enable users to exploit this multi-

modality for enhanced interaction. With the abundance of touch screen devices, direct

manipulation of an interface has become a dominating interaction technique. Although

touch enabled devices are prolific in both public and private spaces, interactions with

these devices do not fully utilise the benefits from the correlation between gaze and

hand. Touch enabled devices do not employ the richness of the continuous manual ac-

tivity above their display surface for interaction and a lot of information expressed by

users through their hand movements is ignored.

This thesis aims at investigating the correlation between gaze and hand during natural

interaction with touch enabled devices to address these issues. To do so, we set three

objectives. Firstly, we seek to describe the correlation between gaze and hand in order

to understand how they operate together: what is the spatial and temporal relationship

between these modalities when users interact with touch enabled devices? Secondly, we

want to know the role of some of the inherent factors brought by the interaction with

touch enabled devices on the correlation between gaze and hand, because identifying

what modulates the correlation is crucial to design more efficient applications: what are

the impacts of the individual differences, the task characteristics and the features of the

on-screen targets? Thirdly, as we want to see whether additional information related to

the user can be extracted from the correlation between gaze and hand, we investigate the

latter for the detection of users’ cognitive state while they interact with touch enabled

devices: can the correlation reveal the users’ hesitation?

To meet the objectives, we devised two data collections for gaze and hand. In the first

data collection, we cover the manual interaction on-screen. In the second data collection,
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we focus instead on the manual interaction in-the-air. We dissect the correlation between

gaze and hand using three common hand events users perform while interacting with

touch enabled devices. These events comprise taps, stationary hand events and the

motion between taps and stationary hand events. We use a tablet as a touch enabled

device because of its medium size and the ease to integrate both eye and hand tracking

sensors. We study the correlation between gaze and hand for tap events by collecting gaze

estimation data and taps on tablet in the context of Internet related tasks, representative

of typical activities executed using tablets. The correlation is described in the spatial

and temporal dimensions. Individual differences and effects of the task nature and target

type are also investigated.

To study the correlation between gaze and hand when the hand is in a stationary sit-

uation, we conducted a data collection in the context of a Memory Game, chosen to

generate enough cognitive load during playing while requiring the hand to leave the

tablet’s surface. We introduce and evaluate three detection algorithms, inspired by eye

tracking, based on the analogy between gaze and hand patterns. Afterwards, spatial

comparisons between gaze and hands are analysed to describe the correlation. We study

the effects on the task difficulty and how the hesitation of the participants influences

the correlation. Since there is no certain way of knowing when a participant hesitates,

we approximate the hesitation with the failure of matching a pair of already seen tiles.

We study the correlation between gaze and hand during hand motion between taps and

stationary hand events from the same data collection context than the case mentioned

above. We first align gaze and hand data in time and report the correlation coefficients

in both X and Y axis. After considering the general case, we examine the impact of

the different factors implicated in the context: participants, task difficulty, duration and

type of the hand motion.

Our results show that the correlation between gaze and hand, throughout the interaction,

is stronger in the horizontal dimension of the tablet rather than in its vertical dimension,

and that it varies widely across users, especially spatially. We also confirm the eyes lead

the hand for target acquisition. Moreover, we find out that the correlation between gaze

and hand when the hand is in the air above the tablet’s surface depends on where the

users look at on the tablet. As well, we show that the correlation during eye and hand

during stationary hand events can indicate the users’ indecision, and that while the hand

is moving, the correlation depends on different factors, such as the degree of difficulty of

the task performed on the tablet and the nature of the event before/after the motion.
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1
Introduction

1.1 Motivation

Until recently, multimodal interaction with computer devices was secluded to the envi-

ronment of the research labs. The miniaturisation and the reliability of body sensors and

human activity recognition devices permitted a deployment to public reach. Therefore,

multimodal interaction constitutes a trendy topic in the field of Human-Computer Inter-

action. Among the different possible body parts tracked by systems, gaze and hand hold

a special place since they are, as mentioned in studies from psychology and neuroscience,

considerably involved in human ordinary activities and work in a complementary fashion

[121, 156, 169, 199].

In activities related to computer interaction, researchers demonstrated the role gaze and

hand can play together in the usability of the computing devices. Early Human-Computer

Interaction semi-theoretical work presented the concepts and expected promises of eye

tracking interaction [103, 104, 123], later put to the test in more recent works for prac-

tical applications with combined gaze input and manual input [158, 159, 160, 161, 162,

178, 179, 180, 190, 191, 192, 222, 223]. Initially, the correlation between gaze and hand

while interacting with computing devices employed the mouse, indirect manual input,

to replace the hand, for example to predict the user’s click. However, touch enabled

devices, such as tablets, kiosks and mobiles, offer a better representation of the actual

correlation between gaze and hand since the hand is directly involved into the interaction

process. Nevertheless, research work dealing with hand and gaze interaction on touch en-
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1. Introduction

abled devices discard the description and exploitation of the natural correlation between

gaze and hand. Instead, they introduce new interaction techniques in which gaze and

hand collaborate in separate spaces. The correlation between gaze and hand on touch

enabled devices is therefore non existent in literature, despite the potential improvement

it could bring to the interaction with those devices. Indeed, we encompass interaction

can benefit from techniques based on the correlation between gaze and hand on touch

enabled devices for two reasons: (1) because research in Human-Computer Interaction

already demonstrates concrete example of how the correlation between gaze and hand

(via the mouse) provide applications with desktop computers, and (2) because this work

relies on a natural and unconscious behaviour of the users who, shall applications be in

place in the future, will not necessitate any learning nor constrain to experience these

applications.

Hand and eye coordination when interacting with touch-enabled devices cognitively joins

or differs from the coordination implicated in tools handling on several points. According

to Vaesen [195], humans’ handedness brought increased dexterity. Some tools may be

designed for right-handed usage, as more than 85 % of humans are right-handed, and

therefore penalise left-handed people. In computer direct interaction such as the one

found with touch-enabled devices, this problem is partly suppressed (the user is free

to interact with her dominant hand, but the application layout may be designed for

right-handed people): no cognitive effort is required in this manual interaction to adapt

the dexterity to the handedness. More importantly, direct interaction bypass the ‘func-

tion representation” Vaesen assimilates with the human representation of tools: when

interacting with touch-screen, the hand is not used as an extension of the body - it is

the body. However, the “casual reasoning”, “social learning” and “cumulative culture”

Vaesen exposes in his paper can be met with touch-enabled devices. Although tapping

on touch-enabled surfaces is considered as natural and intuitive [20], the gestures that

allow a complete interaction (such as zooming) are not, and may require (easy and fast)

learning from observation.

In this thesis, we aim at exploring the correlation between hand and gaze on touch

enabled devices, for the different types of hand events occurring during the interaction

with a tablet, in natural activities. In more details, the research work presented by this

thesis follows the following objectives:

1. We first want to give a plain description of this correlation: how does the hand and

the eye behave with one another in the temporal and in the spatial dimensions?
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That objective’s outcome adds up to the current understanding of how the human

central nervous control system manages the hand/eye correlation in general - since

the direct manual input, found in touch enabled devices usability, presents a sim-

ilarity with psychological studies already analysing how gaze and hand behave in

target selection.

2. The general view of the correlation between gaze and hand we tackle at first logically

leads to the questioning of how some basic factors found in the natural interaction

with touch devices impact the correlation : how, if at all, individual differences,

the nature/complexity of the tasks, or the targets impact the correlation between

gaze and hand? We limit the scope of the factors to those three for their implicit

occurrence in the interaction and the ease for measurement. Other possible factors,

such as the state of arousal, despite being implicit would be measured by other

means that we did not include in our study (for example galvanic skin response).

3. In the field of Human-Computer Interaction, understanding how gaze and hand

work together serves as the foundation for building up applications. For the direct

manual input modality our thesis relates to, we want to make use of the correlation

between gaze and hand in order to provide the touch enabled devices a way to

assess the user’s cognitive state: does the correlation between gaze and hand show

any characteristics that indicate the user’s hesitation/indecisiveness during decision

making activities on a touch enabled device? We decide to direct our research to-

wards this type of application to contribute to the human centred Human-Computer

Interaction (Intelligent Human-Computer Interaction, sometimes referred as HCI2

[152]). Intelligent Human-Computer Interaction promises enhancements in, for

instance, collecting feedback on the interaction with applications to improve their

design, monitoring users’ activity to assess their medical condition, or personalising

evolving interfaces.

Natural interaction ought to be maintained to address all to points mentioned above. The

rationale behind this requirement essentially emerges from the very meaning of studying

the correlation between gaze and hand during touch enabled devices interaction: we focus

on an innate human behaviour.

Overall, we considered these objectives for our willingness to provide a baseline un-

derstanding of the human behaviour while using touch-enabled devices, such as public

kiosks on which personalisation of the device is limited by short interaction and perma-
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nent changes of users. The research questions tackled in the this thesis are therefore

related to answer this general question: how the correlation between gaze and hand can

be exploited by adaptive interfaces to provide intelligent output towards the users’ be-

haviours. We limit our exploration of the answer with the factors mentioned in Objective

(2) and with one type of user’s behaviour: hesitation, in Objective (3). Nevertheless, we

will address further exploration of the answer in the general discussion (Chapter 7) of

the thesis.

1.2 Methodology

Among the possible touch enabled devices to study the correlation between gaze and

hand on (mobile phones, tablets, tabletop large display...), we selected a tablet. The

reason behind this selection is the average size of such device, the possibility to simulate

a device used either at home or in public spaces (kiosks) and the ease for implementing

a study context.

Earlier work on hand and gaze correlation in computer interaction used the mouse, since

it was the common and standard manual indirect input device in place with desktop

computers. The mouse is not permanently active: Chen et.al, in [33] considered the

different activities of the mouse in web browsing, and identified the “nowhere” area where

the mouse is left inactive. The information conveyed from the mouse in the “left inactive”

state is rather limited: it indicates the users are not engaged in a clicking action, but

shows nothing on how they are actually still involved into the interaction with the desktop

device. Similarly, when interacting with a touch enabled device that detects tapping as

the sole manual input, an interruption in the interaction is perceived any time the hand

leaves the device’s surface. But the hand actually does not always become inactive during

this interruption (of tapping), contrary to the counterpart idleness of the mouse when

the user is not engaged in a clicking process. The hand in this situation is evolving in the

volume above the surface, moving or marking “pauses”, which can inform about the user’s

cognitive state in a much richer way than the idle mouse [3]. That is why, in this thesis,

we choose to analyse the correlation between gaze and hand according to the different

hand events that commonly occurs during interaction with tablets: taps, stationary hand

events and hand motion in between the two first events.
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(a) The hand is moving.

(b) The hand is in stationary position (hover or dwell).

(c) The hand is performing a tap.

Figure 1.1: Breakdown of the typical hand events observed during tablet interaction.
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A typical breakdown of these continuous hand events is given in Figure 1.1. Often while

preparing a tap, the hand is moving (Figure 1.1a) until it stops for a short period of

time (Figure 1.1b). Then, the hand either performs a tap (Figure 1.1c) or moves again

to another destination.

Work related to the tapping part of the hand events, illustrated by Figure 1.1c, is de-

tailed in Chapter 4. This hand event bears the closest resemblance with the clicking

action studied in other research activities related to the desktop computer mouse/gaze

relationship. The support for this work is a data collection on taps while performing

Internet related tasks on a tablet. The tasks are designed to echo the activities users

commonly performed on a tablet, and to ensure as much as possible a natural interaction

while generating enough taps. The apparatus chosen for the data collection has been

decided after validation with a pilot study. We conduct an exploratory approach in the

study of the correlation between gaze and hand for taps.

The next hand event type we focus on is the stationary hand event, illustrated by Fig-

ure 1.1b. Stationary hand events are categorised in two natures: hovers (when the hand

is strictly above the surface) or dwells (when the hand is left outside the interaction vol-

ume). To detect them, we develop and evaluate several algorithms based on eye tracking

techniques. The reason behind this choice is the observation of an analogy between the

stationary hand events and the eye fixations. The data is collected from another context

than the previous work: we designed our own stand to combine a tablet, an eye tracker

and a hand tracker, and participants played a Memory Game, so we could stimulate their

cognitive activity and generate stationary hand events, while offering an experience to

the participants that can still be assimilated with a natural activity they would perform

on a tablet. The correlation between gaze and stationary hand events is explored in

Chapter 5, which includes the detection algorithms’ presentation in Section 5.3. In this

chapter, we also study the differences in the correlation between gaze and hand induced

by the decisiveness of the participants. The decisiveness in our study is approximated

by the success of the game’s tile pair matching.

The last hand event we analyse is the connection with the first two events mentioned

above: when the hand moves between taps, hovers and dwells. Chapter 6 explains how

the correlation between gaze and hand is computed. The context for the data collection

is the same as in Chapter 5. We evaluate how strong the correlation is between gaze and

hand during hand motion, and we show how the correlation was impacted by application

factors (such as the degree of difficulty, the interaction area of the surface) and human

6



1. Introduction

factors (individual differences, duration of the motion type of the motion).

Notwithstanding the three chapters mentioned in this section are all dealing with the

correlation between gaze and hand, the points of view to tackle the analysis are not the

same. In Chapter 4, the study unit is the tap and we analysed how gaze behaves in

relation to it, whereas in Chapter 5 the study unit is the area of gaze and we analysed

how the hand behaves respecting it. For Chapter 6, the point of view is different again

since we analyse gaze and manual movements altogether: no specific variable serves as a

reference to study the other.

We address the research questions according to the hand event as summarised by a

summary diagram (Figure 1.2):

Figure 1.2: Diagram of the research questions’ coverage over the different hand events studied in the
thesis.

1.3 Contributions

This thesis brings the following contributions to the field of Human-Computer Interac-

tion:

• The description of the correlation between hand and gaze during interaction with

touch enabled devices, sectioned by the different basic hand events we notified from

observation.
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• The proposal of two study contexts for a gaze and hand data collection: one context

contains Internet based activities (data collected: gaze/tap) and the other context

contains a cognitive load activity (a Memory Game, data collected: gaze/hand

movement).

• The proposal and the evaluation of three algorithms to extract stationary hand

events from hand motion data, based on an analogy between gaze and hand move-

ment patterns.

• Elements to implement an example of Intelligent Human-Computer Interaction,

by retrieving hesitation based on the correlation between hand and gaze on touch

enabled devices, and by evaluating a task’s difficulty from the changes in the corre-

lation between gaze and hand when the hand is moving between taps and stationary

hand events.

1.4 Thesis Structure

The thesis is articulated around the following chapters:

• Chapter 2 - Background: references the milestones and techniques dealing with

eye tracking and hand tracking, and presents key understandings of the hand and

gaze coordination in aiming or reaching, between the mouse and gaze, and dur-

ing hand motion, because these actions are similar to those involved in interaction

with touch enabled devices. Moreover, we review existing works in the Human-

Computer Interaction literature and other fields that focused on the visual and

manual modalities, as well as the concepts of Intelligent and Adaptive User Inter-

faces we consulted to construct the contexts and application objectives of our own

research work.

• Chapter 3 - Study Setup : summarises the setup followed with the eye tracker

devices we used for our data collections, as well as the techniques for filtering the

on-screen hand gestures for selecting taps only for the first data collection.

• Chapter 4 - Correlation between Gaze and Tap: first core chapter of the

thesis, it details the correlation between gaze and hand for taps, based on a data

collection context containing Internet related tasks on a tablet. It also presents a

pilot study to evaluate whether a commercial rack designed for eye tracking with

small devices affects the naturalness of the interaction on the tablet.
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• Chapter 5 - Correlation between Gaze and Stationary Hand Event: sec-

ond core chapter of the thesis, it details the correlation between gaze and hand for

stationary hand events (hovers and dwells), and also presents the role played by

indecision in the interaction. A tablet is also used as a touch enabled device, but

the context of the data collection is different. The data is collected while playing a

Memory Game.

• Chapter 6 - Correlation between Gaze and Hand in Motion: third core

chapter of the thesis, it details the correlation between gaze and hand when the

hand is in motion (between taps and stationary hand events). The data collection

context is the same as in the previous chapter.

• Chapter 7 - Discussion: offers a reflection on the thesis’ core results and proposes

future work guidelines that can benefit from this thesis’ content.

• Chapter 8 - Conclusion: summarises the thesis’ content and matches it with

the initial research questions highlighted in the thesis’ introduction.

9



2
Background

In the following chapter, we expose the background literature on which the matter of this

thesis is supported. Since our work regards both gaze and hand modalities, Section 2.1

serves as an introductory presentation of the human visual system and eye tracking on one

side, and then on the hand biomechanism and hand tracking on the other side. In Section

2.2, we further develop the separate literature of gaze and hand modalities by referencing

works on the correlation between the both, in the fields of psychology and neuroscience

(to understand the basic principles behind the correlation between gaze and hand), and

Human-Computer Interaction (where the mouse instruments the indirect manual input

instead of the hand). With Sections 2.4 and 2.3 we turn towards concrete examples found

in literature to reflect on the applications of the correlation between gaze and hand in the

area of Human-Computer Interaction and study contexts respectively, and relate them

with our work.

2.1 Tracking Gaze, Tracking Hands

The following section instigates the fundamental knowledge of each modality covered

in this thesis: the eye and the hand. For each, we present a physiological summary,

followed by the key concepts and milestones of their tracking techniques, essential for the

integration of these modalities in Human-Computer studies.
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2. Background

Figure 2.1: Structure of the human eye.

Source: Wikimedia Commons

2.1.1 Overview of the Eye Tracking

2.1.1.1 Description of the Eye and Visual System

The eyes and the visual system are a complex biological system in which the eyeball acts

as a camera. Figure 2.1 illustrates the different elements that compose the eye.

The light reaches the eye’s interior via the cornea and the lens, which play the same role

as the lenses of a camera: the convergence of the lens directs the light inside the eye.

For subjects with good vision, the cornea and the lens allow the light to be projected

onto the bottom of the eyeball, the retina, to form an accurate image. Accommodation

is the process by which the lens changes its vergence to adapt the projection of the image

on the retina to the different distances between the eye and the point of gaze. The

image formed on the retina is upside down, and the different receptive cells of the retina

transmits a nervous signal to the brain via the optic nerves. The brain is then responsible

to reconstruct the image and the visual interpretation from the nerve impulses it receives.

The eyes are paired in order to allow stereoscopic vision. Since the eyes are distant from

each other by approximately 6 centimetres [205], each eye can see a scene from different

angles, and therefore produces a slightly different image that is combined by the brain

to create the perception of depth.
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2.1.1.2 Vision Characteristics

The horizontal field of view obtained on a typical subject, when gaze is aligned with the

head and centred, is about 200◦. Of this angle, approximately 120◦ is covered by the

binocular vision (at the centre of the field of view) [205]. Vertically, the total field of view

is more limited (since the eyes are organised on a horizontal plane): Wandell in [205]

reported a field of 135◦ (therefore, the field of view is wider in the vertical dimension in

the binocular space).

Although the field of view is quite large, the human vision is not entirely efficient through-

out that space. The retina is covered by different cells responsible to transduce the image

(photons) to nerve impulses. The cones are the cells that detect colours. Three types

of cones react to three different subsets of the light spectrum wavelength, corresponding

to the red, green and blue colours. The cones are concentrated in the fovea, the part of

the retina where the vision is the most acute, aligned with the visual axis. The other

cells, the rods, are sensitive to dimmer light and are used by the system to interpret light

intensity as well as movements. They are concentrated in the periphery of the retina and

are therefore almost absent in the fovea.

The consequence of this distribution is that effectively, the eyes are only very efficient in

a small part of the field of view, about 2◦. Of course, the outer areas of the field of view

are also taking part in the visual perception but do not allow such a detailed perception

of the environment.

The eyes need to move in order to interpret a scene correctly. In eye tracking, three

types of eye movements are usually reported or used: fixations, saccades and smooth

pursuit. Smooth pursuit is the continuous eye movement triggered when a subject

follows a moving element of the scene (for example, a bird flying). When a subject is

looking a scene (without following a movement of the scene), the eyes still keep moving

in order to analyse it. However, these movements differ from smooth pursuit: they are

not continuous, and each “shoot” follows a ballistic trajectory. These shoots are called

saccades. Between saccades, the eyes are keeping a relatively still position, in order to

allow the visual input to be processed. These “pauses” are referred as fixations. Fixations

can last milliseconds to seconds, depending on the activity. In eye tracking, fixations are

often considered as an indicator of attention [94].

12



2. Background

2.1.1.3 Tracking the Eyes

Earlier academic research in the ninetieth century experimented mechanical, intrusive

and cumbersome devices to track the eye movements [94]. As the understanding of the

eye physical characteristics and technology improved, better tracking devices have been

designed through modern days. Some of the following works are listed by Holmqvist et

al. [94], Wade and Tater [204] and Duchowski [56] as milestones in the eye tracking field.

Duchowski, in [56] categorises eye trackers in 4 categories: (1) EOG (electrooculography),

(2) sceral1 contact lens/search coil, (3) POG (photooculography) or VOG (videooculography),

and (4) video-based combined pupil and corneal reflection.

A technical innovation of exploiting the light reflection by the cornea has first been used

for eye tracking by Dodge and Cline in 1901 [53]. When light is emitted towards the eyes,

the cornea and the lens reflect it in four points (the Purkinje reflections, of which the first

reflection on the cornea generates the brightest glint). The interesting property of the

reflections comes from their stability: if a light emission remains static, its reflections will

be static as well on the eye, and by comparing the position of the pupil (for example) with

the reflections, the direction of the eyes can be estimated. Their system projected a light

beam onto the eyes, and photographed the concorded Purkinje reflections to evaluate the

horizontal and vertical movements of the eyes. This system was the precursor of what is,

to date, the most common eye tracker technology employed (type (4) as listed above).

For instance, one of the most popular eye trackers on the market now, Tobii EyeX, is

using a video recording of infrared beams’ reflection onto the eye. The popularity of this

tracking method certainly resides in its relative simplicity, its good performance without

intrusion and its affordable price. Nevertheless, it is bound to known limitations, such as

the ambient light exposure or the natural obstruction of the eye (droopy eye lids), and

requires a calibration to generate a particular eye model whenever someone’s eyes are

being tracked (cf. Chapter 3 for details). The manufacturer of the remote eye trackers

we used reports a latency of less than 35 ms (Tobii X2-60), whereas for information, a

fixation typically lasts about 200 - 300 ms [94].

Other technologies brought by researchers paved the way of eye tracking. Lenses to

record the electromagnetic induction provoked by the eyes were presented by Robinson

in 1963 [166]. This technology was considered as a precise way of tracking the eyes but

showed some inaccuracies during saccades and suffered from an obvious intrusion. As a
1On the white part of the eye globe, cf. Figure 2.1.

13



2. Background

consequence, it is less favoured now. EOG, introduced by Schott [171] in 1922, has been

widely used as it avoided the direct application of any measurement devices onto the eye

(lenses), improved the comfort of the participants and provided an easy way to record the

eye movements, based on the muscular electrical signal around the eyes area. The results

of EOG were more reliable for horizontal eye movements, and were often subject to much

noise, hence their seldom implication in current Human-Computer Interaction research

works. The video tracking of the eyes has benefited from computational hardware and

software improvements, and relied on the eye’s feature evaluation without the requirement

of a light beam emission [93, 153, 223]. A branch of eye tracking research still continues

to work on video trackers to date, in order to improve detection algorithms and comply

with hardware that can be easily found in regulars devices.

As we wanted to track gaze of the participants while they perform tasks on tablets,

we checked how previous research works allowed eye tracking on such device. Drewes

[54] mentioned that the first commercial eye tracker for tablets were used in his work,

the ERICA2 eye tracker (white3 pupil method and a corneal reflection type), for his

experimental study on a 12” (1024 × 768 pixels) tablet PC. Holland et al. [93] evaluated

the usability of eye tracking on an unmodified tablet using a neural network and the tablet

webcam, and reached an average spatial accuracy of 3.95◦, and an average temporal

resolution of 0.65 Hz with a 1024 × 768 pixels tablet. Likewise, Kunze et al. [119]

introduced an open library for eye tracking on unmodified tablets using the webcam

and a shape based image processing approach in the context of a reading activity. In

order to avoid heavy development time (“discovering” a new device and its interface) and

imprecision, we have tried to integrate a remote eye tracker technology often found in

literature to our tablet: corneal reflection of infrared emission light. We favoured remote

eye trackers over wearable eye trackers in our work because it was important for us to be

able to track the users’ gaze without obtrusive technologies: if gaze needs to be tracked

in a public space, wearable eye trackers are not a realistic option to consider.

2Eyegaze Response Interface Computer Aid http://www.eyetellect.com/ (last accessed Jan. 2020)
3When lit by infrared light, the image of the pupil obtained by infrared camera appears white.
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2.1.2 Overview of Hand Tracking

2.1.2.1 Hand Biomechanism Involved in Aiming and Reaching

After the brain, the hand is probably the most crucial body element humankind benefited

from nature: it allows fine dexterity (due to opposable thumb and fingers size ratio [80],

necessary for a good control of tools - Aristotle [9] described the hand as “an instrument

that represents many instruments”). The hand also takes part in the nonverbal expression

that permits our body language [48]. When interacting with touch enabled devices, users

may show two types of hand gestures: those that serve as input (tapping, panning, etc.)

and those that indicate their cognitive activity (pauses, flipping of the hand, etc.). Thus,

it is difficult to study the hand behaviour while aiming or reaching when subjects are

put in a completely natural situation, as the hand movements may partly consist in

body language expressions. This perhaps explains why research on hand movement

often contains very basic and laboratory controlled tasks for pointing or reaching (along

with the willingness to understand a precise and unbiased component of the human

behaviour). Research in the human targeting mechanisms has not only be conducted to

address human-centred issues, but was also the fundamental step in robotics to replicate

the human behaviour.

Uno et al. [194] detailed the steps involved in one of the models that describes targeting

movements: first the central nervous system determine one trajectory to the target that

could be one out of an infinite possibilities, then the central nervous system translates

the visual coordinates into body coordinates for the selected trajectory and finally the

central nervous system triggers motor commands to the different elements of the body

involved in aiming. According to Morasso [133], the human nervous system deals with

the movements of aiming as the control of the hand trajectory rather than the control

of the joints angular curves. His work limited the degrees of freedom of the body to

the shoulder and elbow, but as a matter of fact, several other the body parts are also

effectively involved in aiming (eyes, head, torso, wrist and fingers [88, 182, 198]), which

rely on visual feedback and proprioception. Furthermore, the kinematic output of the

limb movement is complex (control of the equilibrium of the hand under the actions of

agonist/antagonist muscles involved [67]). Jagacinski and Flach [105] proposed the bang-

bang model of the hand movement: the first bang corresponds to the acceleration needed

to move the hand’s mass from its current position towards the target; the second bang

corresponds to the deceleration required to “slow down” the hand to reach its target.
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In the context of a discrete target acquisition, optimal trajectory (in space and time) is

achieved by the control of the switch between the two bangs. If the switch is made too

early, the movement will fall short of the target. If the switch is made to late, the hand

will overshooting the target.

