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Sub-saharan Africa shares a high portion of the global disease burden and has attracted

the attention of several intervention programmes. Intervention programmes need an

in-depth understanding of the spatial and temporal distribution of diseases and the un-

derlying risk factors in order to plan effective control strategies. Geostatistical methods

provide a means to map disease outcomes whilst explaining measured and unmeasured

underlying risk factors. This thesis, made up of three papers, focuses of developing and

applying geostatistical methods to understand the spatial (and temporal) distributions

and risk factors of childhood undernutrition, malaria and Loa loa in sub-Saharan African

countries.

The relationship between the rate of infectious mosquito bites and the prevalence of

malaria parasite in human hosts can highlight aspects of malaria epidemiology that are

pertinent to malaria control. However, this relationship is poorly understood. In our

first paper, we develop geostatistical models to study the spatio-temporal distributions

of Plasmodium falciparum parasite prevalence and the rate of infectious mosquito bites.

We then highlight key aspects of the malaria epidemiology relevant for intervention

policies by using mechanistic and empirical statistical models to explore the relationship

between infectious bites and parasite prevalence in a rural community in Malawi.

The question of whether or not malaria is associated with growth in children has been

studied for years, with different studies reporting contradictory results. However, none

of these studies used spatial statistical methods. In the second paper, we develop a geo-

statistical model to investigate this association using 20 Demographic and Health Survey

datasets from 13 sub-Saharan African countries. We then propose novel extensions of

the modelling strategy to growth and malaria data collected as a spatial longitudinal

study.
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Disease prevalence data are often obtained using different diagnostics, but in the ab-

sence of spatial statistical methods to jointly analyse such data, most studies report

the results of separate analyses on the data from each diagnostic. A joint analysis can

explain possible correlations between different diagnostics, which can then be exploited

to make more precise and more reliable predictions. In the third paper, we developed

a geostatistical framework for combining prevalence data from different diagnostics and

apply the novel methodology to map malaria in the highlands of Western Kenya and

Loa loa in sub-Saharan Africa.
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Chapter 1

Introduction

The burden of diseases can vary greatly within defined geographical location, either at

the global, continental, national or sub-national levels. Reliable estimates of the extents

of disease burden across different geographical regions and over different times, and an

understanding of the factors underlying the varying extents, are beneficial to disease

control, from the planning of intervention strategies to their evaluation. This thesis

focuses on developing geostatistical methods to map malaria, undernutrition and Loa

loa in sub-Saharan Africa. In the first paper, we develop geostatistical models to map

Plasmodium falciparum parasite prevalence and entomological inoculation rate. We then

model the relationship between the two and use this relationship to highlight key aspects

of the malaria epidemiology that are relevant for policy. In the second paper, we develop

geostatistical models to map child growth, as measured by height-for-age z-scores in sub-

Saharan Africa and investigate the relationship between malaria and child growth in this

region. In the third paper, we develop a geostatistical framework to combine disease

prevalence data obtained using different diagnostics.

1
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1.1 Fundamentals of model-based geostatistical methods

for disease mapping

1.1.1 Geostatistical data

Within the broader context of the analyses of spatially referenced data is a class of

statistical models and methods known as geostatistics. Geostatistical methods are used

to analyse data that consists of a set of unique locations X = {x1, x2, . . . , xn} ⊆ R2

from which data Y = (y1, y2, . . . , yn) have been sampled correspondingly. Each yi is a

realization of a random variable Yi, or in the case where there are multiple responses

at the same location, a random vector Yi = (Yi1, Yi2, . . . , Yimi)
>, usually known as the

response variable. The distribution of the response variable is dependent on the value

at the location xi of an underlying spatially continuous latent stochastic process S(x).

Additionally, we may observe explanatory variables d(x) = {d(x1), d(x2), . . . d(xn)} at

the set of locations, where each d(xi) is a p-dimensional vector of explanatory variables at

location xi. In the context of disease mapping, d(xi) include remotely sensed data such

as land surface temperature, normalized difference vegetation index (NDVI), rainfall,

elevation, or other location specific correlates of the disease outcomes such as socio-

economic indicators, for example, night-time light, distances to important facilities, road

network, urban/rural, population size and composition or other area-level information.

One of the most basic geostatistical models is the linear model, which provides a basis

for understanding more complex geostatistical models.

1.1.2 The geostatistical linear model

The basics of the linear model are that conditionally on zero-mean mutually independent

latent Gaussian variables Zi and the latent process S(xi), Yi are mutually independent

Gaussian random variables with mean µ(xi) given by

µ(x)i = d(xi)
>β + S(xi) + Zi, (1.1)
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where β is a vector of regression parameters corresponding to the explanation variables

observed at location xi. The vector Y then has a multivariate Gaussian distribution

with mean µ = Dβ and covariance matrix Σ, where D is a design matrix of covariates

and Σ = σ2R(θ)+ τ2In, where [R]ij = ρ(uij ; θ), with the argument uij of the correlation

function ρ being the Euclidean distance between locations xi and xj and θ being a vector

of parameters.

In this thesis, we model the latent stochastic process S(x) as Gaussian process. Gaus-

sian stochastic processes are commonly used in geostatistical analyses because they are

convenient empirical models that can capture a wide-range of spatial variation, rather

than their use having any physical justification. However, the compatibility of a speci-

fied process with the data for which it is chosen can be checked based on the variogram.

We demonstrate this for the models developed in this thesis.

A Gaussian process is completely specified by its mean and covariance functions E[S(x)]

and Cov(S(xi), S(xj)) respectively, where xi and xj are two geographical locations. We

assume that S(x) is a zero-mean (E[S(x)] = 0) stationary and isotropic process, that is,

the distribution of S(x) remains invariant under rotation and translation. By assuming

spatial stationarity, specification of the covariance function reduces to specification of a

scaler parameter σ = Var(S(x)) and a correlation function ρ(uij) = Corr{S(xi), S(xj)},

which depends only on the distance uij between xi and xj .

Any parametric family of functions is a legitimate class of correlation functions of S(x)

if and only it is positive definite. However, this condition is not easy to check. Hence, it

is useful to work with standard classes of correlation functions known to satisfy the con-

dition and flexible enough to adopt to a wide range of geostatistical or disease mapping

problems. Our choice is the family of Matérn (1986) correlation functions given by

ρ(uij) = {2κ−1Γ(κ)}−1
(uij
φ

)κ
Kκ
(uij
φ

)
, (1.2)

where Kκ(·) is the modified Bessel function of the second kind of order κ > 0. The

parameter κ governs the smoothness of S(x) which is dκe−1 times differentiable, where
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dae is the smallest integer greater than or equal to a. The scale parameter φ regulates

the rate at which the spatial correlation decays with increasing distance u.

The reason for our choice of the Matérn family of correlation function throughout this

thesis is as follows. The integer part of κ determines the mean square differentiability,

which affects the smoothness of spatial predictions of the underlying process. Thus,

the knowledge of the process can help to inform the choice of κ, which otherwise, is

poorly identified from typically datasets. In geostatistics, typical choices of κ values

are 0.5, 1.5 and 2.5, which respectively correspond to processes S(x) which are mean-

square continuous, once differentiable and twice differentiable, where the smoothness

of S(x) increases with κ. For κ = 0.5, the Matérn correlation function reduces to the

exponential, ρ(u) = exp(−u/φ), a popular choice for disease mapping applications.

Other choices of correlation functions are the powered exponential, spherical and Cauchy

families. The powered exponential family, defined by the correlation function

ρ(u) = exp{−(u/φ)κ}, (1.3)

like the Matérn family, has a scale parameter φ > 0, a shape parameter κ, where

0 < κ ≤ 2. This family generates correlation functions which decrease monotonically

with increasing u but are less flexible than the Matérn family.

Gneiting et al. (2001) introduced a three-parameter family of correlation functions know

as the Cauchy family, whose members are of the form

ρ(u) =
(
1 + (t/φ)κ

)−β/κ
, (1.4)

where 0 < κ ≤ 2 and φ > 0 are respectively the smoothness and and scale parameters,

and the extra parameter β > 0 determines the asymptotic power law, ρ(u) ∼ u−β, with

which the correlation decays to 0 for increasing distance u.
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The spherical family has the correlation function given by

ρ(u) =





1− 2
3(u/φ) + 1

2(u/3)3 : 0 ≤ u ≤ φ

0 : u ≥ φ,
(1.5)

has a single parameter φ > 0 with the dimension of distance and are less flexible than

the Matérn and powered exponential and Cauchy families.

The stationarity assumption about S(x) may need relaxation due to non-stationarities

in the covariance structure. This could arise because the covariance between two loca-

tions xi and xj depends on their relative positions, or that the process S(x) may have

variable smoothness in the study region, possibly because it depends on underlying en-

vironmental variables that are smoother in some subregions than others. In such cases,

the assumption of stationary may not hold. One way spatial statistics has dealt with

this problem is by mapping the original region to a new space in which stationarity is

assumed. Another solution to the problem is to choose from classes of non-stationary

covariance functions for Gaussian processes (Higdon et al., 1999, Paciorek and Schervish,

2004)

1.1.3 The generalized linear geostatistical model

In the case of non-Gaussian data, by following the generalized linear modelling frame-

work (McCullagh, 1984, Nelder and Baker, 1972), the geostatistical linear model (1.1) is

easily generalized to the case where the data Yi follow a common distributional family

with expected values µi. Such a case may arise either because the empirical data devi-

ates substantially from the linear Gaussian assumptions, for example, they show strong

skewness, or that we know that the mechanism that generates the data necessitates the

use of some other probability distribution. An approach to deal with the problem is to

transform the data so that Gaussian assumptions are satisfied. A widely used approach

for such transformation is the Box-Cox family of transformations (Box and Cox, 1964)
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given by

ρ(u) =





(Y λ − 1)/λ : λ 6= 0

log Y : λ = 0

(1.6)

Another approach to specify the mean µi by a known link function h(·), where h(µi) = ηi

is the linear predictor, giving rise to a generalized linear model for geostatistical data

(Diggle and Ribeiro, 2007).

In each of the three papers that make up the core of the thesis, we develop models that

build on the (generalized) linear geostatistical model. The datasets analysed in this

thesis follow the Gaussian, Poisson, Bernoulli or Binomial probability distributions. We

apply the log-link function to the Poisson data and the logit-link to the Bernoulli and

binomial data.

1.2 Objectives and structure of the thesis

This thesis comprises three sets of research objectives, each of which is studied in a

separate chapter.

1.2.1 Objectives of Chapter 2

In Chapter 2 (Paper 1), we analyse three-years spatio-temporal entomological and par-

asitaemia data from an integrated malaria project carried out in three administrative

units, known as focal areas, surrounding the Majete Wildlife Reserve (MWR) perimeter,

in the Chikwawa District, Southern Malawi. The specific questions of scientific interest

are the following.

i) What are the spatio-temporal distributions of the plasmodium falciparum para-

site prevalence (Pf PR) and plasmodium falciparum entomological inoculation rate

(Pf EIR) in three focal areas?

ii) How do the spatio-temporal patterns of Pf EIR and Pf PR compare?
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iii) What functional relationship exists between Pf PR and Pf EIR, and what policy

relevant features of the malaria epidemiology in the study region does this rela-

tionship highlight?

To answer the first question, we develop spatio-temporal geostatistical models to map

Pf PR and Pf EIR in the study region. We model each as a function of time, location and

explanatory variables in a model-based geostatistical framework. We estimate Pf EIR as

a product of model-based predicted human biting rate, which we estimate as the densities

of the various malaria vectors in the study region, and the sporozoite rate, which is the

proportion of vectors carrying the sporozoite stages of the parasite. We model the

mosquito densities using spatio-temporal geostatistical Poisson log-linear models and

the sporozoite rates using generalized linear binomial models. To answer the second

question, we identify and compare hot-spots of Pf PR to those of Pf EIR by mapping

the predictive probabilities that Pf PR and Pf EIR exceed predefined thresholds with

high probability. To answer the third question, we model the relationship between

Pf PR and model-based predicted Pf EIR. We use a range of models that can explain

the relationship and then choose the model that best explains the data. We then use

the parameters of the best model to highlight features of the malaria epidemiology that

have relevance for policy.

1.2.2 Objectives of Chapter 3

In Chapter 3 (Paper 2), we investigate the association between the geographical distribu-

tion of malaria and linear growth in children under five years old, using 20 Demographic

and Health Survey (DHS) datasets from 13 sub-Saharan African countries. This as-

sociation has been studied for years, yet it is poorly understood since most studies

have reported contradictory results. The specific questions we ask in this study are the

following.

i) What is the association between malaria and linear growth in children 0-5 years

in sub-Saharan Africa?
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ii) What factors modulate the association between malaria and linear growth in the

specified population?

iii) What is the spatial distribution of stunted growth based on each DHS?

To answer the first question, we first explore the relationship between malaria exposure

and hight-for-age z-score (HAZ) in a univariate analysis, with malaria as the only predic-

tor of HAZ in a linear model. We then modelled HAZ trajectories across different ages

for each dataset, using cubic splines and then investigate the variation in the trajectories

of HAZ in different malaria exposure levels. Finally, we develop a linear geostatistical

model in which malaria is a predictor of HAZ, whilst we adjust for know confounders.

We then make inferences on the regression coefficients associated with malaria. To an-

swer the second question, we model the estimated regression coefficients as a function of

a number of World Bank African Development Indicators to find out which indicators

possibly explain variations in the estimated regression coefficients of malaria for the dif-

ferent DHS. To answer the third question, we map the risk of stunting for each survey

by mapping the predictive probability that the average HAZ at each prediction location

is less than -2, the threshold that defines stunted growth.

1.2.3 Objectives of Chapter 4

In Chapter 4 (Paper 3), we develop a geostatistical framework that allows the joint

analysis of disease prevalence data that have been obtained using different diagnostics.

Prevalence data of the same disease are often obtained using different diagnostics for

two main reasons: (1) as a means to achieve a required sample size in a cost effective

way, and (2) as a means to fully capture the distribution of the disease, since the differ-

ent diagnostics can provide complementary information about the epidemiology of the

disease. Whilst prevalence estimates obtained by different diagnostics are correlated,

considerably differences might also occur. Most studies have reported separate analyses

for different diagnostics, thus failing to explain and utilise the possible correlations in

the data, which can be exploited to benefit statistical inference. The specific questions

of scientific interest are the following.



Chapter 1. Introduction 9

i) How can we predict disease prevalence as defined by a gold-standard diagnostic

in geographical regions where data is available only for a low-cost, possibly biased

alternative test?

ii) How can we more precisely predict disease prevalence as defined by each of several

complementary diagnostics by borrowing information across the others?

To answer the first question, we develop a bivariate geostatistical model that exploits the

correlation between a gold standard and a low cost diagnostic to help predict prevalence

as defined by the gold standard. To answer the second question, we develop a bivariate

geostatistical model that exploits the cross-correlation across complementary diagnos-

tics. We apply the model developed for the first objective to a Loa loa mapping problem

in Central and West Africa where a questionnaire-based diagnostic, RAPLOA, and a

microscopy-based parasitology diagnostic were used. We apply the model developed

for the second objective to a malaria mapping problem in highlands of Western Kenya,

where a rapid diagnostic test and a polymerase chain reaction where used. Finally, we

extend the novel methodology to a model that can be used to jointly analyses prevalence

data from a gold standard and a number of complementary diagnostics.

In Chapter 5 we conclude by discussing other possible applications and the methodolog-

ical extensions of the models developed in the preceding chapters.
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2.1 Summary

Background

Primarily, infection with a malaria parasite occurs through the bite of an infective

mosquito; thus, an unavoidable relationship between the rate of infectious bites, di-

rectly measured as the entomological inoculation rate (EIR), and malaria prevalence

(PR). This relationship can highlight key features of the malaria epidemiology to inform

the effective planning of control strategies; however, it has been scarcely studied, lim-

iting insightful discussions on its nature and implications. We study the Plasmodium

falciparum EIR–PR relationship and present insights into its possible implications for

malaria control.

Methods and findings

Using spatio-temporal data collected over a period of 38 months from rural Malawi,

we mapped the P. falciparum EIR and PR in children 0.5-5 y/o and in women 15-

49 y/o to identify areas of elevated malaria risk and to compare the spatio-temporal

patterns of EIR and PR. We then quantified the EIR–PR relationship using a number of

statistical models. The predictive maps of EIR and PR showed similar spatio-temporal

heterogeneities and seasonal patterns. Hot-spots of EIR and PR mainly overlapped,

but with regions that, at certain times, were hot-spots of EIR but not of PR and vice

versa. We found that EIR had a one-month delayed effect on PR. Increasing EIR was

associated with an initial rapid rise in PR, followed by saturation. We found substantial

levels of PR to be associated with even very low EIR. We observed residual hot spots of

PR when EIR remained at zero levels. We observed a rise in PR at times when EIR was

undetectable. We found a consistently higher PR and children as compared to women.

Conclusions

Our results highlight the following aspects of the EIR-PR relationship: (1) When EIR

has been reduced to marginal levels, substantial average levels and residual hot spots

of PR are to be expected. (2) At low EIR levels, an increase in EIR could manifest

as a rapid rise in PR (3) At high EIR levels, reductions in EIR may not translate into
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remarkable reduction in PR. (4) At undetectable levels of EIR, PR levels can still increase

(5) Children may play a more active role in the sustenance of malaria transmission than

adults. We conclude by emphasising the need for an integrated malaria control, viz,

vector and human host management strategies, and the need for the monitoring of both

entomological and parasitaemia indices in the fight against malaria.

Keywords: Plasmodium falciparum, entomological inoculation rate, malaria preva-

lence, spatio-temporal, relationship, geostatistics, disease mapping.

Author summary

Why was this study done?

> The relationship between the rate of infectious mosquito bites, the most direct

measure of malaria transmission, and malaria prevalence can inform the effective

planning of control strategies, but it is poorly understood.

> The study was done to quantify the relationship between the rate at which indi-

viduals are bitten by mosquitoes infected with P. falciparum and the proportion

of the population carrying this parasite.

What did the researchers do and find?

> To identify areas of elevated malaria risk and to compare the spatial and temporal

patterns of the rate of infectious bites to that of malaria prevalence, we mapped

the rate at which individuals are bitten by mosquitoes carrying P. falciparum and

the proportions of children 0.5-5 y/o and of women 15-49 y/o infected with the

parasite.

> To understand the quantitative relationship between the rate of infectious bites

and prevalence, we used a number of statistical models under different assumptions

to estimate the relationship.
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> We observed a higher malaria prevalence in children as compared to women. Even

the lowest malaria transmission levels were associated with substantial malaria

prevalence and hot spots of malaria prevalence.

> The relationship we found is such that when malaria transmission is low, an in-

crease in transmission results in a quick rise in prevalence. This is then followed

by a slowing rise in prevalence as transmission levels continue to increase.

> Malaria prevalence increased even when malaria transmission could not be de-

tected.

What do these findings mean?

> Vector control strategies are the sole malaria intervention techniques used in some

countries. Our study indicates that when transmission has been interrupted through

vector control, a large reservoir human hosts could be left, who could refuel trans-

mission whenever conditions permit vector-host contacts. This suggests that if

not coupled with detection and treatment of both clinical cases and asymptomatic

infections, vector control alone may not be enough to drive malaria to elimination

levels. Our study further indicates that the reservoir human host are likely to be

concentrated at residual hot spots.

> Our results highlight possible difficulties in eliminating malaria in low transmission

settings: a little rise in transmission could translate into an escalation in preva-

lence, making elimination difficult. We suggest that when malaria transmission

has been reduced to the lowest levels, both entomological and parasitaemia in-

dices need to be closely monitored in order to quickly detect and intervene in any

outburst in prevalence.

> Our study demonstrates that meaningful public health impact on malaria preva-

lence may not be immediately achieved through vector control programmes in

high transmission settings. However, when the control is persistent, notable im-

pact would eventually be achieved.
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> Our results exemplify that when the impact of vector control is monitored through

entomological surveillance, if infectious bites can no more be detected, vector con-

trol may need to continue for some time since there could still be enough trans-

mission to facilitate a rise in prevalence.

2.2 Introduction

Collaborative efforts of malaria control programmes and all stakeholders led to extensive

intervention coverage over the last two decades, leading to large reductions in malaria

morbidity and mortality (Bhatt et al., 2015). However, malaria is still a leading global

health problem. The previous successes and current challenges have motivated ambi-

tious, although achievable, global and national targets towards achieving malaria elim-

ination. Control strategies to achieve the set targets have been outlined (Patouillard

et al., 2017, World Health Organization, 2015), but monitoring epidemiological mea-

sures of malaria risk is critical for continued assessment of the effectiveness of control,

so as to identify areas where there is the need to re-strategise or increase efforts to be

able to push towards elimination.

Three malaria risk measures commonly monitored are the clinical burden, prevalence

(PR) and intensity of transmission. Monitoring the clinical burden involves account-

ing for the number of (symptomatic) clinical cases and deaths through health system

records, which are however often incomplete since many sickness are never reported

at health facilities, and thus biased. Another means to monitor clinical burden is to

follow cohorts, which is expensive. Prevalence is monitored through (repeated/rolling)

cross-sectional surveys carried out in communities or at health centres. Monitoring

transmission intensity is carried out by measuring the rate of new infections in cohorts

or through the entomological inoculation rate (EIR), which is the rate of infectious bites

per person per unit time. Alternative serological markers of malaria exposure may also

be used, but since these depend on malaria antibodies which can persist in the blood

for years after exposure has ceased, they are quite insensitive to changes in transmission

(Bousema et al., 2010, Cook et al., 2011, Corran et al., 2007, Drakeley et al., 2005).
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EIR is estimated as the product of the average number of mosquito bites per person

per unit time, also known as the human biting rate (HBR), and the proportion of

mosquitoes carrying the sporozoite stages of malaria parasites, referred to as sporozoite

rate (SR). Estimating the HBR is challenging since vectors may not be found when

and where they are being looked for and thus mosquito samples may neither represent

mosquito populations nor their biting activities. Moreover, SR is less precise when

mosquito density is low and can be affected by the average age of adult mosquitoes

(Tusting et al., 2014). These limitations make estimating the EIR a difficult problem,

especially in low transmission settings. For example, EIR could be zero in places where

transmission could still be taking place according to some other indicator, say increasing

PR.

Despite the challenges in estimating the EIR, it is an important malaria risk measure,

since it can provide information about transmission that other risk measures cannot, for

example, the contribution and effectiveness of different vector species in transmitting

different parasites species. Moreover, previous studies into its functional relationship

with PR (Beier et al., 1999, Smith et al., 2005) and with clinical incidence (Beier et al.,

1994) have shown that EIR is the most direct measure of the intensity of malaria trans-

mission. Understanding the functional relationship between EIR and PR is crucial for

effective planing, monitoring, and evaluation of malaria control since this can help to

better understand policy-relevant aspects of the malaria epidemiology. For example,

the levels of reduction in transmission needed to achieve meaningful reductions in PR

can be estimated through this relationship. Furthermore, progress made at reducing

malaria prevalence through vector control can be tracked and evaluated through this

relationship.

In spite of its usefulness, much uncertainty still surrounds the EIR–PR relationship. For

example, the following questions have not yet been investigated: 1. Each of EIR and

PR has been found to vary in space and time, but how do spatio-temporal patterns of

EIR compare to PR? 2. Will geographical regions or times of elevated EIR necessarily

correspond to higher PR? 3. Do EIR and PR lead to the identification of the same

hot-spots? 4. Does EIR have a lagged effect on PR? 5. Does the EIR-PR relationship
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vary across demographic groups which experience a different exposure to malaria, e.g.

children between 6 and 60 months and women of reproductive age?

In this paper, we investigate and provide answers to these questions and discuss their

implications for malaria control. The data analysis is divided into two main parts. In

the first part, we map on a high spatio-temporal resolution the P. falciparum entomo-

logical inoculation rate (PfEIR), the rate at which individuals are bitten by mosquitoes

infected with P. falciparum, and P. falciparum prevalence (PfPR), the proportion of

individuals carrying the parasite in their blood. By this, we pursue two primary objec-

tives: 1. To identify areas of elevated risks, which can be considered for a more targeted

intervention 2. To compare spatial heterogeneities, trends, seasonal patterns and hot-

spots of PfEIR and PfPR. In the second part, we consider several statistical models for

the relationship between PfEIR and PfPR that can be distinguished as follows: mecha-

nistic models that are based on different epidemiological assumptions to find the most

plausible description(s) of the nature of the PfEIR–PfPR relationship; empirical models

where the PfEIR–PfPR relationship is purely informed by the data. Finally, we discuss

the possible implications of the estimated relationships.

2.3 Materials and methods

2.3.1 Study area

Surrounding the Majete Wildlife Reserve (MWR) in the Lower Shire Valley in the Chik-

wawa District in Southern Malawi are 19 community based organizations (CBOs), home

to a population of approximately 100,000. In this area, the Majete Malaria Project

(MMP) was carried out in order to select three distinct geographical regions, referred to

as Focal Areas (FAs) A, B and C (see Figure 2.1), where interventions aimed at reducing

the malaria burden have been implemented. The catchment area of the FAs comprises

65 villages with about 6600 households and a population of about 25,000.

Chikwawa experiences highly variable rainfall during its single raining season, which

spans November/December to April/May. Temperatures are generally high, with an
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average annual maximum temperature of 37.6◦C, occurring in December and a minimum

of 27.6 ◦C, occurring in July every year (Joshua et al., 2016). During the raining season,

the Shire and Mwanza rivers, which run by MWR, create marshy habitats, paddies,

occasional depressions and watering holes, suitable as breeding sites for A. arabiensis

s.s., A. funestus s.s., An. gambiae s.s. and A. quadriannulatus (Spiers et al., 2002).

Figure 2.1: Map of Malawi (insert) highlighting the Majete Wildlife Reserve and
borders of the 19 community-based organisations (CBOs), surrounding the Majete
perimeter. Three focal areas (red patches), labelled as A, B, and C, show the com-
munities/households (black points) selected for the parasitaemia and entomological

surveys by the Majate Malaria Project (MMP).

2.3.2 Data

As part of the MMP, randomised trials of community-level malaria interventions were

rolled out. To quantity their effectiveness, a rolling malaria indicator survey (rMIS)

(Roca-Feltrer et al., 2012b) was conducted in conjunction with entomological surveil-

lance. The study protocol for the trial can be found elsewhere (McCann et al., 2017). A
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baseline survey was conducted between April 2015 and March 2016, and interventions,

including house improvement and larval sources management, were carried out between

April 2016 and May 2018.

At each round of the rMIS data collection during the baseline period, an adoptive geo-

statistical sampling design (Chipeta et al., 2016), was used for random selection of

households. This sampling design allowed locations to be sampled at each surveillance

round to depend on the uncertainty in PR estimates from the previous rounds, so as to

effectively identify hot-spots with minimal sampling intensity. During the trial period,

an inhibitory geostatistical design (Chipeta et al., 2017) was instead used. This design

was to ensured that any pair of sampled locations are separated by at least an inhibitory

distance of 0.123 km to achieve some uniformity in the sampled locations over a study

region (Chipeta et al., 2017). At each round of rMIS data collection in the base-line and

trial phases, 75% of the sampled households chosen for the rMIS sampling were then

randomly selected for the entomological surveillance.

In each sampled household, children under five (0.5-5 y/o) and women of reproductive

age (15-59 y/o) were tested for P falciparum using Rapid Diagnostic Test (RDT SD

BIOLINE Malaria Ag P.f. HRP-II, Standard Diagnostics, Yongin-si, Republic of Korea).

Mosquitoes were collected using suna traps (Hiscox et al., 2014) with an Mbita (MB5)

and Carbon dioxide (CO2) blend odour-bait (Mukabana et al., 2012, Pombi et al., 2014).

Traps were hanged 2m above the floor and set in operation from 6pm to 6am. For

a selected household in a surveillance round, the trap was fitted either outside the

house (outdoor) or in a room (indoor) on the first day and the second day, respectively.

Trapped mosquitoes were killed, transported to the lab and sexed using taxonomic keys

(Becker et al., 2003, Reinert et al., 2000). Female anophelines were further classified

and tested for the presence of P. faciparum sporozoites using polymerase chain reaction

(PCR).
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2.3.3 Environmental and climatic factors

Environmental and climatic factors affect the abundance and suitability of breeding sites

that support larvae development (Loetti et al., 2011, Madder et al., 1983), the duration

of the immature stages of mosquitoes (Ciota et al., 2014, Craig et al., 1999, Loetti et al.,

2011), their host seeking and biting behaviour and, finally, the incubation period and

replication of the parasites in mosquitoes (Amek et al., 2011, Rumisha et al., 2014).

Using hourly measurements of temperature and relative humidity (RH) from a weather

station in each of the FAs, we computed the average temperature and RH for different

range of days prior to the day of data collection. Details of the days over which we

computed average temperature and RH are given in Table 2.2 in S1 Appendix.

Spectral indices, namely normalized difference vegetation index (NDVI) and enhanced

vegetation index (EVI) were computed using remotely sensed multi-spectral imagery

from the Landsat Program. These data are freely available from the United State

Geological Survey (USGS) Earth Explorer (earthexplorer.usgs.gov) as raster files at a

spatial resolution of 30 × 30m for every 16 days. For our analysis, we averaged each

spectral index over five years, from April 2013 to April 2018, while omitting scenes that

were dominated by clouds artefacts from the average.

We also extracted raster data of surface elevation and the ASTER 2011 global digital

elevation model (DEM) generated using measurements from the advanced spaceborn

thermal emission and reflection radiometer. A detailed description of these data has

been given elsewhere (Tachikawa et al., 2011) and are freely available for download from

the USGS Earth Explorer. Using a flow accumulation map derived from the DEM, a river

network map was generated, and distance to small rivers and large rivers (henceforth,

DSR and DLR, respectively) were computed and stored as rasters. Details of the method

used to derive the accumulated flow from the DEM can be found elsewhere (Tarboton

et al., 1991), and an analytic method for determining an appropriate threshold value for

river network delineation can also be found elsewhere (Jenson and Domingue, 1988).

earthexplorer.usgs.gov
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2.3.4 Geostatistical Analysis

In order to map PfEIR, we first fit a generalized linear mixed model to each of HBR

and P. falciparum sporozoite rate (PfSR) and then compute PfEIR as a product of the

two quantities. We carry out separate analyses for A. arabiansis s.s. and A. funestus

s.s., using covariates and random effects structures that we find to be more suitable in

each case.

Details of the steps we take to build the HBR, PfSR and PfPR models are given in S1

Appendix. The covariates for different models and mosquito species, although always

written as d(xi, ti) in each of the geostatistical models following, are not necessarily

the same. A Detailed description of the final sets of covariates for A. arabiansis s.s.

HBR, A. funestus s.s. HBR, PfSR and PfPR models later described in this section are

respectively given in Tables 2.3, 2.4, 2.5, 2.6 in S1 Appendix. The geostatistical models

for the HBR and PfPR data described below are fitted using PrevMap (Giorgi and Diggle,

2016), freely available from the Comprehensive R Archive Network (www.r-project.org).

Human biting rate: We assume that the number of mosquitoes trapped by Suna traps

estimates HBR as these primarily target host-seeking mosquitoes. Let Y (xi, ti) denote

counts of mosquitoes trapped at location xi time ti ∈ {1, . . . , 38} (where ti = 1 denotes

April 2015). We then model the Y (xi, ti) using Poisson mixed models expressed by the

following linear predictor

log{HBR(xi, ti)} = d(xi, ti)
>β + f(ti;α) + S(xi) + Zi, (2.1)

where: d(xi, ti) is a vector of spatio-temporal covariates with associated regression co-

efficients β; f(ti, α) linear combination of sine and cosine functions with a period of

12 months and linear terms, used to capture seasonal variation and trends; the Zi

are independent and identically distributed Gaussian random variables with variance

τ2; the S(x) are spatial random effects that we model as a zero-mean stationary and

isotropic Gaussian process with variance σ2 and the exponential correlation function

ρ(u) = exp(−u/φ), where φ regulates the pace at which the spatial correlation decays

for increasing distance u between any two locations.

www.r-project.org
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Plasmodium falciparum sporozoite rate Let Y ∗(xi, ti) be the number of mosquitoes

that tested positive for the presence of P. falciparum sporozoites. We then assume that

the Y ∗(xi, ti) follow a Binomial mixed model with number of trials N∗(xi, ti), i.e. the

total number of captured mosquitoes, and probability of testing positive PfSR(xi, ti).

We model the latter as a logit-linear regression given by

log
( PfSR(xi, ti)

1− PfSR(xi, ti)

)
= d(xi, ti)

>β∗ + f∗(ti;α∗) + Z∗i , (2.2)

where each term in the equation above has an analogous interpretation to those of

equation (2.1).

Estimating the Plasmodium falciparum entomological inoculation rate: Let

PfEIRf (x, t) and PfEIRa(x, t) denote the PfEIR for A. funestus and A. arabiensis

at a given location x and month t. We estimate each of these two as

PfEIRf (x, t) = HBRf (x, t)PfSRf (x, t)l(t)

PfEIRa(x, t) = HBRa(x, t)PfSRa(x, t)l(t)

where l(t) is the number of days in month t. Finally we estimate the overall PfEIR as

PfEIR(x, t) = PfEIRf (x, t) + PfEIRa(x, t). (2.3)

We map the estimates for PfEIR as in equation (2.3) above over a 30 by 30 m regular

grid covering the whole of the study area for each of t = 1, . . . , 36.

Plasmodium falciparum prevalence: We map PfPR in women and in children by

fitting geostatistical models for the two groups. More specifically, let I(xi, ti) denote the

number of RDT positives out of Ni sampled individuals at a location xi and month ti.

We then assume that the I(xi, ti) follow a Binomial mixed models with probability of a

positive RDT PfPR(xi, ti), such that

log

{
PfPR(xi, ti))

1− PfPR(xi, ti)

}
= d(xi, ti)

>ϕ+ g(ti, %) + T (xi) + Ui, (2.4)



Chapter 2. On the Relationship Between Plasmodium falciparum Parasite Prevalence
and Entomological Inoculation Rate: a Case Study in Rural Malawi 23

where T (xi) is a stationary and isotropic Gaussian process with exponential correlation

function and Ui is Gaussian noise, g(ti, %) is a function of time accounting for trends

and seasonality, and ϕ and % are regression parameters.

Hot-spots detection using PfEIR and PfPR: To identify hot-spots of PfEIR and

PfPR, we map the respective predictive probabilities that PfEIR and PfPR exceeded

predetermined threshold values. For PfEIR, we choose the threshold of 0.1 ib/person-

/month. For PfPR, we take a threshold of 30% for children and 16% for women. The

PfPR thresholds are taken to correspond to the PfEIR threshold based on the best of

functional relationships between PfEIR and PfPR as described in the next section.

2.3.5 Modelling the relationship between PfEIR and PfPR

In this section, we describe statistical methods we use to model the relationship between

PfEIR and PfPR. Since PfEIR may have a delayed effect on PfPR due to the time taken

for P. falciparum to develop in the human host, we consider that current PfPR depends

on PfEIR some l months prior. In particular, we consider l = 0, 1, 2. Hence, we assume

that the number of RDT positive individuals, I(xi, ti), follow independent Binomial

distributions such that

PfPR(xi, ti) = h{ ˆPfEIR(xi, ti − l)}. (2.5)

where h(·) is a function with image [0, 1] and governs the relationship between PfPR and

PfEIR, and ˆPfEIR(xi, ti − l) is the estimated PfEIR in (2.3). Each of the six models

considered provides a different specification for h(·). To account for the uncertainty in

ˆPfEIR(xi, ti−l), we first obtain predictive samples for PfEIR(x, t−l) using the model

in (2.3) and, for each of these, we then fit the model given by (2.5).

Finally, we point out that, in this section, while models from 1 to 4 make explicit

assumptions on the underlying mechanism of transmission, models 5 and 6 do not,

but describe the functional relationship between PfEIR and PfPR through regression

methods.

Model 1: The SIS.
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Let b be the probability that an infectious mosquito bite results in an infection, that is,

the transmission efficiency. Then infections at (xi, ti− l) occur at a rate bPfEIR(xi, ti−

l). We assume that each infection clears independently, over a duration 1/r. Then the

ratio γ = b/r represents the time taken to clear infection per infectious bite. We assume

that infections clear independently and the relationship between PfEIR and PfPR is the

same throughout the study region. If PfEIR(x, t− l) is constant, then the relationship

between PfEIR(x, t − l) and PfPR(x, t) can be described by the Ross Model (Ross,

1911)

∂ PfPR(x, t)

∂t
= bPfEIR(x, t− l)(1− PfPR(x, t))− rPfPR(x, t). (2.6)

We obtain our first model as the non-zero equilibrium solution of (2.6), given by

PfPR(x, t) =
γPfEIR(x, t− l)

γPfEIR(x, t− l) + 1
. (2.7)

Model 2: the SIS model with different infection/recovery rates (D.I/R).

Model 1 assumes that women and children get infected and recover at the same rate.

However, the transmission and recovery rates in children may differ from those in women.

We modify Model 1 by allowing different b and r for each category. Let ξ1,it, ξ2,it re-

spectively be the proportion of children and women sampled at (xi, ti) and γk = bk/rk,

where k = 1 denotes children and k = 2 denotes women. Inculcating this heterogeneity

in infection/recovery in Model 1 gives Model 2, as

PfPR(x, t) =
2∑

k=1

ξk,it
γkPfEIR(x, t− l)

γkPfEIR(x, t− l) + 1
. (2.8)

Model 3: the SIS model with super infection (S.I.). If individuals are super-

infected with P. falciparum, then the rate at which infections clear depends on the

infection rate, with clearance being faster when infection rate is low, and slow when

infection rate is high. We then model infection clearance rate as g(ϑ, r) = ϑ/(eϑ/r − 1),

where ϑ = b × PfEIR (Aron and May, 1982, Dletz et al., 1974, Smith et al., 2005,
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Walton, 1947). The resulting PfPR(x, t) is then

PfPR(x, t) = 1− e−γPfEIR(x,t−l) (2.9)

Model 4: the SIS model with S.I and D.I/R. We modify Model 1 by inculcating

both the assumptions of heterogeneous infection/recovery rates, as in Model 2 and super

infection, as in Model 3. The resulting model is

PfPR(x, t) =
2∑

k=1

ξk,it
(
1− e−γkPfEIR(x,t−l)). (2.10)

Diagrammatic representation of Models 1 to 4 are given in Figure 2.2.
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children
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children
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Figure 2.2: Diagrammatic representation of the mechanistic models for the relation-
ship between PfEIR and PfPR.

We obtain the parameters of each SIS model by minimizing the log-likelihood function

∑

ti

∑

xi

I(xi, ti) log(PfPR(xi, ti)) + (Nit − I(xi, ti)) log(1− PfPR(xi, ti)). (2.11)
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Model 5: The log-linear model. Beier et al. (1999) assumed that the log of PfEIR

is linearly related to PfPR, and fitted the regression model analogous to

PfPR(x, t) = a+ b log(PfEIR(x, t− l)), (2.12)

the so called “log-linear model”.

Model 6: The logit-linear model. The log-linear model has the limitation that PfPR

approaches −∞ as PfEIR goes to 0 and to ∞ as PfPR goes approaches ∞, something

that is not interpretable epidemiologically. Instead, if PfEIR goes to 0 then sooner or

later, we would expect PfPR to go to 0 as well, and if PfEIR goes to ∞, then we will

expect PfPR to approach 1. To capture this behaviour, we apply the logit-link function

to PfPR to give the model

log
( PfPR(x, t)

1− PfPR(x, t)

)
= a+ b log(PfEIR(x, t− l)). (2.13)

To fit each of the six models, we obtain 10,000 bootstrapped data sets of predicted PfEIR

as in (2.3) at the set of all space-time locations sampled for the rMIS. We do this for

two reasons: (1) To obtain EIR data at locations (xi, ti) that were sampled for rMIS but

not for the entomological surveillance. (2) To account for the uncertainty in EIR. By

fitting each model to each of the 10,000 datasets, we obtain 10,000 boostrapped samples

{θ̂1, . . . , θ̂10000} for the vector of parameters θ of each candidate model and summarize

the parameter estimates by the mean and 95% confidence interval. We do this process

for l = 0, 1, 2.

2.4 Results

2.4.1 rMIS and mosquito sampling

From April 2015 to May 2018 a total of 5685 individuals were tested, of which 19.0%

resulted positive. Among the 2401 tested children between 6 and 60 months, 25.5% were

positive, while 14.3% of the 3284 tested women were positive.
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A total of 6870 traps were placed in 2425 households resulting in the collection of 623

female Anopheles mosquitoes. Table 2.1 gives details of the number of mosquitoes,

sporozoite rates and PfEIR by species. We note that despite the relatively low abundance

of A. funestus s.s., it has a higher sporozoite rate, making its PfEIR almost equivalent

to that of A. arabiensis s.s. (See Table 2.1). The total PfEIR for the 38 months’ period

is 7.57 ib/person, equivalent to 2.39 ib/person/year.

Table 2.1: Details of Anopheles female mosquitoes collected. The table shows the
observed number, HBR, PfSE and PfPR for the anopheles species sampled.

Species Number Collected Emp. HBR Emp. PfSR Emp. PfEIR

A. arabiensis s.s. 438 73.64 5.48% 4.04
A. funestus s.s. 170 28.58 11.17% 3.19
A. gambiae s.s. 11 1.85 18.18% 0.34
A. quadriannulatus 4 0.67 0.00% 0.00

TOTAL 623 104.74 7.57

For estimates of the parameters of the HBR model fitted to A. arabiensis, and A.

funestus, and those of the PfSR and PfPR, see Tables 2.7, 2.8, 2.9 and 2.10 in S1

Appendix respectively.

2.4.2 Hot-spots detection using PfEIR and PfPR

An objective of this study was to map PfEIR and PfPR to compare their spatio-temporal

patterns. In S2 Appendix, we show spatio-temporal maps of PfEIR and PfPR in children

and in women on a fine spatial resolution of 30 × 30m and a temporal resolution of 1

month, from April 2015 to March 2018. The maps of PfEIR show spatio-temporal

heterogeneities (PfEIR ranging between 0-5ib/person/month, corresponding to cyan to

red areas), showing areas of high risk until August 2017, after which PfEIR appears

homogeneous and remains at zero-levels everywhere in the study region.

The PfPR maps for both children and women, show high spatio-temporal heterogeneities,

especially in Focal Area B. The maps of the two groups show similar spatio-temporal

patterns but PfPR in children is generally higher than PfPR in women throughout the

study region over the whole period.
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Focal Area A generally shows the lowest PfEIR and PfPR. Focal Area C shows higher

levels of PfEIR but similar levels of PfPR as does Focal Area B. We note that, although

PfEIR remains at zero levels throughout the study region from August 2017 to March

2018, there are substantial levels of PfPR in all Focal Areas.

We summarise the predicted PfEIR maps by the median PfEIR and the 95% confidence

intervals over the whole study region for each month, as shown in Figure 2.3 (a). Sim-

ilarly, we summarise the predicted PfPR maps by the mean over the study region and

the 95% confidence intervals for children in Figure 2.3 (b) and for women in Figure 2.3

(c). The predicted PfEIRs and PfPRs (shown as triangular points) are similar to the

observed (shown as round points). Children show a higher level of PfPR consistently

throughout the study period. Each of PfPR and PfEIR exhibits seasonal patterns with

single peaks, which are almost concurrent. PfEIR increases from November to a peak

in May and decreases to a trough in November. PfPR appears to start increasing from

December to a peak around July, after which it starts to decrease down to a trough

between November and December. An interesting observation about Figure 2.3 is that

PfEIR is zero after August 2017; however, substantial levels of PfPR persist through-

out the same period. The single most striking feature of Figure 2.3 is that, PfPR even

increases in both children and women between November 2017 and April 2018, despite

PfEIR being zero throughout this period.

This study aimed to compare hot spots of PfEIR and PfPR. We mapped hot spots

of PfEIR and PfPR by mapping the probabilities that PfEIR and PfPR exceed defined

thresholds with high (0.9) probability. For PfEIR, we chose a threshold of 0.1 ib/person-

/month, which corresponds to PfPR thresholds of 30% and 16% respectively in children

and women, based on the best fitted relationship between PfEIR and PfPR (given in

the next section). S3 Appendix shows spatio-temporal maps comparing the hot-spots

of PfPR and PfEIR. We note that the hot-spots of PfEIR and PfPR mainly overlap.

However, there are hot-spots of PfEIR that are not necessarily hot-spots of PfPR, and

vice versa. We also note that after August 2017, hot spots of PfEIR disappear, but sev-

eral residual hotspots of PfPR remain in the study region. We note that the hot-spots
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Figure 2.3: Summaries of monthly PfEIR and PfPR. The plot shows monthly median
PfEIR (a), mean PfPR in children 0.5-5 y/o (b) and mean PfPR in women 15-49 y/o (c),
over the study region. The round points are the observed data and the triagular points
are the predictictions from our models. The shaded regions represent the coresponding

95% confidence interval of the predicted values.
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of PfEIR and PfPR are mostly unstable, except a few hot-spots of PfPR that persist

throughout the study period.

2.4.3 The relationship between PfEIR and PfPR

We investigated if PfEIR has a lagged effect on PfPR. We therefore considered a lag of

1 and 2 months. For each of the six models, the model with the lag effect of 1 month

was better (AIC difference > 9) than the corresponding models with no lag effect and

a two-month a lagged effect. Table 2.11 in S1 Appendix shows the results of fitting the

six models relating PfPR to the PfEIR one month prior.

The logit-linear and log-linear models showed the least AIC as compared to the four SIS

models. However, we choose the logit-linear model as the overall best model since it

shows an AIC 8 lower than that of the log-linear model (see Table 2.11 in S1 Appendix),

and has an asymptotic behaviour more consistent with the epidemiology of malaria.

Figure 2.17 in S4 Appendix shows the linear relationship between the logit of PfPR

and the log of PfEIR on a scatter plot for children and women combined. Figure 2.4

shows a plot of the fitted logit-linear model with its 95% confidence region for children

and women combined. At very low PfEIR, PfPR rises quickly with increasing PfEIR,

followed by a flattening off or saturation. Of all 10,000 fitted logit-linear models, PfEIR

was a significant predictor of PfPR in 94.7% of the cases. However, the R2 values for the

10,000 fitted models were low, ranging between 0.13 and 0.39, with an average of 0.27.

From the estimated relationship for women and children combined, a decrease in PfEIR

from 1 ib/person/month to a very low PfEIR of 0.0001 ib/person/month is associated

with a reduction in PfPR from 28.7% to 12.6% (i.e., a 51.3% decrease in PfPR) on

average. We note that even when transmission has been driven to an almost zero level,

there is still a high PfPR, despite the notable decrease.

An objective of this paper was to investigate if the relationship between PfEIR and

PfPR differ between women and children. An indication of differences in the PfEIR–

PfPR relationship between children and women lies in the logit-linear model fitted to

children and women separately. See the relationships shown in Figure 2.4(b). The

average trajectory of PfPR and corresponding 95% confidence interval with varying
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PfEIR are distinct for women and children. PfPR in children tend to show a steeper

rise with increasing PfEIR than in women. From the estimated relationship for children,

a decrease in PfEIR from 1 ib/person/month to 0.0001 ib/person/month is associated

with a reduction in PfPR from 38.3% to 15.7% (i.e., a 59.0% decrease in PfPR) on

average. From the estimated relationship for women, the same decrease in PfEIR is

associated with a reduction in PfPR from 19.4% to 10.2% (i.e., a 47.4% decrease in

PfPR) on average. We note two things: with decreasing PfEIR, (1) the percentage

reduction in PfPR to be expected in children tends to be higher than in women; (2)

when transmission has been driven to an almost zero-level, PfEIR in children remains

higher.

2.5 Discussion

The main objective of this paper was to investigate the relationship between PfEIR

and PfPR. Using spatio-temporal data from rural Malawi, we have mapped PfEIR and

PfPR, and identified hot-spots using exceedance probabilities. We have investigated and

quantified the relationship between the PfEIR and PfPR. We found a logit-linear model

to best explain the relationship. The geographical regions and times of elevated PfEIR

and PfPR we have identified serve as targets for interventions.

We found a vector composition of 70.3% A. arabiensis s.s., 27.3% A. funestus s.s., 1.8%

A. gambiae s.s., and 0.5% A. quadriannulatus. A study by Mzilahowa et al. (2012)

conducted in the same District 13 years earlier found a vector composition of 36.3%,

51.6%, 11.8% and 0.3% respectively. The difference in vector composition are remarkable

and could indicate a shift in vector composition in the study area. Shifts in vector

compositions have been observed elsewhere in Kenyan and Tanzania (Derua et al., 2012,

Kitau et al., 2012, Mwangangi et al., 2013) and can impact on the transmission dynamics

of a region, since different vectors have different host seeking behaviours and transmission

capacities. A possible reason for the increased percentage of A. arabiensis s.s. and the

reduced percentage of A. funestus s.s. and A. gambiae s.s. is the use of conventional

and long-lasting insecticide treated nets (LLINs), which a study (Mwangangi et al.,
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Figure 2.4: A plot of the estimated logit-linear relationship between PfPR and PfEIR.
The solid lines are the estimated relationships and the shaded areas are the associated
95% confidence region for children and women combined (a) and for children and women

separated (b)
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2013) found to be more effective at killing A. funestus s.s. and A. gambiae s.s. than A.

arabiensis s.s.. The use of ITNs (in children under 5 y/o) has increased in Malawi over

the years: from 7.6% in 2000 to 20.2 in 2004, 59.6 in 2010 (Mathanga et al., 2012), and

73.0% in 2014 (Zamawe et al., 2016). Meanwhile, Mzilahowa et al. (2012) reported an

EIR of 15 ib/person/month, which when compared our reported 2.39 ib/person/month

could indicate a reduction in transmission, as has been observed throughout the country

over the years, and has been attributed partly to the countries advances in vector control

(Zamawe et al., 2016). Our statistical analysis did not include A. gambiae s.s., and A.

quadriannulatus due to their very low abundance in the study region throughout the

study period.

Our study found, as expected (Mwandagalirwa et al., 2017, Zhou et al., 2016), a con-

sistently higher PfPR in children 0.5-5 y/o than in women 15-49 y/o thoughout the

study region and throught the study period. When we investigate the hypothesis that

households with children had a different HBR as compared to those that did not, we

did not find evidence in support of the hypothesis, which is in line with some studies

(Clyde and Shute, 1958, Smith et al., 1956) that found that children and adults are not

bitten at different rates, but contrary to others studies (Boreham et al., 1978, Bryan

and Smalley, 1978, Muirhead-Thomson, 1951, Thomas, 1951) that have suggested dif-

ferences. If children are bitten as often as women, then why is PfPR higher in children?

On this question, our data better supported the assumption that either transmission

efficiency is higher and/or time to clear a P. falciparum infection is longer in children

than in women (Model 2, the best of the four SIS models), as compared to an assumption

of equal transmission efficiency and infection clearance time (Model 1, AIC difference

of 914). Both transmission efficiency and time to clear infection could be modulated

by immunity. Active acquired immunity to blood stages of the parasites, which gener-

ally increases with age (Baird, 1995, Ladeia-Andrade et al., 2009), can cause inefficient

transmissions, rapid clearance of parasites, or may keep parasite density too low to be

detected (Doolan et al., 2009, John et al., 2005).

A question investigated in this research was whether or not PfEIR has a delayed effect on

PfPR. Our data better support a month’s delayed effect of PfEIR on PfPR as compared
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to no delay effect and two months’ delayed effect. The one month’s lagged time could

be due to the incubation periods of parasites within the human and in the mosquito.

Prolonging these incubation periods (either through medicine or control measures) has

been demonstrated to have the potential of reducing prevalence (Ruan et al., 2008).

On the nature of the PfEIR-PfPR relationship, we found that a logit-linear model, among

other candidates, best explained the relationship in the study region, unlike Smith et al.

(2005) who found an SIS model that assumes both heterogeneous infection rates and

superinfection, a model analogous to our Model 4, to be the best model. Our results are

however similar to the results of Beier et al. (1999), who modelled the same relationship

with a log-linear model. The estimated relationship is such that every detectable PfEIR

is associated with PfPR and even very low PfEIR levels are associated with substantial

PfPR, similar to the findings of Beier et al. (1999). The association of very low (or

undetectable) PfEIR with substential levels of PfPR has been observed before (Kabiru,

1994, Mbogo et al., 1995). This finding suggests that in contrast with other studies that

have suggested that vector control programmes could be effective for controlling and even

eliminating malaria in certain areas where transmission levels are marginal, our results

suggest that although substantial reductions in PfPR may be expected with decreasing

PfEIR through vector control, they may not be enough to drive malaria to elimination

levels if they are not coupled with the detection and treatment of asymptomatic cases.

This is manifested in our spatio-temporal maps for the months of August 2017 to March

2018, where PfEIR is zero everywhere in the study region, yet PfPR remains appreciably

high (> 10%) in most areas. The PfPR levels after a prolonged zero PfEIR correspond

to a residual human host to be expected when transmission has been interrupted (see

the spatio-temporal maps in S2 Appendix). Moreover, this residual hosts are more likely

to be children (as evidenced in or spatio-temporal maps showing that at the end of the

high transmission season, PfPR in consistently higher in children throughout the study

region). This finding, coupled with the finding that transmission may be more efficient

in children and they could take a longer time to clear infection, suggests that children

may play a more active role in transmission during a high transmission period and in the

resurgence of transmission after a period of low transmission, when vector-host contacts
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are enhanced, similar to what other studies have suggested (Lin Ouédraogo et al., 2015,

Walldorf et al., 2015).

The saturation in PfPR with increasing PfEIR at high transmission levels may be ex-

plained by a number of factors: (1) the same infected individuals are bitten by an

increasing number of mosquitoes; (2) some individuals are well protected against vector

contacts and do not get infected; (3) some individuals have acquired an immunity such

that parasites densities in their blood are kept at levels lower than can be detected by

RDT. Whatever be the reason, the saturation has practical importance on what results

to expect in vector control programmes. It could mean that reduction in PfEIR may

not be met with an immediate appreciable reduction in PfPR, if PfEIR is high. Addi-

tionally, when transmission in low, the quick rise in PfPR with increasing PfEIR suggest

that nearing elimination, a little increase in PfEIR could be met with a quick rise in

PfPR, implying extra difficulty in eliminating the disease when substantial reduction

have already been achieved.

We found PfPR to increase during the months spanning November 2017 to April 2018,

whilst PfEIR remained at zero-levels over the same period. What remains unclear is

whether the rise in PfPR during the said period is due to new (undetected) infections

or that parasite density in already-infected individuals increased to detectable levels.

Either ways, this results exemplifies that a rise a prevalence may be observed even when

transmission cannot be detected; thus the need for monitoring both parasitaemia and

entomological indices in malaria surveillance.

The previouse studies on the EIR-PR relationship (Beier et al., 1999, Smith et al., 2005)

relied on data reported by several isolated surveys conducted in different geographical

regions throughout Africa and at different time points. We optimized our sampling

framework by sampling in same geographic region, across different transmission seasons

and over a higher temporal scale of a month. However, we found relatively weaker

association between PfEIR and PfPR (evidenced by low r2 values) as compared to Beier

et al. (1999). Indeed, in low EIR settings like our study region, the EIR–PR relationship

can be noisy (see for example the low EIR region of Figure 1 of Beier et al. (1999) and
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Figure 1 of Smith et al. (2005)). This limitation might be overcome by more intensive

spatio-temporal sampling.

We note that the regression parameters for NDVI in the A. funestus model was not

statistically significant (Table 2.8). Greenness of the vegetation is however known to

affect the abundance of mosquitoes due to the availability of breeding sites in green areas

and times. Greenness is also seasonal and may be related to humidity and temperature,

which are all adjusted for in the model. Thus, the lack of statistical significance may

not be interpreted as an actual lack of effect. We also note that in the same model, one

of the temperature variables was significant whereas the other was not. However, these

all helped to improve the overall fit of the model. Since temperature is seasonal, and

having included sinusoidal terms to account for seasonality, it is difficult to explain the

lack of significance of this variable due to the complexity of the model. Nevertheless,

the main goal of the analysis was predictive rather than explanatory.

A concern that may be raised about our analyses is that in modelling the relationship

between PfEIR and PfPR, we did not accounted for the sensitivity and specificity of

RDT, the diagnostic used in testing for P falciparum. If the sensitivity α and specificity

β were known, we could account for them by setting PfPR(x, t) as used in our analysis

to αPfPR(x, t) + (1 − β)(1 − PfPR(x, t)). Thus, to be strict with terminology, what

we have called PfPR should be interpreted as the probability of testing positive for P

falciparum using RDT.

Malaria transmission in Malawi is known to be highly seasonal (Roca-Feltrer et al.,

2012a, Rogerson et al., 2000) (as also evident in our results), with a single peak in the

rainy months (December to May) and a trough in the dry season (June to November),

which is mainly climate driven (Lowe et al., 2013). In the light of this background

knowledge and inspection of our empirical data, we accounted for seasonality using

sinusoidal functions with a period of 12 months.

Interpreting the relationship between EIR and PR is indeed a much more complex

problem than presented in this and other papers that have considered the subject. First,

there needs to be a transmission before an individual acquires malaria. This makes

prevalence, at least in theory, a function of EIR. However prevalence at any point in time
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also depends on the duration of infection, which has a different transition probability

than EIR. Second, transmission will take place only when there are infected people.

Furthermore, transmission may occur at a higher rate when prevalence is higher. Thus,

in turn, EIR may also depend on prevalence. Our modelling therefore is a construct of

a rather complex process that is still not fully understood.

Although the PR data were available at individual level, we fitted the model at location

level since after fitting a separate model to women and children, no individual level

variable was significant.

Hurdle or zero-inflated models are sometimes chosen for count data when their counter-

parts without zero-inflation are unable to predict equivalent rates of zeros as are in the

data. However, our predictions of EIR are similar to the empirical data; thus our HBR

and SR models, although without zero-inflation, are parsimonious for the data.

Potential overdispersion in count data may be accounted for by using negative binomial

models. However, a geostatistical model already adjusts for possible overdispersion.

Diggle and Giorgi (2019) discuss this in detail detail.

Our model building strategy was an incremental approach, where we start with a simple

generalized linear model and increase complexity by adding random effects, spatially

correlated random effects, and spatio-temporal random effects subject to the current

best model not producing satisfactory validation based on the variogram validation

approach developed by Giorgi et al. (2018). All models were satisfactory after adding

spatially correlated random effects except for the SR models that didn’t need spatially

correlated random effects.

Another approach we could have used to map EIR is a marked point process to model

empirical EIR. However, both HBR and PfSR are noisy data and therefore empirical

EIR = HBR × PfSR is even noisier. By modelling HBR and PfSR separately using

appropriate covariates, the signal in each could then be extracted, reducing the noise in

predicted EIR.

In obtaining parameters of each of the models relating EIR and PR, we drew 10,000

Monte Carlo samples from the predictive distribution of EIR, taking into account the
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uncertainties in the parameters of its predictive models. Thus, the resulting samples

from the set of parameters of each model relating EIR and PR can be seen as random

samples from its distribution.

Human landing catches (HLC) are the gold standard for providing reliable estimates of

HBR by anophelines (Hawkes et al., 2017, Organization., 1975), although arguements

have been made that it may result in overestimation (Gao et al., 2018) or underestimate

(Meza et al., 2019). The main disadvantages of HLC is that it exposes human catchers to

several infection transmited by the vector and has baises resulting from differential skill

of the catcher. Our study used Suna traps, which has been found to yeild HBR estiamtes

that are consistent with with HLC (Mburu et al., 2019). We therefore estimated HBR

using the number of mosquitoes traped by Suna traps, without multiplying by any factor.

Distributed lag non-linear models (Gasparrini et al., 2010) may be used to account for

the effect of environmental factors such as temperature and relative humidity, which

often have delayed effects of on the outcome varibles. Some studies on malaria (Zhao

et al., 2014) and mosquitoes (Chen et al., 2010) have used this approach. However,

these models often require the estimation of several parameters, more than the amount

of data can support. In our analysis, we used a series of accumulated temperature and

relative humidity, since it is important to aggregate climatic variables to detect biological

relationships (Lozano-Fuentes et al., 2012, Roiz et al., 2014, Shone et al., 2001).

The splines used to adjust for time trends and approximated non-linear relationships be-

tween outcome variable and explanatory variables were based on epidemiological knowl-

edge and visual inspection of trends. Temperature and RH are known to be non-linearly

related to each of our outcomes. For each linear spline, we considered a range of values

for each knot position based on visual inspection and/or epidemiological knowledge, and

chose the best knot position based on the using AIC. We used the AIC because models

were nested, and their overall fit were of more concern than error of prediction.

An extension of the analysis presented in this paper is a joint model for PfEIR and PfPR.

The joint model might then allow for the borrowing of information from the entomo-

logical data in order to predict parasitaemia prevalence more precisely. An exploratory

analysis for the need and plausibility of such a joint analysis will to be check if the
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residual errors of PfEIR are correlated with those of PfPR. Correlations of the errors of

the two outcomes will suggest that predictions of prevalence might benefit from the joint

modelling of entomological and parasitaemia data. We propose a model for such joint

analysis in concluding chapter of the thesis. Such a joint analysis opens the question of

mediation variables since some variables may have and effect on PfPR through PfSR or

HBR or both.

Conclusion

We have mapped PfEIR and PfPR, compared their spatio-temporal patterns, and identi-

fied their respective hot spots. We found a clear relationship between PfPR and PfEIR,

emphasising that PfEIR is a direct measure of malaria transmission intensity. First,

our results suggest that at low transmission settings, a rapid increase in prevalence is

to be expect with the slightest increase in transmission. Second, the results suggest

that an immediate reduction in prevalence may not be expected through vector control

programmes in high transmission settings. Third, the results suggest that it may not

be possible to eliminate malaria or drive it to elimination levels by using only vector

control programmes. Intervention programmes may therefore need to integrate vector

control with the detection and treatment of asymptomatic individuals (who are likely

to be found in residual hot-spots) to drive malaria to elimination levels. Our results are

likely to hold in other geographical regions with marginal P falciparum transmission or

where there are seasonal effects in malaria transmission.
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S1 Appendix: Details of the models and estimates of their

parameters.

Lagged averages of temperature and relative humidity

Let Avg(Temp(xi, ti), s1, s2) and Avg(RH(xi, ti), s1, s2) respectively denote the average

temperature and relative humidity taken over s1 to s2 days prior to the data collec-

tion. Table 2.2 shows the s1 and s2 values over which average temperature and relative

humidity were considered for the analysis.

Table 2.2: Range of days prior to data collections over which temperature and relative
humidity were averaged

To (s2) 0 3 5 7 14 21 28 35 42

From (s1)

0 Xa X X X X X X X X

3 X X X X X X X

5 X X X X X X

7 X X X X X

14 X X X X

21 X X X

28 X X

35 X
a The check marks indicate the days from/to which average temperature and relative humidity were taken.

Procedure for building the HBR, PfSR and PfEIR models

We selected the best combination of fixed and random effects that best explain HBR,

PfSR and PfPR using the following procedure.