2.1.2.2 Hand Tremor

In order to estimate the parameters implicated in the design of the algorithms we wrote

for detection of the stationary hand events (cf. Chapter 5), we queried at how hand

tremor was described in literature, since these algorithms are based on the natural hand

behaviour Hand tremor is usually reported by the frequencies found in a spectral analysis.

Literature provides several values: König et al. [116] reported oscillations in the 8-40

Hz range, Morrison and Keogh [134] reported 3 components: mainly 2-4 Hz and 8-12

Hz, but also at a smaller level, 18-25 Hz for the index finger. Morrison and Newell [135]

indicated very similar frequencies (1-4 Hz and 8-12 Hz) with higher amplitude for the first

range, they found a mean absolute acceleration of 0.06 m/s2 for the index. In the same

range, Strachan and Murray-Smith indicated that action tremors occur between 8 and 12

Hz; they proposed an Human-Computer Interaction application consisting in sensing the

tremor pattern of an individual as a mobile device handling recognition technique [181].

Xia et al. [216] proposed a new measurement approach to evaluate tremor, and found

(for the right hand) a tremor of 2.73 Hz. Finally, Tatinati et al. [186] modelled tremor

and mentioned it was typically in the 6-20 Hz range, with an amplitude of 0.05-0.1 mm.

Referring to the values reported by Xia et al. in [216] for healthy patients’ right hand, we

can estimate the station hand events to be comprised in a space of twice the amplitude

(computed as the average of the X and Y amplitudes), or 9.96 mm, and a tremor velocity

of 52.6 mm/s (computed as 4 × amplitude× frequency).

2.1.2.3 Tracking the hand

The tracking of the hand started with mere observation (as would testify Ancient Greece’s

writings), just as the case of eye tracking, before technology could assist the lack of pre-

cision and information retention that humans can achieve with this basic methodology.

However, the major difference with eye tracking is that the hands are protuberant and

therefore easier to track without intrusion. The following history related to the track-

ing of the hand movements is a summary from Thurston’s article [189] and Rautharay
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and Agrawal’s survey [164]. It seems that the body movements as such were not the

key interest of research in the Greek or Egyptian civilisations: mainly, what triggers the

movements was the real concern. Only a few steps in understanding the human body

mechanisms were relevant until an anatomist, Galen, proposed a quite detailed descrip-

tion of the muscles by dissecting animals: he realised that the brain and the nerves played

a role in the muscular activity (even if, at the time - second century A.D. - there were

still misconceptions such as the humour theory he carried on from Antiquity, and reli-

gious taboos). The pinnacle of this anatomic research came with the Italian Renaissance:

Da Vinci pointed out a link between mechanics and anatomy (bases of the kinesiology)

and Borelli, considered today as the father of biomechanics, applied mathematical and

geometrical principles to interpret the body movements.

Photography became the technology that drastically changed the way people studied

movements. The infamous horse galloping pictures of Muybridge (1882) is a concrete

example of how photography helped to analyse the different parts of the body movements

while performing actions. In regards to human movements, he also produced a well-known

extensive work that required a series of cameras, triggered sequentially, to decompose the

walking movements and other human actions. Contemporary to Muybridge, Marey also

used chronophotography with a movable camera to record people dressed in black, in

front of a black background, with white markers on the body to analyse their movement.

From then on, two trends could be followed to track body movements: unobtrusive and

intrusive. Unobtrusive works are solely based on image recording of the body. Computing

technology brought another milestone in tracking since previous works could not provide

instantaneous measurements, nor simple apparatus deployment. Tracking the limb relies

on two approaches [164], detection based on the limb’s appearance (skin colour model,

silhouette model, motion based model, deformable gabarit model) or via applying a 3D

model (3D textured volumetric, 3D geometric model, 3D skeleton Model). To date, the

most commonly used commercial tracking devices are the Leap Motion, which computes

a 3D skeleton of the hand based on two infrared cameras and light emission (depth

detection); and the Microsoft Kinect which tracks the full body skeleton model based on a

combination of ambient and infrared light sensors. Intrusive works handling the tracking

of the upper limbs allows a “direct” measurement of the movement with the possibility to

get good accuracy. Early devices included Karpovich’s electrogoniometer (1959), which

instantly reports the angular displacement of a joint and can be used as an exoskeleton.

Biomechanics studies also use pantographs (for the hand trajectory measurement) and
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potentiometers (for the joint angular measurement) in targeting activities. Tracking

the hand is also often done with gloves or rings that contained markers or embedded

accelerometers.

Along with the use of computing devices, screens became a tool for tracking the hand,

in a relative small space portion above the device. Initially digitizers used stylus to re-

produce the 2D hand movement given to the stylus. In The History of Visual Magic

in Computers [155] presented the milestones of digitizers’ development. The first device

(Telautograph) considered to reproduce a hand movement has been patented in 1888 by

its inventor, Elisha Gray. This technology allowed the hand movement to be “tracked”

via the stylus in in 2D but relied on the pen movement solely, contrary to tablet dig-

itizers for which the surface is a part of the tracker and the stylus a complementary

tool working with the surface. Therefore, the first tablet digitizer to be developed as

a tracking surface with a stylus is the Stylator (1957), followed by the RAND tablet

(1964) which gained more popularity. The RAND tablet is descrbied by Peddie as a tool

that “employed a grid of wires under the surface of the pad that encoded horizontal and

vertical coordinates in a small magnetic signal. The stylus would receive the magnetic

signal, which could then be decoded back as coordinate information.”. Based on the same

technology principles, the BitPad was commercially successful in the late 70s and early

80s thanks to the introduction of cheaper and faster computing power. Branded for

Apple (as Apple Graphic Tablet), they allowed the detection of the stylus tip in a small

range above the surface thanks to magnetostriction. 4. Nevertheless, such devices re-

mained detached from the computer itself until the introduction of GridPad 1910 in 1989

(according to Peddie, it can be considered as “the first commercially available tablet”).

GridPad allowed a basic interaction (form filling) thanks to the stylus tracking over a

monochromatic touchscreen display. On the most iconic tablet digitizer was introduced

by Microsoft in 2001 as the Tablet PC, that still included the use of a stylus for pointing

while the finger could also be directly used. Two main touchscreen technologies can be

found: capacitive and resisitve. Capacitive technology for finger interaction with a tablet

was presented by Johnson [110] in 1965. A capacitive screen detects the finger thanks to

its electric conductivity and dielectric difference with air: the finger acts as a capacitor

and distort the electrostatic field generated by the screen. The first resistive screen was

presented by Hurst and Colwell [98] in 1975. The principle behind resistive screen is

the creation of a voltage divider by contact from one layer of the screen (the touched
4Wikipedia article on Graphics tablet https://en.wikipedia.org/wiki/Graphics_tablet (last ac-

cessed Jan. 2020)
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one) onto the other underneath that is normally separated by a gap when no touch is

performed. The stylus, in current technology, has been mainly discarded for every day

use since the interfaces and the capacitive screen technologies allowed enough precision

when the finger is used for touching. The finger or a stylus can also be tracked in the

Z-axis with capacitive technology in a small range above the surface (due to the distor-

tion the hand or the stylus creates in the electrostatic field of the digitizer). Microsoft

proposes a test tool to measure the hover range of a stylus5 with an acceptance threshold

of 5 mm. In Mobile Word Congress 2013, STMicroelectronics presented a touchscreen

allowing hovering at 2 inches above the surface.6 Du et al. [55] proposed a touch sensing

circuit for mobile devices reaching a hover range of 11 cm with a centimetre resolution.

In [89], Hinckey et al. used a prototype mobile handheld device (based on the Fogale

Sensation) which permitted a hover sensing of 35 mm above the screen surface.

Commercial tablets, such as Microsoft Surface, are good tools to track the hand’s taps on

the surface. For the work related in this thesis, we also wanted to track the hand above

the surface. To avoid obstruction (both from hardware and in the user experience i.e.

with calibration) we favoured Leap Motion to track the hands in the air for its reliability,

ease of use and remoteness.

2.2 Correlation between Gaze and Hand

This section is dedicated to the principles of the correlation between gaze and hand

established by research on the human behaviour. We organise the presentation of these

works as follow. First, we detail the general concepts of the correlation between gaze

and hand in aiming and reaching, studied in psychology and neuroscience studies, in

order to apprehend the basic operation of the correlation in simple context detached

from Human-Computer Interaction, and also to understand what are the key features

to investigate when working with it. Secondly, we outline the research activities that

employed the correlation between gaze and hand in Human-Computer Interaction, to

appreciate how it was approached and why.
5Microsoft Hardware Dev Center (Hover Range test) https://docs.microsoft.com/en-us/windows-

hardware/design/component-guidelines/hover-range (last accessed Jan. 2020)
6https://www.cnet.com/news/touchless-touch-screen-gives-you-control-without-contact-

video/ (last accessed Jan. 2020)
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2.2.1 Gaze and Hand Coordination in Aiming or Reaching

Aiming at and reaching for an object involves both the hand and the eyes. Even if

they are trivial actions of the human activities, their “functional organisation [...] is not

yet fully understood ” according to Vercher et al. [198]. An early study on the control

system involved in the generation of hand movements to reach objects has been done

in 1899 by Woodworth [214]. Woodworth proposed “the two components” model in

which he considered the hand movements were controlled by two components: a central

part and a feedback part [61, 214], and the core of his work was to understand the

relationship between accuracy and speed of the controlled goal targeting limb movements.

In relation with eye-hand coordination, Woodworth found that visual feedback helps to

increase the accuracy of the movements, but only when speed is low enough (movements

approximating 450 ms). In their review, Elliott et al. [61] investigated whether this model

was still available a century later, and mentioned key research works that supported or

contradicted the two components model. They concluded that Woodworth’s framework

was still valid but required to be completed by finer models. Some of the works they

reviewed are listed in the following paragraph.

Intuitively, we would assume the eyes first acquire the target before the hand moves.

If the eyes indeed reach the target prior to the hand [1, 16, 17, 198], the coordination

between hand and gaze is more subtle and concurrent. Vercher et al. [198], in their

study focused on the correlation of the more extended system eye-head-hand, summarised

three steps in the pointing process: “(1) location of the object with respect to the body,

involving coding target position with respect to the fovea, the eyeball with respect to the

head and the head with respect to the body; (2) knowledge of forelimb position by means

of proprioceptive and/or visual afference; and (3) coordination of eye, head and arm

movements leading to gaze and arm shifts towards the target.”. Literature indicates that,

however, the hand is not a slave to the eyes [17] but that the eyes are the precursor of the

information needed for the hand to reach a target with better accuracy. In other words,

they work together. Researchers have tried to understand how this relationship was

organised to model the human visuomotor process involved in what seems a very trivial

task. According to literature, in target acquisition tests, the gaze leads the hand in a

reaching task by 60 to 100 ms [16]. Fischer and Rogal, in [62] reported different reaction

times explained by the gap and overlap paradigms: if the reference light was turned off

before the target light were shown (gap paradigm), the gaze saccadic reaction time was
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shorter (120 ms), whereas it increased to 200 ms when the reference light was not switched

off during the appearance of the target light (overlap paradigm). Keele and Posner [113]

conducted a study to evaluate the visual feedback duration in rapid movements. Using

a comparison between two target acquisitions where the actions were performed in a

fully visible condition and when it was done in the darkness, they concluded that the

processing of the visual feedback takes between 190 and 260 ms. Carlton, in [30], studied

the contribution of the visual information. He indicated that the common model, at the

time of writing, was that visual information is needed to correct the errors of the hand,

and thus, the eyes actually need to monitor the hand itself. However, he also explained

that other researchers (as Stubbs [182]) have mentioned that aiming accuracy should

not rely on the visual monitoring of the distance between the target and the hand,

since the hand position is already known by the motor system from proprioception.

His work concluded that the proprioception does not prevent the users from visually

monitoring their hand (and target) for better accuracy in aiming. The impact of the

stimuli and potential distractors on the hand movement were analysed in [31, 175], and

concluded that they infer the hand trajectory. Abrams et al. [1] have demonstrated that

distance evaluation by the eyes depends on their position, and how gaze accompanies

rapid limb movement (wrist rotation for pointing): they found that moments before, quite

simultaneously with the hand movement, the eyes would perform a saccadic movement

towards the target, and tend to undershoot the target, requiring another small saccade

to adjust the destination goal. The limb movement is also proven to be undershooting

[61, 176], and this behaviour is explained by researchers as a result of time and energy

economy by the human system. We can suppose the same explanation is valid for gaze

movements, as mentioned by Hansen et al. in [87].

Despite bringing valuable insights in the understanding of the gaze/hand correlation

during hand movements, research often lacks example of studies that reflect a completely

natural activity. For example, measuring how the hand performs a targeting action with

a stylus as apparatus may be questionable when interpreting results that describe direct

manual reaching (because the stylus may add another control factor in the movement,

whereas the hand physical characteristics is already known by the control system thanks

to proprioception). This thesis explores the correlation between gaze and hand using a

tablet as a touch enabled device, which interaction from the users simply requires the

most natural way of targeting: direct hand input.
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2.2.2 Mouse and Gaze

We primarily interact with computers using our hands (as input) and our eyes (as output).

Before the generalisation of touch enabled devices, understanding the correlation between

gaze and hand in the field of Human-Computer Interaction relied on the mouse, which

acts an indirect manual input. Early work on gaze and mouse input correlation in

Human-Computer Interaction can be found in [174] (where Smith et al. studied the

correlation in target selection tasks and found out several patterns) and in [33] (where

Chen et al. found correlation patterns applied to web browsing tasks and an average

correlation of 0.58). In an exploratory experiment, Cooke [47] showed that mouse and

eyes are correlated 69 % of the time the mouse was on screen for different search tasks

on a set of webpages. Huang et al. [97] tailored a finer experiment to understand when

gaze and mouse are aligned in search tasks, and proposed a model of gaze prediction.

Buscher et al. [27] studied eye and mouse correlation on Search Engine Results Pages

(SERP)’s advertisement content.

When interacting with a desktop computer, the hand does not manipulate the mouse

continuously. Therefore, strictly from the device’s point of view that only receives mouse

signals from a user, the interaction remains sometimes idle. Rodden et al. [167] described

the coordination patterns on web search and noted that users often leave the mouse to

unmeaningful regions (labelled “nowhere” by [33]). Therefore, questioning the impact of

the task’s nature on the correlation is interesting. Bieg et al. [15] studied the correlation

between mouse and gaze on abstract search and selection tasks and showed that initial

knowledge of the target location influences the eyes targeting, and that users perform

search and pointer movements simultaneously when the tasks require visual search of a

target item before selection. They also confirmed the findings of [174] that eyes reach

the targeted item prior to the pointer, and they extended these findings by noticing that

the eyes tend to fixate the targets rather late when the approximate target location is

known. Liebling and Dumais [123] explored the correlation of eye and mouse in everyday

computer work tasks, which is another form a natural Human-Computer Interaction

study. They confirmed the fact that the eyes lead the mouse but nuanced this paradigm

indicating that it occurs only two thirds of the time, as “[this] depends on the type of target

and the familiarity with the application”. Çöltekin et al. [46] investigated the correlation

of mouse movements and gaze with visual search tasks on geographic displays in order

to estimate gaze position from mouse movements.
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We contribute to the understanding of the correlation between user’s tap and gaze by

studying direct touch input instead of the mouse, the traditional indirect manual input of

the works listed in this section. Besides, these references provided examples for the data

analysis of the correlation between gaze and hand in a Human-Computer Interaction

context.

2.2.3 Correlation between Gaze and Hand Movements

In the field of Human-Computer Interaction, a lot of studies scrutinised the correlation

between gaze and mouse (i.e. [15, 33, 34, 46, 47, 77, 82, 97, 101, 123, 141, 142, 167]),

claiming that the mouse is an indirect manual input. However, when just paying atten-

tion to the motion part of the hand/mouse, these studies are not a good representation

of the correlation between gaze and hand. The mouse may be at an unknown position

that the eyes need to capture (roughly) again, whereas the hand position in space is al-

ways unconsciously known by the users thanks to proprioception. Studies that pinpoint

the hand and gaze correlation during hand movement are, because of the naturalness

of the interaction, therefore found extensively in other fields of research (psychology or

neuroscience), in order to understand and model the human behaviour. Comprehending

how gaze and hand correlation during hand movements can be studied from two com-

plementary angles: in the temporal or in the spatial dimensions (Neggers and Bekkering

wrote in [143] “The central nervous system (CNS) apparently enforces a co-alignment of

the ocular and manual motor systems in space and time.”). Spatially, Fisk and Goodale

[64] showed that the hand approaches straight line paths at an inconstant speed between

two reaches. They also demonstrated that the latency between the gaze and the hand to

reach a target depends on directions: the distance was smaller when the hand reaching

the target was the same side as the gaze direction, longer when the opposite hand was

used. Neggers and Bekkering [143] found that gaze stays locked on the target during

pointing even when a new target appears during the movement. Keele and Posner [113]

highlighted the problematic protocol of the reference work from Woodworth [214] in

which the hand was doing back and forth movements. They suggested that the nature of

reversal movements brought some inconsistency in the analysis of the hand movements

as the forces deployed to counterbalance the inertia of the hand required extra time (and

energy [81]). Common sense would suggest that the temporal organisation of the eye

and hand while targeting necessarily means the eyes leads the action. In natural activity

contexts, Land [121] confirmed that the eyes led in the organisation of an action but
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there was no focus on the hand behaviour as such. Keele and Posner [113] evaluated

the time required for the central nervous system to operate after the visual acquisition

to last between 190 ms and 260 ms. Indeed, the role of the eyes relative to the hands

during hand targeting is subject to a debate: [16, 113, 143] supported the later state-

ment (meaning that the eyes “command” the hand in the control system), whereas other

researchers [17, 18, 198] rather considered that the hand and the eye are simultaneously

and collaboratively participating to the reaching a target. There is however no doubt that

gaze reach eventually the target faster than the hand [1]. In their review work, Elliott et

al. [61] reported that research studies showed how gaze contributed to maintaining the

hand’s accuracy by corrective movements controlled by the CNS.

2.3 Study Contexts

People commonly interact with touch enabled devices: mobile phones and/or tablets in

the private sphere, and kiosks at the public areas. Therefore, it would seem illogical

to study the correlation between gaze and hands based on an unnatural and unusual

interaction, such as performing an abstract task. During the preparation of our data

collections related to gaze and hand, we have devised contexts that are also found in

literature, since examples of natural and common activities are numerous in other works

which studied, among other interests, the correlation between gaze and mouse. The first

data collection context, described in detail in Chapter 4, is related to Internet based

activities and the first part of this section lists the research works that inspired us for

constructing our own context. The second data collection context was influenced by the

need of generating enough cognitive load from our participants, as explained in Chapters

5 and 6, and resulted in the deployment of a Memory Game. The second part of this

section summarises some of the works we queried to find what decision making activities

can be designed for research purposes.

2.3.1 Internet Based Tasks in Research

Studying how users interact with Internet seems very coarse, since many different types

of activities can be performed by users. In [42, 51, 112, 120, 211], no specific task was

designed because the data was collected “in the wild”. These approaches implicated the

users to run a client-side tracker, which in most cases did not interfere with the users’

browsing habits. For instance, de Santana and Baranauskas [51] made an evaluation of
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the different client-side tracking tools and introduced another one, WELFIT (Web Event

Logger and Flow Identification Tool). Lagun et al. [120] collected data from the EMU7

browser plugin installed on a library’s computers to track their mouse cursor movement

details. Claypool et al. [42] used both an unobtrusive tracking and intrusive webpage

evaluation tools, as did Kellar et al. [115] (although the intrusive tool was designed

to categorise the webpages at the time of reaching them instead of a popup window

appearing after the page was quitted to evaluate the page content). White and Morris

[211] used a client-side solution as well to collect data from free browsing activities. In

[28, 108], the data was directly retrieved from the servers of two different search engines

for query and search behaviour analysis. Arroyo et al. [10] introduced MouseTrack, a

tool deployed on a webpage to retrieve mouse activity. Conducting “in the wild” data

collection certainly gives the advantage of obtaining a large scale population, but limits

analysis tools to the browser only in the case of client-side studies, or limits the nature

of the study tasks in the case of server-side studies.

In fact, literature about user behaviour studies related to Internet based activities fo-

cuses very often on search tasks using SERP (Search Engine Responses Page). Search

tasks performed by users can mainly be categorised as informational, navigational or

transactional, as described by Rose and Levinson [168] and Broder [21]. Both studies

showed that navigational searches are less common than transactional searches, and even

less than information searches. However, as we describe below, studies involving SERP

often combine a set of navigational and/or informational tasks only, when transactional

tasks are preferably done on websites other than search engine websites.

In most cases of studies treating Internet search activity and SERP, participants were

asked to accomplish search tasks by entering an initial query with a predefined search

engine. The tasks usually consisted in answering informational questions [13, 69, 72,

83, 95, 142, 146, 167], which may have been combined with navigational questions [50,

57, 82, 97]. According to Buscher et al. [27], the queries were initially provided to the

participants “in order to make the initial SERP comparable across [them] ”. Giving initial

queries were also chosen in [50, 57, 82, 83, 97, 142, 167]. For the same reason, the search

engine may have been imposed to the participants, regardless being a commercial search

engine as in [13, 52, 69, 72, 82, 83, 97, 146] or a home designed one in [27, 57, 142, 167].

Some studies, as [27, 50, 57, 82], preferred using a cached SERP associated to the initial

query in order to avoid inconsistency between the participants’ experiments. To avoid
7The Emory System for Managing User Behavior data.
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personalisation effect, the browser’s cache, history and cookies were cleared in [97].

Search tasks do not always involve SERP. For example, Cooke [47] proposed a set of

navigational search tasks on a governmental website to collect data. Similarly, Atterer et

al. [12] asked the participants to find an entry to a particular point in Wikipedia’s FAQ.

Shrestha [172] analysed mobile web browsing usability relying on navigational tasks for

which the target websites were indicated (i.e. BBC, Yahoo, National Rail). Nakamichi et

al. [140] asked the participants to perform the same informational search on five different

websites they had selected beforehand, while Jones et al. [112] or Griffiths and Chen [77]

asked participants to look for different informational retrievals in the same website or

portal. Kekäläinen et al. [114] gave the participants several informational tasks to be

retrieved in a set of webpages; this method can also be found in [26]. In a holistic study,

Wang et al. [206] gave the participants the informational tasks, but let them interact at

will to complete the tasks, meaning their use of a SERP was uncertain. In those studies,

except in [206], participants were always directed to predefined websites, even if [172]

stated that participants were free to complete the tasks using the websites of their choice

rather than the suggested ones, it does not seem they did so.

Broder [21] describes transactional search tasks as tasks where the search target is a

website offering a transaction, such as an online shopping website, or the retrieval of

a resource, such as a map or a file. Few studies focus on transactional search (in [95]

the searched target was a compatible file for a software). Indeed, in studies involving

transactional tasks, it is far more common to directly target a website in which “actions”

can be performed, rather than using a search engine as an intermediate. Another classic

Internet activity found in studies is shopping: participants were asked to use an online

shopping website to find a product matching some criteria in [7, 11, 25, 41, 99] or to

simulate the purchase of a product of their choice in [185]. Chudá and Krátky [41]

proposed the setup of a “gamified” version of an e-shop to invite the users to interact

with the website intensively. Using transportation websites in studies can also bring a

lot of interaction from the participants. Despite not describing their tasks in details,

Burzacca and Paternò [24] employed an airline website to study mobile web applications,

Ehmke and Wilson [59] made use of a train tickets sales website. Online mailing activities

are also requiring high interaction from the participants. Shrestha [172], or Atterer and

Schmidt [11], included an email writing task in their studies, Iqbal and Bailey [99] devised

a mail sorting task in different mail folders with drag & drop interaction to study object

manipulation. Other kinds of study contexts call for a great amount of interaction from
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the participants as well, such as manipulating a company’s sales web-application [75],

entering events in an online calendar [11, 12], evaluating a website’s traffic figures in

Google Analytics [49], playing a quiz on an e-learning platform [49], or following a path

on a map to reach a target by using links [40].

Reading behaviour is another aspect of the research covering Internet activities, where

participants were asked to browse the indicated websites with further feedback tasks

[8, 25, 141, 151] or not [33, 146].

Instead of focusing on a particular type of activity, we gather the most common ones in

our data collection context to cover a wider range of Internet based activities that also

reflects the tablet’s use in real life.

2.3.2 Decision Making Study Activities

The decision making process during target selection on computing devices involves both

the human system (cognition), and the context of the stimuli on the machine [221].

So decision making activities are found in several fields, depending on which part of

the process the research is focusing on. Psychology, economic and medical research

focus on the human system, such as the arrangement of a decision making process [29]

or the impact of ADHD on decision making [43] based on the results of recognised

neuropsychological tests. Eye tracking is also sometimes used to assess the level of

indecisiveness of individuals, for example in [125], where Lufimpu-Luviya et al. present

different alternatives in a given context was presented on a screen to the participants,

their choices were recorded by the experimenter from their oral answers; or Patalano et.

al [154], who used a similar procedure, but the participant’s decision was done via a game

controller button.

Centred on computing, decision making studies either evaluate ways to assess or avoid

indecisiveness, or explain what triggers it. For instance, detecting frustration was pre-

sented in [3] using sensors to detect typical hand features while participants play a game

(in which glitches mean to provoke their frustration) . In his PhD thesis [2], Anh de-

scribes the experiment environments used for his work on the role played by emotions in

decision making. One of them, involves, for the decision making part, a betting applica-

tion participants played on a desktop computer. To monitor their response, a wristband

skin conductance sensor was worn by the participants on their non-dominant hand. In

a study of the effect of interruptions on decision making, Speier et al. [177] devised a
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set of tasks (simple and complex) to be performed on a desktop computer. Simple tasks

consisted in answering questions in view of preparing scheduling workload on several ma-

chines, while complex tasks involved accomplishing mutually related activities of facility

location and planning aggregation. No body sensor was used in their experiments, they

measured performance from the decision accuracy and time. Gonzalez [76] investigated

the role of animation in user interfaces of two applications (for finding an accommodation

rent, for playing a scenarios game based on a physical phenomenon) in regards to deci-

sion making. Ho and Tam [92] studied the effects of web personalisation on the decision

making with first asking their participants to make selection of a sound media file from

a web service.