1. We first built a generalized linear model in which temperature and RH are con-

sidered together with time trends and sine and cosine functions for seasonality.For

Avg(Temp(xi, ti), s1, s2), Avg(RH(xi, ti), s1, s2), the choice of s1 and s2, as illus-

trated by Table 2.2, was based on the deviance profile of the variable involved, i.e.
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either temperature or RH. Piecewise-linear transformations of temperature and

RH were considered based on visual inspection and epidemiological knowledge.

2. Potential confounding between seasonal sinusoids, temperature and RH were checked,

and if confounding existed, the variable with the highest variance inflation factor

was excluded from the model. Furthermore, variables that did not improve the

model fit as judged by the AIC were excluded. Sin-cosine terms were always con-

sidered together as if they were one covariate.

3. With the current model as a basic model we include other available explanatory

variables based on forward selection.

4. When no more explanatory variables significantly improve the model fit, we fit a

generalized linear mixed model with a random effect for each unique space-time

location.

5. We then check for the presence of residual spatial, temporal, and spatio-temporal

correlations using the algorithm described in Giorgi et al. (2018), and then include

the random effect terms that improve the model fit.
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The selected fixed effects for the HBR, PfSR and PfEIR models

Table 2.3: Details of the fixed effects for the A. arabiensis human biting rate model.

Effect Details

Covariates (d(xi, ti)
>β)

β11(xi ∈ A) A binary indicator taking the value 1 if

location xi belongs to Focal Area A and

0 otherwise.

β21(xi ∈ B) A binary indicator taking the value 1 if

location xi belongs to Focal Area B and

0 otherwise.

β31(xi ∈ C) A binary indicator taking the value 1 if

location xi belongs to Focal Area C and

0 otherwise.

β41(Indoor) A binary indicator taking the value 1 if lo-

cation the mosquito trap was set indoors

and 0 otherwise.

β5DSR(xi) Distance from location xi to the closest

small river

β6Avg(RH(xi, ti), 14, 35) Average relative humidity 14 to 35 days

prior to the data collection.

β7 min{Avg(Temp(xi, ti), 7, 14), 22.9} The effect of temperature when temper-

ature is below 22.9◦C.

β8 max{Avg(Temp(xi, ti), 7, 14)−22.9, 0} The effect of temperature when temper-

ature is 22.9◦C or more.

Seasonality and Trends (f(ti, α))

α1 sin(2πt/12)/t Seasonal and trend effect

α2 cos(2πt/12)/t Seasonal and trend effect
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Table 2.4: Details of the fixed effects for the A. funestus human biting rate model.

Effect Details

Covariates (d(xi, ti)
>β)

β0 Intercept

β1Elevation(xi) Elevation of the location xi.

β2DSR(xi) Distance from location xi to the nearest

small river.

β3NDVI(xi) Normalized difference vegetation index at

location xi.

β4Avg(Temp(xi, ti), 0, 7) Average temperature one week prior to

data collection.

β5Avg(Temp(xi, ti), 7, 14) Average temperature 7 to 14 days prior

to data collection.

β6Avg(RH(xi, ti), 14, 21) Average relative humidity 14 to 21 days

prior to data collection.

Seasonality and Trends (f(ti, α))

α1 sin(2πti/12) Seasonal effect

α2 cos(2πti/12) Seasonal effect

α3 min{ti, 12} Trend term

α4 max{ti − 12, 0} Trend term
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Table 2.5: Details of the fixed effects for the sporozoite rate model.

Effect Details

Covariates (d(xi, ti)
>β∗)

β∗0 Intercept

β∗1DSR(xi) Distance from location xi to the nearest

small river.

β∗2DLR(xi) Distance from location xi to the nearest

large river.

β∗3Elevation(xi) Elevation of location xi

β∗4EVI(xi) Enhanced vegetation index of location xi

Seasonality and Trends (f∗(ti, α
∗))

α∗1 sin(2πti/12) Seasonal effect

α∗2 cos(2πti/12) Seasonal effect

α∗3 min{ti, 12} Trend effect

α∗4 max{ti − 12, 0} Trend effect
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Table 2.6: Details of the fixed effects for the P. falciparum prevalence model.

Effect Details

Covariates (d(xi, ti)
>ϕ)

ϕ11(xi ∈ A) A binary indicator taking the value 1 if

location xi belongs to Focal Area A and

0 otherwise.

ϕ21(xi ∈ B) A binary indicator taking the value 1 if

location xi belongs to Focal Area B and

0 otherwise.

ϕ31(xi ∈ C) A binary indicator taking the value 1 if

location xi belongs to Focal Area C and

0 otherwise.

ϕ4Elevation(xi) Elevation of the location xi.

ϕ5DLR(xi) Distance from location xi to the nearest

large river.

ϕ6Avg(Temp(xi, ti), 14, 42) Average temperature 14 to 42 days prior

to data collection.

ϕ7NDVI(xi) Normalized difference vegetation index at

location xi.

ϕ8Wealth(xi) Wealth index of the i-th household.

Seasonality and Trends (g(ti, %))

%1 sin(2πti/12) Seasonal effect

%2 cos(2πti/12) Seasonal effect

%3 min{ti, 21} Trend term

%4 max{ti − 21, 0} Trend term
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Table 2.7: Regression table for the A. arabiensis human biting rate model

Variable Parameter Point Estimate

Covariates

1(xi ∈ A) β1 -13.525

(-16.217, -10.833)a

1(xi ∈ B) β2 -9.995

(-12.656, -7.333)

1(xi ∈ C) β3 -10.848

(-13.514, -8.182)

1(Indoor) β4 0.456

(0.264, 0.647)

DSR(xi) β5 0.631 ×10−3

(0.143, 1.120 )×10−3

Avg(RH(xi, ti), 14, 35) β6 0.056

(0.038, 0.073)

min{Avg(Temp(xi, ti), 7, 14), 22.9} β7 0.180

(0.072, 0.289)

max{Avg(Temp(xi, ti), 7, 14)− 22.9, 0} β8 -0.132

(-0.22, -0.044)

Seasonality and Trends

sin(2πti/12)/t α1 -0.291

(-0.907, 0.325)

cos(2πti/12)/t α2 1.092

(-0.759, 2.943)

Spatial Correlation

Signal variance σ2 4.114

(3.262, 5.189)

Scale (km) φ 0.649

(0.492, 0.856)

Nugget variance τ2 0.162

(0.124, 0.21)

Dependent Variable: log of A. arabiensis Mosquito Density

a 95% confidence intervals are in brackets.
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Table 2.8: Regression table for the A. funestus human biting rate model

Variable Parameter Point Estimate

Covariates

Intercept β0 2.523

(-3.209, 8.256)a

Elevation(xi) β1 -5.583×10−3

(-7.896, -3.271)×10−3

DSR(xi) β2 2.993×10−3

(2.329, 3.658)×10−3

NDVI(xi) β3 1.392

(-1.251, 4.035)

Avg(Temp(xi, ti), 0, 7) β4 -0.154

(-0.279, -0.028)

Avg(Temp(xi, ti), 7, 14) β5 -0.116

(-0.295, 0.064)

Avg(RH(xi, ti), 14, 21) β6 -0.043

(-0.078, -0.008)

Seasonality and Trends

sin(2πti/12) α1 -0.291

(-0.907, 0.325)

cos(2πti/12) α2 1.092

(-0.759, 2.943)

min{ti, 12} α3 -0.291

(-0.907, 0.325)

max{ti − 12, 0} α4 1.092

(-0.759, 2.943)

Spatial Correlation

Signal variance σ2 4.456

(3.379, 5.876)

Scale (km) φ 0.906

(0.66, 1.245)

Nugget variance τ2 0.142

(0.105, 0.191)

Dependent Variable: log of A. funestus Mosquito Density

a 95% confidence intervals are in brackets.
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Table 2.9: Regression table from fitting the P. falciparum sporozoite rate models.

Variable Parameter A. funestus s.s. A. arabiensis s. s.

Covariates

Intercept β∗0 0.139 -3.392

(-7.793, 8.071)a (-4.772, -2.125)

DLR(xi) β∗1 -1.945×10−3 —

(-3.345, -0.545) ×10−3

DSR(xi) β∗2 -4.309 ×10−3 —

(-4.309, -1.119)

Elevation(xi) β∗3 7.786×10−3 —

(5.819, 9.752)×10−3

EVI(xi) β∗4 -36.648 —

(-65.090, -8.206)

Seasonality and Trends

sin(2πti/12) α∗1 -0.378 -0.253

(-0.565, -0.19) (-0.882, 0.375)

cos(2πti/12) α∗2 -0.722 -0.867

(-0.954, -0.489) (-1.864, 0.13)

min{ti, 12} α∗3 -0.056 0.027

(-0.072, -0.041) (-0.086, 0.140)

max{ti − 12, 0} α∗4 0.061 -0.089

(0.039, 0.084) (-0.305, 0.127)

Dependent Variables: logits of the probability of a positive test from children under 5 y/o and for women 15-49

y/o.

a 95% confidence intervals are in brackets.
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Table 2.10: Regression table for the P. falciparum parasite rate model.

Variable Parameter Children under 5 y/o Women 15-49 y/o

Covariates

1(xi ∈ A) ϕ1 0.685 -0.506

( -1.877 , 3.247 ) ( -3.166 , 2.155 )

1(xi ∈ B) ϕ2 2.829 2.568

( 0.41 , 5.248 ) ( 0.134 , 5.002 )

1(xi ∈ C) ϕ3 3.192 2.641

( 0.806 , 5.577 ) ( 0.224 , 5.058 )

Elevation(xi) ϕ4 5.165×10−3 5.920×10−3

( 2.322 , 8.008 )×10−3 ( 3.039 , 8.800 )×10−3

DLR(xi) ϕ5 -0.372 ×10−3 -0.181 ×10−3

( -0.522 , -0.222) ×10−3 ( -0.353, -0.009) ×10−3

Avg(Temp(xi, ti), 14, 42) ϕ6 -0.112 -0.096

( -0.201 , -0.023 ) ( -0.187 , -0.005 )

NDVI(xi) ϕ7 -2.424 -5.556

( -4.703 , -0.144 ) ( -7.63 , -3.482 )

Wealth(xi) ϕ8 -0.212 -0.159

( -0.283 , -0.141 ) ( -0.215 , -0.102 )

Seasonality and Trends

min{ti, 21} %1 -0.079 -0.079

( -0.098 , -0.06 ) ( -0.1 , -0.059 )

max{ti − 21, 0} %2 0.072 0.086

( 0.042 , 0.102 ) ( 0.056 , 0.117 )

cos(2πti/12) %3 -0.045 0.101

( -0.265 , 0.175 ) ( -0.123 , 0.324 )

sin(2πti/12) %4 0.209 0.175

( -0.138 , 0.556 ) ( -0.173 , 0.523 )

Spatial Correlation

Signal variance σ2 0.347 0.602

( 0.222 , 0.542 ) ( 0.416 , 0.872 )

Scale (km) φ 1.175 1.055

( 0.617 , 2.238 ) ( 0.631 , 1.765 )

Nugget variance τ2 1.546 1.368

( 0.956 , 2.500) ( 0.932 , 2.007 )

Dependent Variables: logits of the probability of a positive test from children under 5 y/o and for women 15-49

y/o.

a 95% confidence intervals are in brackets.
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Table 2.11: Parameter estimates from the models for the relationship between PfEIR
and PfPR. The models’ goodness of fit are assessed by the AIC and their predictive

abilities by the root-mean-square error (RMSE) and bias.

Model p(x, t) γ γ1 γ2 AIC RMSE Bias

1. SIS γPfEIR(x,t−1)
γPfEIR(x,t−1)+1 7.02 7633 0.361 7.597× 10−3

(3.906, 12.284)

2. SIS with D.I/R
2∑

k=1

ξk,it
γkPfEIR(x,t−1)
γkPfEIR(x,t−1)+1 107.208 0.762 6719 0.353 27.386× 10−3

(0.088, 381.139) (0.485, 24.344)

3. SIS with S.I. 1− e−γPfEIR(x,t−1) 1.728 9231 0.351 78.301× 10−3

(0.638, 3.087)

4. SIS with S.I. and D.I/R
2∑

k=1

ξk,it(1− e−γkPfEIR(x,t−1)) 22.603 0.471 7677 0.392 99.390× 10−3

(0.128, 67.048) (0.234, 7.02)

a b

5. Beier a+ b log(PfEIR(x, t− 1)) 0.253 0.013 4628 0.328 5.376× 10−3

(0.232, 0.283) (0.009, 0.021)

6. Logit-linear PfEIR(x,t−1)b

PfEIR(x,t−1)b+exp(−a)
-0.986 0.100 4620 0.327 4.874× 10−3

(-1.160, -0.804) (0.062, 0.147)

Logit-linear for children only -0.523 0.119

(-0.742, -0.296) (0.073, 0.174)

Logit-linear for women only -1.427 0.083

(-1.575, -1.218) (0.046, 0.133)

S.I. denotes supper infection and D.I/R denotes different infection/recovery rates for children

and women. 95% confidence intervals are in brackets. AIC is the median AIC from 10,000

Simulations. RMSE is the root-mean-square error.
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S2 Appendix: Maps of predicted PfEIR and PfPR.

Figure 2.5: Predicted PfEIR (left panel), PfPR in children 0.5-5 y/o (middle panel)
and women 15-49 y/o (right panel) from April 2015 to September 2015.
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Figure 2.6: Predicted PfEIR (left panel), PfPR in children 0.5-5 y/o (middle panel)
and women 15-49 y/o (right panel) from October 2015 to March 2016.
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Figure 2.7: Predicted PfEIR (left panel), PfPR in children 0.5-5 y/o (middle panel)
and women 15-49 y/o (right panel) from April 2016 to September 2016.
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Figure 2.8: Predicted PfEIR (left panel), PfPR in children 0.5-5 y/o (middle panel)
and women 15-49 y/o (right panel) from October 2016 to March 2017.



Chapter 2. On the Relationship Between Plasmodium falciparum Parasite Prevalence
and Entomological Inoculation Rate: a Case Study in Rural Malawi 55

Figure 2.9: Predicted PfEIR (left panel), PfPR in children 0.5-5 y/o (middle panel)
and women 15-49 y/o (right panel) from April 2017 to September 2017.
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Figure 2.10: Predicted PfEIR (left panel), PfPR in children 0.5-5 y/o (middle panel)
and women 15-49 y/o (right panel) from October 2017 to March 2018.
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S3 Appendix: Maps of Exceedance probabilities and Hot-

spots of PfEIR and PfPR.

Figure 2.11: Exceedance probabilities of PfEIR (left panel), PfPR in children 0.5-5
y/o (middle panel) and women 15-49 y/o (right panel) from April 2015 to September

2015.
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Figure 2.12: Exceedance probabilities of PfEIR (left panel), PfPR in children 0.5-5
y/o (middle panel) and women 15-49 y/o (right panel) from October 2015 to March

2016.



Chapter 2. On the Relationship Between Plasmodium falciparum Parasite Prevalence
and Entomological Inoculation Rate: a Case Study in Rural Malawi 59

Figure 2.13: Exceedance probabilities of PfEIR (left panel), PfPR in children 0.5-5
y/o (middle panel) and women 15-49 y/o (right panel) from April 2016 to September

2016.
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Figure 2.14: Exceedance probabilities of PfEIR (left panel), PfPR in children 0.5-5
y/o (middle panel) and women 15-49 y/o (right panel) from October 2016 to March

2017.
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Figure 2.15: Exceedance probabilities of PfEIR (left panel), PfPR in children 0.5-5
y/o (middle panel) and women 15-49 y/o (right panel) from April 2017 to September

2017.
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Figure 2.16: Exceedance probabilities of PfEIR (left panel), PfPR in children 0.5-5
y/o (middle panel) and women 15-49 y/o (right panel) from October 2017 to March

2018.
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S4 Appendix: Additional figures.
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Figure 2.17: Scatter plots of the linear relationship between the logit of PfPR and
the log of PfEIR.
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Risk Studies, 8(3):1–10.

Kabiru, E. (1994). “Sporozoite challenge and transmission patterns as determinants of

occurrence of severe malaria in residents of Kilifi district, Kenya.” Nairobi: University

of Nairobi.

Kitau, J., Oxborough, R. M., Tungu, P. K., Matowo, J., Malima, R. C., Magesa, S. M.,

Bruce, J., Mosha, F. W., and Rowland, M. W. (2012). “Species shifts in the Anopheles

gambiae complex: do LLINs successfully control Anopheles arabiensis?” PLoS one,

7(3):e31481.

Ladeia-Andrade, S., Ferreira, M. U., de Carvalho, M. E., Curado, I., and Coura, J. R.

(2009). “Age-dependent acquisition of protective immunity to malaria in riverine pop-

ulations of the Amazon Basin of Brazil.” The American journal of tropical medicine

and hygiene, 80(3):452–459.
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3.1 Summary

Background

Undernutrition among children under five years of age continues to be a public health

challenge in many low- and middle-income countries (LMICs) and can lead to growth

stunting. Infectious diseases may also affect child growth, however, the association be-

tween malaria and stunting remains unclear. In this paper, we study this association

using data from 20 Demographic and Health Surveys (DHS) conducted in 13 African

countries. Our objective is to make inference on the association between malaria inci-

dence during the first year of life and height-for-age Z-scores (HAZs).

Methods

We develop a geostatistical model for HAZs as a function of both measured and unmea-

sured child-specific and spatial risk factors. We visualize stunting risk in each of the 20

analysed surveys by mapping the predictive probability that HAZ is below -2. Finally,

we carry out a meta-analysis by modelling the estimated effects of malaria incidence on

HAZ from each DHS as a linear regression on national development indicators from the

World Bank.

Results

A non-spatial univariate linear regression of HAZ on malaria incidence showed a negative

association in 18 out of 20 surveys. However, after adjusting for spatial risk factors

and controlling for confounding effects, we found a weaker association between HAZ

and malaria, with a mix of positive and negative estimates, of which 3 out of 20 are

significantly different from zero at the conventional 5% level. The meta-analysis showed

that this variation in the estimated effect of malaria incidence on HAZ is significantly

associated with the amount of arable land.
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Conclusion

Confounding effects on the association between malaria and stunting vary both by coun-

try and over time. Geostatistical analysis provides a useful framework that allows to ac-

count for unmeasured spatial confounders. Establishing whether the association between

malaria and stunting is causal would require longitudinal follow-up data on individual

children.

Keywords

Child growth; exceedance probability; geostatistics; malaria; stunting.

Author summary

Why was this study done?

> Many studies have investigated the association between malaria and child growth

is, but have reported contrary results, namely positive, negative and no associa-

tions. However, possible reasons for the mix of positive, negative and no associa-

tions have not been investigated.

> Child growth may be spatially structured, and failure to account for any spatial

correlations present may lead to unreliable inferences on any regression relation-

ships.

What did the researchers do and find?

> We used 20 DHS datasets from 13 African countries to model height-for-age Z-

scores as a function of malaria and other measured and unmeasured (spatial) risk

factors.

> We found that the regression coefficients corresponding to malaria were a mix of

significant positives and negatives, and no associations.
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> We modelled the regression coefficients corresponding to malaria as a function of

World Bank National Development Indicators and found that arable land signifi-

cantly explained 26% of the variability in the estimated coefficients.

What do these findings mean?

> Our results suggest that geo-political difference in the economy, agriculture and

environment of countries could account for differences in the signs and magnitude

of the association between malaria and child growth, and should be controlled for

when investigating this association.

> Our study also presents stunting risk maps based on each of the 20 DHS datasets,

which can be used for spatial targeting of stunting interventions.

3.2 Background

Undernutrition underlies 45% of all child deaths among children under five years (Black

et al., 2013). A very low height-for-age, usually referred to as stunting, is an important

indicator that reflects the cumulative effects of undernutrition and disease infections

(UNICEF et al., 2013). Stunted children are more prone to illness and premature death.

Stunting among children is known to be associated with poor cognitive development

(Daniels and Adair, 2004, Walker et al., 2005). Long-term consequences of stunting

include lower adult economic productivity, higher risks of ill-health and, among women

with short stature, an increased risk of death during delivery (Cunha and Heckman,

2007, Currie, 2000, 2008, Heckman et al., 2006). Globally, the rate of stunting in children

under five years reduced from 32.7% (198 million) in year 2000 to 23.2% (156 million) in

year 2015 (UNICEF et al., 2016). In Africa however, the rates reduced from 38% in 2000

to 32% in 2015, representing more limited progress than in Asia, Latin America and the

Caribbean where stunting rates dropped by more than one third over the same period

(UNICEF et al., 2016). In many low- and middle-income countries (LMICs), over 50% of

12-23 months old children are stunted (Marriott et al., 2012, Stevens et al., 2012, Victora

et al., 2010). In 2014, less than half of all children under five years lived in LMICs, yet
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these countries accounted for two-thirds of all stunted children globally (UNICEF et al.,

2015). Although the main risk factor for stunting is inadequate nutrition, exposure to

infectious diseases may also lead to an increase in stunting risk (Custodio et al., 2009,

Verhoef et al., 2002). However, there are indirect effects of malaria not fully understood

(Holding and Kitsao-Wekulo, 2004, Shanks et al., 2008), and it is unclear if part of the

stunting burden can be attributed to malaria.

Malaria is still a public health threat, although the ongoing global fight against it has

resulted in 50% decrease in the infection prevalence and 40% decrease in the clinical

incidence in the endemic region of Africa between 2000 and 2015 (Bhatt et al., 2015). In

2015, there were an estimated 214 million malaria cases and 438 thousand deaths from

malaria worldwide, of which 88% occurred in sub-Saharan Africa and 70% in children

under the age of 5 years, with 10% of all deaths in children under the age of 5 years due

to malaria (World Health Organization, 2016). In 2017, similar global estimates were

still reported: 216 million malaria cases and 445 thousand malaria deaths, of which

91% occurred in sub-Saharan Africa, with most of the deaths still occuring in children

under 5 years (World Health Organization, 2017). The association between malaria and

stunting is unclear and still a matter of debate, with studies showing contrasting results.

For example, maternal malaria has been found to impact on child growth (Kalanda et al.,

2005), with infants born to women who experienced malaria during pregnancy having

an increased risk of impaired height and weight gain (De Beaudrap et al., 2016, Guyatt

and Snow, 2004, McGregor et al., 1983, Uddenfeldt Wort et al., 2004). The risk of

stunting has been found to increase for every malaria episode (Kang et al., 2013). On the

other hand, some studies suggest that stunting may modulate susceptibility to malaria,

especially during the first two years of life (Nyakeriga et al., 2004, Olney et al., 2009).

Whilst some studies suggest that stunted children may be at higher risk of developing

malaria episodes (Deen et al., 2002), others report that stunting may have a protective

effect against malaria (Genton et al., 1998, Murray et al., 1978). In other studies,

instead, no association is found (Müller et al., 2003, Snow et al., 1991). More recently,

Fink et al. (2013) found a significant effect of malaria exposure on cognitive development

and socio-emotional development, but not on height, for which they report an estimated

effect of about 3.000 and associated 95% confidence interval (-11.350, 4.606).
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The height-for-age Z-score (HAZ) measures the deviation from heights based on the

World Health Organization (WHO) growth standards (Onis, 2006, World Health Orga-

nization et al., 2006) and are comparable across ages and gender. Values of HAZ below

-2 are used as an indicator of stunted growth. In this paper, we analyse data from 20

Demographic and Health Surveys (DHS) conducted in Senegal, Mozambique, Ghana,

Burkina Faso, Zambia, Malawi, Rwanda, Cote d’Ivoire, Burundi, Liberia, Namibia,

Togo and Tanzania to pursue the following objectives: (1) to investigate the association

between malaria and HAZ by developing a geostatistical framework that accounts for

both measured and unmeasured risk factors for stunting; (2) to understand how such

association varies across the African countries considered in this study; (3) to map the

risk of stunting. We also discuss the limitations of this study and provide a detailed

description on how the proposed modelling framework could be further extended to a

longitudinal setting. To the best of our knowledge, this is the first study that investi-

gates the association between the geographical distribution of malaria and HAZ using a

model-based geostatistical approach.

3.3 Methods

3.3.1 Data

DHS are nationally representative household surveys that are generally repeated every

five years and provide information on a range of health and population indicators, includ-

ing anthropometric information. The DHS methodology is usually based on a stratified

two-stage cluster design. At the first stage, enumeration areas are drawn from census

files. At the second stage, for each enumeration area selected, samples of households

are drawn from an updated list of households to form groups of households known as

sampling clusters. The GPS location of the center of each sampling cluster is taken as

the cluster location. Each child is allocated to a spatially-referenced sampling cluster.

We analyse data from 20 DHS conducted between 2003 and 2014 (DHS Surveys, 2014).

Table 3.1 shows the number of clusters and individuals for each survey. The average
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number of children per cluster varies from one survey to another, with the highest value

of about 21.7 in Burkia Faso in 2003 and the lowest of about 5.7 in Malawi in 2010.

Table 3.1: Sample size summaries for the analysed DHS data indicating the country,
year of survey, number of children, number of sampled clusters, and average number of

children per cluster.

Country Year No. of children No. of clusters Average no. of
children per cluster

Senegal 2005 2710 355 7.6
Senegal 2011 3694 384 9.6
Mozambique 2011 9595 609 15.8
Ghana 2003 3010 393 7.7
Ghana 2008 2350 393 6.0
Ghana 2014 2671 410 6.5
Burkina Faso 2003 8581 396 21.7
Burkina Faso 2010 6290 540 11.6
Zambia 2007 5243 317 16.5
Zambia 2014 4635 303 15.3
Malawi 2004 6238 386 16.2
Malawi 2010 4623 811 5.7
Rwanda 2005 3692 455 8.1
Cote d’Ivoire 2007 3305 288 11.5
Burundi 2010 3449 376 9.2
Liberia 2007 4197 270 15.5
Liberia 2013 3206 319 10.1
Namibia 2007 3669 484 7.6
Togo 2014 3209 328 9.8
Tanzania 2010 6581 453 14.5

The variables used in the analysis are the following.

Child-specific variables. Data on a child’s height, age and gender, family’s wealth

index and mother’s education level were obtained from the DHS for all sampled chil-

dren aged less than 5 years. Families’ wealth indices are constructed using principal

component analysis (Rutstein et al., 2004) on household’s ownership of television, ra-

dio, watch, vehicles and agricultural land, type and number of animals owned, bank

account, materials used for housing construction, type of water access and sanitation

facilities (Rutstein et al., 2004).

Urban extent indicator . We use information on urban extents, available as raster data

at a spatial resolution of 1 km by 1 km, from the Global Rural-Urban Mapping Project

(Center for International Earth Science Information Network – CIESIN – Columbia

University et al., 2011). This variable is a binary indicator that classifies each spatial
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grid cell as urban or rural, based on a combination of population counts, settlement

points, and presence of night-time lights.

Estimated malaria incidence rates. We use raster data on estimated Plasmodium

falciparum incidence as obtained from a Bayesian spatio-temporal model implemented

by the Malaria Atlas Project (Bhatt et al., 2015). The data are available at a temporal

resolution of one year, from 2000 to 2015, and a spatial resolution of 0.05◦×0.05◦. More

specifically, the estimated Plasmodium falciparum malaria incidence at pixel-level is the

predicted average clinical incidence rate per child per year in the age cohorts 0-5 years.

A clinical malaria episode is an attributable febrile episode with a body temperature

in excess of 37.5◦C. Multiple bouts of symptoms occurring within a 30-day period are

counted as a single episode. These data did not included uncertainties in the malaria

incidence estimates. Bhatt et al. (2015) provided these data specifically for the children

under five years to the authors.

3.3.2 Model formulation and spatial prediction

Accounting for spatial effects is crucial in order to deliver valid inferences on the re-

gression coefficients (Thomson et al., 1999). Model-based geostatistics allows us to

incorporate both explained and unexplained (residual) spatial variation in HAZ and to

predict the risk of stunting throughout a geographical area of interest.

Let Yij denote the HAZ for the jth sampled child at the cluster location xi. Visual

checks of histograms of Yij for each DHS showed satisfactory Gaussian distribution.

We distinguish between two sources of variation in HAZ: between-cluster variation, in-

duced by spatially varying risk factors; and within-cluster variation due to child-specific

characteristics. Each of these components depends on both measured and unmeasured

risk factors. In order to account for the latter, we define a hierarchical linear model

as follows. Let S(xi) denote a stationary Gaussian process and Ui represent mutually

independent zero-mean Gaussian variables with common variance τ2. We assume that,

conditionally on S(xi) and Ui, the Yij are Gaussian variables with means µj(xi) and
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variance ω2, where

µj(xi) = e>ijγ + d(xi)β + δMij + f(Aij) + Ui + S(xi), for i = 1, . . . , n (3.1)

j = 1, . . . ,mi.

In (3.1), n is the number of cluster locations andmi is the number of individuals at cluster

location xi. In (3.1) we also distinguish between three types of explanatory variables:

eij , a vector of child-specific explanatory variables, including sex, family’s wealth index

and mother’s education level; d(xi), a spatial indicator variable which takes values 1, if

location xi is classified as urban and 0 if rural; Mij , the estimated malaria incidence

at location xi during the first year of life of the j-th child. The parameters γ, β and

δ are the regression parameters associated with each of the three types of explanatory

variables, whilst f(A) is a cubic spline function of age, A, with knots at 12 and 24

months.

Our objective is to make inference on the parameter δ, which quantifies the effect of

malaria incidence in the first year of life on HAZ. Our assumption is that malaria has

a lagged effect on height and, therefore, we use the incidence of malaria during the first

year of life to determine the strength of this association. In the remainder of the paper,

we shall refer to the parameter δ and the variable Mij in (3.1) as the effect of malaria

on HAZ and malaria incidence, respectively.

In (3.1), the unstructured random effect Ui conflates two sources of residual variation:

spatial variation on a scale smaller than the minimum observed distance between clus-

ters; and unexplained unstructured variation at cluster level.

The spatially structured residuals S(x) are modelled as a zero-mean stationary and

isotropic Gaussian process with variance σ2 and exponential correlation function given

by

ρ(u;φ) = exp(−u/φ), (3.2)

where u is the Euclidean distance between any two locations. The scale parameter φ

regulates the rate at which the spatial correlation decays with increasing distance u.
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We map the risk of stunting for male children, 24 months old, using the predictive prob-

ability that HAZ is below -2 over a 0.05◦ × 0.05◦ grid. We integrate out the effect of

maternal education and wealth index using the following Monte Carlo approach. We

generate 10,000 samples from the joint distribution of these two variables and, condi-

tionally on these, we then simulate values of HAZ. The stunting risk is then computed

by taking the proportion of simulated HAZ samples that are below -2.

More details on the computational implementation and on the mapping of stunting risk

are given in Additional File 1.

3.3.3 Model Validation

To check the validity of the adopted spatial correlation structure for the data, we carry

out the following Monte Carlo procedure. We simulate 1,000 empirical variograms under

the fitted model and then use these to compute 95% confidence intervals at any given

spatial distance of the variogram. If the empirical variogram obtained from the data falls

within the 95% tolerance bandwidth, we conclude that the adopted spatial correlation

function is compatible with the data. If, instead, that falls outside the 95% tolerance

bandwidth, then the data show evidence against the fitted model. More details are

provided in Additional File 1.

3.3.4 Understanding the variation in the effect of malaria on HAZ

We carry out a meta-analysis in order to understand the variation in the estimates of

the parameter of interest δ, from all the 20 DHS. Let δ̂k and sk denote the maximum

likelihood estimate of δ and its standard error, respectively, for k = 1, . . . , 20. We then

model δ̂k using a weighted least squares fit to the regression model

δ̂k = α0 + α1vk + Zk, (3.3)

where vk is a World Bank African development indicator (World Bank Indicators, 2014)

associated with the country and year of the k-th survey, and the Zk are independent
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Gaussian variables with mean zero and variance s2
k. We select eleven development in-

dicators belonging to the categories of “Agriculture and rural development”, “Climate

change”, “Economy and growth”, “Education” and “Environment”. A full list of the

indicators is given in Additional File 2’.

3.4 Results

3.4.1 Non-spatial analysis

Figure 3.1 shows box-plots of HAZ by categories of family’s wealth indices and mother’s

education level for all surveys combined. We assign integer scores 1 to 5 to the five

levels of family wealth from very poor to very wealthy; and scores 1 to 6 to the six

levels of mothers education, from no education to higher education. As expected, the

box-plots show that the median HAZ tends to increase with increasing levels of wealth

and education.

We then investigate the marginal association between malaria incidence and HAZ. Figure

3.2 shows the observed HAZ against malaria incidence, where the solid line is obtained

from the least squares fit of a univariate linear model. The dashed horizontal lines

indicate HAZ levels of 2, 0 and -2. The dashed vertical lines separate M into terciles.

We see that Malaria incidence takes a maximum value of about 1.5 for all surveys,

except Namibia in 2007, where this is about 0.7. We also note that for the surveys in

Senegal in 2005, Mozambique in 2011, Ghana in 2003-2008-2014 and Zambia in 2007,

the variation inM is evenly distributed, whereas it is more skewed for Senegal in 2011,

Burkina Faso in 2003-2010, Malawi in 2004 and Namibia in 2007. Except for Rwanda

in 2005, Zambia in 2014 and Malawi in 2010, in all the remaining 17 surveys we observe

that HAZ decreases with increasing values of M. Figure 3.3 shows the least squares

estimates and the corresponding 95% confidence intervals. The estimated regression

coefficients are negative in 18 surveys, of which 16 are significantly different from zero

at 5% level.
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Figure 3.1: Box plots of height-for-age z-scores by family’s wealth (a) and mother’s
level of education (b), pooled over all 20 surveys.

Figure 3.4 shows HAZ curves as functions of age, within each of the terciles groups of

M, as indicated in Figure 3.2. The fitted curves reflect the typical age-related pattern of

HAZ in LMICs: after a decrease in HAZ during the first two years of life, child-growth

slowly recovers but never reaches zero. This phenomenon, known as “growth faltering”,

has been widely observed; see, for example, (Allen, 1994, Rieger and Trommlerová, 2016,

Stevens et al., 2012, Victora et al., 2010). We also observe that in Burkina Faso in 2003,

Ghana in 2008, Malawi in 2004-2010 and Rwanda in 2005, HAZ curves by terciles groups

of M are partly overlapping, whereas in the remaining 15 surveys, children in the first

tercile of M have the highest levels of HAZ and children in the third tercile with the

lowest levels of HAZ, irrespective of age. We further notice that in Burkina Faso in

2003, Burundi in 2010, Rwanda in 2005, Cote d’Ivoire in 2007 and Malawi in 2004,

where median HAZ curves fall below the -2 threshold at about 24 months of age, the
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Figure 3.2: Scatterplots of height-for-age z-scores (HAZ) against expected malaria
incidence in the first year of life (M). The solid line shows the univariate linear model
with malaria incidence as the predictor of HAZ. The dashed horizontal lines show HAZ

levels of 2, 0 and -2, whilst the dashed horizontal lines separates M into terciles.
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Figure 3.3: Plot of estimates of the malaria effect on HAZ with associated 95%
confidence intervals obtained from a univariate linear model for each survey.

curves still remain below the -2 threshold in later years.

3.4.2 Geostatistical analysis

Figure 3.5 shows estimates, with associated 95% confidence intervals, of the malaria

parameter δ from the fitted geostatistical model in (3.1). The point estimate of δ is

negative in 7 surveys with Ghana in 2014 and Liberia in 2007 being significant at the

5% level. Positive values are estimated for the remaining 13 surveys, with only Namibia

in 2007 being significant. We note that, after accounting for residual spatial variation

and measured potential confounders, the magnitude of the association between malaria

incidence and HAZs is smaller than for the marginal association shown in Figure 3.3.

Point estimates of the covariance parameters of (3.1) with associated standard errors are

reported in Additional File 3. We see that, for each survey, the variance corresponding

to the child-specific variation is consistently larger than both the variance of the spatial

process and the nugget variance.
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Figure 3.4: Estimated trajectories of height-for-age z-scores (HAZ) as a function of
age, stratified by malaria incidence (M). Each panel shows three curves. Each curve
is a piecewise cubic spline with knots at 12 and 24 months and corresponds to a tercile
group of M. The solid, dotted and dashed curves respectively correspond to the first,
second and third terciles ofM, as indicated in Figure 3.2. The horizontal lines are the

HAZ levels of 0 and -2.
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Figure 3.5: Plot of estimates of the malaria effect on HAZ with associated 95%
confidence intervals, obtained from the geostatistical model in (3.1) for each survey.

The results from the model validation (Additional File 4) show that the fitted geostatis-

tical models are compatible with the data for each of the 20 surveys analysed. We also

point out that, although the variograms based on the residuals from the standard lin-

ear regression are relatively flat, we still find evidence of non-negligible residual spatial

variation in HAZ as indicated by the interval estimates of the parameter of the scale of

the spatial correlation in Additional File 3.

3.4.3 Mapping of Stunting Risk

In Figure 3.6, we report the predictive maps of stunting risk for Ghana, Burkina Faso

and Mozambique for boys, aged 24 months. In Ghana in 2003-2008-2014, the maps show

a remarkable decrease in stunting over time, that is observed almost everywhere within

the country. Similarly, in Burkina Faso, we observe a decrease in stunting risk from

2003 to 2010. Mozambique in 2011 shows high spatial heterogeneity in stunting risk,

with values ranging from 0.1 to 0.9. Risk maps for the remaining surveys are shown

in Additional File 5. In these maps, we observe overall higher levels of stunting risk in
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Burundi in 2010 and Malawi in 2004, and lower levels in Senegal in 2008 and Togo in

2014.

3.4.4 Variation in the effect of malaria on HAZ

The amount of arable land (defined as percentage of land under temporary crops, mead-

ows for mowing or for pasture, market or kitchen gardens, and land temporarily fallow)

in the country and year of survey is the only World Bank indicator to be significant

at 5% level, with a p-value of about 0.013, explaining 26% of the total variation in the

estimated effects of the malaria on HAZ. More specifically, we estimate that an increase

of 1% in arable land leads to a 0.008 increase in the value of the estimated malaria effect,

on average. See “Additional Table 2” in Additional File 2 for details of the estimates

from the meta analysis.

We assessed possible spatial concurvity in the generalized additive model framework

modelling HAZ as a smooth function of malaria and using three indices namely worst,

observed and estimate, all of which are bounded between 0 and 1, with 0 indicating

no problem of concurvity, and 1 indicating total lack of identifiability. Each index is

based the square of ||g||/||f ||, where it is assumed that a smooth term of HAZ, f, in

the model can be decomposed into a part, g, that lies entirely in the space of malaria,

and a remainder part that is completely within the HAZ space. If g makes up a large

part of f then there is a concurvity problem. For details, see the documentation for the

R package mgcv (Wood and Wood, 2015), which was used for the concurvity analysis.

For all the 20 datasets, each index was less than 1.0 × 10−16, indicating no concurvity

between HAZ and malaria (Table 3.2).

3.5 Discussion

The objective of our study was to model and quantify the association between malaria

and HAZs in children aged less than 5 years. Using DHS data from 20 surveys in 13

African countries between 2003 and 2014, we have developed a geostatistical framework

to model HAZ as a function of both child-specific and spatial risk factors. As a proxy
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Figure 3.6: Predicted stunting risk maps for Ghana, Burkina Faso and Mozambique.
The colour scale ranges from green to red with red areas being high risk areas and green

areas being low risk areas.
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Table 3.2: Details of the spatial concurvity analysis.

Dataset Worst Observed Estimate
1 Senegal 2005 3.3945E-23 3.3945E-23 3.3945E-23
2 Senegal 2011 4.5431E-23 4.5431E-23 4.5431E-23
3 Mozambique 2011 1.4762E-23 1.4762E-23 1.4762E-23
4 Ghana 2003 4.6251E-26 4.6251E-26 4.6251E-26
5 Ghana 2008 9.4906E-23 9.4906E-23 9.4906E-23
6 Ghana 2014 7.5096E-23 7.5096E-23 7.5096E-23
7 Burkina Faso 2003 4.8769E-25 4.8769E-25 4.8769E-25
8 Burkina Faso 2010 1.4972E-24 1.4972E-24 1.4972E-24
9 Zambia 2007 8.2974E-21 8.2974E-21 8.2974E-21

10 Zambia 2014 7.6379E-26 7.6379E-26 7.6379E-26
11 Malawi 2004 6.6261E-24 6.6261E-24 6.6261E-24
12 Malawi 2010 6.0444E-28 6.0444E-28 6.0444E-28
13 Cote d’Ivoire 2007 7.1410E-22 7.1410E-22 7.1410E-22
14 Burundi 2010 1.5801E-21 1.5801E-21 1.5801E-21
15 Liberia 2007 6.6619E-22 6.6619E-22 6.6619E-22
16 Liberia 2013 5.2867E-23 5.2867E-23 5.2867E-23
17 Namibia 2007 3.3047E-18 3.3047E-18 3.3047E-18
18 Togo 2014 2.4733E-24 2.4733E-24 2.4733E-24
19 Tanzania 2010 1.7239E-24 1.7239E-24 1.7239E-24
20 Rwanda 2005 1.8620E-20 1.8620E-20 1.8620E-20

for malaria exposure, we used estimates of malaria incidence in the first year of life from

the Malaria Atlas Project. A non-spatial univariate linear regression showed a negative

effect of malaria incidence on HAZs. However, after controlling for confounding and

residual spatial effects, the estimated effect of malaria on HAZ was weaker and not

significant in 17 out of the 20 surveys considered.

One of the main challenges in modelling the association between malaria and HAZ is

the need to take account of confounding effects. Among these, socio-economic status

has been shown to be one of the most important (Gallup and Sachs, 2001, Sachs and

Malaney, 2002, Somi et al., 2007, Teklehaimanot and Paola Mejia, 2008). Education is

another important factor that affects both malaria exposure and risk of stunting (Fink

et al., 2013, Kere et al., 1993, Thuilliez et al., 2010). Higher levels of education are

associated with improved knowledge and practice about the appropriate strategies for

the prevention and treatment of malaria (Dike et al., 2006), and about healthy practices

in breastfeeding and child nutrition (Abuya et al., 2012). Our results are consistent with

these findings in all of the 20 surveys here analysed.

We observed that in surveys where HAZ curves fall off below the -2 threshold in early

childhood, the curves never really rise above the -2 threshold in later years. This finding

suggest that HAZ recovery after 2 years of age may be very difficult, if at all possible,
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when HAZ fall-off in early childhood is severe. This is in line with findings from a

study (Crookston et al., 2010) that showed that recovery from stunting is associated

with severity of stunting in early years. Other factors that have been found to favour

recovery from low HAZ are good nutrition (Lopriore et al., 2004) and higher levels of

mother’s education (Vella et al., 1994).

In our analysis, we found a mix of positive and negative point estimates of the association

between malaria incidence and HAZ among the different surveys. However, findings

from previous studies have shown contrasting results, with some reporting statistically

significant negative associations between malaria and stunting (Arinaitwe et al., 2012,

Deen et al., 2002, Ehrhardt et al., 2006, Kang et al., 2013), and others reporting positive

associations (Genton et al., 1998, Murray et al., 1978). To understand such variation in

the magnitude and direction of the estimated parameters that quantify the malaria effect,

we carried out a meta-analysis by considering several indicators of national development

from the World Bank. Among these, the amount of arable land was the only one to show

a significant association. Arable land might in fact modulate the association between

malaria and HAZ, with a larger surface of arable land leading to a fall in poverty and

malnutrition, especially in rural areas (Webb and Block, 2012), but also to a larger

number of breeding sites for mosquitoes (Sovi et al., 2013). This suggests that geo-

political differences among countries should also be considered, since the implementation

of policies aiming to reduce malnutrition can also impact on the epidemiology of malaria.

Arable land could be indeed associated with agricultural, economic and environmental

factors that are common to both malaria and stunting (Matariya et al., 2016, Smith and

Haddad, 2015).

Our Model treated malaria as a risk factor of stunting. Since the malaria data used for

the analysis are not individual specific but location level estimates, we cannot use these

data to establish or explain causality. In a causal study, if HAZ modulates malaria as

suggested by some studies (Genton et al., 1998, Murray et al., 1978, Nyakeriga et al.,

2004, Olney et al., 2009), then including malaria in the model can induce a collider

bias, and risk factors for malaria can erroneously appear associated with HAZ. In this

study instead, neither the exposure (malaria) nor the outcome (HAZ) drove inclusion of
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participants in a study. Indeed DHS are nationally representative surveys whose design

are not determined by malaria or HAZ, hence, at least in part, avoiding collider bais in

our analysis.

We have quantified stunting risk by mapping the predictive probability that HAZ is

below a threshold of -2. For countries with repeated surveys, our risk maps showed

reductions over time in the risk of stunting. The main factors that might be driv-

ing such reductions are improvements in health environments through increasing access

to safe water and sanitation, improvements in the quality of caring practices for chil-

dren through increasing women’s education and promoting gender equality, including

women’s empowerment; and increase in food security by ensuring adequate availability

of food at the national level and sufficient nutritional quality of that food (Headey, 2013,

Ruel et al., 2013, Smith and Haddad, 2015). Our risk maps showed remarkable spatial

heterogeneity in the risk of stunting, identifying geographic areas with high risk that

could be considered for a more targeted intervention.

It has been widely observed that HAZ undergoes a rapid decrease in the first 24 months

and an increase thereafter (Allen, 1994, Stevens et al., 2012, Victora et al., 2010). For

this reason we used cubic splines with knots at 12 and 24 months in order to better

capture the non-linear trajectory that we observed across the five years of age.

3.5.1 Limitations of the study

The main limitation of our study is that the information available to us on malaria

and HAZ is cross-sectional, rather than longitudinal, in nature. This prevents us from

establishing whether our observed associations can be given a causal interpretation. A

second limitation is that we have no information on the uncertainty associated with the

estimates of malaria incidence. We have assumed the first year of life to be the most

important in determining the strength of the association between malaria and child

growth. To investigate whether exposure to malaria in other years of childhood could

also have an impact on growth would require the fitting of a distributed lag-model.
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In Additional File 6, we give methodological details on how to account for uncertainty

in malaria incidence in a cross-sectional geostatistical setting.

3.5.2 Novel extensions to longitudinal geostatistical data

To assess the cumulative effect of malaria on child-growth at different developmental

stages, we would need longitudinal, individual-level data on children’s actual malaria

status over the first five years of life. We would then extend our current methodology

as follows.

To simplify the notation used in this chapter and without loss of generality, we assume

that all the sampled children have identical follow up times. Then, let Yijt and Wijt

denote the HAZ and number of malaria episodes for the j-th child at location xi and

time t, respectively. Also, let S̃(x, t) denote a latent spatio-temporal Gaussian process.

Given S̃(x, t), we model the Wijt as a set of mutually independent Poisson variables

with mean Mijt such that

log{Mijt} = ẽ>ijtγ̃ + d̃(xi)
>β̃ + S̃(xi, t),

where ẽijt are child-specific explanatory variables that might vary over time. We then

assume that Yijt, conditionally onMijt, a spatio-temporal Gaussian process S(x, t) and

random effects Uit and Vij , are independent Gaussian variables with mean

µj(xi, t) = e>ijtγ + d(xi, t)β +
t−1∑

h=0

δt−hMij(t−h) + f(Aijt) + Vij + S(xi, t) + Uit (3.4)

In (3.4), Uit is unstructured unexplained variation at location xi and time t, Vij is

unexplained child-specific variation and the lagged parameters δt−h, for h = 0, . . . , t = 1,

represents the effect of malaria incidence during the h-th year of life on HAZ. To make

the model more parsimonious, the parameters δt−h can be constrained using a parametric

specification, i.e. δt−h = g(t − h; θ) where g(·; θ) is a known function indexed by the

vector of parameters θ.
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This modelling framework would allow us to better understand the cumulative effect of

malaria on HAZ at different developmental stages by overcoming the current limitation

of our study where we assume that δt−h = 0 for 0 ≤ h ≤ t− 2.

The proposed model can more generally be used to investigate the age-specific and

cumulative effects of episode of diseases on other indicators of malnutrition in children

(??).

3.6 Conclusion

Geostatistical methods provide a useful framework to account for spatially structured

confounding effects that modulate the association between malaria and HAZ. This study

also highlights that one of the main challenges in modelling this association is that con-

founding effects vary by country, as well as in time. This can change both the direction

and magnitude of the effect of malaria on HAZ, making a generalization on the effect

of malaria on HAZ almost impossible using only currently available data. Establishing

whether the association between malaria and stunting is causal would require longitu-

dinal follow-up data on individual children.

3.7 List of Abbreviations

DHS: Demographic and Health Surveys

GDP: Gross domestic product

HAZs: Height-for-age z-scores

LMICs: Low- and middle-income countries

WHO: World Health Organization
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Additional File 1: Computational details

Parameter estimation

Let Y > = (Y >1 , . . . , Y >n ), where Yi is the vector of observed HAZs at the ith cluster, and

Let N =
∑n

i=1mi. The vector Y has a multivariate Gaussian distribution with mean

µ = Dξ and covariance matrix Σ, where D is a matrix of covariates including the cubic

spline bases, with vector of regression coefficients ξ> = (γ∗>, β, δ), where γ∗ consists of

coefficients of child-specific variables, spatial variables and those of the spline bases, and

Σ = C
(
σ2R+ τ2In

)
C> + ω2IN , where [R]ij = ρ(uij ;φ) and

[C]ij =





1 if the jth child has been sampled at location xi,

0 otherwise

.

Let θ> = (ξ>, σ2, τ2, ω2, φ) denote the vector of model parameters; the log-likelihood for

θ is given by

L(θ) = −1

2

{
log |Σ|+ (y − µ)TΣ−1(y − µ)

}
. (3.5)

Inversion of the covariance matrix Σ can be simplified using the Woodbury matrix

identity to give

Σ−1 = (ω̃−2IN − ω̃−4C
[
(R+ τ̃2In)−1 + τ̃−2CTC

]−1
CT )/σ2. (3.6)

where ω̃2 = ω2/σ2 and τ̃2 = τ2/σ2. Using Sylvester’s determinant identity, we can also

write

|Σ| = ω2N |ω̃−2C>C(R+ τ̃2In) + In|, (3.7)

hence, as in (3.6), computations are carried out on an n by n matrix.
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To maximize L(θ), we then use the profile likelihood for given ψ = (τ̃2, ω̃2, φ). The

profile estimates for ξ and σ2 are respectively given by

ξ̂(ψ) = (DTQD)−1DTQ−1y

and

σ̂2(ψ) =
1

N
(y −Dξ̂(ψ))TQ−1(y −Dξ̂(ψ))

where σ2Q = Σ. By plugging ξ̂(θ) and σ̂2(θ) into (3.5), we obtain

Lp(ψ) = −1

2

{
N log σ̂2(ψ) + log |Q|

}
. (3.8)

Finally, numerical optimization can be used to maximize Lp(ψ) with respect to ψ.

Model validation

We carry out model validation to test the validity of the adopted spatial covariance

function as follows.

Let Wj(xi) = S(xi) + Ui + Vi denote the residual variation in HAZ for j-th children at

location xi, where Vi ∼ N (0, ω2) and S(xi) and U(xi) are as defined in the geostatistical

model for HAZ in equation (1) of the manuscript. The theoretical variogram of the

random effects is

γ(uhk) = ω2 + τ2 + σ2(1− exp{uhk}) (3.9)

where uhk is the Euclidean distance between location xh and xk.

Denote by W̃j(xi) the estimated residuals from a standard linear regression for the j-th

child at location xi. Let N(u) = {(h, k) : ||xh−xk|| = uhk}, i.e. the set of all data-points

such that their distance is uhk. The empirical variogram is the defined as

γ̃(uhk) =
1

2|N(uhk)|
∑

(h,k)∈N(u)

(
W̃j(xh)− W̃j′(xk)

)2
, (3.10)
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where |N(uhk)| is the number of observations in N(uhk).

To generate a 95% bandwidth of the empirical variogram under the fitted model, we

first simulate Wj(xi), at observed locations xi, from its marginal multivariate Gaussian

distribution, as defined by the geostatistical model. Conditionally on the simulated

values of Wj(xi), we simulate HAZ from the conditional model in equation (1) of the

manuscript. We then compute the empirical variogram in (3.10) obtained from the

simulated data. We repeat this process 1,000 times. Finally, we generate 95% tolerance

intervals at each of pre-defined spatial distances of the variogram.

Spatial prediction

Let T> = (T (x∗1), . . . , T (x∗q)) denote our target of prediction, where x∗i are q prediction

locations. The conditional distribution of T given the data Y = y and all the explanatory

variables at each of the prediction locations x∗i , is a multivariate Gaussian with mean

D∗ξ + PΣ−1(y −Dξ), (3.11)

where D∗ is the matrix of explanatory variables at the prediction locations, P is the

cross-covariance matrix and ξ the vector of all the regression coefficients reported in

equation (1) in the manuscript; the covariance matrix is

σ2(R∗ + τ̃2I)− PΣ−1P>, (3.12)

where [R∗]ij = exp{−u∗ij/φ} and u∗ij is the Euclidean distance between any two pre-

diction locations x∗i and x∗j . When carrying out predictions, we plug-in the maximum

likelihood estimates for each of the model parameters.

In order to quantify the risk of stunting at a location x, we map

Prob(T (x∗i ) < −2|y), i = 1, . . . , q. (3.13)

In the above equation we fix age at 24 months and gender to male, whilst we integrate

out maternal education and wealth index as follows. Let [·] be a shorthand notation for
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“the distribution of ·”. The predictive distribution of the target T (x) is then given by

[T (x∗i )|y] =

∫
[D][T (x∗i )|y,D]dD, i = 1, . . . , q (3.14)

where D = (W, E), with E corresponding to maternal education andW to wealth index,

and [T (xi)|y,D] is the i-th component of the multivariate Guassian distribution with

mean and covariance matrix given by (3.11) and (3.12), respectively. We model the joint

distribution of D as

[D] = [E ][W|E ]

where [E ] is estimated using the empirical distribution obtained from the data of a given

survey, and [W|E ] is a proportional odds cumulative probit model Agresti (1996).

To compute (3.14), we then generate 10,000 samples from [T (x∗i )|y] by simulating se-

quentially from [E ], [W|E ] and [T (x∗i )|y,D]. Finally, we obtain (3.13) by computing the

proportions of simulated samples from [T (x∗i )|y] that lie below −2, for i = 1, . . . , q.
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Additional File 2: Details of the World Bank development

indicators

Table 3.3: World Bank Development Indicators.

Indicator Description

Land under ce-
real production

Land under cereal production refers to harvested area, although some
countries report only sown or cultivated area. Cereals include wheat,
rice, maize, barley, oats, rye, millet, sorghum, buckwheat, and mixed
grains.

Arable land Arable land includes land defined as land under temporary crops
(double-cropped areas are counted once).

Livestock pro-
duction index

Livestock production index includes meat and milk from all sources,
dairy products such as cheese, and eggs, honey, raw silk, wool, and
hides and skins.

GDP per capita GDP per capita based on purchasing power parity.

Primary comple-
tion rate, male

Primary completion rate is the number of new entrants in the last
grade of primary education, regardless of age, divided by the popu-
lation at the entrance age for the last grade of primary education.

Population den-
sity

Population density is midyear population divided by land area in
square kilometers.

Progression
to secondary
school, female

Progression to secondary school refers to the number of new entrants
to the first grade of secondary school in a given year as a percentage
of the number of students enrolled in the final grade of primary school
in the previous year (minus the number of repeaters from the last
grade of primary education in the given year).

Prevalence of
anemia among
children

Prevalence of anemia, children under age 5, is the percentage of chil-
dren under age 5 whose hemoglobin level is less than 110 grams per
liter at sea level.

Improved water
source

Access to an improved water source refers to the percentage of the
population using an improved drinking water sources which include
piped water on premises and other improved drinking water sources
such as public taps or standpipes, tube wells or boreholes, protected
dug wells, protected springs, and rainwater collection.

Improved sani-
tation facilities,
rural/urban

Access to improved sanitation facilities refers to the percentage of the
population using improved sanitation facilities. Improved sanitation
facilities include flush/pour flush (to piped sewer system, septic tank,
pit latrine), ventilated improved pit (VIP) latrine, pit latrine with
slab, and composting toilet.

Unemployment Unemployment refers to the share of the labor force that is without
work but available for and seeking employment.
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Table 3.4: Regression table for the meta analysis

World Bank Development Indicator Point Estimate Standard Error p-value

Land under cereal production 5.0388×10−8 4.3233×10−8 0.2590

Arable land 7.9548×10−3 * 2.8915×10−3 0.0131

Livestock production index 5.7663×10−4 1.6313×10−3 0.7278

GDP per capita -4.1747×10−5 3.5107×10−5 0.2498

Primary completion rate, male -2.3216×10−3 2.9019×10−3 0.4341

Population density 5.5419×10−4 4.8843×10−4 0.2714

Progression to secondary school, female -3.8597×10−3 3.6859×10−3 0.3089

Prevalence of anaemia among children -4.6101×10−3 4.7033×10−3 0.3400

Improved water source -5.1427×10−3 4.3177×10−3 0.2491

Improved sanitation facilities, urban 2.7747×10−3 3.5442×10−3 0.4439

Unemployment 5.0836×10−3 8.4332×10−3 0.5542

Dependent Variable: Estimate of malaria-HAZ association parameter
Significance levels: 0 ‘∗∗∗’ 0.001 ‘∗∗’ 0.01 ‘∗’ 0.05 ‘·’ 0.1 ‘ ’ 1
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Additional File 3: Estimates of covariance parameters

Table 3.5: Estimates of Covariance Parameters

Survey log(σ2) log(φ) log(τ2) log(ω2)

Senegal 2005 -4.130 (0.981) 4.520 (0.983) -2.055 (2.042) 0.659 (1.963)

Senegal 2011 -2.915 (0.522) 4.311 (0.724) -2.180 (1.171) 0.951 (1.045)

Mozambique 2011 -1.802 (0.333) 5.001 (0.457) -2.197 (0.754) 0.959 (0.666)

Ghana 2003 -2.388 (0.493) 4.780 (0.705) -2.565 (1.136) 0.687 (0.987)

Ghana 2008 -2.995 (1.552) 3.056 (1.488) -1.290 (3.355) 0.930 (3.105)

Ghana 2014 -3.154 (0.494) 4.551 (0.786) -3.601 (1.407) 0.323 (0.988)

Burkina Faso 2003 -0.696 (0.530) 5.328 (0.693) -2.289 (1.068) 1.105 (1.059)

Burkina Faso 2010 -2.426 (0.394) 3.500 (0.503) -1.981 (0.971) 0.833 (0.789)

Zambia 2007 -1.886 (0.651) 6.025 (0.854) -2.755 (1.377) 1.115 (1.303)

Zambia 2014 -2.713 (0.487) 3.600 (1.124) -1.830 (1.138) 1.041 (0.975)

Malawi 2004 -2.905 (0.674) 4.975 (1.225) -2.678 (1.441) 1.117 (1.348)

Malawi 2010 -3.329 (0.682) 3.086 (0.634) -2.443 (1.628) 1.015 (1.365)

Rwanda 2005 -3.0599 (0.549) 3.019 (0.731) -1.970 (1.221) 0.812 (1.099)

Cote d’Ivoire 2007 -1.155 (0.678) 1.798 (0.869) -2.186 (3.046) 1.375 (1.357)

Burundi 2010 -2.909 (0.424) 2.122 (0.527) -2.816 (1.175) 0.502 (0.848)

Liberia 2007 -2.885 (0.745) 2.955 (0.648) -2.665 (1.966) 1.111 (1.491)

Liberia 2013 -3.324 (0.700) 3.563 (0.693) -2.821 (1.741) 0.874 (1.400)

Namibia 2007 -2.255 (0.431) 5.011 (0.522) -3.714 (1.447) 0.743 (0.862)

Togo 2014 -3.335 (1.454) 1.674 (0.714) -3.847 (5.168) 0.540 (2.908)

Tanzania 2010 -2.313 (0.304) 4.860 (0.489) -3.175 (0.853) 0.670 (0.607)

Standard errors in brackets
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Additional File 4: Results from the model validation

ADDITIONAL FIGURE 3.7: The solid line corresponds the empirical variogram
of the residuals from a standard linear regression analysis. The shaded area is the
95% tolerance bandwidth generated under the hypothesis that the adopted correlation

function is the true model.
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Additional File 5: Maps of stunting risk

ADDITIONAL FIGURE 3.8: Predicted stunting risk maps for Rwanda, Cote
d’voire, Liberia and Zambia.
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ADDITIONAL FIGURE 3.9: Predicted stunting risk maps for Senegal, Malawi,
Burundi and Tanzania.
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ADDITIONAL FIGURE 3.10: Predicted stunting risk maps for Namibia and Togo.

Additional File 6: Accounting for the uncertainty in malaria

incidence

To account for the uncertainty in malaria incidence, we consider two possible scenarios:

(A) predictive samples or measures of uncertainty from the model used to estimate

malaria incidence are available; (B) the data on malaria incidence are available. In what

follows, we shall use Mij to denote the mean of the predictive distribution of malaria

incidence during the first year of life of the j-th child at location xi.

Scenario (A). LetM(r)
ij ; r = 1, 2, . . . , R be predictive samples of malaria incidence for the

j-th child at location xi. The resulting likelihood function is now obtained by averaging

over the samples M(r)
ij , i.e.

1

R

R∑

r=1

[Yij |M(r)
ij ] =

1

R

R∑

r=1

∫ ∫
[S(xi)][Ui][Yij |S(xi), Ui,M(r)

ij ] dUi dS(xi), (3.15)

where [·] is a shorthand notation for “the distribution of ·” and [Yij |S(xi), Ui,M(r)
ij ] is a

Gaussian distribution with mean as in equation (1) of the main manuscript and variance

ω2. The expression for [Yij |M(r)
ij ] is given in “Additional file 1”. The resulting estimate

of δ and its standard error based on (3.15) incorporate the uncertainty in Mij .
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However, due to limited computer memory, the predictive samples M(r)
ij may not have

been stored but summaries of the overall dispersion, such as standard errors, might

instead be available. Let v2
ij denote the variance of the predictive distribution for malaria

incidence. By approximating this with a log-Gaussian distribution, we then generate

samples M(r)
ij on the logarithmic scale by simulating from a Gaussian distribution with

mean

log





Mij√
1 +

v2ij
Mij





and variance

log

{
1 +

v2
ij

M2
ij

}
.

Finally, we can use the resulting samplesM(r)
ij as in (3.15). However, the validity of this

approach largely depends on the accuracy of the log-Gaussian approximation which is

not feasible in cases where Mij = 0.