Our work spans through both worlds as we describe the gaze and hand behaviour that

characterises decision making on a tablet. From literature, we notice that the decision

making context application varies a lot depending on the measurement made in the

research work. Since we only need the participants to make decisions without measuring

anything else but their gaze and hand movements, we selected an application that keeps

the participants entertained while requiring them to make decisions: a Memory Game.

2.4 Human-Computer Interaction Applications

In this last section, we review the research works, from literature related to the field

of Human-Computer Interaction, that illustrate applications from either using gaze and

hand inputs (as two independent but complementary modalities, or taking advantage

of the correlation between gaze and hand), or integrating above the air manual input.

From this section, we want to justify the important roles gaze/hand as modalities and

the hands in the volume above the interactive surface can play when interacting with

computing devices - which corroborate the overall aim of this thesis. Therefore, this

section is divided in two parts comprising each of these three centres of interest, that are

directly connected with our research topic: applications from gaze and hand modalities,

and applications from hand input above the interaction surface. Despite our thesis being

organised around three hand events, the background review in this section only covers

two: stationary hand events and hand motion. Contrary to the hand events above

the air, tapping is by nature a very simple, commonly employed and direct interaction

mean. In the third part, dealing with above the air manual input applications, we

include a particular application: the detection of hesitation. One of the objectives of the
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thesis is to understand how the correlation between gaze and hand can inform the user

cognitive state, in particular hesitation. We selected works studying how the hands can

indicate hesitation to find out if, as we suggest in the thesis, hand stationary events may

be considered as an indicator of hesitation. The outcome of understanding the user’s

cognitive state, in Human-Computer Interaction, leads to the deployment of adaptive

interfaces. The systems react the the users (intelligent HCI). Therefore, finally, we review

the key concepts and state of the art experiments found in research related to adaptive

interfaces.

2.4.1 Applications from Gaze and Hand Modalities

2.4.1.1 Using Gaze and Hand Modalities Independently

It is not a surprise that Human-Computer Interaction experts took interest in using

gaze as an input. Jacob [103] made a detailed study of gaze use for Human-Computer

Interaction which served as a reference for eye tracking, he pinpointed the “Midas Touch”

problem that gaze interaction brings. One of the first major work reference related to

gaze interaction has been provided by Zhai et al. [222], where they clearly explained

what gaze interaction can bring: hands substitution, increased speed and health issues

prevention by avoiding manual contact with devices in public spaces. Their work is often

considered as one of the first concrete application examples of gaze interaction: they

presented MAGIC, a pointing tool taking gaze as an active input.

Recent studies involved the hand directly: researchers in Human-Computer Interaction

also acknowledged how much potential can gaze and hand bring together to the inter-

action with computing devices. Yoo et al. [220] designed a system retrieving hand and

head movements (computed with depth and colour cameras, gaze was approximated from

the head posture) to interact with a wall display. Gaze was used to target the centre of

interest while hands performed actions such as zoom or panning (browsing) triggered by

a push/pull horizontal movement. Similar work was presented by Slambekova et al [173]:

eye tracking was estimated from an eye tracker and the hands gesture or movement from

a Microsoft Kinect; and Chatterjee et al. [32]: using a remote eye tracker and a Leap

Motion to explore continuous manipulation (Gaze+Gesture, where hand movement was

used for moving a cursor). Velloso et al. [197] conducted a comparison between the dif-

ferent selection methods for object manipulation in a 3D space on a laptop screen: with

gaze, with a hand 2D raycasting technique and with a 3D virtual hand technique. They
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found that gaze and hand interaction performed better and in a more natural manner

that the two other techniques. Same conclusions were shared by Zhang et al. [224].

Tablets’ widespread and ease of use have also led researchers to find ways of estimating

the point of gaze onto the tablet’ screen without specific other tracking devices. This is

the device we selected to represent touch enabled devices in our study. Despite no work

has particularly focused on the correlation between gaze and hand on tablets, interest

in using both input methods has been subject to several research projects. For instance,

Turner et al. [192, 191] have designed a cross-device content transfer method using an

eye tracker, from a shared monitor display to a tablet (or a laptop). In their setup,

content acquisition and transfer were done by a combination between gaze and hand

inputs. Pfeuffer and Gellersen [161] explored the potential of combined gaze and hand

inputs for new interactions techniques on tablets, transforming the touch input as an

indirect medium. Takahira et al. [183] designed a system using on a camera (viewing

from the back of the user), that modelled gaze estimation based on several parameters,

including the device’s handling and eyeball position’s estimation.

In these applications, however, the actions of the eyes and hands seemed complementary

but somehow independent: no combined data served the systems to bring new informa-

tion.

2.4.1.2 Using the Correlation between Gaze and Hand Modalities

In early works studying the correlation between gaze and hand, researchers focused on the

mouse as the indirect manual input. Guo and Agichtein [82] acknowledged previous work

on eye-mouse correlation, and they also proposed to automatically infer gaze position

from users’ mouse movements in the context of web searching activities. They obtained

an accuracy of 77 % within 100 pixels. Navalpakkam et al. [142] studied nonlinear

webpages layout (the content of the pages were not made of a single type of elements

on top of each other in the manner SERP was typically presented then, instead, the

pages were made of diverse elements organised in both dimensions of the pages) and

they showed that both gaze and mouse are sensitive to two characteristics of the page

elements: their position and their relevancy to the user’s task. Additionally, they also

achieved a gaze prediction based on mouse activity with 67 % accuracy, with an error

up to one page element.
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To our knowledge, gaze and hands together as one unit described by their correlation

with one another has not been used for interaction involving the hand as a direct input.

2.4.2 Applications from Manual Input above the Interactive Surface

In the following, we summarise the works only involving the hand has an input above the

surface of the interactive system.

Marquardt et al. described the possible interaction techniques combining gesture and

touch with digital surfaces in [128], and cited hovering as one of these interaction means,

for instance allowing feedback of possible actions.

Wacharamanotham et al. explored the finger interaction above the desktop devices in

[203]: they first studied the best thickness of the volume above the desktop surface for

proper interaction, and recommended a height depending on the nature of the hand

movements (2 cm for short movements, 4 cm for long movements). Choi et al. targeted

mid-air interaction on laptops: in [39] they designed a touchpad able to detect the hands

above it, and they suggested the use of hand hover as an activity recognition (in their

case, typing), but they did not detail the hover detection method.

In [213], Wilson and Benko proposed an interactive space in which the volumes between

surfaces was exploited. Among different gestures, they used hand dwelling to validate

a vertical menu selection. Even if they mentioned they processed images from depth

cameras, the evaluation of a dwell was not detailed. Active pointing is closely related to

“unaware” hovering; in [139], Müller-Tomfelde detailed the temporal steps of pointing,

and reported dwell times from 300 ms to 1 s. However, dwell time comprises a reaction

time from stimuli that is not existing in passive unaware hovering. Likewise, Colombo

et al. designed an unobtrusive system (PointAt) to control the information displayed

on a room’s interactive walls using hand pointing [45]. They employed video processing

and triangulation to detect the hand direction (and pointing), as well as thresholds to

ensure the hand was actually engaged in pointing: a temporal threshold indicating the

minimum duration for which the hand stayed in a limited portion of the screen (spatial

threshold). Their work was not focused on the evaluation of these thresholds.

Hover is often used for interaction with mobile phones. For instance, with Air+Touch

[35], Chen et al. explored different gestures in the air and hover was used to control

the pages scroll speed. Nevertheless, again, the hover detection as such wasn’t detailed.

Hinckley et al. [89] used pre-touch sensing on a mobile phone based on its touch screen
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and edges detection. Despite not using the stationary events of the hand, some of the

techniques they proposed, such as detecting the finger’s approach to place a menu at the

right position, could be also triggered by a dwell of the hand (they employed hover as an

equivalent to mid-air interaction, as do Ostberg and Matic [148] who designed a mid-air

pointing and selecting technique on mobile phones).

Grossman et al. developed a device to interact with thanks to multi-fingers gestures

[79]. A spherical display tracked the hands with markers in order to manipulate objects

in a 3D environment. Hand motion, combined with gesture for object selection, was

used here for moving the objects. Wilson and Benko proposed another prototype of

3D interaction system, LightSpace [213], comprising two interaction surfaces (vertical

and horizontal) in a cubic structure (smart room), where the volume within was also

an interactive space. Hand movements were used to move objects around (on, between

and above the surfaces). Cheung et al. [37] discussed the interest of finger hovering

on a tactile display to improve interaction, in the same manner mouse hovering brings

extra information on a desktop computer, even if in their speculations, hand motion was

limited to analyse the finger’s approach. Han and Park [84] designed a hover technique

in line with Cheung et al.’s aforementioned speculations. They proposed two zoom

techniques relying or partly relying on hover distance to a tabletop screen (estimated

by computer vision). Wacharamanotham et al. [203] explored the mid-air interaction

above devices (keyboard) for standard desktop configurations. They searched in which

volume hover was reliable to be used without ambiguity, and tailored an in the air clicking

technique above the keyboard. Choi et al. targeted mid-air interaction on laptops: in

[39] they designed a touchpad able to detect the hands above it, and they suggested

the use of hands hover as an activity recognition (in their case, typing). Xia et al.

[215] recorded hand movements with a ring sensor to evaluate the trajectory during

tapping on a large tactile display (with controlled starts and ends) in order to model this

trajectory and then build a touch predictor to reduce the latency between tap and system

response. Similarly, Onishi and Shiroshima [147] collected the projected trajectories of

the hand while performing taps on a smartphone’s touch screen (hover detection built in)

to prefetch the data to the then estimated touch point. With the willingness to develop

new interaction techniques in mind, Marquart et al. [128] proposed a range of gesture

to work with a (large) touch enabled screen, exploiting the space above the surface to

manipulate objects or trigger actions from the interface. Hinckley et al. [89] explored the

hand proximity sensors to modify a phone’s interface at finger approach; while Chen et al.
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[35] developed Air+Touch, a set of new techniques for mobile phone interaction using a

depth camera to record in the air gestures, and suggested application examples on maps,

document reader, photo gallery and drawing. Ostberg and Matic [148] facilitated the

performance of taps on small targets by showing continuous finger’s projection feedback

using the hover sensing of a mobile phone screen (Hover Cursor).

This short review shows the potential applications of retrieving hand motion. We are

taking a step further by also retrieving gaze and thinking how the combination of these

two inputs can serve Human-Computer Interaction in a smarter way.

2.4.3 Hesitation Detection

Observations associated with Fitts’ law related studies informed that during continu-

ous target selection, the hand realises “dwell times” between two consecutive movements

[66]. Meyer et al. [130] highlighted the role of hesitation in hand dwell time. Interpret-

ing human hesitation has been studied in Human-Robot interaction. Moon et al. [132]

investigated hesitation characteristics in a targeting conflict inter-human collaborative

activity, to later implement this behaviour to a robot. They modelled one type of hesi-

tation (retract) based on acceleration to evaluate nonverbal communication with robots.

Their study, however, did not focus on more than one target, and they showed that their

model could not work with the “pause” type of hesitation.

Nevertheless, their work is also used in Human-Computer Interaction, as explained by

Vodlan et al. [201], who made a clear explanation on how Social Signals Processing can

be used for Intelligent Human-Computer Interaction [58] (HCI2 [152]), and in particular

how gestures can indicate human hesitation to a machine. They classified the subjects’

activity into two states, {hesitation | no hesitation}, based on their observation, and

proposed a logistic regression model relying on the most significant observed features

[200].

Time indicators between stimulation and response can show hesitation and therefore be

used by machines too [136, 201]. Our work adds-up with this research trend by proposing

a method to evaluate hesitation based on different input channels (gaze and hand).
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2.4.4 Intelligent and Adaptive User Interfaces

Human-computer Interaction encompasses the technologies, practises and understand-

ings that allow humans to work with machines, but also machines to work with humans

(human-centered interaction [149] or Intelligent Human-Computer Interaction [152]).

Jameson [106] describes a user-adaptive system (equivalent to “adaptive interfaces”, “per-

sonalisation” or other terms used in literature) as a system that “makes use of some

type of information about the current individual user [...], can be defined as an interac-

tive system that adapts its behavior to individual users on the basis of processes of user

model acquisition and application that involve some form of learning, inference, or deci-

sion making”. Thus, the adaptation may result in different outcomes: sometimes clearly

visible (such as the content adaptation when the content depends on the user’s activity,

choices and habits i.e. commercial website’s item suggestions) and sometimes not visible

(such as the system adaptation where the processes are adapted to the user to guarantee

an optimum result commonly expected by the system i.e. phone typing auto-correction).

Benyon, in [14], gave the guidelines to analyse the usability and to design systems ap-

propriately to “build intelligence into the system” and reports the four adaption levels

established by Browne et al. [22]: simple (“use a ‘hard-wired’ stimulus-response mecha-

nism”, self-regulating (“monitor the effects of the adaptation on the subsequent interaction

and evaluate this through trial and error ”), self-mediating (“monitor the effects on a model

of the interaction”) and self-modifying (“capable of changing [their] representations”, the

models can be adapted). The adaptation of a system may take different aspects: taking

over parts of routine tasks, adapting the interface, helping with system use, mediating

interaction with the real world and controlling a dialogue according to Jameson [106]. In

the following background review, we refer to the major research works focusing on the

particular functionality of adaptive interfaces.

Early personalisation interfaces have been experimented by Chesnais et al. [36] and

Höök [96]. Chesnais et al. introduced Fishwrap, a personalised electronic newspaper

targeting freshmen at MIT. Fishwrap delivered content based on the user’s personal

information (place of origin, affiliation with MIT and interests) and interaction (position

of the consulted articles within the page), and had been well received by the readers

despite concerns dealing with privacy. Höök presented PUSH, an adaptive hypermedia

system, which content (information the users wanted to retrieved) was tailored based on

the user’s activity (clicking, StretchText8 actions). The evaluation of PUSH revealed
8StretchText is similar to hypertexts but expand in-context, cf. https://en.wikipedia.org/wiki/
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that users required fewer actions compared with the non-adaptive equivalent system and

it was prefered.

Bohnenberger et al. [19] investigated the usability of a location-aware shopping assistant

application on a PDA. Their application indicated the shopping areas of interest (adap-

tation of the content) for a user based on her location in space, but also on the interest

showed in specific products and the purchases during previous shopping sessions. They

showed the application performed better (faster shopping and preference) than a paper

map.

Content adaptation is often deployed on commercial Internet websites to provide the

buyer a fast access to their preferred or likely to be preferred products, ease the purchase

process and run marketing strategies. Alpert et al. [6] conducted an evaluation of a user-

adaptive online commercial website (prototype) from the users point of view, and found

out that users did not always respond in favour of system intrusion and personalisation,

and that they preferred “[having] full and explicit control of data and interaction” as well

as clearly understand the way personalisation was in place on the system.

Content adaptation is not solely based on the user: Cheverst et al. [38] proposed GUIDE,

a context-aware tourist guide. Their system relied on both personal (such as the user’s

interests) and environmental (such as opening time of the attraction) contexts. GUIDE ’s

users showed a high acceptance of the adaptive system, but the authors realised that

it should allow a choice of functionality level as some users found GUIDE somehow

confusing. Likewise, Kortuem et al. [117] proposed an adaptive wearable system that

adapted itself based on the local environment, by communicating with intelligent objects

nearby via infrared beams.

With simple approach of adaptation, McGrenere et al. [129] tested the acceptance and

effectiveness of the personalisation of a complex software: users were able to chose the

elements from the Full Interface they wanted to keep, and therefore two interfaces were

used (Personal and Full). They reported that users appreciated the possibility to person-

alise the software interface, but that the system could offer a smarter way of setting the

personalisation by assisting the user to create its profile (“mixed-initiative interface”).

Gajos et al. [73] evaluated different adaptive graphical interfaces based on existing work

(Split Interface, Moving Interface and Visual Popout Interface). Their evaluation showed

that the acceptance and the performance of an adaptive interface by the users seems to

StretchText (last accessed Jan. 2020)
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depend on the accessibility: more accesses brought dissatisfaction and low performance.

They also indicated that if the frequency of adaptation is too high during a session, the

users may feel unsatisfied.

Adaptation can also be retrieved from sensors that reveal the user’s cognitive state or

emotions. Tan and Nijholt [184] investigated the role of Brain-Computer Interaction in

Human-Computer Interaction, and among other applications, they encompassed it to be

used in adaptive systems, for example to evaluate when to interrupt the user. Iqbal and

Bailey [99] used eye tracking to estimate the tasks performed by the users and adapted the

system disruption levels accordingly. Still employing eye tracking, Iqbal et al. studied the

mental workload of different tasks through pupil response [100] and proposed to use their

finding in attention manager applications. Duric et al. [58] suggested other examples of

biological indicators of the user’s cognitive state: “facial expressions, upper-body posture,

arm movements, and keystroke force” that can be used to build an intelligent adaptive

system. Rothrock et al. complemented these examples with “a wide range of possible

inputs about the user’s physiological state (e.g. EEG, heart rate variability)”, and also

mentioned other user’s traits that can be used for adaptive systems that yet need to be

assessed before the interaction (i.e. user knowledge, user personality, cogntive style).

In this thesis, we endeavour to find out if the correlation between gaze and hand can be

used to understand the user’s cognitive state (hesitation in particular in our case) and if

so, propose to use this input to built an adaptive interface system that can respond to

the user’s hesitation.
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Study Setup

This chapter presents the methodology for setting up our studies. The first part deals

with eye tracking and relates to both studies covered by Chapters 4, 5 and 6. The second

part focuses on the on-screen hand gestures recognition that only concerns the work of

Chapter 4 (first data collection).

3.1 Eye Tracker

The procedures found in eye tracking studies for installing and preparing the devices

are often the same, positioning the eye tracker, calibrating it and using it consist in the

basic steps any eye tracking study must start with. This section describes the steps and

methods we followed in our work for the data collection we achieved with two eye trackers:

Tobii X2-60 for the first data collection (relating to Chapter 4) and Tobii EyeX for the

second data collection (relating to Chapters 5 and 6). Whenever the case happens, we

will indicate in this section if we had not followed the standard procedure and why. The

type of eye tracker we mention in this section are remote infrared eye trackers, such as

the two eye trackers we used in our work.

3.1.1 Eye Tracker Installation

The standard configuration for remote eye tracking assumes the subject to face a vertical

(or near to vertical) display (such as a computer monitor) under which the eye tracker
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is attached (horizontally centred), therefore working with an image of the eyes captured

from a bottom-top angle (cf. Figure 3.1). The subject can either stand up or seat,

depending on the purpose of the study and the height of the monitor.

Figure 3.1: Usual remote eye tracker configuration.

Source: Tobii online documentation

However, in our work, we did not follow the usual installation of the eye tracker: our

monitors (tablets) were not standing vertically but near to horizontally. In the first data

collection, the subject sat on a chair and the eye tracker was placed under the tablet

level (cf. Chapter 4) because (1) we used a rack especially designed for smaller displays

which presents the tablet to the users in a near to horizontal position and (2), tablets

are often handled near to horizontally by users when they need to interact with them

manually. For the second data collection (cf. Chapters 5 and 6), the tablet was also

near to horizontal, but the eye tracker was exceptionally placed above the screen to

compensate the posture of the subjects: they stood up during interaction and a low

position of the eye tracker resulted in poor eye tracking.

For both eye trackers we used, an extra step was necessary after installing the eye tracker:

configuring the eye tracker with the monitor’s position in space. This step is, however,

not always required when using an eye tracker. Commercial eye trackers, such as Tobii

EyeX are sold to be used by the general public and work with a good enough estimation

of the screen dimensions based on the default spatial configuration of the device with the

monitor and the calibration1 process. In our case, we needed to inform the eye tracker of

the monitor’s position because of an unusual configuration. For Tobii X2-60 (used in the

first data collection), Tobii provides a tool illustrated by Figure 3.2 that communicates

with the eye tracker so the dimensions and position of the monitor on the rack can be

sent to the eye tracker. The values that are not related to the screen dimensions were

provided by Tobii with the rack’s manual.
1The calibration is described in the next section.
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Figure 3.2: Tobii X2-60 configuration tool.

With Tobii EyeX, we used the Tobii API from a custom programme (developed in C# )

allowing to provide the eye tracker with the relative position of the monitor in space. The

programme snippet, illustrated by Figure 3.3, shows how this configuration is achieved:

the position of three of the display corners (top left, top right and bottom left) are sent

to the eye tracker via the API.

3.1.2 Eye Tracker Calibration

In order to model the eye adequately for a specific user, the eye tracker need to be

calibrated. The procedure for the calibration is common among eye tracking studies:

several targets are displayed on the screen sequentially, and locations which cover the

whole screen area, the subject is asked to stare at them so that the eye tracker acquires

data for this specific point and later, once all the targets have been displayed, compute

the model of the eyes at the different points of gaze associated with the targets. When

designing an application requiring an eye tracker, there is therefore a trade-off to make

between usability and accuracy. A calibration with many points increases the accuracy of

the model made by the eye tracker, but costs time for the user and downgrades the user

experience. Besides, over calibrating is not necessarily guarantying a better interaction

since it does not bring better data quality. In a research studies, 5 or 9 points are usually

found for the calibration2. We used 9 point in our first data collection, and 5 in our

second data collection.
2Tobii Pro SDK documentation indicates that “Usually 5 points yields a very good result and is

not experienced as too intrusive by the user.” http://developer.tobiipro.com/commonconcepts/
calibration.html (last accessed Jan. 2020)
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Figure 3.3: Tobii EyeX configuration via API.

The calibration process, as well as the checkup of the calibration validity, are often simply

achieved by the tools proposed the eye tracker’s constructor - saving the designer of an

application using eye tracking to implement these. Nevertheless, other methods may

be employed instead: for the calibration process, the eye tracker’s API can be used in

a custom programme (which we did for our work); for the calibration validity, visual

assessment can be performed by a simple control task (showing the point of gaze point

on the display and asking the subject to stare at specific targets - option we chose in our

first data collection) or indicators can be computed based on the eye tracker estimations

and target positions (choice made in the second data collection). These indicators are

the precision and the accuracy. The notions of precision and accuracy are illustrated in

Figure 3.4: a precise calibration is consistent in the estimation samples’ value (for a given

target the estimations are not varying a lot), an accurate calibration shows estimation

samples reliably close to the ground truth.

Precision and accuracy are, for eye tracking, expressed in degrees of visual angle, and

respectively computed as showed by equations 3.1 (where n is the number of samples,

i is the 0-based index of a sample and θ is the value of visual angle between sample i

and sample i-1 ) and 3.2 (where n is the number of samples, i is the 0-based index of a

sample and α is the value of visual angle between sample i and the ground truth target).

Acceptable values for accuracy and precision depend on the purpose the eye tracker. For

fixations and saccades detection, a precision value up to 0.05◦ is commonly accepted,
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while accuracy is less critical and can reach up to 1◦ [94].

precision =

√√√√ 1

n− 1

n−1∑
i=1

θ2i (3.1)

accuracy =
1

n

n−1∑
i=0

αi (3.2)

Over time, eye trackers often need to be recalibrated. Factor for such drift are explained

by Holmqvist et al. in [94] as a result of “physical conditions change after calibration”.

It is therefore custom, in research work with eye tracking, to report the drift observed

after a data collection or experiment session. The procedure to measure drift is the same

as the calibration.

Figure 3.4: Eye tracker precision and accuracy.

Source: Tobii Pro online documentation

3.1.3 Eye Tracker Data Interpretation

The samples provided by the eye trackers we used contain a time stamp, a validity

code and the estimated gaze of point for each eye. The eye tracker API usually contains

methods to synchronise the eye tracker and the computer clocks, as well as to retrieve time

stamps that take the latency of the system into account. It is possible that at a moment

in time during interaction, the eye tracker only tracks one eye, both eyes or none during

interaction (for instance, when blinking). Such loss of data is expected and when eye

trackers are used for research purpose, data from participants which presents too much

loss should be discarded. There is no specification related to the thresholds or criteria
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that should be observed in order to consider data from a participant valid. Literature

usually provides this information on a study basis with the authors’ appreciation. For

our work, we based the threshold of data quality upon two different criteria. We used a

comparison criterion for the first study between the number of touch input samples and

the number of gaze samples during the completion of a task. The eye tracker frequency

was 60 Hz and touch events was approximately 100 Hz. So, the ideal ratio touch/eye is

about 1,66666. If the ratio for a task was more than 2 then it was considered the eye

data was not sufficient. For the second study, the criterion is the duration of the task.

Knowing the eye tracker’s frequency, it is easy to check what percentage of samples are

valid for a given period. Our threshold values was 60 %.

3.1.4 Eye Tracker Limitations

Because eye trackers work with a natural input (the eyes) and suffer from technical issues,

they limit the scope of experiments (distance between the user and the tracker, model of

the eye, lightening environment ...).

Remote infrared eye trackers are commonly used in eye tracking, such as Tobii X-20

and Tobii EyeX. They emit infrared on the eye, and a combined image of the eye balls

in natural and in infrared lights is then analysed against an eye model to estimate the

point of gaze. Therefore, these eye trackers have several inherent constraints. First, the

external environment where the eye tracker is used must avoid sources of infrared lights

that could create an interference with the eye tracker system (for example, other sensor

beams, sunlight...). Makeup can also interfere with eye tracking (because of reflective

substances) and it is usually advised to ask eye tracking subjects not to wear makeup.

The subject must also stand in front of the eye tracker in a distance and a position that

allow the eyes to be tracked. Moreover, eye tracking does not permit several users to

interact simultaneously with an eye tracker: only one subject’s eyes can be tracked by

one eye tracker. Personal features may also impact the quality of eye tracking as the

eyes of the subject may not be modelled properly under some conditions. The model of

the eye relies on standard eye characteristics that implies the subjects have healthy eyes

(shape that stays in the limits allowed by the model, detectable pupil etc). Most eye

trackers (at least the ones we used in our work) can model the eye even if the subject

wears glasses or contact lenses - as long as the lenses do not distort the image of the eye

and the infrared light strongly. Therefore, some type of eye correction may prevent from

the eye modelling to be perform well and the eye tracker to be used. The eye lid also
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plays a role in the eye detection: droopy eye lid may cover the eyes too much for the eye

tracker to be able to model the eye correctly.

3.2 On-Screen Hand Gesture Detection

On-screen hand gesture recognition was required for the first data collection we made

(covered by Chapter 4). In this section, we present the technical choices and principal

steps that we implemented to collect manual hand input from a tablet and get the

gesture associated with this input. The design of our application restricted the expected

gestures to taps, pans (drag) and, potentially, zooms. In the following, we present the two

complementary solutions we employed for (1) collecting raw input data and (2) interpret

the data to retrieve the hand gestures performed on the tablet.