Scenario (B). In this scenario, the availability of data on malaria would allow us to

develop a bivariate model for HAZ and the number of malaria episodes, denoted by Wij ,

experienced by a child during his first year of life. This is preferred to Scenario A because

we can then model the underlying process of malaria incidence within a geostatistical

framework that is consistent with our approach used for HAZ. More specifically, we

would assume that Wij , conditionally on a spatial Gaussian process S̃(xi), are mutually

independent Poisson variables, such that

log {Mij} = ẽ>ij γ̃ + d̃(xi)
>β̃ + S̃(xi), (3.16)

where ẽij and d̃(xi) are child-specific and spatially referenced explanatory variables with

associated regression coefficients γ̃ and β̃, respectively. The joint likelihood for Yij and

Wij is then given by

[Yij ,Wij ] =

∫ ∫ ∫
[S(xi)][Ui][Mij ][Yij |S(xi), Ui,Mij ][Wij |Mij ] dUi dS(xi) dMij . (3.17)
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Monte Carlo methods could then be used to approximate the above integral which is

not available in closed form; see, for example, Christensen (2004).

References

Abuya, B. A., Ciera, J., and Kimani-Murage, E. (2012). “Effect of mother’s education

on child’s nutritional status in the slums of Nairobi.” BMC Pediatrics, 12(1):80.

Agresti, A. (1996). Categorical data analysis, volume 990. John Wiley & Sons, New

York.

Allen, L. H. (1994). “Nutritional influences on linear growth: a general review.” European

journal of clinical nutrition, 48:S75–89.

Arinaitwe, E., Gasasira, A., Verret, W., Homsy, J., Wanzira, H., Kakuru, A., Sandison,

T. G., Young, S., Tappero, J. W., Kamya, M. R., et al. (2012). “The association

between malnutrition and the incidence of malaria among young HIV-infected and-

uninfected Ugandan children: a prospective study.” Malaria journal, 11(1):90.

Bhatt, S., Weiss, D., Cameron, E., Bisanzio, D., Mappin, B., Dalrymple, U., Battle, K.,

Moyes, C., Henry, A., Eckhoff, P., et al. (2015). “The effect of malaria control on

Plasmodium falciparum in Africa between 2000 and 2015.” Nature, 526(7572):207–

211.

Black, R. E., Victora, C. G., Walker, S. P., Bhutta, Z. A., Christian, P., De Onis, M.,

Ezzati, M., Grantham-McGregor, S., Katz, J., Martorell, R., et al. (2013). “Maternal

and child undernutrition and overweight in low-income and middle-income countries.”

The lancet, 382(9890):427–451.

Center for International Earth Science Information Network – CIESIN – Columbia Uni-

versity, International Food Policy Research Institute – IFPRI, The World Bank, and

Centro Internacional de Agricultura Tropical – CIAT (2011). Global Rural-Urban

Mapping Project, Version 1 (GRUMPv1): Urban Extents Grid. Palisades, NY.

NASA Socioeconomic Data and Applications Center (SEDAC). Data available at

http://sedac.ciesin.columbia.edu/data/collection/grump-v1. Accessed January 2018.

http://sedac.ciesin.columbia.edu/data/collection/grump-v1


Chapter 3. Geostatistical Modelling of the Association between Malaria and Child
Growth in Africa 111

Christensen, O. F. (2004). “Monte Carlo Maximum Likelihood in Model-Based Geo-

statistics.” Journal of Computational and Graphical Statistics, 13(3):702–718.

Crookston, B. T., Penny, M. E., Alder, S. C., Dickerson, T. T., Merrill, R. M., Stanford,

J. B., Porucznik, C. A., and Dearden, K. A. (2010). “Children Who Recover from

Early Stunting and Children Who Are Not Stunted Demonstrate Similar Levels of

Cognition, 2.” The Journal of nutrition, 140(11):1996–2001.

Cunha, F. and Heckman, J. (2007). “The technology of skill formation.” Technical

report, National Bureau of Economic Research.

Currie, J. (2000). “Child health in developed countries.” Handbook of health economics,

1:1053–1090.

Currie, J. (2008). “Healthy, wealthy, and wise: Socioeconomic status, poor health in

childhood, and human capital development.” Technical report, National Bureau of

Economic Research.
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4.1 Summary

Multiple diagnostic tests are often used due to limited resources or because they provide

complementary information on the epidemiology of a disease under investigation. Ex-

isting statistical methods to combine prevalence data from multiple diagnostics ignore

the potential over-dispersion induced by the spatial correlations in the data. To address

this issue, we develop a geostatistical framework that allows for joint modelling of data

from multiple diagnostics by considering two main classes of inferential problems: (1) to

predict prevalence for a gold-standard diagnostic using low-cost and potentially biased

alternative tests; (2) to carry out joint prediction of prevalence from multiple tests. We

apply the proposed framework to two case studies: mapping Loa loa prevalence in Cen-

tral and West Africa, using miscroscopy and a questionnaire-based test called RAPLOA;

mapping Plasmodium falciparum malaria prevalence in the highlands of Western Kenya

using polymerase chain reaction and a rapid diagnostic test. We also develop a Monte

Carlo procedure based on the variogram in order to identify parsimonious geostatistical

models that are compatible with the data. Our study highlights (i) the importance of

accounting for diagnostic-specific residual spatial variation and (ii) the benefits accrued

from joint geostatistical modelling so as to deliver more reliable and precise inferences

on disease prevalence.

Keywords

Disease mapping; geostatistics; malaria; neglected tropical disesaes; multiple diagnostic

tests; prevalence.

Author summary

Why was this study done?

> The use of different diagnostics test in disease prevalence surveys has necessitated

the development of statistical methods that allow for the joint analysis of data

from several diagnostics.
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> Geostatistical methods for disease mapping are reliant on the spatial correlation

structures in data, which might differ from one diagnostic to another.

> This study was conducted to develop geostatistical methods that allow for the

joint analysis of data from several diagnostics by exploring the different (spatial)

correlations in the data from several diagnostics.

What did the researchers do and find?

> We developed two geostatistical models. The first model allows for the prediction

of disease prevalence as defined by a gold standard diagnostic, by exploring the

data from a more economical and potentially biased alternative. The second model

allows for the prediction for prevalence as defined by each of several complementary

diagnostics by exploring the spatial correlations structures that are common to all

diagnostics and those that are unique to each diagnostic.

> We developed Monte Carlo procedures for validating such models.

> We applied the novel methodology to two challenging disease mapping problems

and found that different diagnostics can have different spatial correlation struc-

tures, which need to be accounted for in order to carry out reliable predictive

inferences. We also found that the joint modelling of prevalence data from differ-

ent diagnostics can lead to more precise predictive inferences.

What do these findings mean?

> The study shows two ways of combining data from multiple diagnostics depending

on whether or not one of the diagnostics is to be considered a gold standard.

The methods are important for both researchers in model-based geostatistics to

build on, but also for spatial epidemiologist, who may use the methods in disease

mapping applications.

> Our results highlight the need to check and account for different spatial correlation

in data in order to make reliable predictions of disease prevalence.
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4.2 Introduction

Disease mapping denotes a class of problems in public health where the scientific goal is

to predict the spatial variation in disease risk on a scale that can range from sub-national

to global (Liu et al., 2012, Murray et al., 2014). Understanding the geographical dis-

tribution of a disease is particularly important in the decision-making process for the

planning, implementation, monitoring and evaluation of control programmes (Bhatt

et al., 2015, World Health Organization, 2017). In this context, model-based geostatis-

tical methods (Diggle et al., 1998) have been especially useful in low-resource settings

(Diggle and Giorgi, 2016, Gething et al., 2012, Zouré et al., 2014) where disease registries

are non-existent or geographically incomplete, and monitoring of the disease burden is

carried out through cross-sectional surveys and passive surveillance systems. However,

there are a lot of cohort studies in Africa are ongoing (Mudie et al., 2019) or have been

carried out (Dalal et al., 2015, Haas et al., 2015).

It is often the case that prevalence data from a geographical region of interest are ob-

tained using different diagnostic tests for the same disease under investigation. The

reasons for this are manifold. For example, when the goal of geostatistical analysis is

to map disease risk on a continental or global scale by combining data from multiple

surveys, dealing with the use of different diagnostic tests may be unavoidable. In other

cases, gold-standard diagnostic tests are often expensive and require advanced labora-

tory expertise and technology which may not always be available in constrained resource

settings. This requires the use of more cost-effective alternatives for disease testing in

order to attain a required sample size. Different diagnostics might also provide comple-

mentary information of intrinsic scientific interests into the spatial variation of disease

risk and the distribution of hotspots.

In the absence of statistical methods that allow for the joint analysis of multiple diag-

nostics, most studies have reported separate analyses. A shortcoming of this approach

is that it ignores, and therefore fails to explain, possible correlations between prevalence

of different diagnostics. Statistical inference might benefit from a joint analysis, which
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can yield more efficient estimation of regression parameters (Song et al., 2009) and more

precise predictions of prevalence.

However, different diagnostic tests can exhibit considerable disparities in the estimates

of disease prevalence for the same population, or even the same individuals. Obvious

sources of such variation include differences in sensitivity and specificity. Furthermore,

different diagnostics may exhibit differences in their association with the same risk fac-

tors. In a geostatistical context, there may also be differences between the spatial

covariance structures of different diagnostics.

These aspects highlight the potential challenges that joint modelling of multiple diag-

nostics needs to take into account. In this paper, we address such issues in order to

develop a general framework for geostatistical analysis and describe the application of

this framework to Loa loa and malaria mapping in Africa. The methodology presented in

this paper is also an extension of previous work published by authors; see, for example,

Crainiceanu et al. (2008) and Diggle and Giorgi (2016).

The structure of the paper is as follows. In Section 4.3, we describe the two motivating

applications. In Section 4.4, we review existing methods for combining prevalence data

from different diagnostics. In Section 4.5, we introduce a geostatistical framework for

combining data from two diagnostics and distinguish two main classes of problems that

arise in this context. In Sections 4.6 and 4.7, we apply this framework to the two case

studies introduced in Section 4.3. In Section 4.8, we discuss methodological extensions

to more than two diagnostics.

The R code developed for the applications of Section 4.6 and Section 4.7 is available on

request from the authors.

4.3 Motivating applications

4.3.1 Loa loa mapping in Central and West Africa

Loiasis is a neglected tropical disease that has received an increased attention due to its

impact on the control of a more serious infectious disease, onchocerciasis, that is endemic
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in large swathes of sub-Saharan Africa. Mass administration of the drug ivermectin

confers protection against onchocerciasis, but individuals who are highly co-infected

with Loa loa - the Loiasis parasite - can develop severe and occasionally fatal adverse

reaction to the drug (Boussinesq et al., 1998).

Boussinesq et al. (2001) have shown that high levels in Loa loa prevalence within a

community are strongly associated with a high parasite density. For this reason, Zouré

et al. (2011) have suggested that precautionary measures should be put in place before

the roll-out of mass drug administration with ivermectin in areas where prevalence of

infection with Loa loa is greater than 20%.

In order to carry out a rapid assessment of the Loa loa burden in endemic areas a

questionnaire instrument, named RAPLOA, was developed as a more economically fea-

sible alternative to the standard microscopy-based microfilariae (MF) detection in blood

smears (Takougang et al., 2002). To validate the RAPLOA methodology against mi-

croscopy, cross-sectional surveys using both diagnostics were carried out in four study

sites in Cameroon, Nigeria, Republic of Congo and the Democratic Republic of Congo

(see Wanji et al. (2012) and Figure 4.4 in Web Appendix B).

In this study, the objective of statistical inference is to develop a calibration relationship

between the two diagnostic procedures. This could then be applied to map microscopy-

based MF prevalence in areas where the more economical RAPLOA questionnaire is the

only feasible option.

4.3.2 Malaria mapping in the highlands of Western Kenya

Malaria continues to be a global public health challenge, especially in sub-Sharan Africa

which, in 2016, accounted for about 90% of all the 445,000 estimated malaria deaths

worldwide (World Health Organization, 2017). Polymerase chain reaction (PCR) and a

rapid diagnostic test (RDT) are two of the most commonly used procedures for detecting

Plasmodium falciparum, the deadliest species of the malaria parasites. PCR is highly

sensitive and specific, but its use is constrained by high costs and the need for highly

trained technicians. RDT is simpler to use, cost-effective and requires minimal training,
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but is less sensitive than PCR (Tangpukdee et al., 2009). Recent studies have reported

that PCR and RDT can lead to the identification of different malaria hotspots, i.e. areas

where disease risk is estimated to be unexpectedly high (Mogeni et al., 2017). In this

context, mapping of both diagnostics is of epidemiological interest since their effective

use is dependent on the level of malaria transmission, with PCR being the preferred

testing option in low-transmission settings (Mogeni et al., 2017).

In order to investigate this issue, a malariometric survey was conducted using both RDT

and PCR in two highland districts of Western Kenya (see Figure 4.5 in Web Appendix

B); see Stevenson et al. (2015) for a descriptive analysis of this study. In this scenario,

a joint model for the reported malaria counts from the two diagnostics could allow to

exploit their cross-correlation and identify malaria hotspots more accurately.

4.4 Literature review

We formally express the format of geostatistical data from multiple diagnostics as

D = {(xik, nik, yijk) : j = 1, . . . , nik; i = 1, . . . , N ; k = 1, . . . ,K} (4.1)

where yijk is a binary outcome taking value 1 if the j-th individual at (i, k)-th location xik

tests positive for the disease under investigation using the k-th diagnostic procedure, and

0 otherwise. We use pijk to denote the probability that an individual has a positive test

outcome from the k-th diagnostic. When data are only available as aggregated counts,

we replace yijk in (4.1) with yik =
∑nik

j=1 yijk and pijk with pik. When all diagnostic tools

are used at each location, we replace xik with xi (in which case i becomes a location

index), although this is not a requirement in the development of our methodology.

In the remainder of this section, we review non-spatial methods for joint modelling of

the pijk across multiple diagnostics and a geostatistical modelling approach proposed by

Crainiceanu et al. (2008).
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4.4.1 Non-spatial approaches

Existing non-spatial methods for the analysis of data from multiple diagnostics fall

within two main classes of statistical models: generalised linear models (GLMs) and

their random-effects counterpart, generalised linear mixed models (GLMMs).

Mappin et al. (2015) analysed data on P. falciparum prevalence from RDT and mi-

croscopy outcomes from sub-Saharan Africa, using a standard probit model

Φ−1(pi1) = β0 + β1Φ−1(pi2), (4.2)

thus assuming a linear relationship between the prevalences pik on the probit scale.

Wanji et al. (2012) used a similar approach for Loa loa in order to study the relationship

between microscopy and RAPLOA prevalence by replacing the probit link in (4.2) with

the logit. This model was also used by Wu et al. (2015) to estimate the relationship

between RDT, microscopy and PCR, for each pair of diagnostics. A major limitation

of these approaches based on standard GLMs is that they do not account for any over-

dispersion that might be induced by unmeasured (spatial) risk factors. Ignoring over-

dispersion can result in invalid inferences on the regression relationships as a result of

exceedingly narrow confidence intervals for the regression coefficients (Thomson et al.,

1999).

Coffeng et al. (2013) proposes a bivariate GLMM for joint modelling of data on on-

chocerciasis nodule prevalence and skin MF prevalence in adult males sampled across

148 villages in 16 African countries. More specifically, the linear predictor of such model

can be expressed as

log

{
pijk

1− pijk

}
= d>ijβk + Zi + Vij , (4.3)

where the random effects terms Zi and Vij are independent zero-mean Gaussian variables

accounting for unexplained variation between-villages and between-individuals within

villages, respectively. Using this approach, Coffeng et al. (2013) estimated a strong



Chapter 4. A Geostatistical Framework for Combining Spatially Referenced Disease
Prevalence Data from Multiple Diagnostics 126

positive correlation between nodule and MF prevalence but also reported a variation in

the strength of this relationship across study sites.

4.4.2 The Crainiceanu, Diggle and Rowlingson model

A standard geostatistical model for prevalence data from a single diagnostics, where

yi out of ni individuals at each of N locations xi have tested positive for the disease

of interest is specified as follows. First, S(x) is a zero-mean stationary and isotropic

Gaussian process with variance σ2, and Zi are zero-mean independent and identically

distributed Gaussian random variables with variance τ2. Second, conditionally on S(·)

and Z, the yi are independent, binomial random variables with probabilities p(xi), where

logit{p(xi)} = d>(xi)β + S(xi) + Zi, (4.4)

where logit{u} = log{u/[1 − u]} and d(xi) is a vector of spatially varying covariates

corresponding regression parameters β.

Diggle et al. (1998) give a detailed description of this framework, within which Crainiceanu

et al. (2008) proposed a bivariate geostatistical model (henceforth CDRM) to analyse

data on microscopy and RAPLOA Loa loa prevalence (see Section 4.3.1). To the best of

our knowledge, CDRM is the only existing approach that attempts to model the spatial

correlation between two diagnostics.

Let k = 1 correspond to the RAPLOA questionnaire, and k = 2 to microscopy. To

emphasize the spatial context, we now write pik = pk(xi); CDRM can then be expressed

as





logit{p1(xi)} = d>(xi)β + S(xi)

logit{p2(xi)} = α0 + α1logit{p1(xi)}+ Zi

(4.5)

Crainiceanu et al. (2008) also provide empirical evidence to justify the assumption of a

logit-linear relationship between the two diagnostics.
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A limitation of the CDRM is that it assumes proportionality on the logit scale between

the residual spatial fields associated with RAPLOA and microscopy. In our re-analysis

in Section 4.6, we use a Monte Carlo procedure to test this hypothesis.

4.5 Two classes of bivariate geostatistical models

We now develop two modelling strategies that address the specific objectives of the two

case studies introduced in Section 4.3. Our focus in this section will be restricted to the

case of two diagnostics (hence K = 2). We discuss the extension to more than two in

Section 4.8.

4.5.1 Case I: Predicting prevalence for a gold-standard diagnostic

Let S1(x) and S2(x) be two independent stationary and isotropic Gaussian processes;

also, let f1{·} and f2{·} be two functions with domain on the unit interval [0, 1] and

image on the real line. We propose to model data from two diagnostics, with k = 2

denoting the gold-standard, as





f1{p1(xi)} = d>(xi)β1 + S1(xi) + Zi1

f2{p2(xi)} = d>(xi)β2 + S2(xi) + Zi2 + αf1{p1(xi)}.
(4.6)

In our applications, we specify exponential correlation functions for Sk(x), k = 1, 2,

hence

cov{Sk(x), Sk(x
′)} = σ2

k exp{‖x− x′‖/φk},

where σ2
k is the variance of Sk(x) and φk is a scale parameter regulating how fast the

spatial correlation decays to zero for increasing distance. Finally, we use τ2
k to denote

the variance of the Gaussian noise Zik which is independent of S1(x) and S2(x).

Selection of suitable functions f1 and f2 can be carried out, for example, by exploring

the association between the empirical prevalences of the two diagnostics in order to iden-

tify transformations that render their relationship approximately linear. Alternatively,
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subject matter knowledge could be used to constrain the admissible forms for f1 and f2;

see, for example, Irvine et al. (2016) who derive a functional relationship between MF

and an immuno-chromatographic test for prevalence of lymphatic filariasis by making

explicit assumptions on the distribution of worms and their reproductive rate in the

general population.

The proposed model in (4.6) is more flexible than the CDRM because (i) it allows for

diagnostic-specific unstructured variation Zik and, more importantly, (ii) relaxes the

assumption of proportionality between the residual spatial fields of the two diagnostics

through the introduction of S2(x).

4.5.2 Case II: Joint prediction of prevalence from two complementary

diagnostics

Let S1(x) and S2(x) be two independent Gaussian processes, and Zik Gaussian noise,

each having the same properties as defined in the previous section. We now introduce

a third stationary and isotropic Gaussian process T (x) having unit variance and expo-

nential correlation function with scale parameter φT .

Our proposed approach for joint prediction of prevalence from two diagnostics, when

both are of interest, is expressed by the following equation for the linear predictor

fk{pjk(xi)} = d>ijβk + νk
[
Sk(xi) + T (xi)

]
+ Zik. (4.7)

The spatial processes Sk(x) and T (x) accounts for unmeasured risk factors that are

specific to each and common to both diagnostics, respectively. The resulting variogram

for the linear predictor is

γk(u) = E
[{(

νk
(
Sk(x) + T (x)

)
+ Zk(x)

)
−
(
νk
(
Sk(x

′) + T (x′)
)

+ Zk(x
′)
)}2]

= τ2
k + ν2

k

[
1− exp(−u/φT

)
+ σ2

k

{
1− exp

(
−u/φSk

)}]
, (4.8)
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and the cross-variogram between the linear predictors of the two diagnostics is

γ1,2(u) = E
[{(

ν1

(
S1(x) + T (x)

)
+ Zk(x)

)
−
(
ν2

(
S2(x′) + T (x′)

)
+ Zk(x

′)
)}2]

= 0.5{τ2
1 + τ2

2 + ν2
1(1 + σ2

1) + ν2
2(1 + σ2

2)} − σ1σ2 exp(−u/φT ). (4.9)

Given the relatively large number of parameters, fitting the model may require a prag-

matic approach. In order to identify a parsimonious model for the data, we recommend

an incremental modelling strategy, whereby a simpler model is used in a first analysis

(e.g. by setting Sk(x) = 0 for all x) and more complexity is then added in response to

an unsatisfactory validation check, as described in Section 4.5.3.

Figure 4.1 gives two directed acyclic graph representations of the models in (4.6) (left

panel) and (4.7) (right panel), showing their distinctive asymmetric and symmetric struc-

tures. In the first model, stochastic independence between the two diagnostics is simply

recovered by setting the parameter α = 0. If this is a scientifically relevant hypothesis,

we can test it through the likelihood ratio. In the second model, independence can only

be achieved if T (x) = 0 for all x. We do not consider this to be a credible assumption

in the application of Section 4.3.1.

4.5.3 Inference and model validation

We estimate the unknown parameters of the asymmetric and symmetric models using the

Monte Carlo Maximum Likelihood (MCML) method (Christensen, 2004, Geyer, 1991).

To carry out spatial predictions at a set of unobserved locations, we plug the MCML es-

timates into a Markov Chain Monte Carlo algorithm for simulation from the distribution

of the random effects conditional on the data. We summarise our predictive inferences

on prevalence using the mean, standard deviation and exceedance probabilities, the lat-

ter defined as the probability that the predictive distribution of prevalence exceeds a

predefined threshold. Details on the derivation and approximation of the log-likelihood

function are given in Web Appendix A.
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𝑆2

(a)

𝑆1 𝑆2

(b)

𝑆1 𝑇

𝑌1 𝑌2 𝑌1 𝑌2

𝑃2𝑃1 𝑃2𝑃1

Figure 4.1: Directed acyclic graphs for the bivariate geostatistical models in (4.6)
(left panel) and (4.7) (right panel). Circles and squares identify latent variables and

the outcome random variables, respectively.

To validate the spatial covariance structure of the proposed models, while still assuming

stationarity and isotropy of the Gaussian process, we proceed as follows. We first re-write

both models in the general form

fk{pjk(xi)} = µijk +Wk(xi), (4.10)

where µijk is the mean component expressed as a regression on the available covariates.

In (4.10), if we set W1(xi) = S1(x) + Zi1 and W2(xi) = S2(xi) + Zi2 + α{f1(xi)}, then

(4.10) reduces to the asymmetric model (4.6); if, instead, Wk(xi) = νk
(
Sk(xi)+T (xi)

)
+

Zik, we recover the symmetric model (4.7).

We define the empirical variogram of Wk(x) to be

γ̂k(u) =
1

2|N(u)|
∑

(i,j)∈N(u)

{
Ŵk(xi)− Ŵk(xj)

}2
, (4.11)
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and the empirical cross-variogram between Wk(x) and Wk′(x) to be

γ̂k,k′(u) =
1

2|N(u)|
∑

(i,j)∈N(u)

{
Ŵk(xi)− Ŵk′(xj)

}2
, (4.12)

where N(u) = {(i, j) : ||xi − xj || = u, i 6= j} and Ŵk(xi) is the mean of the distribution

of Wk(xi) conditioned to the data. To test whether the adopted spatial structure for

Wk(x) is compatible with the data, we then proceed through the following steps.

Step 0. Obtain Ŵk(xi) from two separate standard geostatistical models (i.e. Wk(xi) =

Sk(xi) + Zik, where Sk(x), k = 1, 2, are independent processes) and compute the

empirical variogram, γ̂k, for k = 1, 2, and cross-covariogram, γ̂1,2.

Step 1. Simulate prevalence data as in (4.1) from the adopted model forWk(x) by plugging-

in the MCML estimates. Fit separate standard geostatistical models as in Step

0 and compute the empirical variogram, γ̂k, for k = 1, 2, and cross-covariogram,

γ̂1,2, for the simulated dataset.

Step 2. Repeat Step 1 a large enough number of times, say M .

Step 3. Use the resulting M empirical variograms and cross-variograms to generate 95%

confidence intervals at each point of a set of pre-defined distance bins.

If either the empirical variogram or cross-variogram in Step 0 fall fully or partly outside

the 95% confidence intervals, we conclude that the model is not able to capture the

spatial structure of the data satisfactorily.

To validate the suitability of the adopted link functions f1 and f2 in (4.6) and (4.7),

we plot the Pearson’s residuals against the fitted prevalence, where these are obtained

from the separate models in Step 0. In the case of the asymmetric model, we also check

that the chosen f1 and f2 are, approximately, linearly related. To this end, we fit a

geostatistical model for the diagnostic k = 2 by setting its linear predictor to

f2{p2(xi)} = d>(xi)β2 + S2(xi) + Zi2 + s{p̂1(xi)}, (4.13)
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where p̂1(xi) is the plug-in estimate of p1(xi), as obtained from the geostatistical model

in Step 0 for k = 1, and s(·) is a smoothing function, e.g. a cubic spline. We then re-fit

the model in (4.13) by replacing s(·) with αf1(·). Finally, we plot the fitted ŝ against

α̂f1 and, if this shows linear relationship, we then conclude that f1 and f2 are linearly

related.

4.6 Application I: Re-analysis of the Loa loa data

A total of 223 villages were sampled in the four study sites (see Figure 4.4 in Web

Appendix B). The analysis of the Pearson’s residuals based on two separate models

does not show any evidence against the specified logit-link functions (see Figure 4.7

(a) and 4.7(b) in Web Appendix B). Also, the log-odds from the two diagnostics show

an approximately linear relationship (see Figure 4.7(c) in Web Appendix B). Each of

RAPLOA and microscopy prevalences also exhibits a highly non-linear relationship with

surface elevation (see Figure 5 in Web Appendix B), which we capture using a piecewise

linear spline with knots at 750 meters and 1015 meters.

We consider the two following specification of the asymmetric model (4.6).

• Model 1: a slightly modified, more flexible, version of the CDRM, given by





logit{p1(xi)} = µ1(xi) + S1(xi) + Zi1

logit{p2(xi)} = µ2(xi) + αlogit{p1(xi)}+ Zi2

, (4.14)

where

µk(xi) = βk,0 + βk,1 min{e(xi), e1}+ βk,2I(e(xi) > e1) min{e(xi)− e2, e2 − e1}

+βk,3 max{e(xi)− e2, 0}, k = 1, 2,

where e(x) denotes the elevation in meters at location x, e1 = 750, e2 = 1015

and I(P) is the indicator function. In this parameterisation, βk,1 is the effect of



Chapter 4. A Geostatistical Framework for Combining Spatially Referenced Disease
Prevalence Data from Multiple Diagnostics 133

elevation on prevalence below 750 meters, βk,2 its effect between 760 and 1015

meters, and βk,3 its effect above 1015 meters.

• Model 2: obtained by incorporating an additional spatial process S2(x), indepen-

dent of S1(x), in Model 1 to give





logit{p1(xi)} = µ1(xi) + S1(xi) + Zi1

logit{p2(xi)} = µ2(xi) + S2(xi) + αlogit{p1(xi)}+ Zi2.

, (4.15)

4.6.1 Results

Table 4.1 reports the MCML estimates obtained for Models 1 and 2. As expected, both

models show a significant and positive logit-linear relationship between RAPLOA and

miscroscopy. However, Model 2, which includes the additional spatial process S2(x), is

also able to capture spatial variation in microscopy prevalence on a scale of about 24

meters. Overall, we observe that, except for τ2
1 and τ2

2 , all other parameters common

to both Models 1 and 2 have comparable point and interval estimates. The estimated

parameter τ2
2 is about three times smaller in Model 2 than the estimate from Model 1

but we also note that confidence intervals from each model are largely overlapping. We

note that the regression parameters for both Models 1 and 2 are however not significant

in themselves; however, they are maintained since the improved the overall fit of the

model.

We use the validation procedure of Section 4.5.3 to test which of the two models better

fits the spatial structure of the data. The results (see Figure 4.9) show a satisfactory

assessment of Model 2, whereas for Model 1 the empirical variogram for microscopy

partly falls outside the 95% confidence band, questioning its validity. The additional

checks on the cross-variogram (Figure 4.10), the suitability of the logit functions (Figure

4.7(a)-(b)) and the linear relationship between the two linear predictors (Figure 4.7(c))

also yielded satisfactory results for Model 2.

We now compare the predictive inferences on microscopy prevalence between the two

models in order to assess whether the introduction of S2(x) makes a tangible difference.
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Figure 4.2 shows the point estimates for microscopy prevalence and the exceedance

probabilities for a 20% prevalence threshold under Model 1 (upper panels), under Model

2 (middle panels), and the difference between the two (lower panels, Model 2 - Model

1). Overall, the predicted spatial pattern in prevalence from the two models is similar,

but with substantial local differences. The difference between the point estimates for

prevalence ranges from -0.12 to 0.13, while the difference between the two exceedance

probabilities ranges from -0.44 to 0.59.

4.6.2 Simulation Study

We carry out a simulation study in order to quantify the effects on the predictive infer-

ences for prevalence when ignoring microscopy-specific residual spatial variation, as in

the case of Model 1 when Model 2 is the true model. To this end, we simulate 10,000

Binomial data-sets under Model 2 by setting its parameters to the estimates of Table 4.1

and fit both models. We then carry out predictions for microscopy prevalence over 20

unobserved locations that we randomly select from the four study sites, five from each

site. We randomly select a different set of 20 prediction locations for each of the 10,000

simulations. We summarise the results using the 95% coverage probability (CP), the

root-mean-square-error (RMSE) and the 95% predictive interval length (PIL). Table 4.2

shows the three metrics averaged over all simulations and prediction locations for Model

1 and Model 2. The CP of Model 1 (81.1%) is well below its nominal level of 95%. This

is also reflected by a smaller PIL for Model 1, suggesting that this provides unreliably

narrow 95% predictive intervals for prevalence. Finally, we note that Model 1 also has

a larger RMSE than Model 2.

Having chosen Model 2 as the best model, to asses the effects of parameter uncertainty

on the predictive exceedance probabilities, we predict 10,000 prevalence surfaces over all

the study sites, where each realisation of simulated surface uses parameter values drawn

at random from the multivariate Normal sampling distribution of the MCML estimates

of Model 2. We then take the exceedance probabilities based on all the prevalence (See

Figure 4.11). The mean and maximum absolute differences are respectively 0.06 and

0.2, and the mean and maximum relative differences are 21% and 30% respectively.
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Prevalence (Model 1) Exceedance probs. (Model 1)

Prevalence (Model 2) Exceedance probs. (Model 2)

Difference in prevalence Difference in exceedance probs.

Figure 4.2: Predictive mean of Loa loa microfilariae prevalence (left panels) and
probabilities of exceeding a 20% prevalence threshold (right panels), for Model 1 (top
panels) and Model 2 (middle panels) of Section 4.6. The bottom panels show the

differences between the predictive surfaces of Model 2 and Model 1.
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Thus, the uncertainty in the MCML estimates does not have substantial influence on

the exceedance probabilities.