3.2.1 Raw Manual Input Data

In order to process the data from the on-screen manual input, we looked at how to

retrieve this input directly from the digitizer itself. To achieve so, we initially parsed the

HID reports of the tablet’s embedded screen, using the native Windows Raw Input API.

Human Interface Device (HID) reports are standardised files that a device presents to

the operating system to describe how its data should be interpreted by the latter.

Microsoft provides online documentation regarding how to search for the appropriate

data (of the digitizer) in the HID reports: the data can be reached by finding the right

page and usage in the report. For instance, the X and Y values of a contact point in the

digitizer is found at the page Desktop (0x01) at the usages 0x30 and 0x31. Documentation

on the functions and types exposed by other native APIs we used is also available online.

The following describes the main steps to retrieve the raw input data from the digitizer

using the Raw Input API of Microsoft. We wrote a C#programme to call the native

API functions and parse the data. The API, as well other native Microsoft APIs are

linked with the C#programme via the following dll files: user32.dll for the Raw Input

API, hid.dll for the system API to work with HID reports, setupAPI.dll for getting

information about the devices managed by the OS and kernel32.dll for access to the

OS kernel, memory and system resources.

Firstly, the digitizer (as registered in the HID list) need to be found. Figure 3.5 shows

the code snippet to retrieve the digitizer (API function GetRawInputDeviceInfo) and
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register it with the API to lookup its report (API function RegisterRawInputDevices).

The vendor and product identifiers are found against the HID report looked up at the

page Digitizer (0x0D) for the usage Joystick (0x04).

Figure 3.5: Code snippet showing how to retrieve and register the digitizer with the Raw Input API.

Our C# application then overrides the function WndProc. Microsoft defines it as “An

application-defined function that processes messages sent to a window.” (online documen-

tation). When this callback method is called, we set up a time stamp of the touch event,

and we check whether the message sent as an argument to the method is of the right type

(API type WM_INPUT) and attempt to read the HID report data. The data is obtained by

reading the values of the desired pages/usages. An example of reading values is shown

in the code snippet illustrated by Figure 3.6: the API function HidP_GetUsageValue is

called whenever a value need to be retrieved.

Whenever the C# application receives an HID report, it parses it, then prepares and

sends a data packet into a network socket over TCP, on the same machine (local address

127.0.0.1, port 5945) where the application runs (the tablet). If several contact points
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Figure 3.6: Code snippet showing how to read the HID reports data of the digitizer with the Raw
Input API.
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are sensed by the digitizer, the API returns a message serially per contact point. We

gather them in one single packet that contains the time stamp (8 bytes, a tick value as

implemented by C# in the DateTime class), the number of contact points (1 byte) and

for each contact points: the point ID (4 bytes), the normalised X coordinate (4 bytes),

the normalised Y coordinate (4 bytes) and the touch point status (1 byte, value of 0 if

the contact point is at the birth status, 1 if the contact point is at the death status, and

2 if the contact point is at the move status). All information is encoded in big-endian

order.

3.2.2 Third Party Gesture Detection

The Raw Input API described in the previous section does not inform of the on-screen

gestures directly. Therefore another tool is necessary to analyse the raw input data and

return the right gesture. We used a third party application, Sparsh UI3 that can do so

when raw input data is sent over via a network socket. Sparsh UI is a Java application

that consists of a server to receive the raw data, prepare it for interpretation and send

the data to a client that interprets this data as on-screen gesture. In our case, the

C# application send the raw data as explained in Section 3.2.1 to the Sparsh UI server,

and we used the client API of Sparsh UI to write file logs.

Figure 3.7: Code snippet showing how the raw input is processed by Sparsh UI.

3https://code.google.com/archive/p/sparsh-ui/ (last accessed Jan. 2020)
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Figure 3.8: Code snippet showing what selected gestures are interpreted by Sparsh UI.

At establishing the first connection with the Sparsh UI server, the C# application of

Section 3.2.1 sends a single byte (value of 1) as required by Sparsh UI to register the

new sender. We consecutively also send extra information related to our study work: the

participant index and the task type, as these elements are saved in the log file’s name.

The server then enters into a loop mode to receive the data packets from the network

socket. Figure 3.7 shows the part of the server that extract the time stamp (added for

the purpose of our work) and the raw input data (via the method readTouchPoints of

the class InputDeviceConnection).

Sparsh UI’s gesture detection logic starts with the method processTouchPoint of the

class InputDeviceConnection. We altered the method by adding an extra argument for

the time stamp, which is sent through all other subsequent methods. Also, we limited

the gestures recognition to taps, drags and zoom events in the constructor of the class

TouchEventGestureClient as illustrated by Figure 3.8.

Sparsh UI handles the gesture recognition by performing several check points4 for each

type of gestures allowed by Sparsh UI against the touch data of a same group. A group,

as seen by Sparsh UI, gathers several touch points and is alive as long as at least one

identified touch of the group is still alive: for example, if during interaction the user

touched the tablet with a finger (assuming there was no interaction), Sparsh UI would

keep the group alive as long as at least a touch exists without any break at any moment

in time.
4We do not, in this thesis, intend to explain the details of Sparsh UI internal logic. As an example:

for the zoom gesture, a check point can be the presence of two simultaneous touch points.
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Figure 3.9: Code snippet showing the writing of on-screen gestures log files with Sparsh UI.

Once the gesture has been identified, we use the class TouchEventGestureClient that

needs to implement the API’s class Client to write the resulting data (timestamp, gesture

type, coordinates and additional parameter) into a log file. The code snippet in Figure

3.9 shows the content of the method processEvent in which this is achieved.
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4
Correlation between Gaze and Tap

4.1 Introduction

When interacting with computing devices, manual input is highly connected with how

users visually inspect UI content. The common Human-Computer Interaction scenario

implicates the hand as an (indirect) input and the eyes as the monitoring element (to

analyse the interface). The correlation between manual input (using the mouse acting as

a proxy for the hand) and gaze has been of particular interest in many research efforts

[15, 33, 123], to better understand visual attention across the variety of computing devices

we use on a daily basis, and to propose new concepts that enhance the interaction.

However, besides the increasing popularity of tactile devices, correlation between touch

input and gaze has, to our knowledge, not been studied yet.

In this work, we investigate how tapping correlates with gaze on a tablet device. We

conducted a study with 24 participants and collected data related to touch input, gaze

and tapped targets. Our data collection context turns to Internet related tasks, be-

cause browsing is a typical task widely used as study context for measuring mouse-eye

correlation [97] and commonly performed by tablet users.

Analysis of the data indicates the following results: (1) gaze preceded touch with similar

spatial and temporal features than observed with the mouse, and (2) the distance kept

between the gaze and the touch varies across users, and was influenced by the learning

and anticipation effects of the tasks.
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4.2 Pilot study

4.2.1 Introduction

In the designing process of the data collection to study gaze and tap correlation on

a tablet, we considered setting up a commercial rack from Tobii, especially made for

interaction with small touch devices such as phones and tablets. However, the presence

of the guide bars that were part of the rack (cf. Section 4.3) raised concerns over keeping

the naturalness of the participants’ interaction during the data collection. In other words,

we wondered whether the guide bars would prevent the participants from tapping onto

the tablet as they would do so in a natural context, when no other equipment accompanies

the tablet.

4.2.2 Method and Apparatus

To answer the question of the guide bars’ influence on the tablet interaction, we conducted

a short pilot study with 6 participants (recruited among other students of the School of

Computing and Communications at Lancaster University - 1 female, 1 left handed, age

28.5±9.1) to perform a target selection task (by tapping) on a tablet (Microsoft Surface

Pro 3, landscape mode, screen size 12 inches, resolution 2160×1440) under two conditions.

For the first condition, the tablet was mounted on the Tobii rack (with the guide bars),

whereas for the second condition, the tablet was left stand-alone on the desk (in a position

close to horizontal to avoid the tablet to slide when tapping, and also to keep a similar

position of the tablet with the rack condition).

For both setups, the participants were instructed to tap on a red circle-shaped tar-

get as fast as possible with their dominant hand. In total, 15 targets sequentially

appeared on the screen, in the same pseudo random order for all participants, as il-

lustrated by Figure 4.1. The targets of 22 pixels radius were distributed across the

tablet’s display (3 rows, 5 columns). They were placed at the following screen ratios

[0.1, 0.3, 0.5, 0.7, 0.9] × [0.1, 0.5, 0.9]. To trigger the sequence, participants had to tap on

the first target which was displayed right after the application was launched. For all

targets, if a tap was outbound, the sequence did not continue and the target remained

shown. Each participant performed 10 trials on each setup (tablet on Tobii stand or on

the desk). The setup order was counterbalanced between participants.
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During the trials, the following metrics were recorded: target’s selection completion time,

distance between tap position and the target centre, and number of outbound taps (fails).

Figure 4.1: Pseudo-random sequence order of the pilot study targets.

4.2.3 Results

In the following results, condition refers to the experiment setup configurations we com-

pare, where “t” is the configuration using the Tobii stand and “h” is the configuration

using the tablet by itself only (home made designed configuration1).

4.2.3.1 Completion Time

The first target of each trial is discarded in the completion time observation, because the

timer started at the very beginning of the experiment with the first target shown: partic-

ipants did not have a preparatory dull tap beforehand nor signal to start on. Moreover, a

dialogue box appeared between each trial. Therefore, we cannot evaluate the completion

time for the first target as the tap of the first target did not comply with the same routine

used for the other targets.

The completion time means are shown in Table 4.1 (means per participant and condition).

We observe similar values of the mean completion time for each condition. Even if these

results may imply a slightly better performance for the Tobii stand condition, the means
1Initially, for the “h” condition, we thought of building our own tablet support because the Tobii rack

was designed for eye tracking studies, and therefore we needed something to hold the eye tracker in that
condition too. However, we only wanted to investigate the impact of the guide bars on the taps, where
eye tracking was unnecessary. Thus, constructing a home made rack was no longer required.
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per condition and per participant (Table 4.1) demonstrate that it is not always the case

for all the participants. A boxplot chart of the completion time means per target and

per condition (Figure 4.2) shows how similar the completion time is for each condition.

Table 4.1: Mean completion time (per participant, per condition).

Participant Condition Completion Time (ms)
1 h 1101.7907
1 t 1009.9700
2 h 1351.5993
2 t 1194.8221
3 h 979.4829
3 t 1076.6386
4 h 965.9157
4 t 1013.9164
5 h 911.0043
5 t 1027.8671
6 h 891.3679
6 t 803.8886

all h 1033.527
t 1021.184

4.2.3.2 Distance Error

The distance error is observed within the succeeded taps. Based on the target’s radius,

the maximum distance error is 22 pixels from the target centre. The distance error is

a measurement revealing how accurate is the participants’ touch. Table 4.2 shows the

mean distance error per participant and per condition, and among all participants. Again,

obtained results indicate a similarity of the distance error between the two conditions.

Figure 4.2: Completion time (per target, per condition).
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Table 4.2: Mean distance error (per participant, per condition).

Participant Condition Distance Error (pixels)
1 h 10.698868
1 t 11.441963
2 h 12.473454
2 t 11.498071
3 h 12.483907
3 t 12.718841
4 h 10.408145
4 t 9.264039
5 h 12.235693
5 t 11.009178
6 h 12.369670
6 t 11.468581

all h 11.7782
t 11.23345

Using the Tobii rack seems to be slightly more accurate (except for two participants),

but for all participants, the mean distance’s difference between the two conditions is just

about a pixel.

Figure 4.3: Distance error (per target, per condition).

The mean distance error boxplots per condition (Figure 4.3) does not lead to any par-

ticular conclusion.

4.2.3.3 Failed Tap Attempts

The metric of the failed tap attempts at a target acts an indicator for the difficulty to

select the target. A tap attempt was failed if it occurred outside the target’s 22-pixel

radius bounds. We measured the number of failed tap attempts for each target. Table

4.3 illustrates the very low difference between each condition. When observing the failed
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tap attempts mean per participant, we can even not conclude which condition offers

better ways to complete the selections since the generation of less failures for one specific

condition is equally balanced among the participants.

Table 4.3: Mean failed tap attempts (per participant, per condition).

Participant Condition Failed Tap Attempts
1 h 0.11
1 t 0.18
2 h 0.26
2 t 0.16
3 h 0.21
3 t 0.29
4 h 0.05
4 t 0.00
5 h 0.15
5 t 0.23
6 h 0.30
6 t 0.16

all h 0.18
t 0.17

The values reported in Table 4.3 also indicate that failed tap attempts are on average

very low, regardless the configuration.

Figure 4.4: Mean failed tap attempts (per target, per condition).

4.2.4 Conclusion

This pilot study has not provided us with obvious results suggesting that we should use

(or not use) the Tobii stand. Even if the means were equivalent, the Tobii condition

seemed to be a slightly better condition. However, when observing the means per more
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variables (per participants, per targets) for every metric observed, no obvious pattern

could be found.

Therefore, we chose to conduct the main study described in the further sections using the

Tobii rack. This choice was based on the lack of significant difference between the two

conditions (there was no guarantee that not using the stand would bring better results),

and also on the ease of integrating the gaze tracker in the apparatus environment, helping

us getting more accurate and reliable gaze data.

4.3 Study Design

4.3.1 Data Collection Context

We sought to conduct a data collection based on activities that are commonly found in

ordinary tasks with tablets, in order to study the correlation between gaze and tap in

a natural environment. The choice of Internet activities seemed to be a good one, not

only because it met this criterion, but also because research literature related to Internet

based tasks in user studies is numerous. Literature therefore provided examples and

inspirations on designing the data collection’s contextual tasks.

We have devised three different tasks to cover the different aspects of Internet related

activities on tablets.

4.3.1.1 Search Task

The search task comprised ten questions that the participants were asked to answer, by

finding information on the Internet with the means of their choice. The search task is an

example of a very popular activity on Internet, probably explaining why a lot of studies

on Search Engine Results Pages (SERP) are found in literature. They indicate how the

task can be conducted and give examples of search questions. We chose five informal

and five navigational questions, since these two types of research queries are the most

frequent. The questions were selected based on similar research articles, and they are

listed in Appendix A, Table A.1. Google had been set as the default search engine in

the browser participants worked with during the study. However, when the task started,

the page appeared blank to give the participants the choice to use their preferred way of

searching. The different strategies they showed during study were: either (1) reaching

the Google website and typing the query in Google or (2) querying directly into the
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address bar. Figure 4.5 shows a screenshot of the browser while performing the search

task, resulting to an automatic query on Google by the browser.

Figure 4.5: Search task.

4.3.1.2 Shopping Task

The choice of a shopping activity was not only pointing towards another very common

activity on Internet, but it permitted also to bring more interaction from participants

with forms (therefore including typing). Contrary to SERP activities, the websites in

Shopping activities resemble an application, since the structure of the webpage is more

various than the expected results list in SERP. We asked participants to simulate the

purchase of items as if they were shopping to prepare a meal. We asked them to shop

at least 10 different items (in order to have enough interaction with the website) and

the workflow of the website we selected required the participants to fill a form. They

were free to fill it with random data of their mind or to follow a guideline that contained

fake personal data they could use instead (Appendix A, Table A.2). For this task, the

browser started off with the Sainsbury’s online groceries store website main page loaded,

as illustrated by Figure 4.6.

4.3.1.3 Game Task

The game task was based on the so-called “Wikipedia game”. This task has been brought

on as a way to generate a productive link following activity. Moreover, this gamified

task was a nice motivation to keep participants playing the game and spend time on the

study. The game consisted in asking the participants to use only the internal links
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of Wikipedia’s articles for reaching a predefined target article from a predefined source

article. Two rounds of the game could be performed by the participants (if they felt

difficulty with the first round, we stopped the game or asked them to try the second

round. We stressed out there was no measurement of their performance so they could

take their own time to play). This task also allowed us to collect data in the context of a

demanding cognitive and reading process. A basic description of the articles’ topic was

given to the participants to help them complete the task. It can be found in Appendix

A, Table A.3. When the task started, the first round’s source article was already loaded

(as shown by Figure 4.7). To play the second round, we asked participants to reach the

source article by themselves from the Wikipedia search field.

Figure 4.6: Shopping task.

4.3.2 Study Protocol

The study followed the following protocol.

1. At arrival, the participant was given the consent form about the study, with basic

explanations about it.

2. Before starting a task, the participant was explained what was expected from her,

and appropriate documentation was given (the list of the questions for the search

task (cf. Appendix A, Table A.1), mock-up personal data for the shopping task (cf.

Appendix A, Table A.2), the articles’ topic main description for the game task (cf.

Appendix A, Table A.3)). The order of the tasks performed by the participants

were incomplete counter-balanced (Latin square).
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3. Each task started with the eye tracker 9-point calibration (22-pixel radius), followed

by a check test of the calibration (coloured squares to gaze at, display of the gaze

location) cf. Chapter 3.1 for details.

4. Each task ended with a drift measurement (same format as the calibration).

5. At the end of the data collection, the participant was given a questionnaire for

demographics, for judging her experience with tablets and with eye tracking, and for

evaluating the browser she was using during the data collection. The questionnaire

sample is provided in Appendix A, Figure A.1.

Figure 4.7: Game task.

4.3.3 Study Architecture and Data Collection

We favoured tablets for the data collection over other touch devices because of their

reasonable size, prevalence, and compatibility with eye trackers. We used a Microsoft

Surface Pro 3 (2160×1440 pixels resolution). We chose the Tobii X2-60 eye tracker (60

Hz), designed for studies on smaller devices. We selected the Tobii’s rack after running a

pilot study to validate the rack would not impair the participant’s interaction (cf. Section

4.2). We thought of including the Tobii rack in our apparatus for its compatibility with

the eye tracker and its design: two guide bars prevent the users from placing their hands

above the eye tracker, which prevents hand occlusion. Figure 4.8 shows how the stand

and the eye tracker were set for the data collection. Participants sat on a chair to interact

with the tablet.
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Figure 4.8: Eye tracker and stand configuration.

To keep the naturalness of the interaction, we did not ask the participants to limit their

hand actions to the dominant hand: they were free to interact the way they liked.

The data collection consisted of retrieving the following information: touch input, on-

screen gaze position, and tapped object characteristics. Touch data was collected through

different steps. Details are provided in Section 3.2. The resulting files of the hand gestures

contained the following information:

• timestamp,

• type of gesture (TOUCH_EVENT, DRAG_EVENT or ZOOM_EVENT),

• normalised position of the event,

• optional parameter, only set for ZOOM_EVENT to indicate the zoom factor.

We wrote an application (in C# ) that retrieved gaze data samples from the eye tracker,

and logged them into a file, which contained the following:

• timestamp,

• for each eye: estimated point of gaze in normalised screen coordinates

• for each eye: validity code (Tobii specifications to inform about the reliability of

the tracking).

This application also ran the eye tracker calibration before each task and the drift evalua-

tion afterwards. Fixations were computed post-hoc with OGAMA2 on a spatial detection

threshold of 22 pixels (∼ 0.56◦ of visual angle). For this data collection, we implemented

a web browser (C#WinForms application, providing a WebBrowser object that ran the

Internet Explorer 11’s engine). We decided to develop our own browser in order to easily
2http://www.ogama.net/ (last accessed Jan. 2020)
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get feedback from it and to offer a basic and sleek user interface for all participants. The

browser had a dimension of 1440×960 pixels3, with a viewport of 1440×914 pixels, topped

by a navigation bar (illustrated by Figure 4.9). Participants evaluated the browser after

the study and scored it 3.6±0.9 on average on a 5-point Likert scale. We report here

few comments given by the participants regarding the browser: “Difficulty in getting the

keyboard out. Not very sensitive to touch” (participant 5), “Generally worked well but it

sometimes dropped the keyboard when I was typing to select places to type. The search

bar was also difficult to use - small to touch easily and it was hard to highlight specific

text.” (participant 6), “I couldn’t tell the difference to other browser.” (participant 10).

Figure 4.9: Browser’s navigation bar (truncated).

Participants evaluated the overall setup after performing the tasks, and gave an average of

3.6±0.8 on a 5-point Likert scale. Here are some of the participants comments regarding

the overall setup: “Position of hands not very comfortable. When I use tablets I keep them

more vertical than horizontal.” (participant 5), “Most things were intuitive but with the

exceptions from the previous section [about the browser]”, “It’s probably not as natural as

holding the device, but the rig did not substantially affect my experience.” (participant

10), “Simple, unobtrusive and straightforward to use.” (participant 16). We categorised

the tapped objects from their 3 distinct natures: HTML, browser or keyboard4 elements.

HTML and browser targets were tracked via the browser (using JavaScript injected code

when the OnWebBrowserDoClick callback method of the WebBrowser object was called, as

shown by the code preview in Appendix A, Figure A.2), the following relevant elements

were written into a log file containing:

• timestamp,

• type of event:

AddrTextBoxTouched when the browser’s address bar was tapped on,

BackButton when the browser’s back button was tapped on,

click when a webpage HTML element was tapped on,

GoButton when the browser’s go button was tapped on,
3This is the dimension of the full screen not in the high DPI mode on the tablet.
4In the thesis, keyboard should be understood at the virtual keyboard displayed on the tablet’s

touchscreen.
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• target’s size,

• target’s relative position in the viewport,

• for HTML targets: the tag name (for instance A, INPUT, etc),

Figure 4.10: System architecture.

We made a specific application (in C# ) to track the keyboard targets, with the help

of the native Windows library Microsoft Keyboard Input API. The resulting log files

contained:

• timestamp,

• key code.

In a post-hoc step, we then aggregated these different log files with the taps log files

into a single file, based on the timestamps. This final file communicated the following

information:

• timestamp,

• participant ID,

• task,
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• tapped target type (html, KB or browser),

• tapped target name (in the case of type html it was the HTML element tag name

(i.e. A or INPUT), in the case of the type KB it was the key code (i.e. Return, Back

or OemPeriod), in the case of browser it was the keyword indicated which browser

object was touched (i.e. AddrTextBoxTouched)),

• in the case of type html or browser: the tapped target abscissa; in the case of type

KB: the literal value of the key (i.e. “Return”, “Back” or “.”),

• in the case of type html or browser: the tapped target ordinate,

• in the case of type html or browser: the tapped target width,

• in the case of type html or browser: the tapped target height,

• the tap abscissa,

• the tap ordinate.

The flow chart in Figure 4.10 summarises the different steps aforementioned.

4.3.4 Data Collection Content Overview

We collected in total 574 675 touch data samples and 1 869 705 gaze data samples, from

24 participants (9 female, age 31.4±11). Flyers about the study (illustrated in Appendix

A, Figure A.3) had been put in Lancaster University campus and in town, as well as

handed over directly to people passing-by on the central square of the campus. In order

to avoid people being conscious of their eyes being trackers, the study was presented as

an Internet activity study, with a data collection on touch and behaviour. We did not pay

the participants for the study, but offered refreshments and snacks instead. The study

lasted about an hour, depending on the speed of the participants. We did not exclude

participants before evaluating how the eye tracker worked with their eyes (impossibility

to calibrate, cf. Chapter 3.1.4 for details). Being a highly international environment, only

few participants, nine of them, were English native speakers. English understanding was

required to complete the tasks, and the self evaluation of English level among participants

scores 4±1.5 on a 5-point Likert scale. A participant commented “For students who

English is not their first language, these tests are a little bit difficult.” (participant 3). All

of them were familiar with Internet browsing and they gauged themselves as experienced

with tablets and touch devices (respectively 3.3±1.2 and 3.7±1.2 of average on a 5-point

Likert scale). Some participants needed visual correction during the study (7 wore glasses,

3 wore contact lenses). All but one were right-handed. We tracked three types of touch
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gesture actions: taps (representing 72 % of the data set), pans (representing 28 % of the

data set) and zooms (representing <1 % of the dataset). These statistics reveal that the

tablet was large enough for the participants to interact with it comfortably (almost no

zooms). The tapped object distribution is as follows: keyboard (68.9 %), HTML (26.5

%), browser (4.6 %).

4.4 Fixations around Tap Moment

In this section, we present the general characteristics of the fixations which occurred at

tap, the study unit in this chapter. Fixations are one of the key metrics in eye tracking

studies as they reflect, in some aspects, the attention given by the subjects in their

activity.

4.4.1 Spatial Distribution of All Fixations at Tap

In this section, we give a first estimation of the gaze behaviour during tap from a very

coarse approach. The metric we report describes a spatial feature of the fixations: the

distance between the fixation position on the tablet and the tap position on the tablet.

Figure 4.11 illustrates the spatial distribution of all the fixations occurring in a time

window of 2 seconds around the tap moment. The position of the fixations on the plot

is relative to the tap location.

Figure 4.11: Spatial distribution of the fixations relative to the tap position (2 seconds around the
tap).

From Figure 4.11, there is an indication that fixations are scattered around the tap

position, but two clusters appear: the first one is concentrated close to the tap point
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(centre of the graph), while the second is located at the top left side of the tap position.

On Figure 4.12, we illustrate the distances for which a certain percentage of the fixations

are under that distance. For example, half of the fixations observed in the 2 seconds

window are contained within 268 pixels and 75 % are contained within 594 pixels.

Figure 4.12: Spatial distribution of the fixations relative to the tap position (2 seconds around the
tap).

Based on the representation mentioned above, we question the role played by time on

the dispersion of the fixations. We therefore investigate whether there is a narrower time

window (within the centred 2 seconds time window previously chosen) within which the

dispersion of the fixations would be minimised (meaning that for a given percentage,

the distance from the tap position obtained with another time window would be shorter

than the one found with a centred 2 seconds time window). Figure 4.13 shows how the

distances varies at different non overlapping time windows. It clearly indicates that for a

certain time window (here found to be -0.300 s to -0.250 s), the distribution of fixations is

much closer to the tap point: half of the fixations observed in this window are contained

within 69 pixels and 75 % are contained within 133 pixels. We conclude, therefore, that

at some moment in time before tapping (which value should have been somewhere in or

near the non sliding time window mentioned above), gaze is approaching at the closest

to the target. Further findings aligned with this preliminary presentation are detailed in

Section 4.4.3.

4.4.2 Number of Fixation Before and After Tap

We find that on average, there are 4 fixations before and 3 fixations after the tap moment

within a 2 seconds window centred on the tap moment (before: 3.72±1.75 fixations, after:
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Figure 4.13: Distance percentages of the fixations relative to the tap position at different time
windows relative to the tap moment (50 ms wide).

2.93±1.65 fixations). Figures 4.14 and 4.15 respectively show the number of fixations

strictly before and after (or at) the tap, per task and per target type.

From Figures 4.14 and 4.15, we can observe that in most cases, the distributions of the

number of fixations before or after the taps in the different conditions are the same as for

the general case. A main exception is found for the target of type “browser” (elements of

the browser UI). On average, for this type of target, the participants perform 2 fixations

before and after tapping, which is probably due to the static and known positions of

these elements, resulting in reducing the visual search prior tapping. The fewer number

of fixations after tapping a browser element may be explained by the navigation activity:

after tapping an element of the browser, the participant need to wait for the response

triggered by that element.

(a) Per task. (b) Per target type.

Figure 4.14: Number of fixations strictly before the tap moment.

65



4. Correlation between Gaze and Tap

(a) Per task. (b) Per target type.

Figure 4.15: Number of fixations at and after the tap moment.

4.4.3 Relationship between Spatial and Temporal Distribution of the Fixations around

Tap

In Section 4.4.1, we previously showed that most fixations are at a closer distance from

the tap point before the tap happens. In this section, we look for a better estimation of

the moment when fixations are at the closest to the tap position. To do so, we estimate

the relationship between the fixations’ starting moment and their distance to the tap

position. We choose a Generalised Additive Model (cubic spline) for the estimation

method because of the initial assumption of nonlinear model (which is strongly suggested

by the bar chart in Figure 4.13) and the fact that we do not expect the data to be normally

distributed (gaze is always “on”, so fixations happen all the time and it seems illogical to

think that the starting moment of the fixations would be normally distributed in time).

The resulting estimation model is plotted in Figure 4.16.

The estimation plot validates the two observations made in Section 4.4.1: (1) in time,

the fixations tend to approach the tap point before the tap occurs, and then recede from

the tap position again (typical “V-shaped” curve which appeared also in Figure 4.13),

and (2) the approximation we made earlier was not far from the time we estimate the

distance to be the closest to the tap point (by finding the minimum of the estimation

curve). We find that 0.338 seconds before the tap occurs, gaze approaches the tap point

within a distance of 159 pixels.

Looking at the relationship between the fixations’ temporal and spatial characteristics

was inspired by the work done in studies dealing with the correlation between gaze and

mouse (i.e. [15, 82, 97, 123, 174, 217]). However, the major difference between these

existing works and the work presented in this thesis is the nature of the “manual input”:
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mouse is a continuous input whereas tap is a punctual input. Nevertheless, our findings

are still coherent with the results given about the correlation between gaze and mouse:

for instance, Liebling and Dumais [123] reported a lag between gaze and mouse of -250

ms to -100 ms, by about 74 pixels.

Figure 4.16: Fixation start moment vs. fixation distance (relative to tap moment/position).

4.4.4 Impact of Individuals, Tasks and Target Types

So far, we have presented a coarse estimation of the relationship between gaze and tap

for all participants, tasks and target types together. We want to investigate how these

factors influence the relationship between gaze and tap.

For each participant, task and target type, we estimate the relationship between the

fixations’ spatial and temporal characteristics relatively to taps with the same model

given in Section 4.4.3. In order to compare them, we report the descriptive statistics

related to the minima given by the estimation model.

4.4.4.1 Across Participants

Estimations for each participant are plotted in Figure 4.17, and the minima’s value

reported in Table 4.4. For all participants, gaze leads the tap. However, disparity is

observed between each participant. This difference is more important in space (∆=181

pixels, σ=46.1 pixels) than in time (∆=230 ms, σ=47 ms). We deduce that the distance

within which participants keep their gaze away from the targets is a personal feature
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(some participants as we observed during the data collection tend to “follow” their gaze

with the finger, while others would keep the finger still will skimming the display and

only move to tap when they need), and that it influences the correlation between gaze

and tap.

Table 4.4: Fixation start moment vs. fixation distance (minima, per participant).

P(a) S.M.(b) Dist.(c) P(a) S.M.(b) Dist.(c) P(a) S.M.(b) Dist.(c)

#1 -371 87.8 #9 -384 200.3 #17 -356 176
#2 -396 89.5 #10 -305 170.8 #18 -204 151.2
#3 -339 170.1 #11 -373 163.6 #19 -325 133.1
#4 -325 162.3 #12 -315 221.9 #20 -287 66.4
#5 -350 143.7 #13 -333 85 #21 -333 132.4
#6 -369 178.8 #14 -340 114.2 #22 -415 158.9
#7 -297 178.4 #15 -357 220.1 #23 -372 177.1
#8 -317 184.1 #16 -305 200.7 #24 -433 247.7
(a)Participant (b)Start moment (ms) (c)Distance (pixels)

4.4.4.2 Across Tasks

Estimations for each task are plotted in Figure 4.18 and the minima’s value reported in

Table 4.5 (left part). Again, we observe that gaze precedes touch, and that the tasks

influence the spatial dimension (∆=31.9 pixels, σ=17.3 pixels) rather than the temporal

dimension (∆=22 ms, σ=11 ms). For the search task, the minimum of the estimation

graph has a greater Y-axis value than for the other two tasks. We can interpret this as

a consequence of SERPs being systematically queried by the participants for that task:

users mainly follow the first link after scanning a few, confirming a common behaviour

reported in [107]. Thus, taps were possibly already “prepared” to be performed while

participants were still scanning the webpage, with the consequence that they did not

need to acquire the target again when tapping afterwards. The task nature has therefore

a clear influence on the correlation.

4.4.4.3 Across Target Types

Estimations for each target type are plotted in Figure 4.19 and the minima’s value re-

ported in Table 4.5 (right part). Gaze still precedes touch, and the temporal difference
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Figure 4.17: Fixation start moment vs. fixation distance (relative to tap moment/position, per
participant).

varies less than in space (respectively ∆=48 ms, σ=25 ms; ∆=32.4 pixels, σ=16.2 pix-

els). Fixations for the keyboard objects seem to happen earlier before the touch, with a

farther distance to the target. We explain this by the potential learning effect in typing

and using the browser. Participants took less time “searching” the target, and did not

need to visually focus on it as they mentally already knew where it was. Thus, the

tapped target plays a role in the correlation, depending on its likelihood to be known in

advance.

Table 4.5: Fixation start moment vs. fixation distance (minima, per task/target type)

Task S.M.(a) Dist.(b) Target type S.M.(a) Dist.(b)

Search -328 174.6 Keyboard -325 167.7
Shopping -338 142.7.9 HTML -363 135.3
Game -350 147.2 Browser -373 152.7
(a)Start moment (ms) (b)Distance (pixels)
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Figure 4.18: Fixation start moment vs. fixation distance (relative to tap moment/position, per task).

Figure 4.19: Fixation start moment vs. fixation distance (relative to tap moment/position, per target
type).

4.5 A Specific Fixation: FClosest

This section explores the characteristics of a specific fixation, that we labelled FClosest.

This specific fixation is the one which arises before a tap happens at the closest to this

tap’s position. Describing FClosest confronts the estimations given earlier.

4.5.1 FClosest General Characteristics

We evaluate the characteristics of FClosest in the manner that we presented fixations in

Section 4.4: the start moment of the fixation (relatively to the tap moment) and the

distance between the fixation and the tap position on the display.
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Figure 4.20: FClosest’s start moment histogram and quartiles.

For each tap, we retrieve FClosest in a window starting 0.6 s before the tap moment.

This boundary has been chosen based on the minimum point for all fixations reported in

Section 4.4.3 and the difference within participants in 4.4.4.1 (-0.338 − 0.230 ≈ -0.6).

Figures 4.20 and 4.21 respectively show the histograms of FClosest’s start moment (to the

tap moment) and distance (to the tap position), and the associated quartiles values. The

statistical modes of the start moment and of the distance are respectively -0.341 s and

32.8 pixels. The figures indicate that FClosest is normally distributed in time, whereas

spatially it is positively skewed.

4.5.2 Spatial Distribution of FClosest Relative to Taps

We study the spatial distribution of FClosest around the tap points, plotted in Figure

4.22. The standard deviation on the X-axis is 148.3 pixels, and 87.7 pixels on the Y-axis.

Both the mean position (-24.4 pixels,-28.8 pixels) and the median position (-8.7 pixels,-

12.7 pixels) show an offset which can be explained: web users tend to look more at the

top-left part of the page [144]. They are also observed on Figure 4.22.

Figure 4.23 and 4.24 represent respectively FClosest’s mean and median positions, for each

participant. Although they are spread around the global mean and median positions,

they remain generally offset towards the top-left direction, most notably for the mean

positions: 20 participants (83 %), against 13 for the median position (54 %) - we regard

the participants whose median/mean positions show up in the top left quarter of the

graph.
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Figure 4.21: FClosest’s distance histogram and quartiles.

Figure 4.25 illustrates FClosest’s mean and median positions for each task. For both

search and shopping tasks, we notice the mean and median positions do not vary more

than 8 pixels around the overall values in each direction. For the game task, we observe

that FClosest’s mean and median positions are closer to the tap point. In this task, the

targets’ position (mostly links) could not be “learnt” nor “anticipated” by the participants,

contrary to the other tasks. For the search task, we suppose that learning effect of

selecting the first link(s) in the SERP, as well as a tap anticipation (as discussed in

Section 4.4.4.2) appeared from the participants. For the shopping task, learning effect

may have come from the commercial website interaction. We suppose the learning effect

and the tap anticipation brought by a task can influence the distance between gaze and

tap: when there is none of these effects, gaze acquires targets with a closer distance.

Figure 4.22: FClosest’s mean and median positions around tap position.
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Figure 4.23: FClosest’s mean position around tap position (per participant).

FClosest’s mean and median positions for each tapped object type are represented in

Figure 4.26. There is an expected difference for the browser elements. Being situated in

the top part of the display, FClosest’s mean and median positions are not likely to show

an offset on the top-left side of the screen. Browser elements allowed navigation and

triggered changes in the viewport situated below, hence an opposite offset direction. The

case of the HTML elements shows a very small vertical offset (less than 7 pixels for both

mean and median values) indicating that gaze is more often vertically aligned with the

targets. We can interpret this result as an effect of reading: most HTML targets were

links (≈ 40%) and text input fields (≈ 26%).

Figure 4.24: FClosest’s median position around tap position (per participant).
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Figure 4.25: FClosest’s mean and median positions around tap position (per task).

4.5.3 Relationship between FClosest and Tap

In the previous sections, we described FClosest relatively to the taps without considering

the position nor the size of the target objects. We want to find out whether the distance

between FClosest and the tap vary depending on the target’s position and size. To do

so, we compute the Pearson correlation between the horizontal (respectively vertical)

distance of FClosest with the tap’s position and either the abscissa (respectively the

ordinate) or the width (respectively the height) of the target. However, we only run the

Pearson correlation test on a subset of the data. Keyboard targets should be discarded

due to the potential differences between the typing mechanisms and HTML/browser

targets selection. HTML elements that are containers have also been ignored: firstly

because these elements have often been tapped on by mistake (for instance when missing

a link or a checkbox), secondly because container elements, by definition, are not meant

Figure 4.26: FClosest’s mean and median positions around tap position (per target type).
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to be tapped and sometimes covered a large portion of the webpage, that makes the

correlation with tap totally irrelevant. These container elements are DIV, BODY, TD,

FIELDSET, SPAN and HTML. The Pearson correlation is reported in Table 4.6, we do not

find any relationship between the position or the size of the target with FClosest’s distance

to the tap.

Table 4.6: Pearson correlation between the FClosest/tap distance and the target position/size.

Target’s Distance between FClosest and the tap
characteristics (relative)* (absolute)* (relative)** (absolute)**

Position 0.04 -0.10 -0.04 -0.13
Size -0.26 0.17 -0.02 0.02

(∗)horizontal dimension (∗∗)vertical dimension

4.6 Typing

The keyboard typing events are constituting a significant part of the taps dataset we

obtained from the data collection (cf. Section 4.3.4). Since they are the major group of

targets, and because typing takes a specific place in computer interaction, we desire to

know how strong gaze and typing are aligned.

(a) Horizontal coordinates.

(b) Vertical coordinates.

Figure 4.27: Fixations (blue) and taps (black) during a typing sequence.
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To do so, we first compare the fixations’ positions and moments to the taps’ positions

and moments during a typing sequence. Figure 4.27 illustrates an example of a typing

sequence performed by a participant, in each dimension of the tablet’s screen (horizontally

and vertically). For both graphs 4.27a and 4.27b, the X-axis is the time relatively to the

first tap of the typing sequence, and the Y-axis is, respectively, the horizontal and the

vertical coordinates of the position on the display. The black line connects the taps of

the typing sequence (black dots on the plot), whereas the blue line connects the fixations’

start moment occurring during this same typing sequence (blue crosses on the plot, we

select all the fixations between the value of FClosest corresponding to the first tap of the

sequence and the value of FClosest corresponding to the last tap of the sequence).

(a) Horizontal coordinates.

(b) Vertical coordinates.

Figure 4.28: FClosest associated with taps (red) and taps (black) during a typing sequence.

We observe from this example that gaze is loosely following the tapping flow in space.

In time, an offset appears (as gaze precedes the touch input). However, there are cases

where the fixations seem to completely “leave” the tapping pattern. This is a typical

behaviour of when a participant was assessing her typing on the text input location of

the screen, or simply when looking for the key’s position through the keypad.

Because of the behaviour mentioned above, we want to check if only some relevant

fixations are showing a better alignment with typing. The fixations we keep in the
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following subset are only the associated FClosest of each tap making the typing process.

Figures 4.28 illustrates the same typing sequence example than in Figure 4.27, with the

partial gaze representation (which only includes FClosest) in red.

The similarity between the “path” connecting each FClosest and the “path” connecting

each tap in the sequence is even more obvious than when considering all the fixations

during the sequence. The temporal offset we notice on the graph is coherent with the

description we made of FClosest in Section 4.5.

(a) Horizontal coordinates.

(b) Vertical coordinates.

Figure 4.29: FClosest associated with taps (red) and taps (black) during a typing sequence (poor
alignment).

From direct observation of the participants’ interaction during the data collection, we

clearly noted that some participants tended to type without “closely” looking at the

keyboard. Therefore, the alignment we find between FClosest and the taps during typing

also varies a lot from one participant to another, since some of them showed an habit

of continuously checking their input while typing, when others preferred a two steps

approach: first focusing on typing the sequence and then looking at the text input

location to verify their input, or elsewhere in the webpage to continue with their ongoing

activity. Figure 4.29 shows an example of a poor alignment between FClosest and the taps
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Figure 4.30: Average FClosest start moment before keyboard tap per typing skill level.

for a participant. In this example, gaze alignment is observed on the horizontal axis, but

not as much on the vertical axis. The gaze strategy, for this particular participant,

favours a left/right search on the keyboard rather than a top/down search.

From the video material we recorded during the data collection, we classify the typing skill

level of the participants in 3 groups: poor, intermediate and good. The classification is

done based on the observation of the speed, dexterity and accuracy of typing, and results

in the following proportion of our population sample: 8 % (2 participants) showed a poor

typing skill, 50 % (12 participants) showed an intermediate typing skill and 42 % (10

participants) showed a good typing skill. We investigated how the typing skill impacts

the relationship between FClosest and the taps (on the keyboard).

Figure 4.30 shows the average time difference between key taps and their corresponding

FClosest per typing skill level.

The average values found for each group are in the same range (around -0.315 s) but

good typers seem to require less time between gaze acquisition and tap. We found a

significant different between intermediate (-0.323 s) and good (-0.304 s) typers (one way

ANOVA F(2,7081) = 18.24, p < 0.01; pairwise comparisons Tukey p < 0.01). Statistical

tests may not find a difference between the poor typists and any other group due to their

low representation in our population, and/or the temporal irregularity of their typing

during typing sequences.
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Figure 4.31: Average distance between FClosest and keyboard tap’s locations per typing skill level.

We also investigated the spatial differences between groups. Figure 4.31 illustrates the

impact of the typing skill level on the average distance between FClosest and the tap

location (when typing).

We found that the distance depends on the typing skill level for all groups (Kruskal-

Wallis5 rank sum test χ2 = 105.65, df = 2, p < 0.01; pairwise comparisons Wilcox with

Bonferroni adjustment all p < 0.01).

The average distance between FClosest and the taps for each dimension of the screen (X

and Y) is respectively illustrated by Figures 4.32 and 4.33.

We found a statistical difference between each groups for the Y-axis, indicating that the

distance between gaze (FClosest) and tap increases with the typing skill level, mainly

due to the vertical dimension (one way ANOVA F(2,7081) = 60.17, p < 0.01; pairwise

comparisons Tukey all p < 0.01). This vertical difference can be explained by the fact

that typers with a poorer skill tend to look at the keyboard more than the location where

the typing takes effect on the tablet’s interface.
5This test differs from the previous test because the distance between FClosest and taps is positively

skewed (cf. Figure 4.21).
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Figure 4.32: Average horizontal distance between FClosest and keyboard tap’s locations per typing
skill level.

Figure 4.33: Average vertical distance between FClosest and keyboard tap’s locations per typing skill
level.
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4.7 Discussion

Our results gave a coarse description of the correlation between tap and gaze in a natural

context. Fundamental understanding of this correlation supplies an insight of how the

gaze behaves along with hand activity, of which tapping is a critical part. Since further

equipment to sense tapping is not required on tactile devices, it can be easily used to

estimate where gaze was located just before the tap, and if an eye tracker where to be

running, sense potential drift in the calibration during sessions.

Even finer results were limited by our study design. We did not consider taps in relation

with the whole webpage content, and therefore cannot understand how elements other

than the tapped one influenced the correlation. For instance, the salience of the webpage

areas may affect the visual attention [187], and therefore the visual strategy chosen to

skim the page. As we wanted to preserve the naturalness of the tasks in the study, we

collected data from stimuli that varied across participants, and they tapped on different

elements since they were free to browse at will to complete tasks. It was therefore a

decision that led to a heterogeneous dataset. This diversity can partly explain the large

variance observed in the statistical descriptions of the fixations we gave.

Potential applications from the results we found regarding the correlation between gaze

and hand should exploit the expected distance and time between gaze and taps to esti-

mate when a user is not able to locate a target adequately. If a first stage of personalised

model is possible during interaction, an intelligent system can detect deviance between

the expected personalised model and the actual measurement of the correlation between

gaze and hand when taps are performed to indicate that they user is not able to interact

with the tablet properly and propose a self-adapting response to bring the targets at

better locations. When such a personalised model is not possible, our results serve as a

baseline reference. In such scenario (for example in a public space when interaction is

usually short and not regular), the adaptive system can detect if the users needs longer

time to interact with it because of her navigation pattern (for example non native user

will take longer to tap) and adapt its temporal threshold accordingly.

In terms of design, our findings highlight the fact users mainly focus on the top-left part

of the screen: important information should therefore be located towards this direction

not to be missed out by the users.
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4.8 Conclusion

This chapter focused on the correlation between gaze and taps on tablets, tap being the

main event happening during the manual interaction with the tablets, and a counterpart

to the mouse clicks. We selected three Internet activities as a context for the data

collection on gaze and tap inputs. Going on Internet is a natural and common activity on

tablets, and there is a plethora of tasks and study method examples in research literature

(cf. Chapter 2.3). These tasks were: a search task (containing search questions derived

from cases found in literature), a shopping task, and a link-following game task (that

was essentially designed to generate more tap data). By evaluating the relationship

between the distance and the starting moment of the fixations (relative to the tap), we

confirmed an expected result observed from gaze-mouse studies [57]): when tapping a

target, gaze acquired the target before the tap was performed. On average we found that

the shortest distance between gaze and taps was about 159 pixels, and it happened 338

ms before the tap occurs. This result serves as a baseline representing the typical healthy

users behaviour. Subjects presenting a physical or cognitive disability may therefore be

detected against this baseline and allow the interactive system to adapt itself to meet

their requirement.

We studied a specific fixation, FClosest, defined as the fixation happening before the

tap occurs, at the closest distance to the tap. FClosest’s starting moment to tap and

distance to tap were consistent with the results found while studying the relationship

between distance and time (median start moment to tap: -316 ms, median distance

to tap: 51.5 pixels). FClosest’s spatial distribution in the two dimensions of the screen

revealed two areas of interest: around the tap location (for most of fixations), and a

small cluster on the upper-left corner of the screen. We interpreted this second area of

interest as the consequence of a known behaviour from Internet users to focus mainly

in the upper-left part of the webpages (F-pattern [144]). Nevertheless, the median value

of FClosest’s position was very close to the tap point (-8.7,-12.7) pixels. This result

highlight the importance of the application content’s layout. It suggests that users would

preferably visualise the information situated on the top-left of the screen before making

their validation (by tapping).

We acknowledged disparities between participants, tasks and target types. Individual

style of interaction had an impact on the correlation between gaze and tap, as users

deployed different strategies to tap. For example, some users originally prepared a tap
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but meanwhile, they kept searching the page with their hand ready to tap at one location,

and eventually performed the tap without having to visually acquire the target again with

precision. During typing, some participants were more likely to keep their eyes to the

keyboard and monitor their actual tap, while others favoured constantly going back and

forth between the keyboard and the input field to monitor both their tap on the keyboard

and the effect on the input field during a typing sequence. Some participants did not

look at the keyboard at all while typing. This behaviour is clearly shown by the impact

of the typing skill level on the euclidean distance and vertical distance between FClosest

and taps: the distances increased when the participants demonstrated a better typing

skill level, since they did not require to monitor the keyboard to type and focused on the

screen’s location the typing string were on instead. We found that the spatial difference

between gaze and tap was more important than the temporal difference. The nature

of the task also influenced the correlation between gaze and hand: effect learning and

anticipation inherent to a specific activity impaired the correlation. When users are more

familiar with the application, less tapping errors occur (less distance between gaze and

tap).
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5
Correlation between Gaze and Stationary Hand

Event

5.1 Introduction

Interaction with tablets relies mainly on the touch modality. Therefore, in a classic

scenario of tablet interaction, it is possible to perceive the user’s choices only once the

decision has been realised via a tap. However sensing their hand movements in the depth

space above the tablet not only brings new interactions methods [35, 37, 84, 148, 203]

but can also inform much more on the user’s cognitive process and mental state such as

frustration [3]. Exploration of the tap and gaze correlation showed that gaze precedes

touch [210] (cf. Chapter 4). However, to our knowledge, other parts of the hand events

involved in the tapping process are not yet studied. We focus on the gaze behaviour

during the occurrence of specific hand events for which the hand marks pauses. These

stationary hand events (hover or dwell depending on the context, cf. Section 5.3 for

how we categorise them) may happen before a tap is performed, the preparation of the

taps. Both gaze and hand accompany the human cognitive process, in memory retrieval

in particular [109, 188]. So understanding how gaze and hand behave before a tap can

provide the machine indications on the user’s cognitive process and give them matter to

anticipate the adequate following steps in line with the user’s needs.

In our work, we treat the stationary hand events as one possible indicator of hesitation

(in the sense of decision making common cognitive process, rather than as a pathological
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state). We focused on this example of user’s cognitive behaviour because we wanted

to propose an interaction method based on indecision in which second choices can be

proposed to the user when the first choice has been discarded. We are interested to know

where, during these events, the hand is located according to the display location the

user is gazing at. We also investigate how this relationship between gaze and hand can

inform on the indecision the user experiences while selecting targets. In this chapter,

we consider “indecision” as the cognitive state of not being able to make a clear choice,

without serious impact to the user or her actions (whereas “indecisiveness”, described in

[154], indicates a state where the user experiences “decision delay, worry and regret”).

In this chapter, we present a data collection of gaze and hand positions while playing

a “Memory Game”. The choice of this game, as explained later, has been particularly

made to study how gaze behaves while users keep their hand steady above the tablet.

Besides, it offers a way to generate some cognitive activity from the users, and a definite

framework for our analysis. The hand movement pattern is similar to the gaze movement:

eye fixations can be assimilated to the stationary hand events, and saccades (quick eye

movements between fixations) as when the hand is moving. Therefore, we propose to

rely on this analogy to detect the stationary hand events, inspired by the algorithms

commonly used in the field of eye tracking to detect fixations: dispersion and velocity

algorithms [170]. Afterwards, we describe the spatial relationship between gaze and hand

during stationary hand events for the different parts of the screen, and explain how this

relationship changes when the user faces indecision.

5.2 System Design

We designed a system to collect and analyse data to understand the gaze and hand

correlation during stationary hand events, part of the target selection process on a touch

device. We paid attention to propose an application that generated enough matter for the

participants to require taking decision, and forbore limiting the participants’ engagement

with an abstract study.

5.2.1 Content

Our data collection includes: 1) the eyeballs position and gaze samples provided by the

eye tracker, 2) the hands position provided by Leap Motion, 3) the tap samples from
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our tracking application based on the Microsoft Raw Input API and 4) the game event

information logs (i.e. when a tile has been flipped, when a pair has been matched).

5.2.2 Context

For the context of our data collection, we implemented a “Memory Game”: 12 shuffled

pairs of pictures, shown face down, the player had to match by flipping them (tapping).

This choice was driven by our interest in understanding the users’ decision making pro-

cess, while maintaining a joyful and motivating user experience. This game met these

two criteria, and solely solicited the participants’ memory (preventing difficulties brought

by other factors such as language, general knowledge, etc.). Besides, it was supported by

a very simple interface. Having the same interface across participants, as well as limiting

the scope of actions (tap to flip a tile, match a pair) helped with framing a clear reference

for further data exploration. The tiles (304 × 304 pixels) were arranged in 6 columns by

4 rows. When a pair was found, it did not flip back and remained in the game.

We did not constrain the participants with using only their dominant hand. They were

free to interact the way they wanted to keep the naturalness of the experience. The

resulting hand data is convereted as a single “flow” by selecting the closest hand to the

tablet, as explained in Section 5.3.1.2.

5.2.3 Apparatus

The game was played on a Microsoft Surface Pro 4 (screen dimensions 260.28 × 173.52

mm, 1824 × 1216 pixels). The eyeballs and gaze positions were collected using a Tobii

EyeX sampling at 60 Hz. The hands position was collected with a Leap Motion running

at approximately 110 Hz. We designed a 3D-printed support to hold the tablet and both

sensors in place. The digital modelling of the support has been conceived with Rhino1,

and we printed it with a Formlabs Form 2 stereolithography (SLA) printer2. It laid on

a table (90 cm height) and has been devised so that each sensor could track without

interfering with each other (infra-red emissions) and so that their respective fields of

view cover the targeted body parts during playing. The position of the elements of the

apparatus on the support board is indicated in Appendix B, Figures B.1 and B.2. Prior

the data collection, we verified the data quality of the sensors working together on the
1https://www.rhino3d.com/ (last accessed Jan. 2020)
2https://formlabs.com/3d-printers/form-2/ (last accessed Jan. 2020)
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support in a short feasibility study including 7 participants (volunteers from the same

office or close friends - age 26.6±7.6, 3 females) who were asked to perform only one

game round, using their dominant hand index. We asserted the data coherence in this

feasibility study by observing a replay of the estimated gaze points and index positions in

a representation of the tablet display (Figure 5.1 illustrates the final result of the display

for one of the participants).