4.7 Application II: Joint prediction of Plasmodium falci-

parum prevalence using RDT and PCR

The malaria data consist of 3,587 individuals sampled across 949 locations (see Figure

4.5). The outcomes from RDT (k = 1) and PCR (k = 2) were concordant in 92.4% of

all the individuals tested for P. falciparum. This suggests that estimating components

of residual spatial variation that are unique to each diagnostic may be difficult. For this

reason our model for the data takes the following form

fk(pjk(xi)) = βk,0 +
3∑

l=1

βk,ldij,l + νkT (xi), (4.16)

where: dij,1 is a binary variable taking value 1 if the j-th individual at xi is a male and

0 otherwise; dij,2 = min{aij , 5} and dij,3 = max{aij − 5, 0}, i.e. the effect of age, aij , is

modelled as a linear spline with a knot at 5 years.

4.7.1 Results

Table 4.3 reports point estimates and 95% confidence intervals for the model parameters.

Gender has a significant effect on PCR prevalence, but its effect on RDT prevalence is

not significant at the conventional 5% alpha level. The effect of age is comparable

between the two diagnostics, with the probability of a positive test increasing with age

up to 5 years and decreasing thereafter. The estimated variance component, ν̂2
1 = 0.230,

associated with RDT is about three times that for PCR, ν̂2
2 = 0.081. The spatial process

T (x), common to both diagnostics, accounts for spatial variation in malaria prevalence

up to a scale of about 11.6 kilometers, beyond which the correlation falls below 0.05.

The validation procedures for the adopted stochastic spatial structures and link functions

(see Section 4.5.3) do not show any strong evidence against the fitted model (see Figures

4.12, 4.13 and 4.14).
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To quantify the benefit of carrying out a joint analysis for RDT and PCR, we compare the

predictive inferences for prevalence that are obtained under two scenarios: (i) the fitted

model in (4.16); (ii) separate fitted models that ignore the cross-correlation between

the outcomes of the two diagnostic tests. Figure 4.3 shows the point predictions and

standard errors for RDT and PCR prevalences for five-year-old male children under

scenarios (i) (left panels) and (ii) (right panels). We observe that the point predictions

for prevalence under the two models are strongly similar but the joint model in (4.16),

as expected, yields smaller standard errors throughout the study area.

Having chosen (4.16) as the best model, we compare the exceedance probabilities (EPs)

for a 10% threshold between RDT and PCR. Using each of the two diagnostics, we then

identify malaria hotspots, as the sets of locations such that their EP is at least 90%.

Figure 4.15 of Web Appendix B shows that PCR identifies a considerably larger hotspot

in the north east of the study area than does RDT, and a smaller hotspot in the south

west that is undetected by RDT. These results are consistent with the main findings of

Mogeni et al. (2017).

4.8 Conclusions and extensions

We have developed a flexible geostatistical framework to model reported disease counts

from multiple diagnostics and have distinguished two main classes of problems: (1)

prediction of prevalence as defined by a gold-standard diagnostic using data obtained

from a more feasible low-cost, but potentially biased, alternative; (2) joint prediction

of prevalences as defined by two diagnostic tests. As the burden of disease declines

in endemic regions, the use of multiple transmission metrics and diagnostics becomes

necessary in order to better inform and adapt control strategies. It is thus important to

develop suitable methods of inference that allow the borrowing of strength of information

across multiple diagnostics. As our study has shown, the main benefit of this approach

is a reduction in the uncertainty associated with the predictive inferences on disease risk.

The proposed model validation procedures can be used to identify parsimonious geosta-

tistical models that can reliably capture the residual spatial variation of the data. Our
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PCR - Predictions (joint mod.) PCR - Predictions (separate mod.)

RDT - Predictions (joint mod.) RDT - Predictions (separate mod.)

PCR - Std. errors (joint mod.) PCR - Std. errors (separate mod.)

RDT - Std. errors (joint mod.) RDT - Std. errors (separate mod.)

Figure 4.3: Point predictions (first and second rows) and standard errors (third and
fourth rows) of P. falciparum prevalence for five-year-old children under the joint geo-
statistical model in (4.16) (left panels) and two separate geostatistical models (right

panels) for RDT and PCR prevalence.



Chapter 4. A Geostatistical Framework for Combining Spatially Referenced Disease
Prevalence Data from Multiple Diagnostics 139

emphasis was on checking the validity of the specific modelling assumptions made on

the spatial structure of the random effects rather than be focused exclusively on predic-

tive performance. This is especially important when predictive probabilities are used to

convey uncertainty about the exceedance, or not, of policy-relevant thresholds.

Our application to Loiasis mapping has shown the importance of acknowledging the

existence of residual spatial variation specific to each diagnostic test. Through a simu-

lation study, we have also shown that ignoring this source of extra-Binomial variation

can lead to unreliably narrow prediction intervals for prevalence, with actual coverages

falling well below their nominal level.

The second application on malaria mapping has highlighted the benefits of a joint anal-

ysis of data from two diagnostic tests when both are of scientific interest. A joint model

can yield estimates of prevalence with smaller standard errors than estimates obtained

from two separate geostatistical models.

Isotropic stationary exponential correlation functions have been used throughout the

paper to model spatial dependence. An alternative and more flexible option would be

to use the Matérn (1986) family of correlation functions which has expression

1

2κ−1Γ(κ)

(
u

φ

)κ
Kκ
(
u

φ

)
, (4.17)

where φ is the scale of the spatial correlation, κ is the shape parameter that determines

the differentiability of the Gaussian process and Kκ(·) is the modified Bessel function

of the second kind of order κ > 0. The exponential correlation function is recovered by

setting κ = 1/2. However, estimating κ reliably requires a significantly larger amount

of data than that available in both applications. As shown by ?, φ and κ cannot be

consistently estimated under in-fill asymptotics, and in practice this translates into κ

often being poorly identified. In the context of counts data this issue is likely to be

exacerbated and, for these reasons, in our applications, we have made the pragmatic

choice of fixing κ to 0.5.
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In the application of Section 4.6, we computed exceedance probabilities (EPs) by plugging-

in the MCML estimates of the model parameters. To investigate how parameter un-

certainty may affect the resulting EPs, we also applied a bootstrap approach, which is

detailed in Section 3.2.1 of ?. In brief, using a Gaussian approximation to the distri-

bution of the maximum likelihood estimator (MLE), 10,000 samples were drawn for the

vector of the unknown model parameters and predictive samples of prevalence were then

obtained for each simulated MLE sample. We then compared the resulting EPs which

also incorporate the uncertainty of the MLE with those of Section 4.6. We found no tan-

gible difference (Figure 4.11) for the EPs from both Model 1 and Model 2. This can be

explained by the fact that the uncertainty in the spatial predictions is largely dominated

by the stochastic variation induced by the random effects model, as also evidenced in ?.

Although we have only considered the case of two diagnostic tests throughout the paper,

our methodology can be easily extended to more than two. However, the nature of the

extension will be dependent on the specific context and scientific goal. For example,

a natural extension of the models of Section 4.5.1 would be to use multiple biased

diagnostic tools (for k = 1, . . . ,K − 1) to better predict a gold-standard (k = K).

In this case, the cross-correlation between the outcomes of the biased diagnostic tests

could be modelled using the symmetric structure of the model in Section 4.5.2, while

preserving an asymmetric form for the linear predictor of the gold-standard. Formally,

this is expressed as





fk{pjk(xi)} = d>ijkβk + νk [Sk(xi) + T (xi)] + Zik, k = 1, . . . ,K − 1

fK{pjK(xi)} = d>ijKβK + SK(xi) + ZiK +
K−1∑
k=1

αkfk{pj(xi)}
. (4.18)

However, we would be wary of attempting to fit this, or other comparably complex

models without an initial exploratory analysis that might help to understand the extent

of the cross-correlations between the outcomes of different diagnostics, with a view to

reducing the dimensionality of the model.
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Web-based Supplementary Materials for “A Geostatistical

Framework for Combining Spatially Reference Prevalence

Data from Multiple Diagnostics”

Web Appendix A: Parameter estimation and spatial prediction

As in Section 4.5, we use the same notation of the main manuscript and first re-write

the models of Section 4.5.1 and 4.5.2, in the following general form

fk{pjk(xi)} = µijk +Wk(xi), (4.19)

where µijk is the mean component expressed as a regression on the available covari-

ates. In the above equation, if we set W1(xi) = S1(x) + Zi1 and W2(xi) = S2(xi) +

Zi2 +α{f1(xi)}, then (4.10) reduces to the asymmetric model (5); if, instead, Wk(xi) =

νk
(
Sk(xi) + T (xi)

)
+ Zik, we recover the symmetric model (6).

We note that the components of Wk(xi), that is, Sk(xi), T (xi) and Zik are mutually

independent.

Letwk = {Wk(xi); i = 1, . . . , N} be the vector containing the random effects at location-

level for the k-th diagnostic, and w = (w1,w2).

In the case of model (5) of Section 4.1, we have that the covariance matrix for w is

Σw =




σ2
1[RS1 + (τ2

1 /σ
2
1)IN ] ασ2

1RS1

ασ2
1RS1 σ2

2[RS2 + (τ2
2 /σ

2
2)IN ]



, (4.20)

where IN is anN byN identity matrix and [RSk
]ij = Corr {Sk(xi), Sk(xj)} = exp{−‖xi−

xj‖/φk}, k = 1, 2. In the model of Section 4.2, instead, we have

Σw =




ν2
1 [σ2

1RS1 +RT ] + τ2
1 IN σ1σ2RT

σ1σ2RT ν2
2 [σ2

2RS2 +RT ] + τ2
2 IN



, (4.21)
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where [RT ]ij = Corr {T (xi), T (xj)} = exp{−‖xi − xj‖/φT }.

The likelihood function for θ, the vector of the model parameters in either of the two

models, is

L(θ) =

∫
h(y|w)h(w)dw, (4.22)

where h(·) denotes “the distribution of ·”. More specifically, we have

h(y|w) =
2∏

k=1

N∏

i=1

ni∏

j=1

h(yijk|wijk) (4.23)

with h(yijk|wijk) = pjk(xi)
yijk(1−pjk(xi))1−yijk , and h(w) is the density of a multivariate

Gaussian distribution with mean 0 and covariance Σw. Equation (4.22) can be written

as

L(θ) =

∫
h(y|w)h(w)

h0(y|w)h0(w)
h0(y,w)dw (4.24)

∝
∫

h(y|w)h(w)

h0(y|w)h0(w)
h0(w|y)dw

= Eh0(w|y)

[ h(y|w)h(w)

h0(y|w)h0(w)

]
,

where Eh0(w|y)[·] is the expectation with respect to h0(w|y). In (4.24), h0(w) and

h0(y|w) have the same distribution as h(w) and h(y|w), respectively, but with param-

eter vector θ0, our “best guess” of the true value for θ. We then approximate (4.24)

as

L(θ) ≈ LB(θ) =
1

B

B∑

b=1

h(w(b))h(y|w(b))

h0(w(b))h0(y|w(b))
, (4.25)

where w(b) are B samples simulated from h0(w|y). To simulate samples w(b) we use a

Metropolis-adjusted Langevin MCMC algorithm (Giorgi and Diggle, 2017), to update

the standardized vector of random effects w̃ = Σ̂−1/2(w − ŵ), where ŵ and Σ̂ are

respectively the mode and the inverse of the negative Hessian of f0(w|y) at ŵ.
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To improve our approximation of the likelihood function, we re-iterate this procedure

by setting θ0 to θ̂ until convergence. This method of estimation converges under some

regularity conditions (Christensen, 2004, ?, ?, ?).

We now consider the problem of predicting prevalence for the k-th diagnostic, pk(x),

at a set of q unobserved locations x∗1, . . . , x
∗
q . Let w∗k = (Wk(x

∗
1), . . .W (x∗q)) and w∗ =

(w∗1,w
∗
2) . We first simulate B samples w(b) from h(w|y) as previously described by

plugging in the MCML estimates of θ. We then simulate B samples w∗(b) from the

conditional distribution ofw∗|w = w(b) for b = 1, . . . , B. This is a multivariate Gaussian

distribution with mean

C>Σ−1
w w(b)

and covariance matrix

Σw∗ −C>ΣwC,

where Σw∗ is the covariance matrix of w∗ and C is the cross-covariance matrix between

w and w∗.

Using the resultingB samplesw∗(b), we then obtain predictive samples for p∗k = {pk(x∗i ); i =

1, . . . , q} as

p∗k,(b) = f−1
k {D∗β +w∗k,(b)}

where D∗ is a matrices of covariates at the unobserved prediction locations.

We summarise our predictive inferences on pk by averaging and computing the standard

errors from samples p∗k,(b). We also compute exceedance probabilities for a threshold l

as

1

B

B∑

b=1

I(pk,(b)(x
∗
i ) > l), i = 1, . . . , q

where I(pk,(b)(x
∗
i ) > l) is a indicator function taking value 1 if pk,(b)(x

∗
i ) > l and 0

otherwise.
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Web Appendix B: Additional figures for the application problems

N

0 200 400
km

Figure 4.4: Map of the four sites (red polygons) of the Loa loa study, showing the
sampled villages (black dots).
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Figure 4.5: Map of the study site (red polygon) of the malariometric study in the
highlands of Western Kenya, showing the sampled household locations (black dots).
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Figure 4.6: Scatter plots showing (a) the empirical miscroscopy prevalence against the
empirical RAPLOA prevalence and (b) the same plot on the logit scale. The solid lines
correspond to the ordinary least square estimate for a regression of the logit-transformed

miscroscopy prevalence on the logit-transformed RAPLOA prevalence.
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Figure 4.7: The top panels are scatter plots of the Prearson’s residual against the
fitted prevlance for RAPLOA (a) and Microscopy (b). The bottom figure (c) shows
a plot of ŝ{p̂1(xi)} against logit{p̂1(xi)}, where s{·} is a cubic spline with knots at
the quantiles 0.25, 0.50 and 0.75 based on the empirical RAPLOA prevalence. The

correlation coefficient between ŝ{p̂1(xi)} and logit{p̂1(xi)} is about 0.92.
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Figure 4.8: Scatter plots of the logit-transformed Loa loa prevalence against elevation
in meters. The solid lines correspond to piecewise linear splines with knots at 750 and

1015 meters.

(a) (b)

Figure 4.9: Empirical variogram (solid line) as defined by Equation (4.11) of the main
manuscript for microscopy and RAPLOA prevalence. The shaded area is obtained using

the algorithm of Section 4.5.3
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Figure 4.10: Empirical cross-variogram (solid line) as defined by Equation (4.12) of
the main manuscript between microscopy and RAPLOA prevalence. The shaded area

is obtained using the algorithm of Section 4.5.3
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Prevalence (Model 1) Exceedance probs. (Model 1)

Prevalence (Model 2) Exceedance probs. (Model 2)

Difference in prevalence Difference in exceedance probs.

Figure 4.11: Predictive probabilities for the exceedance of a 20% prevalence threshold,
for Model 1 (top panel) and Model 2 (middle panel) of Section 4.6. The bottom panel
show the difference between the surfaces from Model 2 and Model 1. In each map,
parameter uncertainty has been incorporated by averaging over the distribution of the
maximum likelihood estimator, which we approximated using a multivariate Guassian

distribution.
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Figure 4.12: Scatter plots the Pearson’s residuals against the fitted prevalence for
RDT (a) and PCR (b).

(a) (b)

Figure 4.13: Empirical variogram (solid line) as defined by equation (11) of the main
manuscript for RDT and PCR prevalence. The shaded area is obtained using the

algorithm of Section 4.5.3
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Figure 4.14: Empirical cross-variogram (solid line) as defined by equation (12) of
the main manuscript between RDT and PCR prevalence. The shaded area is obtained

using the algorithm of Section 4.5.3

PCR - Exeedance probs. RDT - Exeedance probs.

Figure 4.15: Exceedance probabilities for a threshold of 10% prevalence based on
PCR (left panel) and RDT (right panel). The areas encompassed by solid contours

include locations with an exceedance probability of no less than 90%.
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Table 4.1: Monte Carlo maximum likelihood estimates and associated 95% confidence
intervals for the fitted Model 1 and Model 2 to the Loa loa data; see Section 4.6 for more

details.

Parameter Model 1 Model 2

β1,0 -0.791 -0.763

(-1.984, 0.402) (-1.963, 0.437)

β1,1 × 103 0.515 0.588

(-0.977, 2.008) (-0.922, 2.098)

β1,2 × 103 -3.529 -3.412

(-7.314, 0.255) (-7.155 , 0.331)

β1,3 × 103 -0.110 -0.059

(-1.531, 1.312) (-1.501 , 1.382)

β2,0 -1.762 -1.736

(-2.075, -1.449) (-2.244, -1.229)

β2,1 × 103 0.208 0.126

(-0.386, 0.802) (-0.799, 1.050)

β2,2 × 103 -0.223 -0.039

(-2.023, 1.576) (-2.944 , 2.865)

β2,3 × 103 -0.591 -0.612

(-1.666, 0.485) (-2.429, 1.205)

σ2
1 1.581 1.617

(0.669, 3.738) (0.679, 3.851)

σ2
2 — 0.216

(0.111, 0.419)

φ1 182.037 187.388

(64.657, 512.512) (65.171, 538.807)

φ2 — 23.686

(6.150, 91.220)

τ2
1 0.205 0.324

(0.081, 0.521) (0.052, 6.229)

τ2
2 0.324 0.104

(0.055, 5.873) (0.018, 5.797)

α 1.005 1.017

(0.902, 1.107) (0.939, 1.095)
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Table 4.2: Results of the simulation study including the 95% coverage probability
(CP), the root-mean-square-error (RMSE), the 95% predictive interval length (PIL)
averaged over the 20 unobserved locations. For more details, see the main text in

Section 4.6.2.

CP RMSE PIL

Model 1 0.811 0.134 0.325

Model 2 0.948 0.123 0.376

Table 4.3: Monte Carlo maximum likelihood estimates and associated 95% con-
fidence intervals for the model in (4.16) fitted to the malaria data.

Parameter RDT (k = 1) PCR (k = 2)

βk,0 -6.186 -4.373

(-7.234, -5.138) (-17.008, 8.261)

βk,1 -0.003 0.251

(-0.415, 0.395) (0.009, 0.494)

βk,2 0.261 0.220

(0.070, 0.453) (0.095, 0.344)

βk,3 -0.059 -0.020

(-0.081, -0.037) (-0.028, -0.012)

ν2
k 0.230 0.081

(0.145, 0.364) (0.052, 0.126)

φT 11.581

(10.618, 12.63)
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Chapter 5

Conclusion and Future Research

5.1 Achievement of the objectives of the thesis

This thesis aimed to achieve three sets of objectives, each of which was investigated in

a chapter of the thesis.

The first set of objectives, investigated in Paper 2 (Chapter 2), was oriented towards un-

derstanding and comparing the spatial distributions of Plasmodium falciparum parasite

prevalence (Pf PR) and its entomological inoculation rates (Pf EIR) in the study region

in Malawi, Africa. To achieve this objective, we posed the following three question:

First, what are the spatio-temporal distributions of the Pf PR and Pf EIR in the study

region? Second, how do the spatio-temporal patterns of Pf PR and Pf EIR compare?

Third, What functional relationship exists between Pf PR and Pf EIR, and what policy

relevant features of the malaria epidemiology in the study region does this relationship

highlight?

To answer the first question, we developed geostatistical models for the P. falciparum

human biting Pf HBR and its sporozoite rates Pf SR for the two species of mosquitoes

known to transmit the parasite and also for Pf PR in the study region. Using these

models, we mapped malaria transmission intensity as measured by (Pf EIR), and also

Pf PR. We then developed a number of mathematical models to study the relationship

159
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between Pf EIR and Pf PR. We concluded that the relationship between the two quan-

tities was best described as follows: the logit of Pf EIR was linearly related to Pf PR,

which translates an initial rapid rise in Pf PR with increasing Pf EIR, followed by a

levelling off.

To answer the second question, we further mapped hot-spot of Pf EIR and Pff PR by

mapping the predictive probabilities that these quantities exceeded predefined thresh-

olds. We then compared the patterns of hotspots of these quantities in space and time.

We found that the spatio-temporal patterns of Pf PR and Pf EIR we similar and their

hot-spots mainly overlapped, but there were hot-spots that were unique to each of these

two malaria risk measures.

The second set of objectives, tackled in Paper 2 (Chapter 3), was to investigate the

association between malaria and child growth in Africa. We posed three research ques-

tions to explore this objective. First, what is the association between malaria and linear

growth in children 0-5 years in sub-Saharan Africa? Second, what factors modulate the

association between malaria and growth in children 0-5 years? Third, what is the spatial

distribution of stunted growth in the study population?

We used Demographic and Health Survey (DHS) data from different countries and years

to develop a linear geostatistical model for height-for-age z-scores (HAZs) as a function

of malaria. We found a mixture of negative, positive and no associations, as has been

reported in the literature before our study. We then investigated several factors that

might modulate the association between malaria and child-growth and found that arable

land (an indication of agricultural activities) significantly explained the differences in

the association between malaria and child growth in different countries and years. In

particular, we found malaria to be less detrimental to child growth when the quantity of

arable land was high. Finally, using the predictive probabilities the HAZ is less than -2,

we mapped the risk of stunted growth for each of the 20 datasets studied in this paper.

The third set of objectives aimed to develop geostatistical methods that allow for the

joint analysis of disease prevalence data that have been obtained using multiple diagnos-

tics. This objective was rephrased as two question. The first question was about how we

can predict disease prevalence as defined by a gold-standard diagnostic in geographical
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regions where data is available only for a low-cost, possibly biased alternative test? The

second question was how we can make more precisely predictions of disease prevalence as

defined by each of several complementary diagnostics by borrowing information across

the others.

In Chapter 4, we developed a geostatistical framework to combine disease prevalence

data obtained through multiple diagnostics. We developed an (asymmetric) model that

explores the calibrations relationship between two diagnostics in order to predict preva-

lence for a gold-standard diagnostic using low-cost and potentially biased alternative

tests. We then developed a (symmetric) model that explores the cross-correlation be-

tween two diagnostics in order to carry out joint prediction of prevalence as defined

by each of multiple diagnostics. We then applied the methodology to two challenging

global public health problems: the symmetric modelling approach to a malaria mapping

problem in the highlands of Western Kenya, and the asymmetric modelling approach to

a Loa loa mapping problem in Western and Eastern Africa.

5.2 Originality and contribution to knowledge

The originality and contributions of this thesis can be classified into three areas namely,

the questions which we posed, the methods we used to investigate the question, and the

findings we present.

The originality of Chapter 2 stems from the questions we pose, which to the best of

our knowledge, until this work, had not been investigated. The possible reason why

the questions had not been investigated is that the nature of data needed to answer

such questions were non-existent. Our data therefore allowed us to investigate original

questions such as how do spatio-temporal patterns of Pf EIR compare to Pf PR, do

Pf EIR and Pf PR lead to the identification of the same hot-spots, Does Pf EIR have

a lagged effect on Pf PR, Does the Pf EIR-Pf PR relationship vary across demographic

groups that experience a different exposure to malaria, e.g. children between 6 and 60

months and women of reproductive age.
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We showed in our results that Pf EIR and Pf PR show similar spatio-temporal patterns

with a lagged effect of a month of Pf EIR on Pf PR. We further showed that hot spots

of malaria risk as defined by Pf EIR, and hot-spots of malaria risk as defined by Pf PR

coincide during the peak transmission season but not during the through of transmission.

We found a logit-linear model may be the best model that describes the Pf EIR-Pf PR

relationship. We showed that Pf PR increased even when Pf EIR was not detectable.

Moreover, we showed that the Pf EIR-Pf PR relationship tends to differ between women

and children. These findings had not yet been reported in the literature.

Paper 2 (Chapter 3), to the best of our knowledge, is the first paper to investigate

the association between malaria and child-growth in a geostatistical framework. It also

presents the first meta-analysis investigating differences in the effect of malaria on child-

growth in different geographic regions and times. In this paper, we also proposed novel

geostatistical models that can be used, in a spatial-longitudinal framework, to investigate

the effect of malaria of growth.

In Paper 2, we also found that the association between malaria and growth could be

modulated by the quantity of arable land in the country of survey in the year of survey,

with malaria having a less detrimental/negative effect on growth when the quantity of

arable land is high. This paper is the first study to present this finding. Furthermore, we

showed that severe growth faltering during the first two years of life means less catching

up of growth in later life, on average. Our study is the first paper to present this finding

too, to the best of our knowledge.

The motivation of Paper 3 (Chapter 4) was the need for geostatistical methods that

would allow for the joint analysis of disease prevalence data obtained from multiple

diagnostics. Geostatistical data from multiple diagnostics are becoming increasingly

available but methods to deal with such data were lacking. We therefore developed two

novel models, one that explores and uses a calibration relationship between data from a

gold standard diagnostic and a alternative one to predict prevalence of the gold standard

and another that can be used to more precisely map disease prevalence as defined by each

of several complementary diagnostics by borrowing information across the others. When

we applied the novel models to real data, we found that combining data from multiple
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diagnostics in a geostatistical analysis can lead to more precise spatial predictions than

separate analyses. We also found that prevalence data from different diagnostics can

have different spatial correlation structures, in which case a joint geostatistcal analysis

should account for this difference in order to make reliable predictive inferences. These

findings had not been reported in the literature.

5.3 The common thread of the thesis

The overall argument of this thesis is that our novel geostatistical methods can enable

efficient identification of areas of high disease risk and the factors associated with the

risk of diseases. One of the toughest global health challenges is undoubtedly malaria.

The disease has persisted despite resilient and consistent efforts to control it. In each

of the three papers that make up the core of the thesis, we developed and applied

statistical methods relevant to the geospatial analysis of studies aimed at improving

our understanding of the social and environmental factors affecting the spatial and/or

temporal variation in malaria. Each model we developed built-up on the Model based

geostatistical framework of Diggle and Ribeiro (2007). Paper 1 dwelt entirely on malaria

whereas in Papers 2 and 3, we studied two other global health problems namely, child

growth and Loa loa respectively.

5.4 Limitations of the thesis

A major improvement made by Paper 1, as compared to two previous studies (??) of

the association between Pf EIR and Pf PR is that we used data that had been collected

in the same geographic region over a period of 38 months. Previous studies had used

data from different geographical locations in different parts of the African continent.

However, malaria transmission in the study region during the study was generally low,

which generally makes entomological indices noisy. Another limitation of Paper 1 is that

we did not adjust for the sensitivity and specificity of the malaria diagnostic RDT used.

This is because such data were not available. However, we show how we could have

accounted for them if such data were available.
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The limitation of the Paper 2 is that the malaria data used were estimates of malaria

incidence from a spatio-temporal model rather than individual malaria episodes. More-

over, the uncertainty in the estimates were not available. In paper 2, we showed ways we

could have accounted for the uncertainty in the malaria estimates if they were available

as predictive samples of malaria incidence or summary statistics from the predictive

distribution of malaria incidence. We then proposed novel models that could be used

if individual malaria episodes were available, and if the data were available as spatial

longitudinal data.

We developed a applied a geostatistical framework for combining data from multiple

diagnostics in Paper 3. Each of our two applications problems involved data from two

diagnostics. We further proposed a model for more than two diagnostics. However,

data for the application of this model was not available to demonstrate the model in

a real life application. Another limitation of Paper 3 is that, due to unavailability of

sensitivity and specificity, we could not adjust for the sensitivity and specificity of the

malaria diagnostics RDT and PCD, and of the Loa loa microscopy and RAPLOA used.

5.5 Recommendations and future research

In Paper 1, we found that when malaria transmission has been interrupted, there could

be a residual host of individuals who may still carry the parasite. Based on this finding,

we recommend that (1) monitoring malaria indices needs to continue for a while when

data suggests transmission has been interrupted, (2) vector-host contact interruption

should be coupled with active screening and treatment of infected individuals to be able

to eliminate the disease.

In Paper 1, due to the noise in the mosquitoes data, our analysis considered Pf PR and

Pf PR separately and modelled the relationship between the two using predictive samples

from the model of each outcome. For less noisy data, we can jointly model Pf PR and

Pf PR by embedding the logit-linear relationship in a generalized linear geostatistical
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model framework. A appropriate model for this might be





log(HBR(xi, ti)) = d(xi, ti)
>β1 + f1(ti;α1) + S1(xi) + Zi1 = L1(xi, ti)

log
(

PfSR(xi,ti)
1−PfSR(xi,ti)

)
= d(xi, ti)

>β2 + f2(ti;α2) + S2(xi) + Zi2 = L2(xi, ti)

log
(

PfPR(xi,ti))
1−PfPR(xi,ti)

)
= d(xi, ti)

>β2 + f3(ti;α3) + S3(xi) + Zi3

+δ1L1(xi, ti) + δ2 log{1 + exp[−L2(xi, ti)]},

(5.1)

where all notations have the same meanings as in the original model, and δ1 and δ2 are

parameters to be estimated.

The model given by (5.1) can have two possible advantages: (1) It takes into account

the joint distribution of Pf PR, PfSR and HBR, and might better explain the

textitPfEIR–Pf PR relationship. (2) It allows to borrow information from the entomo-

logical data in order to make better predictions of parasitaemia prevalence. However, a

potential challenge in fitting this model is that it would require a lot of data to achieve

efficient identification of model parameters.

An important finding in Paper 2 was that if growth faltering in the first two years of

life results in severe stunting, then recovery of growth afterwards would difficult. Based

on this finding, undernutrition programs should focus on the first two years of life as

the best opportunity to interrupt growth faltering. We also found that malaria was less

detrimental to child-growth when the quantity of arable land was high. Arable land

indicates land capable of being used for crop production, which indicates that, overall,

better feeding of children is key to reducing malaria’s effect on child-growth. Better

feeding practices that may improve nutritional outcomes are higher meal frequencies,

and more diverse diet (Nti and Lartey, 2007). Consequently, a country would need to

prioritise agriculture to make any meaningful impart on undernutrition nation-wide.

The effects of malaria on other undernutrition indicators such as underweight and wast-

ing were not investigated in our study so as to allow a focused discussion on stunting.

However, these would be interesting to investigate. The models developed in this paper

can be used to study the association between malaria and other nutritional indicators

such as weight-for-age z-scores (WAZs) and weight-for-height z-score (WHZs), which
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when less than -2, respectively indicate underweight and wasting. Wasting and under-

weight can then also be mapped by the predictive probability that they are less than

-2. In a future work to investigate these indicators however, we recommend a spatial

longitudinal study as this will help to not only overcome the limitation of not being able

to account for the uncertainty in malaria estimates, but it will also help to estimate the

effect of malaria on the nutritional outcome during each year of life, and also establish

if any effects/associations found are causal. We have proposed a novel model in Paper

2 to carry out the analysis of such spatial-longitudinal data.

Paper 3 has illustrated the gains of combining disease prevalence data from multiple

diagnostics, viz, the extra gain in precision in prevalence estimates for each diagnostic

and the ability to use a less accurate diagnostics to predict prevalence as defined by a

more accurate one. We therefore recommend that in a situation where a survey needs to

cover a large geographical region but is prevented from doing so by constraint imposed

by the cost of the gold standard diagnostic of the disease in question, a less costly

diagnostic may be used in combination with the more preferred, but costly diagnostic.

The best approach to allocate the different diagnostics to the locations of interest to

yield the most accurate and precise estimates of prevalence however needs investigation.

Should the diagnostics be randomly allocated? Should the gold-standard be used at

specific locations of interest and then the alternative diagnostics at other location? These

questions need further investigation.

Future research following Paper 3 will include extending this framework to spatio-

temporal settings and exploring the connection between different diagnostics using Bayesian

shared models.