Figure 5.1: Data visualisation for the feasibility study for one participant.

Regarding the software component of the apparatus, we designed a C# application to

manage the sensors and retrieve their logs, as well as to launch the different elements

of the data collection (calibration programme, game, drift assessment). Each sensor’s

API provided timestamps that we synchronised with the system clock via the manager

application.

Figure 5.2 illustrates the apparatus deployed in a public space. Participants typically

stood up about 66 cm away from the tablet centre.

5.2.4 Protocol

Before playing the game, the participants filled a consent form, and we assessed their hand

laterality and their dominant eye (triangle test3). The participants were then introduced

to the game with a demonstration version (3 ×2 abstract figures in larger size pictures,

cf. Appendix B, Figure B.3).
3http://www.allaboutvision.com/resources/dominant-eye-test.htm (last accessed Jan. 2020)
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Figure 5.2: System used during the data collection of stationary hand events.

A 5-point eye tracker calibration was performed before the data collection (accuracy of

0.73◦±1.9) as explained by Chapter 3.1. Three increasing difficulty levels were played.

Level 1 showed pictures of various animals, objects or landscapes which disparity left few

chances for mistaking one with another (at least semantically, cf. Appendix B, Figure

B.4 to see their content and position on the game). Level 2 only included pictures of

trees in different landscapes (cf. Appendix B, Figure B.5): a representation of the same

conceptual object in different variations (colours, shape, environment of the picture).

Level 3 only contained pictures of close-up sea surfaces (cf. Appendix B, Figure B.6): a

conceptual object harder to differentiate under several representations, we tried to find

textures and colours that remain similar enough to be difficult to distinguish at first

sight, while still allowing the completion of the game. To avoid learning effects, each

pair of pictures’ locations were different from one level to another. The participants’

hands movements were also video-recorded. To finish, a 5-point accuracy test was run

(0.79◦±4).

5.2.5 Participants

To recruit participants, we set up the study apparatus in a public area of the Lancaster

University campus. Flyers (shown in Appendix B Figure B.7) were displayed at the

vicinity of this public space, but we mainly directly approached people and asked them

if they were willing to give some time to play a Memory Game for the study (which

took about 15 minutes on average), and proposed snacks as a token of gratitude. As

for the previous data collection (Chapter 4.3.4), we did not discard participants unless

the calibration with the eye tracker was not possible at all (details in Chapter 3.1.4).
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In total, 117 participants played the game (49 female, age 26±8.6). Most of them were

right-handed (103) and their right eye was dominant (83). Since English comprehension

was not important for the study’s tasks, we did not record information regarding how

English was mastered by the participants, even if for a large part of them, English was

not their native language. After discarding the trials resulting in a poor data collection

(either from the hand tracker or the eye tracker) we kept 177 trials across 71 participants.

5.2.6 Eye Movements Classification

In a post hoc step, we extracted the fixations from the gaze data by running a dispersion

algorithm (IDT algorithm [170]). The temporal threshold used in the algorithm was 100

ms for all participants. However, the spatial threshold we set for the dispersion detection

varied among them. We computed the equivalent length on the screen of 2◦ of visual

angle, based on the average distance, collected during the game, between the tablet and

the participant.

5.2.7 Hand Events Classification

We focused on the stationary events of the hands that reflect the potential choices the par-

ticipants considered. To retrieve these events, we adapted algorithms from eye tracking

based on the similarity between the patterns of the gaze and hand movements. Section

5.3 is dedicated to the details of these algorithms and their evaluation.

Table 5.1: Stationary hand events (hovers and dwells) number and round duration percentage for the
validation subset.

Validation subset Number of % of round duration
element index hovers / dwells

1 42 / 3 12
2 64 / 36 33
3 41 / 16 25
4 76 / 30 28
5 41 / 5 12
6 33 / 36 30
7 66 / 13 27
8 56 / 23 48
9 29 / 69 34
10 46 / 14 36
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5.3 Stationary Hand Events Detection

5.3.1 Data Preparation

From our valid data collection, we extracted a subset of 10 game rounds randomly chosen

for validating the algorithms. In a second step, another subset of 10 game rounds has

been picked up for testing the algorithms.

5.3.1.1 Ground Truth

The only medium from the data collection we could access for preparing the ground truth

files were the videos of the hands. We annotated the videos of the training subset by

observing when the hand stayed in a stationary position. Based on this annotation, the

ground truth files were generated to match the events of the videos and to indicate when

the hand was in a stationary position. To align data correctly, we defined a reference

duration (the starting time was the start of the Leap Motion for the concerned round,

the ending time was the last tap performed at the concerned round).

From the observation made during the data collection and the videos, we could clearly

observe different behaviours among participants. On of the most striking personal fea-

tures were related to how the hands are kept above the tablet and the change of hands

during the interaction. Figure 5.3 illustrates the first difference: some participants pre-

ferred keeping their hand away from the tablet as much as possible, hence moving above

the tablet’s display only when a tap was required (Figure 5.3a), whereas others kept their

hand above the surface, either in a relatively still position to move only when tapping

or “following” the gaze while skimming the tablet’s content (Figure 5.3b. This trends

were not systematical: some participants were showing both type of trends during the

interaction. A visual classification based on the video we took during the data collection

indicates that on average during the interaction with the tablet in this context of playing

Memory Game, most participants maintained they hand over the display (69 % of them,

81 participants) while more than a quarter of them (29 %, 34 participants) did not have a

specific pattern and sometimes kept the hand above the display and sometimes retracted

it back closer to their body. Only 2 participants mainly retracted close to their body

during most of the interaction.

The other personal feature we observed concerned the switch of hands during interaction.

Despite the fact participants reported a dominant hand before the interaction started, we
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noticed that all participants did not necessarily interact with the tablet solely with that

dominant hand: some participants were more likely to switch hands during interaction.

We associate this behaviour with two factors: fatigue and/or ease of reach (less effort is

required to reach the left side of the tablet with the left hand and the right side of the

tablet with the right hand). Video analysis showed than on average during interaction,

participants solely use their dominant hand (90 %, 105 participants), and few users

preferred using both hands: 6 participants (about 5 %) used both hands to reach each

side of the tablet, while 6 others used one hand a time alternatively.

(a) The hand is returning to a base position near the body between taps.

(b) The hand is staying near the tablet screen and can follow the gaze path.

Figure 5.3: Screenshots of different hand moving trend sequences during interaction.

When observing the personal feature on a game level basis, we noticed that often, partic-

ipants changed their interaction pattern during playing. For example, some participants

started playing the first level with keeping a close distance between their hand and the

tablet, then started to retract the hand close to their body for the last level - and some

participants did the exact opposite. The conclusions from this change of behaviour are

difficult to draw, because it is not clear which factors influences this change. Fatigue

and/or mental load are two candidates but there is no evaluation possible to assess

which of them are the most influential on the change of behaviour. From our population

sample, 26 % of the participants (30) changed their personal pattern (as keeping the hand

above the surface of the tablet or retracting it) and 13 % of them (15) changed hand

pattern for the left/right hand usage during the whole interaction (for instance starting

with both hands then only one hand).

91



5. Correlation between Gaze and Stationary Hand Event

5.3.1.2 Hovers and Dwell Definitions

The nature of such data expectingly results in a highly skewed classification, as suggested

by Table 5.1: during interaction the hand was most of the time in movement rather than

stationary (from our validation subset, stationary hand events lasted between 12 % and

48 % of the overall duration of the round).

In order to detect the type of the stationary hand event (hover or dwell), we evaluate

where the hand was targeting at, based on the hand position retrieved from the Leap

Motion, and on the dominant eye position retrieved from the eye tracker. During the

duration of an event, we compute the projection of the hand from the eye, as illustrated

by Figure 5.4. From the Leap Motion, we select the finger tip point that was the closest

to the tablet’s top (lowest Y-value in the tablet coordinates) in order to compute the

projection. If the projection is on the tablet, the stationary hand event is considered as

hover, otherwise it is labelled as dwell.

Figure 5.4: Projection (P) of the hand on the tablet from the user’s eye perspective.

5.3.2 Algorithms Presentation

Since we retrieved the palm’s and fingers’ tip positions with the Leap Motion, we first

need to filter the data to work with a single point representing the hand motion in space

and time. We select the palm’s position, as it represents well the hand motion (if the

hand was still the palm was still). Besides, we noticed while observing the participants

interacting with the tablet, that although their palm remained relatively stationary,

they sometimes still moved their fingers meanwhile. We also realised that they did not

systematically only use the same finger to point at the table during movement. Since
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both hands can be used during interaction we always retrieve the palm position of the

closest hand to the tablet surface.

Inspired by the algorithms proposed for eye tracking to retrieve gaze fixations (when

gaze stays in close-to-stationary position), we evaluate three algorithms for extracting

stationary hand events that we ran on the palm position data across all levels of the game

(the hover detection is an event detection and therefore do not depend on the level).

• Identification by Dispersion Threshold algorithm (IDT): the dispersion is defined

as d = [max(x)−min(x)]+[max(y)−min(y)] as mentioned in [94]. The algorithm

requires two thresholds: a temporal threshold corresponding to the minimum du-

ration of what could be considered a stationary hand event, and a spatial threshold

corresponding to the maximum value the dispersion can take to be considered a

stationary hand event. For reference values, we select a spatial threshold of 5 mm,

value coherent with studies on natural hand tremor [216] (maximum displacement

of a finger tremor), and a temporal threshold of 100 ms, like gaze fixation detection

explained in Section 5.2.6.

• Identification by Dispersion Threshold - Euclidean algorithm based on the Eu-

clidean distance (IDTE): this algorithm is similar to IDT, but the dispersion was

computed as the average Euclidean distance between the samples.

• Identification by Velocity Threshold algorithm (IVT): this algorithm computes

the instant velocity between the hand motion samples. It also requires a spatial

and a temporal threshold. The temporal threshold has the same role as for IDT

and IDTE, and the spatial threshold corresponds to the maximum speed the hand

movement can reach to be still considered a stationary hand event. The reference

value for the spatial threshold is 80 mm/s, similar to the suggestion formulated

by Vogel and Balakrishnan [202] as an indicator of pause velocity in their study of

distant freehand pointing.

In the remaining part of this chapter, we will write the abbreviation “Tt” when referring

to the temporal threshold, and “St” when referring to the spatial threshold.
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5.3.3 Algorithms Performance

For each algorithm, we generate a file on the same format than the ground truth file:

each line corresponds to an event, and indicates a hover or a dwell, depending on the

finger’s projection from the eye. The technique to extract the starting and ending time

reference, as well as the hand’s projection onto the tablet’s area, are the same than those

introduced in Sections 5.3.1.1 and 5.3.1.2. We generate a file for different values of the

algorithm’s thresholds.

When comparing the ground truth files with the algorithms files, we classify the events

as correct, when an event from the algorithm matches at least one event of the algorithm

(timely), deleted when it is not the case, and inserted when an event from the algorithm

does not match an event from the ground truth. This terminology is taken from the

work on activity recognition presented by Ward et al. [207], the respective equivalent in

binary classification statistics are true positive, false negative and false positive.

As a consequence of the expected classification skewness mentioned in Section 5.3.1.2, ac-

curacy is an inadequate metric since it is relevant when a binary classification is expected

to be fairly balanced.

The first binary classification metric we report is the recall computed by equation (5.1).

The recall rate indicates how good the classifier performs to find the true positives.

However, by itself, it is not complete as the algorithm can produce a high recall rate but

also find a lot of false positives. Therefore, the choice of a good algorithm depends on the

scenario for which stationary hand events need to be detected. In other words, since a

perfect classifier is unrealistic, two concrete cases need to be considered: (1) “minimising

false negatives” classifier: it is more important for the application that all stationary

hand events are retrieved at the cost of getting some errors of the classifier detecting

stationary hand events when there is none, or (2) “minimising false positives” classifier:

the application need to retrieve events that are only stationary hand events at the cost

of not detecting some. The first case aforementioned is represented by the recall rate.

recall =
Correct

Correct+Deleted
(5.1)

The metric we can report to interpret the second case aforementioned is the precision

defined by equation (5.2), a good indicator of how an algorithm strictly identifies actual

events since it is measuring the ratio of true positives from the classifier’s retrieved
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instances.

precision =
Correct

Correct+ Inserted
(5.2)

Recall and precision are two metrics than should be reported together to understand

how the classifier behaves. An ideal classifier would give a high recall rate with a high

precision rate (both close to 1). Since this is hardly the case in a real-case scenario, the

choice of a classifier will often be the one that offers the best compromise between the

two metrics.

A common metric to evaluate this comprise is the F1 score [196], defined as the harmonic

mean of the precision and the recall rates, formulated in equation (5.3), that we report

as well in our results.

F1 =
2 · precision · recall
precision+ recall

(5.3)

We present, in the following, the metrics results for the validation stage of our algorithms’

evaluation - for both types of stationary hand events, then for dwells only and lastly for

hovers only.

5.3.3.1 Dwells and Hovers

Figures 5.5 and 5.6 show how the precision and recall rates evolve together for the IDT

algorithm depending on different values of Tt and St respectively. Plots for the other

algorithms are given in Appendix C, Figures C.1 and C.2 for the IDTE algorithm and

Figures C.3 and C.4 for the IVT algorithm.

For each algorithm, precision and recall are clearly opposite, when reaching a good pre-

cision, the recall is extremely poor, and vice versa. Moreover, with IDT and IDTE, the

distribution between precision and recall when the thresholds vary is clear: the precision

increases with Tt, and when St increases, better recall is observed. There is no obvious

case of a threshold combination that would optimise both precision and recall altogether

(which should appear towards in top-right corner of the graphs mentioned above).

Figure 5.7 shows the F1 scores for IDT found at different thresholds combinations. Il-

lustrations for the other algorithms are provided in Appendix C, Figure C.5 (IDTE) and

C.6 (IVT). All best scores per algorithm are reported in Table 5.2. Among the three

algorithms, the highest F1 score (0.818) is obtained with the IDT algorithm, for Tt 165

ms and St 12.8 mm.
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Figure 5.5: IDT Precision-Recall space for the IDT algorithm (grouping by Tt).

Figure 5.6: Precision-Recall space for the IDT algorithm (grouping by St).
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Table 5.2: Best F1 scores per algorithms (dwell and hover).

Algorithm F1 Precision Recall Tt St
IDT 0.818 0.829 0.807 165 ms 12.8 mm
IDTE 0.813 0.897 0.744 200 ms 9.2 mm
IVT 0.811 0.813 0.809 120 ms 76 mm/s

5.3.3.2 Dwells Only

We report the previously introduced metrics for the case of dwells only (stationary po-

sition of the hand outside the tablet’s volume). The distribution between precision and

recall for IDTE is illustrated by Figures 5.8 and 5.9 against the variation of Tt and St

respectively. Appendix C contains the plots for IDT (Figures C.7 and C.8) and IVT (C.9

and C.10).

Figure 5.7: F1 score for the different combinations of thresholds of the IDT algorithm.
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Figure 5.8: Precision-Recall space for the IDTE algorithm (grouping by Tt, dwells only).

This distribution evolves according to Tt and St in the same way described previously

for all types of stationary hand events. However, the case of dwells only shows a slight

difference: the recall rate keeps on a relatively high value even when the precision is at

its maximum (about 0.5).

Figure 5.10 shows the F1 scores computed with different thresholds combinations when

dealing only with dwell events for the IDTE algorithm. Cases for the IDT algorithm

(Figure C.11) and for the IVT algorithm (Figure C.12) are illustrated in Appendix C.

The best F1 scores per algorithm are reported in Table 5.3. The overall best F1 score is

0.910 for IDTE (Tt = 160 ms, St = 9 mm).

Table 5.3: Best F1 scores per algorithms (dwell only).

Algorithm F1 Precision Recall Tt St
IDT 0.897 0.943 0.855 185 ms 12.8 mm
IDTE 0.910 0.893 0.929 160 ms 9 mm
IVT 0.847 0.885 0.812 105 ms 66 mm/s
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Figure 5.9: Precision-Recall space for the IDTE algorithm (grouping by St, dwells only).

Figure 5.10: F1 score for the different combinations of thresholds of the IDTE algorithm (dwells
only).
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Figure 5.11: Precision-Recall space for the IVT algorithm (grouping by Tt, hovers only).

Figure 5.12: Precision-Recall space for the IVT algorithm (grouping by St, hovers only).
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Figure 5.13: F1 score for the different combinations of thresholds of the IVT algorithm (hovers only).

5.3.3.3 Hovers Only

From the event counts given in Table 5.1 it is clear that the results from hovers and

dwells together are mainly influenced by hovers since they are, except for two subset

elements, the main type of events for the stationary hand events.

The precision/recall distributions for the IVT algorithm on hovers only, per Tt and St

respectively, are plotted in Figures 5.11 and 5.12. The equivalent plots for IDT (Figures

C.13 and C.14) and IDTE (Figures C.15 and C.16) are included in Appendix C. The

impact of Tt and St is the same as before.

The F1 score of hovers for the IVT algorithm with different values of Tt and St is given

by Figure 5.13, and in Appendix C by Figures C.17 (IDT) and C.18 (IDTE). The best F1

score, 0.819 (Tt = 220 ms and St = 10.4 mm) is found for the IDTE algorithm, among

the values for each algorithm reported in Table 5.4.

Table 5.4: Best F1 scores per algorithms (hover only).

Algorithm F1 Precision Recall Tt St
IDT 0.809 0.866 0.758 210 ms 16 mm
IDTE 0.819 0.879 0.766 220 ms 10.4 mm
IVT 0.799 0.818 0.781 135 ms 76 mm/s
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5.3.3.4 Test

We test our algorithms on a random subset of the data collection, containing elements

that have not taken part of the subset from which we validated the algorithms. Table 5.5

summarises the metrics’ values of the best cases we found in the validating set, described

in the previous sections.

Table 5.5: Testing set results.

Case F1 Precision Recall
Dwells + Hovers 0.705 0.652 0.767

Dwells only 0.733 0.669 0.810
Hovers only 0.731 0.690 0.777

The results we get for the testing set are acceptable, but not as good as the validating

set. The explanation we can give for this observation is that the algorithms are sensitive

to the personalised way of interacting with a tablet. To compare the results from this

testing set with the results obtained with the validating set, we expose the best F1 score

values of the testing set and summarise them in Table 5.6.

Table 5.6: Testing set results for best F1 values.

Case* Algorithm F1 (Precision, Recall) Tt St
D+H IDT 0.767 (0.814, 0.726) 185 ms 11.2 mm
D+H IDTE 0.766 (0.867, 0.686) 200 ms 7.2 mm
D+H IVT 0.718 (0.841, 0.626) 175 ms 68 mm/s
D IDT 0.778 (0.814, 0.744) 195 ms 10.4 mm
D IDTE 0.777 (0.805, 0.750) 200 ms 7.2 mm
D IVT 0.728 (0.746, 0.711) 105 ms 42 mm/s
H IDT 0.808 (0.840, 0.778) 195 ms 11.2 mm
H IDTE 0.819 (0.821, 0.816) 160 ms 6.2 mm
H IVT 0.786 (0.840, 0.739) 140 ms 50 mm/s

(∗)D = Dwells H = Hovers

5.4 Relationship between Gaze and Stationary Hand Events

Our dataset contains 13443 stationary hand event samples and 46812 fixation samples.

We construct our study based on the assumption that the stationary hand events happen

before taps. They may not lead to the tap straight forward: for instance, if a user

hesitates to tap, the hand hangs, then moves and probably hangs again before effectively

tapping. As mentioned in Section 5.3, we also classify the stationary hand events in
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two categories depending on whether they occurred strictly above the tablet’s surface or

not (hovers and dwells respectively). The stationary hand events are retrieved with the

best performing algorithm for both dwells and hovers: IDT with a temporal threshold

of 165 ms and a spatial threshold of 12.8 mm (cf. Table 5.2). Therefore, the resulting

classification that combines the two aforementioned notions is summarised in Table 5.7.

The classification is based on the temporal order between the stationary hand events

Table 5.7: Classification of the hovers.

Leading to tap {L} Hover {LH} (5201, 38.7 %)
Dwell {LD} (2447, 18.2 %)

Not leading to tap {NL} Hovered {NLH} (3606, 26.8 %)
Dwell {NLD} (2189, 16.3 %)

and the taps (L stands for leading to tap, NL stands for not leading to tap) and the

projection of the pointing finger onto the tablet display (D stands for dwell, H stands

for hover, notions detailed in Section 5.3.1.2).

In the following parts of this section, when mentioning the stationary hand event position,

it is assumed, unless not stated otherwise, that we actually mean the position of the

hand’s projection as described in Section 5.3.1.2.

When hovering or dwelling above the tablet, we intuitively do not expect the participants

to manually point at the very same position with gaze to avoid occlusion. Therefore, we

want to understand where participants keep their hand when it is marking a stationary

event during the data collection.

Figure 5.14: Relative median position between gaze and stationary hand events per tile.

We report the median average position of the stationary hand event relative to the gaze.

Since our data collection context already divide the tablet’s screen in several areas limited

103



5. Correlation between Gaze and Stationary Hand Event

by the game tiles, we analyse the aforementioned variable for these areas the participants

looked at while playing the game. In a first step, we only keep stationary hand events

during which gaze stayed on a same tile (78.4 % of all hovers). Figure 5.14 illustrates the

median distance value between gaze and stationary hand events for each tile. It shows

that the distance increases radially from the bottom centre-right of the screen (298±304

pixels on tile 22) to the top corners (813±310 pixels on the left and 512±467 pixels on

the right). We explain this radial distribution from the participants’ tendency to keep

their hand at a minimal distance from their arm rest position, certainly to prevent arm

fatigue. It also indicates that the participants used a “manual mapping” of the screen

that was smaller than the actual projection of the screen at the stationary hand events

depth level, and better aligned at the bottom centre-right of the screen where the hand,

in its natural position, is the closest from.

Figure 5.15: Relative median position between gaze and stationary hand events per tile for left-handed
participants.

We investigated the role of the handedness in the distance between gaze and stationary

hand events. As mentioned in Section 5.2.5, most people were right-handed. Figure 5.15

shows the horizontal and vertical distances between gaze and stationary hand events for

each tile of the game for left-handed people, and Figure 5.16 for right-handed participants.

We notice that, against the intuitive idea that there would be a clear difference between

participants with different handedness, the distance distribution mentioned above does

not change for left-handed participants: the biggest distance between gaze and stationary

hand events is still found at the top-left corner of the screen, and there is still a radial

distribution starting from the bottom centre. This behaviour may be explained by two
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Figure 5.16: Relative median position between gaze and stationary hand events per tile for right-
handed participants.

reasons: some participants mentioned they were left-handed but still interacted with the

right hand during the games, and some participants (regardless their handedness), used

both hands to interact (cf. Section 5.3.1.1). Therefore, in the following results, we do

not distinguish the cases of handedness.

In a second step, we only focus on hovers, the stationary hand events inside the volume

above the tablet’s screen (LH+NLH), expecting them to be closer to gaze. As shown

by Figure 5.17, the distance radial distribution over the screen we already introduced for

all stationary hand events is still observed for hovers only. We notice that the median

difference between gaze and hand positions, on the horizontal axis, increases at the edges

and shifts approximately at the middle of the screen. On the vertical axis, this difference

increases when the participants were looking towards the top border of the tablet, and

is even bigger at the top corners of the screens. We interpret this as a trend for the

participants to favour horizontal hand movements over vertical hand movements. The

vertical position and distance between gaze and hovers (LH+NLH) in the one hand,

and between gaze and dwells (LD+NLD) on the other hand are significantly different

for each tile of the screen (Wilcoxon rank-sum test4, p < 0.01 for every tile). As no

scrolling on the tablet was required for interaction, participants probably tended to keep

their hand close to their body (vertically) as a way to minimise limb efforts (explanation

proposed by [4, 91]). These results are similar to observations made in several gesture

preferences study works [68, 118] which indicate users favoured horizontal movements
4We did not assume normality of the data, therefore we used the nonparametric Wilcoxon rank-sum

test to compare groups.
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over vertical movements.

Figure 5.17: Relative median position between gaze and hover per tile.

We did not find a systematic pattern nor a significant difference between gaze and sta-

tionary hand events depending on if they were leading to taps (L) or not (NL).

5.5 Indecision and Gaze/Stationary Hand Events Relationship

Our primary motivation to adopt a Memory Game for the data collection was the will-

ingness to work with tablet’s user cognition evaluation. Accordingly, we wish to verify

the hypothesis that the correlation between gaze and stationary hand events presents

characteristics that reveal how participants were confident about their choices.

We evaluate indecision via the coarse approximation of pair matching failure on already

seen elements. We only focus on L stationary hand events (because it indicated the

participants were planning to tap), for tiles that had been seen before (to discard the

exploratory phase of the game, when participants randomly flipped tiles to start the

game) and that were the second element of the pair matching (to characterise the taps

as “successful” or “unsuccessful”).

We expected that when participants were facing indecision, the duration and/or the num-

ber of fixations during stationary hand events would be particular because they would

indicate the participants were processing information in relation with their memory re-

call [131]. However, we do not observe a difference in the average number/duration of

the fixations during stationary hand events leading to successful or unsuccessful taps (re-
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Figure 5.18: Median distance between gaze and stationary hand event positions.

Table 5.8: Median distance between gaze and stationary hand event positions (per game level).

Level Distance between gaze and stationary
hand events positions (pixels)
(successful) (unsuccessful)

1 356±390 369±390
2 360±326 410±389
3 401±383 466±447

spectively 1.48±0.6 fixations for 256±181 ms and 1.48±0.66 fixations for 236±167 ms).

Nevertheless, in the spatial domain, we observe a significant difference in the vertical po-

sition (Wilcoxon rank-sum test, W = 878860, p-value < 0.05) and distance (illustrated by

Figure 5.18, Wilcoxon rank-sum test, W = 986870, p-value < 0.05) between the gaze and

stationary hand events depending on the tap success or failure. The hand’s distance and

vertical position are closer to the gaze point (∆Y = -265±365 pixels, distance = 383±367

pixels) for stationary hand event that led to successful taps compared to unsuccessful

taps (∆Y = -289±374 pixels, distance = 412±376 pixels).

Since our data collection context contained several levels of increasing difficulty, we sus-

pect the observation made for the general case above to be dependant of the game level.