In the nutshell, this thesis has extended geostistical methods for disease mapping and

has expand on our understanding of malaria, child-growth and Loa loa.
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Geostatistical modelling of the 
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Abstract 

Background:  Undernutrition among children under 5 years of age continues to be a public health challenge in 
many low- and middle-income countries and can lead to growth stunting. Infectious diseases may also affect child 
growth, however their actual impact on the latter can be difficult to quantify. In this paper, we analyse data from 20 
Demographic and Health Surveys (DHS) conducted in 13 African countries to investigate the relationship between 
malaria and stunting. Our objective is to make inference on the association between malaria incidence during the first 
year of life and height-for-age Z-scores (HAZs).

Methods:  We develop a geostatistical model for HAZs as a function of both measured and unmeasured child-spe-
cific and spatial risk factors. We visualize stunting risk in each of the 20 analysed surveys by mapping the predictive 
probability that HAZ is below − 2. Finally, we carry out a meta-analysis by modelling the estimated effects of malaria 
incidence on HAZ from each DHS as a linear regression on national development indicators from the World Bank.

Results:  A non-spatial univariate linear regression of HAZ on malaria incidence showed a negative association in 18 
out of 20 surveys. However, after adjusting for spatial risk factors and controlling for confounding effects, we found 
a weaker association between HAZ and malaria, with a mix of positive and negative estimates, of which 3 out of 20 
are significantly different from zero at the conventional 5% level. The meta-analysis showed that this variation in the 
estimated effect of malaria incidence on HAZ is significantly associated with the amount of arable land.

Conclusion:  Confounding effects on the association between malaria and stunting vary both by country and over 
time. Geostatistical analysis provides a useful framework that allows to account for unmeasured spatial confounders. 
Establishing whether the association between malaria and stunting is causal would require longitudinal follow-up 
data on individual children.

Keywords:  Child growth, Exceedance probability, Geostatistics, Malaria, Stunting
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Background
Undernutrition underlies 45% of all child deaths among 
children under 5  years [1]. A very low height-for-age, 
usually referred to as stunting, is an important indicator 
that reflects the cumulative effects of undernutrition and 
disease infections [2]. Stunted children are more prone to 
illness and premature death. Stunting among children is 
known to be associated with poor cognitive development 

[3, 4]. Long-term consequences of stunting include lower 
adult economic productivity, higher risks of ill-health 
and, among women with short stature, an increased risk 
of death during delivery [5–8]. Globally, the rate of stunt-
ing in children under 5  years reduced from 32.7% (198 
million) in year 2000 to 23.2% (156 million) in year 2015 
[9]. In Africa however, the rates reduced from 38% in 
2000 to 32% in 2015, representing more limited progress 
than in Asia, Latin America and the Caribbean where 
stunting rates dropped by more than one third over the 
same period [9]. In many low- and middle-income coun-
tries (LMICs), over 50% of 12–23  months old children 
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are stunted [10–12]. In 2014, less than half of all chil-
dren under 5  years lived in LMICs, yet these countries 
accounted for two-thirds of all stunted children globally 
[13]. Although the main risk factor for stunting is inad-
equate nutrition, exposure to infectious diseases may 
also lead to an increase in stunting risk [14, 15]. However, 
there are indirect effects of malaria not fully understood 
[16, 17], and it is unclear if part of the stunting burden 
can be attributed to malaria.

Malaria is still a public health threat, although the 
ongoing global fight against it has resulted in 50% 
decrease in the infection prevalence and 40% decrease 
in the clinical incidence in the endemic region of Africa 
between 2000 and 2015 [18]. In 2015, there were an esti-
mated 214 million malaria cases and 438 thousand deaths 
from malaria worldwide, of which 88% occurred in sub-
Saharan Africa and 70% in children under the age of 5 
years, with 10% of all deaths in children under the age of 
5 years due to malaria [19]. In 2017, similar global esti-
mates were reported: 216 million malaria cases and 445 
thousand malaria deaths, of which 91% occurred in sub-
Saharan Africa, with most of the deaths still occuring 
in children under 5  years [20]. The association between 
malaria and stunting is unclear and still a matter of 
debate, with studies showing contrasting results. For 
example, maternal malaria has been found to impact on 
child growth [21], with infants born to women who expe-
rienced malaria during pregnancy having an increased 
risk of impaired height and weight gain [22–25]. The risk 
of stunting has been found to increase for every malaria 
episode [26]. On the other hand, some studies suggest 
that stunting may modulate susceptibility to malaria, 
especially during the first 2 years of life [27, 28]. Whilst 
some studies suggest that stunted children may be at 
higher risk of developing malaria episodes [29], others 
report that stunting may have a protective effect against 
malaria [30, 31]. In other studies, instead, no association 
is found [32, 33]. More recently, Fink et al. [34] found a 
significant effect of malaria exposure on cognitive devel-
opment and socio-emotional development, but not on 
height, for which they report an estimated effect of about 
3.000 and associated 95% confidence interval (− 11.350, 
4.606).

The height-for-age Z-score (HAZ) measures the devia-
tion from heights based on the World Health Organi-
zation (WHO) growth standards [35, 36] and are 
comparable across ages and gender. Values of HAZ below 
−  2 are used as an indicator of stunted growth. In this 
paper, we analyse data from 20 Demographic and Health 
Surveys (DHS) conducted in Senegal, Mozambique, 
Ghana, Burkina Faso, Zambia, Malawi, Rwanda, Cote 
d’Ivoire, Burundi, Liberia, Namibia, Togo and Tanzania 
to pursue the following objectives: (1) to investigate the 

association between malaria and HAZ by developing a 
geostatistical framework that accounts for both meas-
ured and unmeasured risk factors for stunting; (2) to 
understand how such association varies across the Afri-
can countries considered in this study; (3) to map the risk 
of stunting. We also discuss the limitations of this study 
and provide a detailed description on how the proposed 
modelling framework could be further extended to a lon-
gitudinal setting. To the best of our knowledge, this is the 
first study that investigates the association between the 
geographical distribution of malaria and HAZ using a 
model-based geostatistical approach.

Methods
Data
DHS are nationally representative household surveys that 
are generally repeated every 5  years and provide infor-
mation on a range of health and population indicators, 
including anthropometric information. The DHS meth-
odology is usually based on a stratified two-stage cluster 
design. At the first stage, enumeration areas are drawn 
from census files. At the second stage, for each enumera-
tion area selected, samples of households are drawn from 
an updated list of households to form groups of house-
holds known as sampling clusters. The GPS location of 
the center of each sampling cluster is taken as the cluster 
location. Each child is allocated to a spatially-referenced 
sampling cluster. We analyse data from 20 DHS con-
ducted between 2003 and 2014 [37]. Table  1 shows the 
number of clusters and individuals for each survey. The 
average number of children per cluster varies from one 
survey to another, with the highest value of about 21.7 in 
Burkia Faso in 2003 and the lowest of about 5.7 in Malawi 
in 2010.

The variables used in the analysis are the following.
Child-specific variables Data on a child’s height, age 

and gender, family’s wealth index and mother’s educa-
tion level were obtained from the DHS for all sampled 
children aged less than 5 years. Families’ wealth indices 
are constructed using principal component analysis on 
household’s ownership of television, radio, watch, vehi-
cles and agricultural land, type and number of animals 
owned, bank account, materials used for housing con-
struction, type of water access and sanitation facilities 
[38].

Urban extent indicator We use information on urban 
extents, available as raster data at a spatial resolution of 1 
km by 1 km, from the Global Rural-Urban Mapping Pro-
ject [39]. This variable is a binary indicator that classifies 
each spatial grid cell as urban or rural, based on a combi-
nation of population counts, settlement points, and pres-
ence of night-time lights.
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Estimated malaria incidence rates We use raster data 
on estimated Plasmodium falciparum incidence as 
obtained from a Bayesian spatio-temporal model imple-
mented by the Malaria Atlas Project [18]. The data are 
available at a temporal resolution of 1 year, from 2000 to 
2015, and a spatial resolution of 0.05° × 0.05°. More spe-
cifically, the estimated Plasmodium falciparum malaria 
incidence at pixel-level is the predicted average clini-
cal incidence rate per child per year in the age cohorts 
0–5  years. A clinical malaria episode is an attributable 
febrile episode with a body temperature in excess of 
37.5  °C. Multiple bouts of symptoms occurring within a 
30-day period are counted as a single episode.

Model formulation and spatial prediction
Accounting for spatial effects is crucial in order to deliver 
valid inferences on the regression coefficients [40]. 
Model-based geostatistics allows us to incorporate both 
explained and unexplained (residual) spatial variation 
in HAZ and to predict the risk of stunting throughout a 
geographical area of interest.

Let Yij denote the HAZ for the j th sampled child at the 
cluster location xi. We distinguish between two sources 
of variation in HAZ: between-cluster variation, induced 
by spatially varying risk factors; and within-cluster vari-
ation due to child-specific characteristics. Each of these 
components depends on both measured and unmeasured 

risk factors. In order to account for the latter, we define 
a hierarchical linear model as follows. Let S(xi) denote 
a stationary Gaussian process and Ui represent mutually 
independent zero-mean Gaussian variables with com-
mon variance τ 2. We assume that, conditionally on S(xi) 
and Ui, the Yij are Gaussian variables with means µj(xi) 
and variance ω2, where

In (1), n is the number of cluster locations and mi is the 
number of individuals at cluster location xi. In (1) we 
also distinguish between three types of explanatory vari-
ables: eij, a vector of child-specific explanatory variables, 
including sex, family’s wealth index and mother’s educa-
tion level; d(xi), a spatial indicator variable which takes 
values 1, if location xi is classified as urban and 0 if rural; 
Mij, the estimated malaria incidence at location xi during 
the first year of life of the j-th child. The parameters γ, β 
and δ are the regression parameters associated with each 
of the three types of explanatory variables, whilst f (A) is 
a cubic spline function of age, A, with knots at 12 and 24 
months.

Our objective is to make inference on the parameter 
δ , which quantifies the effect of malaria incidence in the 

(1)

µj(xi) = e⊤ij γ + d(xi)β + δMij

+ f (Aij)+ Ui + S(xi), for i = 1, . . . , n

j = 1, . . . ,mi.

Table 1  Sample size summaries for  the analysed DHS data indicating the country, year of  survey, number of  children, 
number of sampled clusters, and average number of children per cluster

Country Year No. of children No. of clusters Average no. of children per cluster

Senegal 2005 2710 355 7.6

Senegal 2011 3694 384 9.6

Mozambique 2011 9595 609 15.8

Ghana 2003 3010 393 7.7

Ghana 2008 2350 393 6.0

Ghana 2014 2671 410 6.5

Burkina Faso 2003 8581 396 21.7

Burkina Faso 2010 6290 540 11.6

Zambia 2007 5243 317 16.5

Zambia 2014 4635 303 15.3

Malawi 2004 6238 386 16.2

Malawi 2010 4623 811 5.7

Rwanda 2005 3692 455 8.1

Cote d’Ivoire 2007 3305 288 11.5

Burundi 2010 3449 376 9.2

Liberia 2007 4197 270 15.5

Liberia 2013 3206 319 10.1

Namibia 2007 3669 484 7.6

Togo 2014 3209 328 9.8

Tanzania 2010 6581 453 14.5
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first year of life on HAZ. Our assumption is that malaria 
has a lagged effect on height and, therefore, we use the 
incidence of malaria during the first year of life to deter-
mine the strength of this association. In the remainder of 
the paper, we shall refer to the parameter δ and the varia-
ble Mij in (1) as the effect of malaria on HAZ and malaria 
incidence, respectively.

In (1), the unstructured random effect Ui conflates two 
sources of residual variation: spatial variation on a scale 
smaller than the minimum observed distance between 
clusters; and unexplained unstructured variation at clus-
ter level.

The spatially structured residuals S(x) are modelled as 
a zero-mean stationary and isotropic Gaussian process 
with variance σ 2 and exponential correlation function 
given by

where u is the Euclidean distance between any two loca-
tions. The scale parameter φ regulates the rate at which 
the spatial correlation decays with increasing distance u.

We map the risk of stunting for male children, 24 
months old, using the predictive probability that HAZ 
is below − 2 over a 0.05° × 0.05° grid. We integrate out 
the effect of maternal education and wealth index using 
the following Monte Carlo approach. We generate 10,000 
samples from the joint distribution of these two variables 
and, conditionally on these, we then simulate values of 
HAZ. The stunting risk is then computed by taking the 
proportion of simulated HAZ samples that are below − 2.

More details on the computational implementation and 
on the mapping of stunting risk are given in Additional 
file 1.

Model validation
To check the validity of the adopted spatial correlation 
structure for the data, we carry out the following Monte 
Carlo procedure. We simulate 1000 empirical variograms 
under the fitted model and then use these to compute 95% 
confidence intervals at any given spatial distance of the var-
iogram. If the empirical variogram obtained from the data 
falls within the 95% tolerance bandwidth, we conclude that 
the adopted spatial correlation function is compatible with 
the data. If, instead, that falls outside the 95% tolerance 
bandwidth, then the data show evidence against the fitted 
model. More details are provided in Additional file 1.

Understanding the variation in the effect of malaria 
on HAZ
We carry out a meta-analysis in order to understand 
the variation in the estimates of the parameter of inter-
est δ, from all the 20 DHS. Let δ̂k and sk denote the maxi-
mum likelihood estimate of δ and its standard error, 

(2)ρ(u;φ) = exp(−u/φ),

respectively, for k = 1, . . . , 20. We then model δ̂k using a 
weighted least squares fit to the regression model

where vk is a World Bank African development indicator 
[41] associated with the country and year of the k-th sur-
vey, and the Zk are independent Gaussian variables with 
mean zero and variance s2k. We select eleven development 
indicators belonging to the categories of “Agriculture 
and rural development”, “Climate change”, “Economy and 
growth”, “Education” and “Environment”. A full list of the 
indicators is given in Additional file 2.

Results
Non‑spatial analysis
Figure 1 shows box-plots of HAZ by categories of family’s 
wealth indices and mother’s education level for all sur-
veys combined. We assign integer scores 1–5 to the five 
levels of family wealth from very poor to very wealthy; 
and scores 1–6 to the six levels of mothers education, 
from no education to higher education. As expected, the 
box-plots show that the median HAZ tends to increase 
with increasing levels of wealth and education.

We then investigate the marginal association between 
malaria incidence and HAZ. Figure 2 shows the observed 
HAZ against malaria incidence, where the solid line is 
obtained from the least squares fit of a univariate linear 
model. The dashed horizontal lines indicate HAZ levels of 
2, 0 and −  2. The dashed vertical lines separate M into 
terciles. We see that Malaria incidence takes a maximum 
value of about 1.5 for all surveys, except Namibia in 2007, 
where this is about 0.7. We also note that for the surveys 

(3)δ̂k = α0 + α1vk + Zk ,
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Fig. 2  Scatterplots of height-for-age Z-scores (HAZ) against expected malaria incidence in the first year of life (M). The solid line shows the univari-
ate linear model with malaria incidence as the predictor of HAZ. The dashed horizontal lines show HAZ levels of 2, 0 and − 2, whilst the dashed 
horizontal lines separates M into terciles
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in Senegal in 2005, Mozambique in 2011, Ghana in 2003–
2008–2014 and Zambia in 2007, the variation in M is 
evenly distributed, whereas it is more skewed for Senegal 
in 2011, Burkina Faso in 2003–2010, Malawi in 2004 and 
Namibia in 2007. Except for Rwanda in 2005, Zambia in 
2014 and Malawi in 2010, in all the remaining 17 surveys 
we observe that HAZ decreases with increasing values 
of M. Figure 3 shows the least squares estimates and the 
corresponding 95% confidence intervals. The estimated 
regression coefficients are negative in 18 surveys, of which 
16 are significantly different from zero at 5% level.

Figure 4 shows HAZ curves as functions of age, within 
each of the terciles groups of M, as indicated in Fig.  2. 
The fitted curves reflect the typical age-related pat-
tern of HAZ in LMICs: after a decrease in HAZ during 
the first 2 years of life, child-growth slowly recovers but 
never reaches zero. This phenomenon, known as “growth 
faltering”, has been widely observed; see, for example, 
[11, 12, 42, 43]. We also observe that in Burkina Faso in 
2003, Ghana in 2008, Malawi in 2004–2010 and Rwanda 
in 2005, HAZ curves by terciles groups of M are partly 
overlapping, whereas in the remaining 15 surveys, chil-
dren in the first tercile of M have the highest levels of 
HAZ and children in the third tercile with the lowest 
levels of HAZ, irrespective of age. We also notice that 
in Burkina Faso in 2003, Burundi in 2010, Rwanda in 
2005, Cote d’Ivoire in 2007 and Malawi in 2004, where 
median HAZ curves fall below the − 2 threshold at about 
24 months of age, the curves still remain below the − 2 
threshold in later years.

Geostatistical analysis
Figure  5 shows estimates, with associated 95% confi-
dence intervals, of the malaria parameter δ from the fit-
ted geostatistical model in (1). The point estimate of δ 
is negative in 7 surveys with Ghana in 2014 and Liberia 
in 2007 being significant at the 5% level. Positive values 

are estimated for the remaining 13 surveys, with only 
Namibia in 2007 being significant. We note that, after 
accounting for residual spatial variation and measured 
potential confounders, the magnitude of the association 
between malaria incidence and HAZs is smaller than for 
the marginal association shown in Fig. 3.

Point estimates of the covariance parameters of (1) 
with associated standard errors are reported in Addi-
tional file  3. We see that, for each survey, the variance 
corresponding to the child-specific variation is consist-
ently larger than both the variance of the spatial process 
and the nugget variance.

The results from the model validation (Additional 
file 4) show that the fitted geostatistical models are com-
patible with the data for each of the 20 surveys analysed. 
We also point out that, although the variograms based on 
the residuals from the standard linear regression are rela-
tively flat, we still find evidence of non-negligible residual 
spatial variation in HAZ as indicated by the interval esti-
mates of the parameter of the scale of the spatial correla-
tion in Additional file 3.

Mapping of stunting risk
In Fig.  6, we report the predictive maps of stunting risk 
for Ghana, Burkina Faso and Mozambique for boys, aged 
24 months. In Ghana in 2003–2008–2014, the maps show a 
remarkable decrease in stunting over time, that is observed 
almost everywhere within the country. Similarly, in Burkina 
Faso, we observe a decrease in stunting risk from 2003 to 
2010. Mozambique in 2011 shows high spatial heterogene-
ity in stunting risk, with values ranging from 0.1 to 0.9. Risk 
maps for the remaining surveys are shown in Additional 
file  5. In these maps, we observe overall higher levels of 
stunting risk in Burundi in 2010 and Malawi in 2004, and 
lower levels in Senegal in 2008 and Togo in 2014.

Variation in the effect of malaria on HAZ
The amount of arable land (defined as percentage of land 
under temporary crops, meadows for mowing or for pas-
ture, market or kitchen gardens, and land temporarily fal-
low) in the country and year of survey is the only World 
Bank indicator to be significant at 5% level, with a p-value 
of about 0.013, explaining 26% of the total variation in 
the estimated effects of malaria incidence on HAZ. More 
specifically, we estimate that an increase of 1% in arable 
land leads to a 0.008 increase in the value of the esti-
mated malaria effect, on average. See Additional file 2 for 
more detailed results from the meta analysis.

Discussion
The objective of our study was to model and quantify 
the association between malaria and HAZs in children 
aged less than 5 years. Using DHS data from 20 surveys 
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Fig. 4  Estimated trajectories of height-for-age Z-scores (HAZ) as a function of age, stratified by malaria incidence (M). Each panel shows three 
curves. Each curve is a piecewise cubic spline with knots at 12 and 24 months and corresponds to a tercile group of M. The solid, dotted and 
dashed curves respectively correspond to the first, second and third terciles of M, as indicated in Fig. 2. The horizontal lines are the HAZ levels of 0 
and − 2
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in 13 African countries between 2003 and 2014, we have 
developed a geostatistical framework to model HAZ as 
a function of both child-specific and spatial risk factors. 
As a proxy for malaria exposure, we used estimates of 
malaria incidence in the first year of life from the Malaria 
Atlas Project. A non-spatial univariate linear regression 
showed a negative effect of malaria incidence on HAZs. 
However, after controlling for confounding and residual 
spatial effects, the estimated effect of malaria on HAZ 
was weaker and not significant in 17 out of the 20 surveys 
considered.

One of the main challenges in modelling the asso-
ciation between malaria and HAZ is the need to take 
account of confounding effects. Among these, socio-
economic status has been shown to be one of the most 
important [44–47]. Education is another important fac-
tor that affects both malaria exposure and risk of stunt-
ing [34, 48, 49]. Higher levels of education are associated 
with improved knowledge and practice about the appro-
priate strategies for the prevention and treatment of 
malaria [50], and about healthy practices in breastfeeding 
and child nutrition [51]. Our results are consistent with 
these findings in all of the 20 surveys here analysed.

We observed that in surveys where HAZ curves fall 
below the −  2 threshold in early childhood, the curves 
never really rise above the −  2 threshold in later years. 
This finding suggests that recovery to standard growth 
after 2  years of age may be more difficult when the 
decrease in HAZ in early childhood is severe. This is 
consistent with the findings from [52] who showed that 
recovery from stunting is associated with the severity 
of stunting in early years. Other factors that have been 
found to favour recovery from low HAZ are good nutri-
tion [53] and higher levels of mother’s education [54].

In our analysis, we found a mix of positive and nega-
tive point estimates of the association between malaria 
incidence and HAZ among the different surveys. How-
ever, findings from previous studies have shown contrast-
ing results, with some reporting statistically significant 
negative associations between malaria and stunting [26, 
29, 55, 56], and others reporting positive associations 
[30, 31]. To understand such variation in the magnitude 
and direction of the estimated parameters that quan-
tify the malaria effect, we carried out a meta-analysis 
by considering several indicators of national develop-
ment from the World Bank. Among these, the amount of 
arable land was the only one to show a significant asso-
ciation. Arable land might in fact modulate the associa-
tion between malaria and HAZ, with a larger surface of 
arable land leading to a fall in poverty and malnutrition, 
especially in rural areas [57], but also to a larger number 
of breeding sites for mosquitoes [58]. This suggests that 
geo-political differences among countries should also be 
considered, since the implementation of policies aiming 
to reduce malnutrition can also impact on the epidemi-
ology of malaria. Arable land could be indeed associated 
with agricultural, economic and environmental factors 
that are common to both malaria and stunting [59, 60].

We have quantified stunting risk by mapping the pre-
dictive probability that HAZ is below a threshold of 
− 2. For countries with repeated surveys, our risk maps 
showed reductions over time in the risk of stunting. The 
main factors that might be driving such reductions are 
improvements in health environments through increas-
ing access to safe water and sanitation, improvements 
in the quality of caring practices for children through 
increasing women’s education and promoting gender 
equality, including women’s empowerment; and increase 
in food security by ensuring adequate availability of food 
at the national level and sufficient nutritional quality of 
that food [59, 61, 62]. Our risk maps showed remarkable 
spatial heterogeneity in the risk of stunting, identifying 
geographic areas with high risk that could be considered 
for a more targeted intervention.

It has been widely observed that HAZ undergoes a 
rapid decrease in the first 24 months and an increase 
thereafter [11, 12, 42]. For this reason we used cubic 
splines with knots at 12 and 24 months in order to better 
capture the non-linear trajectory that we observed across 
the 5 years of age.

Limitations of the study
The main limitation of our study is that the informa-
tion available to us on malaria and HAZ is cross-sec-
tional, rather than longitudinal, in nature. This prevents 
us from establishing whether our observed associations 
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95% confidence intervals, obtained from the geostatistical model in 
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Fig. 6  Predicted stunting risk maps for Ghana, Burkina Faso and Mozambique. The colour scale ranges from green to red with red areas being high 
risk areas and green areas being low risk areas
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can be given a causal interpretation. A second limitation 
is that we have no information on the uncertainty asso-
ciated with the estimates of malaria incidence. We have 
assumed the first year of life to be the most important 
in determining the strength of the association between 
malaria and child growth. To investigate whether expo-
sure to malaria in other years of childhood could also 
have an impact on growth would require the fitting of a 
distributed lag-model.

In Additional file 6, we give methodological details on 
how to account for uncertainty in malaria incidence in a 
cross-sectional geostatistical setting.

To assess the cumulative effect of malaria on child-
growth at different developmental stages, we would need 
longitudinal, individual-level data on children’s actual 
malaria status over the first 5 years of life. We would then 
extend our current methodology as follows.

Novel extensions to longitudinal geostatistical data
To simplify the notation and without loss of generality, we 
assume that all the sampled children have identical follow 
up times. Then, let Yijt and Wijt denote the HAZ and num-
ber of malaria episodes for the j-th child at location xi and 
time t, respectively. Also, let S̃(x, t) denote a latent spatio-
temporal Gaussian process. Given S̃(x, t), we model the 
Wijt as a set of mutually independent Poisson variables 
with mean Mijt such that

where ẽijt are child-specific explanatory variables that 
might vary over time. We then assume that Yijt, condition-
ally on Mijt, a spatio-temporal Gaussian process S(x,  t) 
and random effects Uit and Vij, are independent Gaussian 
variables with mean

In (4), Uit is unstructured unexplained variation at loca-
tion xi and time t, Vij is unexplained child-specific varia-
tion and the lagged parameters δt−h, for h = 0, . . . , t = 1, 
represents the effect of malaria incidence during the h-th 
year of life on HAZ. To make the model more parsimoni-
ous, the parameters δt−h can be constrained using a para-
metric specification, i.e. δt−h = g(t − h; θ) where g(·; θ) is 
a known function indexed by the vector of parameters θ.

This modelling framework would allow us to better 
understand the cumulative effect of malaria on HAZ at 
different developmental stages by overcoming the current 
limitation of our study where we assume that δt−h = 0 for 
0 ≤ h ≤ t − 2.

log{Mijt} = ẽ⊤ijt γ̃ + d̃(xi)
⊤β̃ + S̃(xi, t),

(4)

µj(xi, t) = e⊤ijtγ + d(xi, t)β +

t−1∑

h=0

δt−hMij(t−h)

+ f (Aijt)+ Vij + S(xi, t)+ Uit

Conclusion
Geostatistical methods provide a useful framework to 
account for spatially structured confounding effects that 
modulate the association between malaria and HAZ. This 
study also highlights that one of the main challenges in 
modelling this association is that confounding effects 
vary by country, as well as in time. This can change both 
the direction and magnitude of the effect of malaria on 
HAZ, making a generalization on the effect of malaria 
on HAZ almost impossible using only currently avail-
able data. Establishing whether the association between 
malaria and stunting is causal would require longitudinal 
follow-up data on individual children.
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Appendix B

Appendix B: R Code for

statistical analysis using Models

4.14 and 4.15

File README1.TXT

The folder loaloa_application contains R-scripts and example

datasets used for the Loa loa application.

##########

SCRIPTS

##########

There are two R-scripts. The script loa_functions.R contains

R-function which are used in the other script ,

Loaloa_Examples.R. In the script Loaloa_Examples.R,

we demonstrate the main steps of the Loa loa application.

Comments on each step of the analysis can be found

in the Loaloa_Examples.R script.

NB: The script loa_functions.R needs the R packages rgdal ,

geoR , and PrevMap to be installed.

#########

DATASETS

#########

There are five .Rdata files whose description are as follows:

180
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A) The file input_data.RData is a dataframe containing the

following variables.

1. Cordinates of 223 geographical locations , which are

displaced a few kilometres away from the

locations of the origional data. The coordinates

are "web_x" and "web_y", in the web mercator

projection (3857, km)

2. The binomial dinominators of the origional data "n"

3. The surface elevation variable of the locations "elev".

This dataset is an input dataset to simulate prevalence data

under the fitted Model 2 specification

of the asymmetric model.

B) The file LoaloaExampleData.RData is an example data that

can be used for the analyses as if it were the original data.

In addition to the variables described in A) above ,

it has the variables ,

1. "prev.alte" and "y.alte": respectively prevalence

and number of positive tests as defined by the

alternative (possibly baised) diagnostic

2. "prev.gold" and "y.gold": respectively prevalence

and number of positive tests as defined by the

gold standard diagnostic ,

3. "elev_below750", "elev_between750_1015",

"elev_above1015" variables defining the

elevation spline.

C) The file MCML_estimates_asymm_M1.RData and

MCML_estimates_asymm_M.RData are example of MCML

estimates of the Model 1 & 2 respective

specification of the assymtric model.

These were and can be generated using the

script Loaloa_Examples.R.

D) prediction_grid_covariates.RData is an example grid for

spatial predictions. It also contains the values

of elevation at the prediction locations.