Indeed, we predict indecision may be stronger when the difficulty of the task is higher

as it seems a natural behaviour. Table 5.8 summarises the distance between gaze and

hovers, for hovers leading to successful and unsuccessful taps, which is also illustrated

by Figure 5.19. From these results, two observations can be made. Firstly, the distances

between gaze and the stationary hand events are significantly different (for the events

leading to successful and unsuccessful taps) only for the two last levels (Wilcoxon rank-

sum test, W = 108780, p-value < 0.05 for level 2, W = 100620, p-value < 0.05 for level 3),

which bore stronger cognitive activities. Secondly, the difference between the distances

of each cases increased with the level (∆= 13 pixels for level 1, ∆= 50 pixels for level 2
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and ∆= 65 pixels for level 3).

Figure 5.19: Median distance between gaze and stationary hand event positions.

When studying the results per participant, there is not a systematic pattern we can

observe, even when the difference is significant on a per participant basis. In some cases,

the results aforementioned in this section are not applicable to a participant (similar or

greater distance for successful stationary hand events), as shown in Appendix C, Figure

C.19.

5.6 Discussion

Our work contributes to the understanding of the gaze/hand correlation in the context

of touch devices. We retrieved stationary hand events, not only to supplement existing

work solely focused on taps (Chapter 4), but also because we considered this specific

event to indicate the indecision users may face while interacting with a tablet. We

found that the relationship between gaze and hand during the stationary stage of target

selection is closely dependant on the target’s location, and that users keep their hand

closer to them in the vertical dimension while they preferably moved it in the horizontal

dimension. When the users’ hand lingers during interaction, they may point at a location

that matches a “manual mental map” rather than directly pointing at the same location

than gaze. Therefore, the role different screen sizes, orientations and target dimensions

may play on the visuomotor mechanisms and on the construction of this map, could

impact the location of the hand during stationary hand events, and in return influence

the correlation between gaze and hand.

In the detection of stationary hand events, our results indicated that IVT is always

providing poorer F1 scores in all scenarios, and can be ruled out when looking for a
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compromised between precision and recall. IDT and IDTE are behaving similarly, the

choice of the algorithm would depend on what the application should specifically retrieve:

hovers, dwells or both. When one event type is to be retrieved, IDTE appeared to be

the best algorithm to use. The algorithms have not only been chosen for the similarity

of the motion behaviour between eyes and hands, but also as an answer for dynamic

detection. The instant velocity or the displacement of the hand can be retrieved with

low latency from the Leap Motion data, and stationary hand events detected with an

expected poor computing cost (the algorithms are simple and do not require too much

memory, nor other hardware specification requirements) and a reasonable lag (the longest

time threshold for the best performing configuration described in Section 5.3.3 was 220

ms). The present work serves as a baseline and an initial generic detection of the sta-

tionary hand events, a foundation for two possible future studies. Firstly, it constitutes

a reference for designing personalised algorithms based on self-adapting thresholds (ma-

chine learning). Since individual differences were clearly observed during our study, and

partly suggested by difference of values between the validation and the test subsets’ met-

rics, we suppose that personalised algorithms may be more efficient than the generic

version we worked with. However, the downside of such technique is the training time

required to make the algorithm efficient during interaction. Secondly, with either ver-

sions of the algorithms (generic or personalised), we can evaluate when stationary hand

events are indicating hesitation during decision making, based on a new data collection.

Ultimately, detecting stationary hand events that convey the users’ hesitation serves

the field of Human-Computer Interaction because it allows applications to assess when

users experience difficulties (in their choices or in their interaction), and thus propose

alternative answers.

Integrating intelligence in machines to decipher human cognitive clues is a challenge [63].

We aimed at finding how indecision can be inferred from the gaze and hand correlation.

Approximating the decision making cognitive states {decisive/indecisive} by the success

of the tile pair matching on seen tiles, we found that contrary to our expectations, the

number and duration of fixations during hover cannot reveal indecision. However, we

noticed that during hover, the hand is closer to the point of gaze when the user is

decisive, and that the vertical component of this distance brings this closeness. Surely,

better indicators for indecision should be used to get a more accurate estimation of the

users’ state of mind. Nevertheless, our approach enables a first coarse estimation that

may serve as a basis for future intelligent systems.
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As the tiles were shown facing down when they were not flipped or paired, we can

assume that the tiles did not intrinsically play a role in the gaze movement: players did

not perform a visual search through concrete pictures to flip the tiles when they browsed

the screen. Instead we can consider the gaze movements are directly related to the mental

map the players are involved with [5, 102]. However, the role of the revealed paired tiles

may be interesting to query, since they became visual and spatial cues for the players to

retrieve the tiles that have not yet been matched.

For our data analysis, we did not take into account personal differences despite being

already acknowledged in gaze/hand correlation for taps (cf. Chapter 4). When observing

the participants playing, we saw that some of them did not move the hand almost unless

that for tapping on the tile, whereas some others were more likely to often browse the

screen with their finger. The correlation between gaze and stationary hand events may

therefore be predicted up the users’ manual and visual behaviour categorisation (personal

differences for indecisive vs. decisive groups were found in [125, 154]). If a deeper analysis

can be obtained from this categorisation, it must then be taken into account towards

implementing more intelligent systems that adapt their response to the user’s cognitive

state (for example, using virtual agents to assist the user’s choice when indecision is

detected, or store the candidate choices the users hesitated about, to propose them again

in the scenario when the first choice the users selected has been discarded between the

selection and the validation/confirmation process). This intelligence in machines meets

the definition of Langley “An adaptive user interface is a software artifact that improves

its ability to interact with a user by constructing a user model based on partial experience

with that user.” [122].

5.7 Conclusion

We have conducted a data collection that encompassed gaze and stationary hand events

data, on a touch enabled tablet while playing a Memory Game. Our objectives were to

propose a detection method based on the analogy between the hand and gaze patterns,

and to understand how the hand and the eyes correlate before the taps were performed,

at a particular event when the hand was in a standby position. We observed that the

distance between gaze and hand depended on where the user looked on the tablet. This

distance increased radially from the bottom centre-right of the screen, and it varied more

importantly in the horizontal axis. This behaviour supports the concepts of energy-
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efficiency of hand movements [4? ] and the predominance of horizontal gaze movements

[44, 70, 74].

We also wanted to estimate how the correlation can inform about the participants’ cogni-

tive process. We compared the gaze/hand relationship for stationary hand events leading

to successful tile pair matching with those leading to unsuccessful tile pair matching to

approximate the participants’ indecision as an example of cognitive state. We found

that the number and the length of fixations did not depend on the indecision, but that

the distance between the finger and the eyes was larger when a decision has been taken

with uncertainty. These results are in line with observation of body response and in-

teraction pattern changes observed in a situation of indecision in other research works

[124, 154, 157].

We endeavour to explore the correlation in a more detailed approach by understanding

how it differs on the personal level. We suspect the personal hand motion and/or gaze

behaviour to have an impact on the correlation, and thus should be an element to consider

to the implementation of a finer detection method of the users’ cognitive process stages

and propose mechanisms to assist the user (adaptive system behaviour described by

Langley [122])..
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Correlation between Gaze and Hand in Motion

6.1 Introduction

Behavioural studies on hand and eye coordination often only measure simple movements

triggered by stimuli [156]. Certainly, the context of interaction with computing devices

in hand-gaze correlation studies ensures naturalness of the movement, since various ap-

plications these studies are based upon are more likely to reproduce by subjects in their

ordinary use of the devices. However, so far, hand movements are either studied to un-

derstand the correlation between gaze and hand via the mouse (i.e. [123]) for desktop

computers, or suffer from constraints (lack of naturalness, often because of abstract tasks

[1, 16, 17, 30, 62, 198]) or limitations (near field detection [89, 147, 219], wearable sensors

[215]) on tactile surfaces. When users interact with a tablet, the hand spends a significant

amount of time “in the air” for what is generally considered, from the commonly deployed

tablet’s point of view, as idle interaction. However, gestures or stationary events of the

hands in this area above the screen can actually inform a lot on the user’s behaviour

(cognitive activity, loss of interest with the tablet’s content, frustration etc.). In this

chapter, we describe the correlation between the hands and the eyes when the hands are

neither tapping nor marking a stationary event. In other words, we want to analyse the

correlation between the hand and gaze when the hand is moving between taps and/or

stationary events (dwells and hovers). Thus, this chapter builds a bridge between the

prior Chapters 4 and 5. The context of this chapter is a Memory Game, application

chosen for the study of gaze-stationary hand events in Chapter 5. In relation with this

112



6. Correlation between Gaze and Hand in Motion

chapter, the Memory Game affords two advantages: due to the cognition process required

to solve the game, the associated data collection contains enough occurrences of station-

ary hand events and taps, and it provokes hand movements from the participants across

all the different areas of the tablet’s screen in different directions and lengths. We present

our results following a top-bottom scheme: describing the correlation between gaze and

hand movement starting with the general condition and then against the different factors

the study allowed us to analyse. We demonstrate that the correlation between gaze and

hand motion is stronger in the horizontal dimension, that it is influenced by the difficulty

of the task and the type of hand events the motion connects, and without surprise by

individual differences.

6.2 Data Preparation

6.2.1 Context

The data collection context was the same as the one described in Chapter 5: we devised

a game on a tablet (Microsoft Surface Pro 4) to generate cognition activity and hand

movements, called Memory Game. The system also comprised an eye tracker (Tobii

EyeX at 60 Hz) and a hand movement tracker (Leap Motion at approximately 110 Hz).

Therefore, the data we collected were the eyeballs position in space and the estimated

gaze points on the tablet, and the hand position in space. After a check to remove poor

quality data (cf. Chapter 3.1.3), the dataset comprised elements from 71 participants

(in total 177 game rounds, each participant played 3 rounds of increasing level). Further

details on the apparatus and the participants can be found in Chapter 5.

6.2.2 Method

In order to estimate the correlation between gaze and hand during hand movements, we

needed to align the data samples correctly.

From the eye tracker, we retrieved, for each round, the following information:

• timestamp,

• gaze sample position on the tablet (X and Y).
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From the hand tracker, we retrieved, for each round, the following information:

• timestamp,

• palm and finger tips position in space (for each hand).

For the hand position, we only kept a single point in space as explained in Chapter 5,

Section 5.3.1.2 (closest tip from the tablet surface).

As we focused on the correlation between gaze and hand during hand movement, we

only extracted the samples of the overall dataset that corresponded to the participants’

hand movements. If the data occurred during a stationary hand event or around a tap

(in a 100 ms time window centred on the tap), it has been discarded (stationary hand

events were detected as mentioned in Chapter 5 and taps were already recorded at the

tablet level), resulting in chunks of hand movement data.

In order to compare the gaze position samples with the hand position samples, two more

steps were necessary. First, we computed the projection of the hand on the tablet, based

on the eyes position (cf. Chapter 5, Section 5.3.1.2, Figure 5.4). Then, we aligned

the data in time. Since the eye tracker generated data at lower frequency than the

hand tracker, we interpolated the hand position at the timestamps provided by the eye

tracker (with the estimation of a linear relationship between time and space between

two consequent hand positions, coherent with Fisk and Goodale’s estimation of limb

movements approximating a straight line path when reaching targets [64]).

We finally generated an aggregated dataset containing both gaze and interpolated hand

projection positions. In order to discard any data that were not strictly related to the

game playing sessions (i.e. after finishing a round participants still stayed visible to the

sensors without playing anymore), we retrieved the gaze and hand data only between the

first and the last taps (first and last flipped tiles) of the game round.

6.3 Results

After preparing the dataset as mentioned in the previous section, our working dataset

consists of 600,606 pairs of gaze and hand projection points, matching a total of 24,517

hand motions.
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(a) Gaze. (b) Hand.

Figure 6.1: 2D distribution of the gaze and hand data.

6.3.1 Overall Correlation

We study the correlation between gaze and hand when the hand was moving in the air

(which excludes tapping). The distribution of point coordinates for each modality and

per axis is illustrated by Figure 6.1. It shows that gaze (Figure 6.1a) relatively to the all

screen area is not normally distributed: the concentrations of highest values that appear

on the plots reveal that participants principally points at the centre of the game’s tiles.

During hand motion, gaze follows a multimodal distribution corresponding to the game’s

structure.

As a consequence of at least gaze data not meeting a bivariate normal distribution we use

Spearman’s rank order correlation rather than Pearson’s correlation to compute the cor-

relation coefficient between gaze and hand coordinates for each dimension of the screen.

On the horizontal axis (X), we find a correlation coefficient ρ=0.69 (p<0.01); whereas on

the vertical axis (Y) we find a correlation coefficient ρ=0.58 (p<0.01).

Therefore, in the general situation, gaze and hand movements are weakly correlated in

space. The correlation is nevertheless stronger on the horizontal dimension than on the

vertical dimension. This result is coherent with the observations we made regarding the

correlation between gaze and taps (in Chapter 4) and stationary hand events (in Chapter

5). After modifying the correlation coefficients to comparable statistical information with

a Fisher Z-transformation, we compare the coefficients between X and Y axis: the cor-

relation between gaze and hand movements on the horizontal axis is significantly higher

than the correlation between gaze and hand movement on the vertical axis (Steiger tests
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for dependant samples1, Z=102.65, p<0.01). Maybe this stronger alignment on the hor-

izontal axis can be explained by two causes: (1) the human system favours horizontal

yaw movements over vertical pitch movements (better horizontal smooth pursuit [44],

horizontal movements involve less muscle in action (medial and lateral rectus muscles)

than the vertical movements (superior and inferior rectus muscles as well as the oblique

muscles), saccadic movements in natural visualisation contains more horizontal move-

ments [70, 74], visual field wider in the horizontal dimension [205]) and (2) moving the

hand horizontally is preferred by users [118].

6.3.2 Correlation per Participant

When observing the participants during the data collection, we clearly noticed that some

of them had a stronger tendency than others to keep their hand in motion between taps

and/or stationary hand events. Thus, we want to understand how personal difference

influences the overall results of Section 6.3.1, and if a categorisation can be observed.

Figure 6.2: Participant’s Spearman correlation coefficients boxplots per axis.

Figure 6.2 shows the boxplots for the Spearman’s correlation coefficients of each partic-

ipant on each axis (X and Y). For all participants, all the coefficients between X and Y

are significantly different (p<0.01).

We still observe higher correlation coefficients in the horizontal dimension than in the

vertical dimension, but clearly the correlation coefficients vary among users. In the

horizontal dimension, they span from 0.17 to 0.89 and in the vertical dimension, they span

from 0.32 to 0.87, as shown in Figure 6.3. However, the distribution of the correlation

coefficients on the X axis among participants clearly indicates a smaller variance than
1As mentioned in http://quantpsy.org/corrtest/corrtest3.htm (last accessed Jan. 2020)
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on the Y axis. We did not observe any apparent correlation between the percentage of

time the participants’ hand was in motion (measured between the first and last taps of

each round, mean 66.5±7.9 %) and the strength of the correlations mentioned above.

Figure 6.3: Distribution of the Spearman correlation coefficients over participants for X and Y axis
(all levels).

We have shown in the previous section that generally, the correlation between gaze and

hand movements is stronger on the horizontal dimension than on the vertical dimension.

Figure 6.4 illustrates the Spearman’s correlation coefficients relationship between X and

Y for both dimensions per participant.

We clearly realise from Figure 6.4 that most of the X-Y correlation coefficients pairs

are situated below the equality diagonal (where Y = X), illustrating the statement

that alignment is stronger horizontally than vertically. Nevertheless, from this plot, we

cannot identify distinct clusters that would divulge a classification of the participants,

the correlation coefficients are all over the boundaries mentioned above.

Figure 6.4: Spearman’s correlation coefficients relationship over the participants for X and Y axis (all
levels).
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Figure 6.5: Spearman’s correlation coefficients relationship over the game levels for X and Y axis.

6.3.3 Correlation per Game Level

Since we designed the game to trigger more intense cognitive mechanisms with the pro-

gression of the levels, we wonder whether the task difficulty influences the correlation

between gaze and hand during hand motion. Correlation coefficients of each level in

both horizontal and vertical dimensions are plotted in Figure 6.5. We compare each cor-

relation pair-wise (after applying a Fisher Z-transformation, summarised in Table 6.1).

Although the Spearman correlation coefficients difference between each level’s pair is sig-

nificant, we cannot observe a systematic increase or decrease of the coefficient values with

the level difficulty. Nevertheless, the following remarks can be raised. For the X axis, the

correlation coefficient for the level 3 (ρ=0.65) is lower than the two others (ρ=0.70 for

level 1 and ρ=0.72 for level 2), suggesting that when the task difficulty increases, users

tend to weaker align gaze and hand horizontally. On the Y axis, even if the correlation is

always weak, we observe that the coefficient value (ρ=0.55) is worse for the easiest level

than for the two others (ρ=0.60 for level 2 and ρ=0.57 for level 3), indicating that when

difficulty is low, vertically, users do not align gaze and hand as much.

Table 6.1: Pair-wise Z-score for the Spearman correlation coefficients between gaze and hand com-
parison per game level.

Level Pair Z-score (X axis) Z-score (Y axis)
1-2 8.23* 26.12*
2-3 38.5* 15.7*
1-3 27.41* 12.17*

(∗)p<0.01

In sum, the correlation between gaze and hand on the X and Y values seems to be

influenced by the difficulty of the task in opposite ways: weaker when the difficulty is
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higher for the horizontal dimension, and weaker when the difficulty is lower for the vertical

dimension. This behaviour could be explained by more demanding cognitive efforts from

the users which leads to more vertical gaze movements than in normal situation (this

behaviour has been observed in another context, driving [165]).

Figure 6.6: Hand motion duration distribution.

6.3.4 Impact of Time on the Correlation

Each hand movement between taps and stationary hand events varied in time from

milliseconds (84 ms) to seconds (5.49 s), as shown in Figure 6.6.

Figure 6.7: Spearman’s correlation coefficients relationship over the motion duration ranges for X
and Y axis.

We investigate the role played by the duration of the hand motion on the correlation

between gaze and hand. To do so, we categorise the data into different time ranges,
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based on the approximation of the quartiles’ value: less than 300 ms, between 300

ms and 550 ms, between 550 ms and 1 s and more or equal to 1 s. Figure 6.7 il-

lustrates the correlation between gaze and hand during hand motion for each time ranges

mentioned above.

Table 6.2: Pair-wise Z-scores for the Spearman correlation coefficients between gaze and hand com-
parison (X axis) per duration range.

Duration range <300 ms 300 ms - 550 ms 550 ms - 1 s >= 1 s
<300 ms 25.15* 46.34* 72.76*

300 ms - 550 ms 25.46* 58.38*
550 ms - 1 s 35.6*

(∗)p<0.01

After executing a Fischer transformation, we compare the different correlation coeffi-

cients pairwise. The Z-scores are reported in Tables 6.2 and 6.3 (for the X and Y axis

respectively, p<0.01 for all pair comparisons). Figure 6.7 suggests a trend for the cor-

relation to be degraded when the duration of the movement lasts longer (on both the

horizontal and vertical dimensions). Indeed, the correlation score is very poor for the

group of hand movements lasting more than 1 s.

Table 6.3: Pair-wise Z-scores for the Spearman correlation coefficients between gaze and hand com-
parison (Y axis) per duration range.

Duration range <300 ms 300 ms - 550 ms 550 ms - 1 s >= 1 s
<300 ms 26.98* 54.86* 88.28*

300 ms - 550 ms 33.72* 75.17*
550 ms - 1 s 44.9*

(∗)p<0.01

Results in Chapter 5.5 showed that the distance between gaze and stationary hand events

is wider when the participants were considered as indecisive. We suppose that the hand

movements preceding the stationary hand event could be poorly correlated with gaze

and, in a situation of indecision, therefore may require more time to be performed (as

longer movements are less correlated with gaze).

6.3.5 Impact of the Motion Type

The hand movement above the tablet’s screen may carry different information depending

on where it starts from and ends to. For example, when the motion is strictly above the

tablet’s surface, we can infer the user is either in a decisive action (when movements are
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short in time) or in a search action (when movements take longer). A movement that

ends outside the volume strictly above the tablet’s surface may indicate the user is in a

phase of observation (the hands retracts from the interaction space to give a full visibility

of the interface) or even indecision (loss of engagement) [3, 71, 175, 201].

We distinguish 9 types of motion to cover all the combinations between taps, hovers and

dwells (the two stationary hand events described in Chapter 5, Section 5.3.1.2):

• T-T from a tap to another tap,

• T-H from a tap to a hover event,

• T-D from a tap to a dwell event,

• H-H from a hover event to another hover event,

• H-D from a hover event to a dwell event,

• H-T from a hover event to a tap,

• D-H from a dwell event to a hover event,

• D-D from a dwell event to another dwell event,

• D-T from a dwell event to a tap,

The distribution of the hand motion types is illustrated in Figure 6.8. It appears that

most movements are of type T-T, and that more than one stationary hand event between

two taps occurs rarely (fewer motion connecting two stationary hand events).

Figure 6.8: Hand motion type distribution.

We compute the Spearman correlation of each type between gaze and hand during hand

movement on the horizontal and vertical axis. Figure 6.9 represents each correlation

coefficients for both axes. As observed in other cases, the correlation between gaze and

hand during hand motion is more important horizontally than vertically, for all types
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of movements. However, two clear clusters of points on the graph suggest that the

correlation is much stronger when a tap is involved into the hand motion (either at the

beginning or at the end of the movement).

Figure 6.9: Spearman’s correlation coefficients relationship over the motion types for X and Y axis.

By comparing the correlation coefficients pairwise using a Fischer transformation, we find

that all the correlation coefficients for the motion types involving a tap are significantly

stronger than those only involving a dwell or a hover (p<0.01 for all comparison, results

summarised in Appendix D, Table D.1 for the X axis and Table D.2 for the Y axis).

6.3.6 Spatial Difference between Gaze and Hand

The context of the study being a Memory Game, we take the game’s tiles as a reference

for the spatial division of the tablet’s screen (each tile is a square of 304 pixels/43.38 mm

side). Figure 6.10 illustrates the mean difference between gaze and hand position during

hand motion on each tile (where gaze is located in a tile).

The difference between gaze and hand position during hand motion changes across the

tiles: we observe a closer distance between gaze and the projection of the hand in the

bottom right of the tablet screen, that increases radially toward the top corners. The

horizontal difference is, once again, showing a closer alignment between gaze and hand

across the screen’s width (span of 81.19 mm, 31% of the screen width) than vertically

(span of 40.31 mm, 23 % of the screen height). Generally, the hand tends to keep close

to the body, hence the radial increase of the distance. Horizontally, results indicate

that the projection of the hand crosses the line of sight somewhere close to the right
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part of the tablet, supporting the idea that users limit their hand movements (result

indicated by the fact that most participants were right-handed as mentioned in Section

5.2.5). Vertically however, the hand’s projection always remains below the line of sight.

The relationship between gaze and hand during movements followed the same principles

exposed in Chapter 5 between gaze and stationary hand events: the hand tends to move

at a minimum effort, hence favouring horizontal movements. The distribution of the

gaze/hand difference over the screen informs on the mental maps the users generate

while the hand stays in the volume above the tablet. Nevertheless, these results can only

apply to a system, such as a public kiosk, that does not require scrolling (in particular,

vertical scrolling). Results observed for such interaction may differ as it bring other hand

gesture that were not required when playing the Memory Game.

Figure 6.10: Mean difference between gaze and hand during hand motion per tile (based on gaze
location).

6.4 Discussion

The correlation between gaze and hand during hand motion bears similarities with the

observations made on the relationship limited at taps or stationary hand events: gaze and

hand align stronger on the horizontal dimension than on the vertical dimension. Beyond

the expected individual differences that resulted in various correlation strengths, we

have also explored how several characteristics inherent to the application context (level

of difficulty) or to the motion (duration and type) influence the relationship between

gaze and hand while the hand was moving. The results we found can be explained in the

following ways. We observed that the difficulty level of the application result in a weaker
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correlation on the horizontal axis and a stronger correlation on the vertical axis when

the difficulty increases. We suppose that the reason for this behaviour is a tendency for

the users to keep their finger aside the tablet when the difficulty is higher, resulting in

a movement mainly following the vertical axis rather than skimming the screen in both

dimensions (maybe as a consequence of unconscious willingness to keep the visual field

free from the hand and to place the hand as a marker of a potential selection to perform

later). Guessing the perceived difficulty of an application can therefore be achieved by

observing how the correlation between gaze and hand during hand movement behaves.

Based on the motion’s duration and type (connection between the different events, taps

or dwells or hovers), we found that the correlation is stronger (both for the X axis and

the Y axis) on shorter movements, and when the motion connects at least one tap with

another event. The degradation of the correlation over time may be understood as a

consequence of heavy cognitive process: when the hand movement lasts, chances the

user is involved into a more intense reflection are higher, resulting the hand to probably

“wander” while the eyes keep searching the mental representation the user has of the

application. The results found with the type of motion also support this explanation,

since a movement between two stationary hand events is most likely to be associated

with hesitation or cognitive load task.

Our work analysed the role cognitive load tasks play in tablet interaction based on three

increasing difficulty levels of a game. This low number of levels and the complexity

of rating the degree of difficulty may be pointed out. However, we are confident in

our choice for most participants had perceived an increasing difficulty in the levels (a

feeling that they expressed during the data collection - unfortunately we did not collect

their feedback over the level perception), but we are fully aware that more detailed and

rigorous evaluation can certainly be performed with tasks containing more increments of

difficulty, and a reliable evaluation scale associated with the difficulty of the levels (for

instance, Paas et al. proposed measurement means associated with the Cognitive Load

Theory [150]; Brünken et al. defined a framework in a multimedia based context [23]).

The results we expressed are valid for tablet interaction that did not require scrolling. If

the tablet were used for browsing the Internet, or using social media, our observations may

differ greatly because of the scrolling that generates hand movements are not correlated

to gaze movements [193].

The data collection we devised allows the study of predictive hand movements duration

with the expression of the Fitts’ law [65]. Fitts proposed the expression of the index
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of difficulty (ID) as a function of the distance to the centre of a target (D) and the

width of this target (W ), and also expressed the index of performance (IP) as a function

of the index of difficulty (ID) and the movement time (MT ). His original expressions

have later been adapted to Human-Computer Interaction (MacKenzie [126]) Therefore,

different movement times between two tiles of the game may inform how much cognitive

load the participants are experiencing [78, 127]. Nevertheless, Fitts’ law models well

movements that are clearly targeted (aim reaching tasks) and without a baseline, a

system that estimates the cognitive state of a user by exploiting Fitts’ law may not be

able to perform well before a training set is available to compare actual data with.

6.5 Conclusion

In this chapter, we have analysed the correlation between gaze and hand when the hand

was in motion, between consecutive tap, hover or dwell events. The context of the

data collection, a Memory Game, allowed the participants to generate enough manual

interaction on the tablet and was a good example of an application which required a

cognition activity, with an increment of difficulty over the three levels, making the hand

moving between taps and stationary events throughout the volume above the whole

surface of the tablet’s screen.

We studied the relationship between gaze and hand motion spatially, in a general situa-

tion and according to several factors inherent to our study. In general, we found that the

correlation between gaze and hand during hand motions was good in the horizontal axis

(ρ=0.69) and average on the Y axis (ρ=0.58). A stronger correlation on the horizontal

dimension is in line with the results found in previous chapters. When studying the rela-

tionship between gaze and hand during hand movements according to different criteria,

we also found that a stronger horizontal alignment was maintained. These results are

coherent with previous findings related to stationary hand events and gaze correlation

(Chapter 5), and should support an “horizontal-layout” design of tablet’s applications to

increase the user’s experience on those devices.

The first criteria we observed was the individual factor. It was expected that the corre-

lation would vary among users. The correlation was still stronger on the X axis for most

users, and the individual differences were more important vertically than horizontally

(the correlation varied more for the vertical axis). We associate this result with personal

choices of limiting hand efforts or not.
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We also studied the correlation according to the task difficulty, the duration of the motion

and the events the motion connected (type of motion). We showed that considering all

factors (longer movement, more than one stationary hand event and task difficulty), the

cognitive load impacted the correlation in such ways: the more the complexity the less

eyes and hand correlated, in both dimensions (except vertically where the correlation

was slightly better, while poor, when the difficulty increased).

These findings are elements that can be considered in the design of intelligent devices

that adapt to the user’s behaviour, for example detecting difficulty of interpreting the

application’s content from user’s changes in the way her gaze and hand movements are

correlated during interaction.
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Discussion

This thesis presented the correlation between gaze and hand at different stages of the hand

activity found during interaction with tablets. Research focusing on human behaviour

often leads to an exploratory phase: would the finding be representative of most persons,

or would several profiles emerge from the analysis of the data? In our case, we expected

individual differences as we observed the participants during their interaction. Experience

with tablets, physical/cognitive abilities and emotional state form a non exhaustive list

of some speculative factors that may explain why people do not interact in the exact

same way. Despite this expectation, we tried to draw conclusions from general data that

describe an average behaviour, while acknowledging the differences. Therefore, deeper

studying the individual differences is a potential continuation of the work related in our

thesis, such as investigating whether the correlation between gaze and hand during tablet

interaction systematically depends on specific behaviour categorisation (of gaze patterns,

hand patterns or any other modality). In this chapter, we address the limitations of our

research work we retrospectively analysed, as well further research ideas that can derive

from the work we have presented.
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7.1 Limitations

7.1.1 Apparatus

For both data collections we covered in the thesis, we used tablets that had similar

dimensions and that were always presented to the user in a landscape orientation, because

we wanted a setup that is similar to a public kiosk (that are mainly in this orientation)

. As we have tailored our research work to be reflecting the users’ natural interaction,

the tablet orientation could be an element that greatly impact the results: because some

users may prefer interacting with the tablet in the portrait orientation, and because

the visual dynamics can change greatly (the change of orientation of pictures influences

the gaze directions [70]). Tablet’s position is another variable that we locked. Even if

the apparatus differed between each data collection (Tobii rack for the first, home-made

support for the second), the tablet laid in a near to horizontal position. Although this

position is used for public kiosks (i.e. in a museum) and for personal interaction by users,

vertical (or near to vertical) displays are very common (i.e. in ticketing machines and

public displays). Our methods to explore the correlation between gaze and hand would

not changed, but the orientation and/or position would be new variables to take into

consideration.

Eye tracking technology has certainly become more reliable and efficient. Nevertheless,

remote eye tracking based on infrared corneal reflection still suffers limitations: light

needs to be controlled, interferences need to be avoided, and the subjects in front of the

eye tracker may not comply with the physiological requirements necessary for a good

tracking. Hence, studies involving eye tracking are, by nature, limiting the population

on which analysis are based upon (which again accounts for the complexity of working

on human factors). If applications can be devised from our results, it will concretely be

difficult to implement them in the real world: there is no guarantee to meet the controlled

environments of the laboratories once crossing their doorsteps. Future work based on our

results will most likely have to face these challenges, by choosing tracking tools that are

not sensitive to external stimuli, yet not obtrusive if naturalness needs to be maintained.

7.1.2 Tasks

Throughout the work associated with this thesis, we have favoured a study context

that reflected as much as possible ordinary activities that can be performed by users
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on tablets in order to capture their natural behaviours: Internet search, shopping and

link following on Wikipedia (Chapter 4) and a game (Chapters 5 and 6). Necessarily,

especially for the data collection context presented in Chapter 4, this approach led to some

difficulties in the analysis. Since there was no predefined targets to steer taps towards, the

content displayed by the tablet (for Chapter 4) and the hand movements (for all chapters)

were totally random: they were entirely dependent on the participants’ choices. More

often, abstract tasks are performed by participants in studies that research on hand and

gaze correlation, possibly because it provides results for the very elemental behaviours

observed in humans. With a more interactive context, distractors are impacting the

attention of the participants and probably influence the way the gaze at the scene. Still,

the data collection contexts we selected were more practical than what presented in other

studies related to gaze and hand coordination. In addition, even if we had chosen to work

with abstract tasks, it would have just been good enough to prepare a baseline work,

on which we would have certainly required to build on with the same study contexts

we eventually presented in this thesis to elaborate how factors occasioned by Human-

Computer Interaction alter the correlation between gaze and hand.

We studied in-the-air hand interaction (stationary hand events in Chapter 5 and hand

movements in Chapter 6) based on a data collection’s context that did not require the

user to scroll or zoom, whereas the data collection’s context we relied on to study the

correlation between gaze and taps (Chapter 5) allowed the users to scroll or zoom, but

was not be recorded with our setup. Therefore, we strongly recommend further research

based on our work to combine the apparatus and data collection’s context in a way that

these different gestures are triggered (application that requires scrolling and zooming)

and measured (with a hand movement sensor or from a tablet-based gesture recognition

tool).

In Chapter 5, we have estimated the hesitation of the participants based on the wrong

pair matching instances of already seen tiles. More reliable work on hesitation would

have been achieved if the detection of the nonsystematic hand gestures and tasks that

can clearly scale the difficulty levels had been in place to define the ground truth to

compare our data with. Standard evaluation scales must preferably be used to evaluate

the difficulty of a task in a much objective angle as possible. Besides a clear infrastructure

framework to evaluation difficulty or hesitation, further body movements recording and

analysis could have been considered, such as shoulder shrugging, frowning etc. Our data

collection setup did not allow such recording.

129



7. Discussion

Figure 7.1: Example of the hand leaving the interaction space as a potential expression of frustration,
hesitation or reflection.

7.1.3 Data

Although our participants’ recruitment did not discard people, our population is repre-

sentative of healthy individuals with none to moderate eye correction. As a consequence,

so is our data, and the results we obtained may not be valid for subjects suffering from

major visual impairment, physical or mental disabilities.

We considered the hand events to structure the thesis upon (taps, stationary hand events

and motion in between) as the common and basic hand events encountered during inter-

action with a touch enabled device, and therefore, we limited our work on those events

to cover the essential of the hand activity over a tablet. Nevertheless, we are aware that

many other more complex gestures are performed by users such as a flip of the hand

to express surprise or frustration, small repetitive movements of the fingers to express

impatience or reflection, or more drastically when the hand is leaving the interaction

surface and acts on the body to express a doubt (as illustrated by Figure 7.1). These

other gestures are sometimes specific to an individual (nervous tics), thus tackling the

gestures puts research on the edge of generalisation when dealing with human factors.

These individual gestures have been ignored in our work, which necessarily has an im-

pact on the study dealing with hand motion (Chapter 6): the hand motion connecting

taps and/or stationary hand events were not always continuous nor constantly followed

a “direct” path.

7.2 Further Research

7.2.1 Human Factors and Sensors

We have considered only specific factors that can impact the users’ interaction with

tablets: individual interaction patterns in typing and estimation of indecisiveness. These
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factors are far from being exhaustive, and we suggest several other factors than may

complete our work and provide research with further insights on Human-Computer In-

teraction with tablets. Human-Computer Interaction has benefited greatly from new

sensors that have placed the hand as the “old” modality. This thesis treated the cor-

relation between gaze and hand because they are the two main body parts involved in

the relationship between humans and touch enabled devices. Human body language is

far more informative and complex than the taps which computers commonly and solely

interpret at this stage. Therefore, other body measurements that indicate the users

cognitive or emotive state (such as shoulder shrugging [111], heart rate and blood pres-

sure [90], facial expressions [60]), already sometimes monitored by wearable devices, may

soon enough be consistently integrated in the data processed by computers to understand

their users and respond adequately, shaping the reality of Intelligent Human-Computer

Interaction.

• Frustration As mentioned in the limitations (Section 7.1), users may show signs

of frustration, impatience etc. We invite researchers to classify hand gestures to

detect and take frustration into consideration in further work via running gesture

detection algorithms on hand movement sensing data or analyse video recordings

(computer vision or annotation). Ad hoc detection is possible if the hand gestures

that are associated with frustration are already listed and known before the data

collection. Otherwise, post hoc data analysis needs to be run. We suggest to use

another sensor than Leap Motion to detect the hands, if a sensor is preferred to

video recording: Leap Motion may not perform well in tracking hand movements

that are far away from the tablet (or the device’s field of view) and occlusion may

prevent from reliable sensing. Depending on the context of the study, wearable

devices may be considered i.e. wearable accelerometers [218]. Frustration can also

be detected from other body response like frowning and audio recording.

• Engagement Engagement is a reliable criteria to detect how users are responding

to an application in Human-Computer Interaction studies [145]. To detect it, our

data collection can be sufficient: gaze and hand movements data can be analysed

to detect loss of attention and engagement. However, validation may be required

by further video analysis (i.e. when the sensors do not track movement, does it

mean gaze or hand has left the field of view corresponding to the interaction area

or is it a sensor issue?) and therefore, considering a video recording of at the least

the upper half of the body may be necessary. Complementary detection can be
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encompassed by analysing audio recordings of think aloud scenarios. Of course,

system inactivity can also reveal lack of engagement, but should be carefully used

to avoid false assumptions (for example considering the completion of a task as

inactivity that assumes a lack of engagement).

• Arousal Arousal has been considered in Human-Computer Interaction as a factor

that can be monitored by intelligent systems to enhance their response to users’

emotions [137]. To achieve so, different sensors need to be used, such as skin con-

ductivity sensor [85], Electroencephalograph, heart beat rate sensor, electrodermal

activity sensor, respiration sensor, finger thermometer or facial expression analysis

[137]. Most of these sensors break the naturalness of the interaction we wanted to

preserve by using remote devices. However wearable devices can be a solution to

avoid the users’ feeling of obtrusion [163], such as the Empatica E4 wristband1.

The sensors we used in our study could potentially be used by measuring the pupil

dilation of the users, however, pupil dilation can be triggered by external factors

(such as the change in ambient light) and is not reliable on its own.

• Anxiety Computer interaction is known to be a cause of anxiety [86, 212]. Even

if suppressing anxiety may be very challenging, detecting under which conditions

peaks of anxiety are found during interaction with touch-enabled devices may be a

research area to tackle, so that intelligent systems decide which scenarios to adopt

when anxiety is detected. This factor cannot be measured with the methods we

used during our work. Anxiety is often measured via the skin conductance rate

(sweat levels) and heart bit rate. Moreover, further research towards evaluating

anxiety must allow a data collection in two steps: one that first serves as a baseline

for when subjects are in a “relaxed” situation (i.e. listening to music) , and another

one that actually focus on the interaction with the touch-enabled device.

For all factors, video recording of a larger portion of the body (at least the full upper half

of the body to cover the torso, the limbs, shoulders, and the face) can to be used, either

for ad hoc data logging (for example using computer vision) or post hoc video analysis.

1Empatica E4 EDA/GSR sensor webpage https://www.empatica.com/research/e4/ (last accessed
Jan. 2020)
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7.2.2 Contexts

As we thought of public kiosks as a target for our work, we did not consider the way users

hold the tablet. In our work, the tablet could not be moved and carried as it is in public

spaces. If similar work than ours was to be considered for personal use of the devices,

the different holding strategies deployed by the users can be explored (for instance, are

the results changing when only one hand is used for interaction while the other hand

holds the tablet, compared to users who leave the tablet on a surface and interact with

both hands).

We have tried to find data collections’ contexts that keep the naturalness of the interac-

tion with a tablet as much as possible. However, since we have thought our work to be

relevant for applications in public spaces (such as kiosks), different contexts could have

been explored to also reflect public spaces’ applications (i.e. ticket booking/collection,

map reading, browsing). We also deliberately ignore tablet’s professional usage (such

as productivity software interaction) to focus on widespread activities (according to a

2018 Ofcom report2 tablet users spent twice more time online with their tablet at home

and at any location than at work; Müller et al. surveyed tablet’s users in 2011 and con-

cluded that “[...] the most frequent activities [are] checking emails, playing games, social

networking, and looking up information. [...] tablets are primarily used for personal

purposes[...] ” [138]).

As discussed in the limitations (Section 7.1), different configuration of the tablet, as the

orientation and the position, can be explored to better understand the correlation be-

tween gaze and touch other scenarios. We also encourage further research to address the

correlation between gaze and hand for application on mobile smartphones, as they repre-

sent the large majority of touch-enabled devices used wordwide (3.3 billions smartphone

users 2019 forecast according to Statistica3 in 2019 versus 1.23 billions tablet users 2019

forecast4).

We strongly recommend further research to evaluate new systems based on the work we

presented, in order to test applications in a real context.
2Ofcom Communications Market Report 2018 https://www.ofcom.org.uk/__data/assets/pdf_

file/0022/117256/CMR-2018-narrative-report.pdf (last accessed Jan. 2020)
3Number of smartphone users worldwide from 2016 to 2021, Statistica https://www.statista.com/

statistics/330695/number-of-smartphone-users-worldwide/ (last accessed Jan. 2020)
4Number of tablet users worldwide from 2013 to 2021, Statistica https://www.statista.com/

statistics/377977/tablet-users-worldwide-forecast/ (last accessed Jan. 2020)
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7.2.3 Replication

We designed two data collections that can be partly (for the first one) or entirely (for the

second one) reproduced by fellow researchers. The apparatus in both data collections can

be reproduced: the tablets, eye trackers, hand tracker are commercial devices, so as the

rack used to maintain the tablet and the eye tracker in place in the first data collection

(cf. Chapter 4). The apparatus support board we designed for the second data collection

(related to Chapters 5 and 6) can be reproduced: we provide the dimensions required to

dispose the apparatus’ elements (tablet, Leap Motion and eye tracker) relatively to each

other (Appendix B, Figures B.1 and B.2). Only the context of the second data collection,

however, can be reproduced totally as it is a game that has a static presentation. The

first data collection’s context can be partly reproduce: questions of the first task, rules

for the game tasks and shopping activity for the shopping task. Not only the underlying

Internet content will vary among users (as we reported) but it may also differ greatly from

when we did our data collection, for example if the shopping website workflow changed

dramatically.

As mentioned in Section 7.1, we advise potential replication of our data collections to

deviate from the contexts/apparatus we designed so that the context triggers richer

gestures such as scrolling or zooming, and the system effectively tracks them (either by

a tablet-based tool or by the hand movement sensor). Based on our work, tracking more

gestures would require to modify Sparsh-UI to detect them (cf. Section 3.2 in the case

the first data collection is reproduced, and allow gesture detection with Leap Motion if

the second data collection is reproduced.

7.2.4 Applications

We orientated our research work towards finding how the relationship between gaze and

hand during the interaction with a tablet can be used to infer the user’s indecision. This

is one example of user’s emotions or cognitive processes that we have chosen. We discuss

in this section suggestions on how adaptive systems should implement a detection to

user’s indecision (and other emotions/cognitive processes) to meet with the principle of

Intelligent Human-Computer Interaction proposed by Pantic et al.: “ ‘Human-Centred

Intelligent HCI (HCI2) must have the ability to detect subtleties of and changes in the

user’s communicative behaviour (as expressed through, e.g. affective and social signals),

and to initiate interactions based on this information, rather than simply responding to
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the user’s commands.” [152].

Hesitation in computer interaction can occur during an expected selection process (such

as the choice of a product) or during an unexpected interruption in user experience when

the context the user interacts with appears to be unclear or ambiguous (design issue,

labelling issue etc.). Therefore, intelligent systems which monitors the user’s indecision

must also be able to evaluate the right situation (expected or unexpected), as well as

the causes of hesitation. In the first case, possible intelligent system’s responses are: (1)

displaying an assistant tool to help the user with selecting the right item, in a noticeable

way that is yet unobtrusive, (2) when the interaction process implicates the validation of a

selection, proposing the second choice the user did not make if the validation is cancelled

(the user changed her mind). In the second case (unexpected situation), intelligent

systems cant hint indications on how to use the application and/or self-adapt to prevent

the ambiguity found by the user. Eventually, systems can report to designers on critical

parts of their products. In both cases, intelligent systems can also be used to detect

when hesitation appears to be a medical condition that impairs the user of interacting

with the system in a standard manner, and therefore adapt their behaviour to allow, for

instance, longer timers, simplified choices and assistance.

Applications may of course consider different cognitive or emotional factors that hesita-

tion. Duric et al. [58] described how intelligent adaptive systems can respond to these

factors: “Imagine a computer interface that could predict and diagnose whether the user

was fatigued, confused, frustrated, or momentarily distracted by gathering a variety of

nonverbal information [...]. Further imagine that the interface could adapt itself - sim-

plify, highlight, or tutor - to improve the humanâĂŞcomputer interaction (HCI) using

these diagnoses and predictions. Nonverbal information facilitates a special type of com-

munication where the goal is to probe the inner (cognitive and affective) states of the

mind before any verbal communication has been contemplated and/or expressed.”. Ma-

chine learning to exploit the sensors’ data is a potential to detect the user’s cognitive and

emotional behaviour that we encourage further researchers to implement in intelligent

systems.
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The topic of the correlation between gaze and hand during touch enabled devices in-

teraction is cross-disciplinary. Essentially, research aims at explaining the correlation

from a biomedical aspect: how the central nervous system organises the visual and mo-

tor commands to perform a manual reaching movement. In that sense, our work tried

to give a general and basic description of the human behaviour observed in a specific

context: the natural interaction with tablets. We described the correlation between gaze

and hand at different stages of the hand activity commonly observed with users: taps,

stationary hand events and motion in between the first two events. Whenever possible,

we detailed the organisation of the gaze and hand during interaction according to the

two aspects found in literature, temporally and spatially. Temporally, we confirmed that

gaze leads the hand, it acquired the target area 159 pixels away by 338 ms before the

hand had performed the tap. This result can serve as a benchmark for healthy users

(mentally and physically) as our data collection relied on healthy users, with none to

mild eye correction. Except for the limitations of eye tracking (cf. Section 3.1.4) that

could discard some users, our study can be replicated with disabled users to measure

their response against our baseline. However, our work did not allow to measure the

reaction time between the gaze acquisition and the hand movement, because during the

studies, there were no systematic stimulus nor resting position to measure this reaction

time against. Spatially, our main finding was that the distance between gaze and hand

(measured in the volume above the device’s surface) is dependent of the location where

the users looked at. The correlation was stronger horizontally, and it indicated that the
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“mental” manual map of the interaction surface was a radial projection centred on the

user’s location, more distorted vertically, certainly to minimise efforts. We have shown

that typing behaviour patterns are correlated with the user’s typing skill (speed and

accuracy of typing): good typist keep a larger vertical distance between their hand and

their gaze, suggesting this is a very important factor to consider when a model of the

correlation between gaze and hand needs to be made for usability by intelligent systems.

We have evaluated how the difficulty of the tasks impacted the correlation between

gaze and hand during tablet interaction. Based on observations made on the levels of

increasing difficulty in a Memory Game, we concluded that when the hand remained in

a stationary phase, the distance between gaze and the projection of the hand on the

tablet’s screen increased with the difficulty, and that while the hand was in motion,

the difficulty impacted mainly the horizontal alignment. Other factors also suggested

that the increase of difficulty also deteriorated the correlation between gaze and hand.

When the hand movements lasted longer, hand and gaze were less aligned. We suppose

that longer movements were indicating less decisive actions. We have approximated the

decisiveness of the participants by the success matching of the image pairs in the Memory

Game, and found that when the stationary hand events were leading to an unsuccessful

match, the distance between gaze and hand was larger.

The results we presented highlighted the individual differences found between partici-

pants. The correlation between gaze and taps clearly indicated that both the temporal

and spatial dimensions of the correlation varied among users. These differences were

expected: individuals moved their hand in different fashions probably related to experi-

ence (speed, reactivity), and certainly, in a natural context, connected with the different

strategies and cognitive processes that influenced the way eyes and hands worked to-

gether.

Despite the noticeable individual differences, we have provided the core elements on

which further work may build on, either to deepen the fundamental understanding of the

eye/hand correlation when interacting with touch enabled devices, or to implement tools

able to evaluate the behaviour adopted by touch enabled devices’ users, and thus propose

adequate and more intelligent responses from the systems towards enhanced interaction.

Inspecting the machine learning to construct robust detection of emotional and cognitive

behaviours is potential enhancement to the work we have done and that can be continued

by further researchers.

In sum, we have devised two data collections to understand how gaze and hand are cor-
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related during the interaction with touch-enabled devices, in a natural context (Internet

related activities and games). Our population target was healthy subject with none to

mild eye correction, and we focused on three hand events: taps, stationary hand events

and hand in movement. We studied the impact of a few factors (typing, nature of the

task, nature of the target). We have thought this research work as baseline to be ex-

ploited by intelligent systems to adapt themselves to the user’s cognitive and emotional

behaviours (intelligent Human-Computer Interaction [152] and adaptive systems princi-

ples [58, 122]) by proposing assistance or changes when such behaviours are detected, or

provide tablet’s application designers better understanding on their design pitfalls. We

proposed the detection of indecision as an example. Our research was also thought to be

implemented as public kiosks, hence the choice of a tablet and generic tasks. We sug-

gest this work to be continued in the following ways: testing the applications, focusing

on other hand events/gestures (i.e. zooms, drags), testing other devices configurations

(i.e. change of orientation), focusing on other human factors (i.e. arousal, anxiety and

engagement, and also by contrast, well-being) and comparing results with non standard

subjects.
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Appendix

A Gaze and Tap Correlation Study Material

Table A.1: Questions of the Search Task.

1 (I) What are some side-effects of Ibuprofen?
2 (N) Find the special offers page for Southwest Airlines.
3 (N) Find the homepage of the “Pinewood” software company.
4 (N) Find the homepage of the Football World Cup 2006.
5 (N) Find the homepage of the School of Computing and Communications of

Lancaster University.
6 (I) What is the size of a modern implantable pacemaker of today?
7 (I) I was watching the movie “Stand by Me” the other day. I know it is

based on a Stephen King story with a different name. What is the name
of the story?

8 (I) Find the names of Julia Roberts’ children.
9 (N) Find the official website of Tesla Motors - a startup that builds powerful

electronic cars.
10 (I) A technician cuts his finger badly in the Biology Department. What are

the legal implications of this for the university? Find relevant informa-
tion on the Web.

(I) Informational, (N) Navigational

Table A.2: Suggestion of Mock-up Personal Data for the Shopping Task.

Name Ashley Simpson
Age 25
Address InfoLab21

South Drive
Lancaster
LA1 4WA

Email a.simpson@email.com
Phone 079 12345678
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Table A.3: Source and Target Articles (2 rounds) for the Game Task.
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Appendix

Figure A.1: Questionnaire submitted at the end of the study.
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Appendix

Figure A.2: Snippet of the JavaScript code injection on the webpages on the emulated browser.
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Appendix

Figure A.3: Flyer of the data collection participation (related to Chapter 4).
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Appendix

B Gaze and Hovers Correlation Memory Game Details

Figure B.1: Schematic disposition of the apparatus elements. (sideways view)

Figure B.2: Schematic disposition of the apparatus elements. (top view, alignment is suggested by
the dotted line)
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Appendix

Figure B.3: Demonstration Version of the Memory Game.

Figure B.4: Level 1 of the Memory Game.

Figure B.5: Level 2 of the Memory Game.
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Figure B.6: Level 3 of the Memory Game.

Figure B.7: Flyer of the data collection participation (related to Chapters 5 and 6).
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C Gaze and Hovers Correlation Other Results

Figure C.1: Precision-Recall space for the IDTE algorithm (grouping by Tt).

Figure C.2: Precision-Recall space for the IDTE algorithm (grouping by St).
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Figure C.3: Precision-Recall space for the IVT algorithm (grouping by Tt).

Figure C.4: Precision-Recall space for the IVT algorithm (grouping by St).
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Figure C.5: F1 score for the different combinations of thresholds of the IDTE algorithm.

Figure C.6: F1 score for the different combinations of thresholds of the IVT algorithm.
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Figure C.7: IDT Precision-Recall space for the IDT algorithm (grouping by Tt, dwells only).

Figure C.8: Precision-Recall space for the IDT algorithm (grouping by St, dwells only).
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Figure C.9: Precision-Recall space for the IVT algorithm (grouping by Tt, dwells only).

Figure C.10: Precision-Recall space for the IVT algorithm (grouping by St, dwells only).
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Figure C.11: F1 score for the different combinations of thresholds of the IDT algorithm (dwells only).

Figure C.12: F1 score for the different combinations of thresholds of the IVT algorithm (dwells only).
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Figure C.13: IDT Precision-Recall space for the IDT algorithm (grouping by Tt, hovers only).

Figure C.14: Precision-Recall space for the IDT algorithm (grouping by St, hovers only).
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Figure C.15: Precision-Recall space for the IDTE algorithm (grouping by Tt, hovers only).

Figure C.16: Precision-Recall space for the IDTE algorithm (grouping by St, hovers only).
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Figure C.17: F1 score for the different combinations of thresholds of the IDT algorithm (hovers only).

179



Appendix

Figure C.18: F1 score for the different combinations of thresholds of the IDTE algorithm (hovers
only).
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Figure C.19: Median Distance between gaze and stationary hand event (per participant).
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D Gaze and Hand Motion Correlation Other Results

Table D.1: Pair-wise Z-scores for the Spearman correlation coefficients between gaze and hand
comparison (X axis) per hand motion type.
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Table D.2: Pair-wise Z-scores for the Spearman correlation coefficients between gaze and hand
comparison (Y axis) per hand motion type.
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