File loa functions.R

#####################################################

#####################################################

# Functions for the Loaloa Analyses

#####################################################

#####################################################

get_elev_vars <- function(elev , k1, k2){

elev1 <- (elev <= k1)*elev + (elev > k1)*k1

elev2 <- ((elev > k1) & (elev <= k2))*(elev -k1) +
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(elev > k2)*(k2-k1)

elev3 <- (elev > k2)*(elev -k2)

out <- data.frame(elev)

out[paste("elev_below", k1, sep="")] <- elev1

out[paste("elev_between", k1, "_", k2, sep="")] <- elev2

out[paste("elev_above", k2, sep="")] <- elev3

out$elev <- NULL

return(out)

}

sim_from_asymm_M2 <- function(data){

n <- nrow(data) # Total number of locations

# coordinates of the geolocations

coords <- data[, c("web_x", "web_y")]

units.m <- data$n # No. of individuals tested location

# Parameter values to simulate the data

# betas for the alternative diagnostic

beta.alte <- c(-0.763, 0.588e-3, -3.412e-3, -0.059e-3)

# betas for the gold standard

beta.gold <- c(-1.736, 0.126e-3, -0.039e-3, -0.612e-3)

# Parameter of the linear association between

# f_1(P_1) and f_2(P_2)

alpha <- 1.017

# scale parameter of the spatial process for the

# alternative diagnostic

phi.alte <- 187.388

# relative variance of the nugget effect for the

# gold standard

nu2.alte <- 0.20

# scale parameter of the spatial process for the

# alternative diagnostic

phi.gold <- 23.686

# relative variance of the nugget effect for the

# gold standard

nu2.gold <- 0.483

# variance of the spatial process for the

# alternative diagnostic

sigma2.alte <- 1.617

# variance of the spatial process for the

# gold standard

sigma2.gold <- 0.216

U <- as.matrix(dist(coords ))

covariates <- get_elev_vars(data$elev , 750, 1015)

# Get design matrices and number of parameters

D.alte <- model.matrix (~ elev_below750 + elev_between750_1015 +

elev_above1015, data = covariates)

D.gold <- model.matrix (~ elev_below750 + elev_between750_1015 +

elev_above1015, data = covariates)
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# Simulated alternative diagnostic prevalence

Sigma.alte <- sigma2.alte*exp(-U/phi.alte)

nugg.alte <- sigma2.alte*nu2.alte

diag(Sigma.alte) <- diag(Sigma.alte)+ nugg.alte

S.alte <- t(chol(Sigma.alte ))%*%( rnorm(n))

eta.alte <- as.numeric(D.alte %*% beta.alte) + S.alte

prev.alte <- 1/(1 + exp(- eta.alte))

# Simulated gold standard prevalence

Sigma.gold <- sigma2.gold*exp(-U/phi.gold)

nugg.gold <- sigma2.gold*nu2.gold

diag(Sigma.gold) <- diag(Sigma.gold)+nugg.gold

S.gold <- t(chol(Sigma.gold ))%*%( rnorm(n))

eta.gold <- as.numeric(D.gold %*% beta.gold) +

S.gold + alpha*eta.alte

prev.gold <- 1/(1 + exp(- eta.gold))

# Simulating the two outcome variables

y.alte <- rbinom(n, units.m, prev.alte )

y.gold <- rbinom(n ,units.m, prev.gold )

# Dataframe of the of the simulated data

df.out <- cbind(data , prev.alte , prev.gold , y.alte ,

y.gold , covariates)

return(df.out)

}

fit_asymm_M2 <- function(data){

coords <- data[,c("web_x","web_y")]

set.seed(1234)

n <- nrow(data)

U <- as.matrix(dist(coords ))

units.m <- data$n # number tested at locations

y.alte <- data$y.alte # alternative test outcome

y.gold <- data$y.gold # loa loa outcome

# Design matrices

D.alte <- model.matrix (~ elev_below750 +

elev_between750_1015 + elev_above1015, data = data)

D.gold <- model.matrix (~ elev_below750 +

elev_between750_1015 + elev_above1015, data = data)

# Number of regression parameters for the two outcomes

p.D.alte <- ncol(D.alte)

p.D.gold <- ncol(D.gold)

# Initial values of the model parameters

# betas for the alternative diagnostic
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beta.alte <- c(-0.763, 0.588e-3, -3.412e-3, -0.059e-3)

# betas for the gold standard

beta.gold <- c(-1.736, 0.126e-3, -0.039e-3, -0.612e-3)

# Parameter of the linear association

# between f_1(P_1) and f_2(P_2)

alpha <- 1.017

# scale parameter of the spatial

# process for the alternative diagnostic

phi.alte <- 187.388

# relative variance of the

# nugget effect for the gold standard

nu2.alte <- 0.20

# scale parameter of the s

# patial process for the alternative diagnostic

phi.gold <- 23.686

# relative variance of the

# nugget effect for the gold standard

nu2.gold <- 0.483 # variance of the spatial

# process for the alternative diagnostic

sigma2.alte <- 1.617

# variance of the spatial process

# for the gold standard

sigma2.gold <- 0.216

Sigma.alte <- sigma2.alte*exp(-U/phi.alte)

# covarince matrix wrt altenative diagnostic

diag(Sigma.alte) <- diag(Sigma.alte)+ sigma2.alte*nu2.alte

Sigma.alte.inv <- solve(Sigma.alte)

Sigma.gold <- sigma2.gold*exp(-U/phi.gold)

# covariance matrix wrt gold std

diag(Sigma.gold) <- diag(Sigma.gold)+ sigma2.gold*nu2.gold

Sigma.gold.inv <- solve(Sigma.gold)

n.tot <- 2*n # total number of random effects = 2* nlocations

M <- Matrix(0,n.tot ,n.tot ,sparse=TRUE)

M[1:n,1:n] <- -Sigma.alte.inv

M[(n+1):n.tot ,(n+1):n.tot] <- -Sigma.gold.inv

mu.alte <- as.numeric(D.alte %*% beta.alte)

mu.gold <- as.numeric(D.gold %*% beta.gold)

f <- function(x) log(x/(1-x))

grad.f <- function(x) -1/((x-1)*x)

hess.f <- function(x) (2*x-1)/((x-1)^2*x^2)

ind.alte <- 1:n

ind.gold <- (n+1):n.tot

###################################################

#### SIMULATING FROM THE CONDITIONAL DISTRIBUTION

#### OF THE RANDOM EFFECT GIVEN THE DATA

#################################################

integrand <- function(S) {

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

diff.S.alte <- S.alte -mu.alte
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q.f_S.alte <- t(diff.S.alte )%*% Sigma.alte.inv %*%( diff.S.alte)

diff.S.gold <- S.gold -mu.gold

q.f_S.gold <- t(diff.S.gold )%*% Sigma.gold.inv %*%( diff.S.gold)

q.f_S <- -0.5*as.numeric(q.f_S.alte+q.f_S.gold)

p.alte <- exp(S.alte )/(1+exp(S.alte))

eta.gold <- S.gold+alpha*f(p.alte)

llik <- sum(y.alte*S.alte -units.m*log(1+exp(S.alte )))+

sum(y.gold*eta.gold -units.m*log(1+exp(eta.gold )))

as.numeric(q.f_S+llik)

}

grad.integrand <- function(S) {

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

diff.S.alte <- S.alte -mu.alte

diff.S.gold <- S.gold -mu.gold

p.alte <- exp(S.alte )/(1+exp(S.alte))

der.p.alte <- p.alte/(1+exp(S.alte))

p.gold <- exp(S.gold+alpha*f(p.alte ))/

(1+exp(S.gold+alpha*f(p.alte )))

aux.gold <- y.gold -units.m*p.gold

der.q.f_S <- -c(Sigma.alte.inv%*% diff.S.alte ,

Sigma.gold.inv%*% diff.S.gold)

der.llik <- c(y.alte -units.m*p.alte+

aux.gold*alpha*grad.f(p.alte)*der.p.alte ,

aux.gold)

out <- der.q.f_S+der.llik

return(out)

}

hessian.integrand <- function(S) {

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

p.alte <- exp(S.alte )/(1+exp(S.alte))

der.p.alte <- p.alte/(1+exp(S.alte))

der2.p.alte <- (1-exp(S.alte ))*exp(S.alte )/((1+exp(S.alte ))^3)

p.gold <- exp(S.gold+alpha*f(p.alte ))/

(1+exp(S.gold+alpha*f(p.alte )))

aux.gold <- y.gold -units.m*p.gold

der.aux.gold <- -units.m*exp(S.gold+alpha*f(p.alte ))/

((1+exp(S.gold+alpha*f(p.alte )))^2)

res <- M

diag(res)[ind.alte] <- diag(res)[ind.alte]-

units.m*exp(S.alte )/((1+exp(S.alte ))^2)+

aux.gold*( alpha*(hess.f(p.alte )*(der.p.alte^2)+

grad.f(p.alte)*der2.p.alte ))+

der.aux.gold *(( alpha*grad.f(p.alte)*der.p.alte)^2)

diag(res)[ind.gold] <- diag(res)[ind.gold]+der.aux.gold

diag(res[ind.gold ,ind.alte]) <-

diag(res[ind.alte ,ind.gold]) <-

der.aux.gold*( alpha*grad.f(p.alte)*der.p.alte)

return(res)
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}

S.estim <- nlminb(start=c(mu.alte , mu.gold),

function(x) -as.numeric(integrand(x)),

function(x) -as.numeric(grad.integrand(x)),

function(x) -as.matrix(hessian.integrand(x)),

control=list(trace=1)

)

S.estim$gradient <- grad.integrand(S.estim$par)

S.estim$hessian <- hessian.integrand(S.estim$par)

S.estim$Sigma.tilde <- round(solve(-S.estim$hessian), 9)

S.estim$estimate <- S.estim$par

Sigma.sroot <- t(chol(S.estim$Sigma.tilde ))

A <- solve(Sigma.sroot)

library(Matrix)

Sigma.W.inv <- solve(A%*% bdiag(Sigma.alte ,Sigma.gold )%*%t(A))

mu.W <- as.numeric(A%*%(c(mu.alte ,mu.gold)-S.estim$estimate ))

n.sim <- 12000 # number of simulations

burnin <- 2000 # burnin

thin <- 5 # thinning

n.samples <- (n.sim -burnin )/thin

h <- 1.65/((n.tot)^(1/6))

c1.h <- 0.01

c2.h <- 1e-04

# reparameterization of the model

# rewrite likelihood based on W

cond.dens.W <- function(W,S) {

diff.W <- W-mu.W

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

p.alte <- exp(S.alte )/(1+exp(S.alte))

eta.gold <- S.gold+alpha*f(p.alte)

llik <- sum(y.alte*S.alte -units.m*log(1+exp(S.alte )))+

sum(y.gold*eta.gold -units.m*log(1+exp(eta.gold )))

as.numeric(-0.5*as.numeric(t(diff.W)%*%

Sigma.W.inv%*% diff.W))+ llik

}

# derivetive w.r.t W for the Langevin -Hastings algorithm

lang.grad <- function(W,S) {

diff.W <- W-mu.W
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S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

p.alte <- exp(S.alte )/(1+exp(S.alte))

der.p.alte <- p.alte/(1+exp(S.alte))

p.gold <- exp(S.gold+alpha*f(p.alte ))/

(1+exp(S.gold+alpha*f(p.alte )))

aux.gold <- y.gold -units.m*p.gold

der.llik <- c(y.alte -units.m*p.alte+

aux.gold*alpha*grad.f(p.alte)*der.p.alte ,

aux.gold)

out <- as.numeric(-Sigma.W.inv%*% diff.W+

t(Sigma.sroot )%*% der.llik)

return(out)

}

S.estim$mode <- S.estim$estimate

W.curr <- rep(0,n.tot)

S.curr <- as.numeric(Sigma.sroot %*%W.curr+S.estim$mode)

mean.curr <- as.numeric(W.curr + (h^2/2)*lang.grad(W.curr ,S.curr))

lp.curr <- cond.dens.W(W.curr ,S.curr)

acc <- 0

sim <- matrix(NA ,nrow=n.samples ,ncol=n.tot)

h.vec <- rep(NA,n.sim)

for(i in 1:n.sim) {

W.prop <- mean.curr+h*rnorm(n.tot)

S.prop <- as.numeric(Sigma.sroot %*%W.prop+S.estim$mode)

mean.prop <- as.numeric(W.prop + (h^2/2)*lang.grad(W.prop ,S.prop))

lp.prop <- cond.dens.W(W.prop ,S.prop)

dprop.curr <- -sum((W.prop -mean.curr)^2)/(2*(h^2))

dprop.prop <- -sum((W.curr -mean.prop)^2)/(2*(h^2))

log.prob <- lp.prop+dprop.prop -lp.curr -dprop.curr

if(log(runif(1)) < log.prob) {

acc <- acc+1

W.curr <- W.prop

S.curr <- S.prop

lp.curr <- lp.prop

mean.curr <- mean.prop

}

if( i > burnin & (i-burnin )%% thin==0) {

sim[(i-burnin )/thin ,] <- S.curr

}

h.vec[i] <- h <- max(0,h + c1.h*i^(-c2.h)*(acc/i-0.57))

cat("Iteration",i,"out of",n.sim ,"\r")

flush.console ()

}
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if(TRUE) {

acf.plot <- acf(sim[,1],plot=FALSE)

plot(acf.plot$lag ,acf.plot$acf ,type="l",

xlab="lag",ylab="autocorrelation",

ylim=c(-0.1,1),

main="Autocorrelogram of the simulated samples")

for(i in 2:ncol(sim)) {

acf.plot <- acf(sim[,i],plot=FALSE)

lines(acf.plot$lag ,acf.plot$acf)

}

abline(h=0,lty="dashed",col=2)

}

#######################################

#### APROXIMATING AND MAXIMIZING THE

#### LIKELIHOOD USING THE MCMC SAMPLES

#########################################

log.integrand <- function(S,val) { # Objective function

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

diff.S.alte <- S.alte -val$mu.alte

q.f_S.alte <- t(diff.S.alte )%*% val$R.alte.inv%*%

(diff.S.alte)/val$sigma2.alte

diff.S.gold <- S.gold -val$mu.gold

q.f_S.gold <- t(diff.S.gold )%*% val$R.gold.inv%*%

(diff.S.gold)/val$sigma2.gold

q.f_S <- -0.5*as.numeric(val$l.det.R.alte+val$l.det.R.gold+

n*log(val$sigma2.alte)+n*log(val$sigma2.gold)+

q.f_S.alte+q.f_S.gold)

p.alte <- exp(S.alte )/(1+exp(S.alte))

llik <- sum(y.alte*S.alte -units.m*log(1+exp(S.alte )))+

sum(y.gold*(S.gold+val$alpha*f(p.alte))-units.m*

log(1+exp(S.gold+val$alpha*f(p.alte ))))

as.numeric(q.f_S+llik)

}

compute.log.f <- function(par ,l.det.R.alte=NA ,R.alte.inv=NA ,

l.det.R.gold=NA ,R.gold.inv=NA) {

beta.alte <- par[1:p.D.alte]

beta.gold <- par[(p.D.alte+1):(p.D.alte+p.D.gold)]

phi.alte <- exp(par[p.D.alte+p.D.gold+3])

nu2.alte <- exp(par[p.D.alte+p.D.gold+4])

phi.gold <- exp(par[p.D.alte+p.D.gold+6])

nu2.gold <- exp(par[p.D.alte+p.D.gold+7])

val <- list()

val$mu.alte <- as.numeric(D.alte %*% beta.alte)
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val$mu.gold <- as.numeric(D.gold %*% beta.gold)

val$sigma2.alte <- exp(par[p.D.alte+p.D.gold+2])

val$sigma2.gold <- exp(par[p.D.alte+p.D.gold+5])

val$alpha <- par[p.D.alte+p.D.gold+1]

if(is.na(l.det.R.alte) & is.na(as.numeric(R.alte.inv)[1])) {

R.alte <- exp(-U/phi.alte)

diag(R.alte) <- diag(R.alte) + nu2.alte

R.gold <- exp(-U/phi.gold)

diag(R.gold) <- diag(R.gold) + nu2.gold

val$l.det.R.alte <- determinant(R.alte)$ modulus

val$R.alte.inv <- solve(R.alte)

val$l.det.R.gold <- determinant(R.gold)$ modulus

val$R.gold.inv <- solve(R.gold)

} else {

val$l.det.R.alte <- l.det.R.alte

val$R.alte.inv <- R.alte.inv

val$l.det.R.gold <- l.det.R.gold

val$R.gold.inv <- R.gold.inv

}

sapply(1:n.samples ,function(i) log.integrand(sim[i,],val))

}

# theta0

par0 <- c(beta.alte , beta.gold , alpha ,

log(c(sigma2.alte ,phi.alte ,nu2.alte ,

sigma2.gold ,phi.gold ,nu2.gold )))

rm(beta.alte ,beta.gold ,alpha ,sigma2.alte ,phi.alte ,

nu2.alte ,sigma2.gold ,phi.gold ,nu2.gold)

log.f.tilde <- compute.log.f(par0)

MC.log.lik <- function(par) {

log(mean(exp(compute.log.f(par)-log.f.tilde )))

}

grad.MC.log.lik <- function(par) {

beta.alte <- par[1:p.D.alte]

beta.gold <- par[(p.D.alte+1):(p.D.alte+p.D.gold)]

alpha <- par[p.D.alte+p.D.gold+1]

phi.alte <- exp(par[p.D.alte+p.D.gold+3])

nu2.alte <- exp(par[p.D.alte+p.D.gold+4])

phi.gold <- exp(par[p.D.alte+p.D.gold+6])

nu2.gold <- exp(par[p.D.alte+p.D.gold+7])

mu.alte <- as.numeric(D.alte %*% beta.alte)

mu.gold <- as.numeric(D.gold %*% beta.gold)

sigma2.alte <- exp(par[p.D.alte+p.D.gold+2])

sigma2.gold <- exp(par[p.D.alte+p.D.gold+5])

R.alte <- exp(-U/phi.alte)
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diag(R.alte) <- diag(R.alte)+nu2.alte

R.alte.inv <- solve(R.alte)

l.det.R.alte <- determinant(R.alte)$ modulus

R.gold <- exp(-U/phi.gold)

diag(R.gold) <- diag(R.gold)+nu2.gold

R.gold.inv <- solve(R.gold)

l.det.R.gold <- determinant(R.gold)$ modulus

exp.fact <- exp(compute.log.f(par ,l.det.R.alte ,

R.alte.inv ,l.det.R.gold ,R.gold.inv)-log.f.tilde)

L.m <- sum(exp.fact)

exp.fact <- exp.fact/L.m

R.alte.phi.alte <- (U*exp(-U/phi.alte ))/phi.alte

m1.phi.alte <- R.alte.inv%*%R.alte.phi.alte

t1.phi.alte <- -0.5*sum(diag(m1.phi.alte))

m2.phi.alte <- m1.phi.alte %*%R.alte.inv

t1.nu2.alte <- -0.5*sum(diag(R.alte.inv))*nu2.alte

m2.nu2.alte <- R.alte.inv%*%R.alte.inv*nu2.alte

R.alte.phi.gold <- (U*exp(-U/phi.gold ))/phi.gold

m1.phi.gold <- R.gold.inv%*%R.alte.phi.gold

t1.phi.gold <- -0.5*sum(diag(m1.phi.gold))

m2.phi.gold <- m1.phi.gold %*%R.gold.inv

t1.nu2.gold <- -0.5*sum(diag(R.gold.inv))*nu2.gold

m2.nu2.gold <- R.gold.inv%*%R.gold.inv*nu2.gold

gradient.S <- function(S) {

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

diff.S.alte <- S.alte -mu.alte

diff.S.gold <- S.gold -mu.gold

p.alte <- exp(S.alte )/(1+exp(S.alte))

f.p.alte <- f(p.alte)

p.gold <- exp(S.gold+alpha*f.p.alte)/

(1+exp(S.gold+alpha*f.p.alte))

q.f.alte <- t(diff.S.alte )%*%R.alte.inv%*% diff.S.alte

q.f.gold <- t(diff.S.gold )%*%R.gold.inv%*% diff.S.gold

grad.beta.alte <- t(D.alte )%*%R.alte.inv %*%

(diff.S.alte)/ sigma2.alte

grad.beta.gold <- t(D.gold )%*%R.gold.inv %*%

(diff.S.gold)/ sigma2.gold

grad.alpha <- sum(f.p.alte*(y.gold -units.m*p.gold))

grad.log.sigma2.alte <- (-n/(2*sigma2.alte)+0.5*

q.f.alte/( sigma2.alte^2))* sigma2.alte

grad.log.sigma2.gold <- (-n/(2*sigma2.gold)+0.5*q.f.gold/

(sigma2.gold^2))* sigma2.gold

grad.log.phi.alte <- (t1.phi.alte+0.5*
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as.numeric(t(diff.S.alte )%*%

m2.phi.alte %*%( diff.S.alte ))/ sigma2.alte)

grad.log.phi.gold <- (t1.phi.gold+0.5*

as.numeric(t(diff.S.gold )%*%

m2.phi.gold %*%( diff.S.gold ))/ sigma2.gold)

grad.log.nu2.alte <- (t1.nu2.alte+0.5*

as.numeric(t(diff.S.alte )%*%

m2.nu2.alte %*%( diff.S.alte ))/ sigma2.alte)

grad.log.nu2.gold <- (t1.nu2.gold+0.5*

as.numeric(t(diff.S.gold )%*%

m2.nu2.gold %*%( diff.S.gold ))/ sigma2.gold)

out <- c(grad.beta.alte ,grad.beta.gold ,grad.alpha ,

grad.log.sigma2.alte ,

grad.log.phi.alte ,grad.log.nu2.alte ,

grad.log.sigma2.gold ,

grad.log.phi.gold ,grad.log.nu2.gold)

return(out)

}

out <- rep(0,length(par))

for(i in 1:n.samples) {

out <- out + exp.fact[i]* gradient.S(sim[i,])

}

out

}

hess.MC.log.lik <- function(par) {

beta.alte <- par[1:p.D.alte]

beta.gold <- par[(p.D.alte+1):(p.D.alte+p.D.gold)]

alpha <- par[p.D.alte+p.D.gold+1]

phi.alte <- exp(par[p.D.alte+p.D.gold+3])

nu2.alte <- exp(par[p.D.alte+p.D.gold+4])

phi.gold <- exp(par[p.D.alte+p.D.gold+6])

nu2.gold <- exp(par[p.D.alte+p.D.gold+7])

mu.alte <- as.numeric(D.alte %*% beta.alte)

mu.gold <- as.numeric(D.gold %*% beta.gold)

sigma2.alte <- exp(par[p.D.alte+p.D.gold+2])

sigma2.gold <- exp(par[p.D.alte+p.D.gold+5])

R.alte <- exp(-U/phi.alte)

diag(R.alte) <- diag(R.alte)+nu2.alte

R.alte.inv <- solve(R.alte)

l.det.R.alte <- determinant(R.alte)$ modulus

R.gold <- exp(-U/phi.gold)

diag(R.gold) <- diag(R.gold)+nu2.gold

R.gold.inv <- solve(R.gold)

l.det.R.gold <- determinant(R.gold)$ modulus



Appendix B. R Code for statistical analysis using Models 4.14 and 4.15 192

exp.fact <- exp(compute.log.f(par ,l.det.R.alte ,

R.alte.inv ,l.det.R.gold ,R.gold.inv)-log.f.tilde)

L.m <- sum(exp.fact)

exp.fact <- exp.fact/L.m

R.alte.phi.alte <- (U*exp(-U/phi.alte ))/phi.alte

m1.phi.alte <- R.alte.inv%*%R.alte.phi.alte

t1.phi.alte <- -0.5*sum(diag(m1.phi.alte))

m2.phi.alte <- m1.phi.alte %*%R.alte.inv

t1.nu2.alte <- -0.5*sum(diag(R.alte.inv))*nu2.alte

m2.nu2.alte <- R.alte.inv%*%R.alte.inv*nu2.alte

R.alte.phi.gold <- (U*exp(-U/phi.gold ))/phi.gold

m1.phi.gold <- R.gold.inv%*%R.alte.phi.gold

t1.phi.gold <- -0.5*sum(diag(m1.phi.gold))

m2.phi.gold <- m1.phi.gold %*%R.gold.inv

t1.nu2.gold <- -0.5*sum(diag(R.gold.inv))*nu2.gold

m2.nu2.gold <- R.gold.inv%*%R.gold.inv*nu2.gold

R.gold.phi.alte <- R.alte.phi.alte+(U*(U-2*phi.alte)*

exp(-U/phi.alte ))/phi.alte^2

t2.phi.alte <- -0.5*(sum(R.alte.inv*R.gold.phi.alte)-

sum(m1.phi.alte*t(m1.phi.alte )))

n2.phi.alte <- R.alte.inv %*%(2*R.alte.phi.alte %*%

m1.phi.alte -R.gold.phi.alte )%*%R.alte.inv

R.gold.phi.gold <- R.alte.phi.gold+(U*(U-2*phi.gold)*

exp(-U/phi.gold ))/phi.gold^2

t2.phi.gold <- -0.5*(sum(R.gold.inv*R.gold.phi.gold)-

sum(m1.phi.gold*t(m1.phi.gold )))

n2.phi.gold <- R.gold.inv %*%(2*R.alte.phi.gold %*%

m1.phi.gold -R.gold.phi.gold )%*%R.gold.inv

t2.nu2.alte <- -0.5*(sum(diag(R.alte.inv)*nu2.alte)-

sum(diag(m2.nu2.alte)*nu2.alte))

m1.nu2.alte <- R.alte.inv*nu2.alte

nu2.alte.aux <- 2*m1.nu2.alte*nu2.alte

diag(nu2.alte.aux) <- diag(nu2.alte.aux)-nu2.alte

n2.nu2.alte <- R.alte.inv%*%nu2.alte.aux%*%R.alte.inv

t2.phi.alte.nu2.alte <- 0.5*sum(m1.phi.alte*

t(R.alte.inv))*nu2.alte

n2.phi.alte.nu2.alte <- R.alte.inv %*%(nu2.alte*

m1.phi.alte+nu2.alte*R.alte.phi.alte %*%

R.alte.inv )%*%R.alte.inv

t2.nu2.gold <- -0.5*(sum(diag(R.gold.inv)*nu2.gold)-

sum(diag(m2.nu2.gold)*nu2.gold))

m1.nu2.gold <- R.gold.inv*nu2.gold

nu2.gold.aux <- 2*m1.nu2.gold*nu2.gold

diag(nu2.gold.aux) <- diag(nu2.gold.aux)-nu2.gold

n2.nu2.gold <- R.gold.inv%*%nu2.gold.aux%*%R.gold.inv
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t2.phi.gold.nu2.gold <- 0.5*sum(m1.phi.gold*

t(R.gold.inv))*nu2.gold

n2.phi.gold.nu2.gold <- R.gold.inv %*%(nu2.gold*

m1.phi.gold+nu2.gold*R.alte.phi.gold %*%

R.gold.inv )%*%R.gold.inv

ind.beta.alte <- 1:p.D.alte

ind.beta.gold <- (p.D.alte+1):(p.D.alte+p.D.gold)

ind.alpha <- p.D.alte+p.D.gold+1

ind.sigma2.alte <- p.D.alte+p.D.gold+2

ind.phi.alte <- p.D.alte+p.D.gold+3

ind.nu2.alte <- p.D.alte+p.D.gold+4

ind.sigma2.gold <- p.D.alte+p.D.gold+5

ind.phi.gold <- p.D.alte+p.D.gold+6

ind.nu2.gold <- p.D.alte+p.D.gold+7

H <- matrix(0,nrow=length(par),ncol=length(par))

H[ind.beta.alte ,ind.beta.alte] <-

-t(D.alte )%*%R.alte.inv %*%D.alte/sigma2.alte

H[ind.beta.gold ,ind.beta.gold] <-

-t(D.gold )%*%R.gold.inv %*%D.gold/sigma2.gold

hessian.S <- function(S,ef) {

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

diff.S.alte <- S.alte -mu.alte

diff.S.gold <- S.gold -mu.gold

p.alte <- exp(S.alte )/(1+exp(S.alte))

f.p.alte <- f(p.alte)

p.gold <- exp(S.gold+alpha*f.p.alte)/

(1+exp(S.gold+alpha*f.p.alte))

q.f.alte <- t(diff.S.alte )%*%R.alte.inv%*% diff.S.alte

q.f.gold <- t(diff.S.gold )%*%R.gold.inv%*% diff.S.gold

grad.beta.alte <- t(D.alte )%*%R.alte.inv %*%

(diff.S.alte)/ sigma2.alte

grad.beta.gold <- t(D.gold )%*%R.gold.inv %*%

(diff.S.gold)/ sigma2.gold

grad.alpha <- sum(f.p.alte*(y.gold -units.m*p.gold))

grad.log.sigma2.alte <- (-n/(2*sigma2.alte)+0.5*

q.f.alte/(sigma2.alte^2))* sigma2.alte

grad.log.sigma2.gold <- (-n/(2*sigma2.gold)+0.5*

q.f.gold/(sigma2.gold^2))* sigma2.gold

grad.log.phi.alte <- (t1.phi.alte+0.5*

as.numeric(t(diff.S.alte )%*%

m2.phi.alte %*%( diff.S.alte ))/ sigma2.alte)

grad.log.phi.gold <- (t1.phi.gold+0.5*

as.numeric(t(diff.S.gold )%*%

m2.phi.gold %*%( diff.S.gold ))/ sigma2.gold)

grad.log.nu2.alte <- (t1.nu2.alte+0.5*

as.numeric(t(diff.S.alte )%*%

m2.nu2.alte %*%( diff.S.alte ))/ sigma2.alte)
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grad.log.nu2.gold <- (t1.nu2.gold+0.5*

as.numeric(t(diff.S.gold )%*%

m2.nu2.gold %*%( diff.S.gold ))/ sigma2.gold)

g <- c(grad.beta.alte ,grad.beta.gold ,grad.alpha ,

grad.log.sigma2.alte ,grad.log.phi.alte ,

grad.log.nu2.alte , grad.log.sigma2.gold ,

grad.log.phi.gold ,grad.log.nu2.gold)

H[ind.alpha ,ind.alpha] <- -sum((f.p.alte^2)*units.m*p.gold/

(1+exp(S.gold+alpha*f.p.alte )))

H[ind.beta.alte ,ind.sigma2.alte] <-

H[ind.sigma2.alte ,ind.beta.alte] <- -t(D.alte )%*%

R.alte.inv %*%( diff.S.alte)/sigma2.alte

H[ind.beta.gold ,ind.sigma2.gold] <-

H[ind.sigma2.gold ,ind.beta.gold] <- -t(D.gold )%*%

R.gold.inv %*%( diff.S.gold)/sigma2.gold

H[ind.beta.alte ,ind.phi.alte] <-

H[ind.phi.alte ,ind.beta.alte] <- -as.numeric(t(D.alte )%*%

m2.phi.alte %*%( diff.S.alte ))/ sigma2.alte

H[ind.beta.gold ,ind.phi.gold] <-

H[ind.phi.gold ,ind.beta.gold] <- -as.numeric(t(D.gold )%*%

m2.phi.gold %*%( diff.S.gold ))/ sigma2.gold

H[ind.beta.alte ,ind.nu2.alte] <-

H[ind.nu2.alte ,ind.beta.alte] <- -as.numeric(t(D.alte )%*%

m2.nu2.alte %*%( diff.S.alte ))/ sigma2.alte

H[ind.beta.gold ,ind.nu2.gold] <-

H[ind.nu2.gold ,ind.beta.gold] <- -as.numeric(t(D.gold )%*%

m2.nu2.gold %*%( diff.S.gold ))/ sigma2.gold

H[ind.sigma2.alte ,ind.sigma2.alte] <- (n/(2*sigma2.alte^2)-

q.f.alte/(sigma2.alte^3))* sigma2.alte^2+

grad.log.sigma2.alte

H[ind.sigma2.gold ,ind.sigma2.gold] <- (n/(2*sigma2.gold^2)-

q.f.gold/(sigma2.gold^3))* sigma2.gold^2+

grad.log.sigma2.gold

H[ind.sigma2.alte ,ind.phi.alte] <-

H[ind.phi.alte ,ind.sigma2.alte] <-

-(grad.log.phi.alte -t1.phi.alte)

H[ind.sigma2.gold ,ind.phi.gold] <-

H[ind.phi.gold ,ind.sigma2.gold] <-

-(grad.log.phi.gold -t1.phi.gold)

H[ind.sigma2.alte ,ind.nu2.alte] <-

H[ind.nu2.alte ,ind.sigma2.alte] <-

-(grad.log.nu2.alte -t1.nu2.alte)

H[ind.sigma2.gold ,ind.nu2.gold] <-

H[ind.nu2.gold ,ind.sigma2.gold] <-

-(grad.log.nu2.gold -t1.nu2.gold)

H[ind.phi.alte ,ind.phi.alte] <- t2.phi.alte -0.5*

t(diff.S.alte )%*%n2.phi.alte %*%

(diff.S.alte)/sigma2.alte
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H[ind.phi.gold ,ind.phi.gold] <- t2.phi.gold -0.5*

t(diff.S.gold )%*%n2.phi.gold %*%

(diff.S.gold)/ sigma2.gold

H[ind.nu2.alte ,ind.nu2.alte] <- t2.nu2.alte -0.5*

t(diff.S.alte )%*%n2.nu2.alte %*%

(diff.S.alte)/ sigma2.alte

H[ind.phi.alte ,ind.nu2.alte] <-

H[ind.nu2.alte ,ind.phi.alte] <- (t2.phi.alte.nu2.alte -

0.5*t(diff.S.alte )%*%n2.phi.alte.nu2.alte %*%

(diff.S.alte)/sigma2.alte)

H[ind.nu2.gold ,ind.nu2.gold] <- t2.nu2.gold -0.5*

t(diff.S.gold )%*%n2.nu2.gold %*%

(diff.S.gold)/ sigma2.gold

H[ind.phi.gold ,ind.nu2.gold] <-

H[ind.nu2.gold ,ind.phi.gold] <- (t2.phi.gold.nu2.gold -

0.5*t(diff.S.gold )%*%n2.phi.gold.nu2.gold %*%

(diff.S.gold)/sigma2.gold)

out <- list()

out$mat1<- ef*(g%*%t(g)+H)

out$g <- g*ef

out

}

a <- rep(0,length(par))

A <- matrix(0,length(par),length(par))

for(i in 1:n.samples) {

out.i <- hessian.S(sim[i,],exp.fact[i])

a <- a+out.i$g

A <- A+out.i$mat1

}

(A-a%*%t(a))

}

estim <- nlminb(par0,

function(x) -MC.log.lik(x),

function(x) -grad.MC.log.lik(x),

function(x) -hess.MC.log.lik(x),

control=list(trace=1))

estim$gradient <- grad.MC.log.lik(estim$par)

estim$hessian <- hess.MC.log.lik(estim$par)

estim$covariance <- solve(-estim$hessian)

names(estim$par) <- c("beta0.alte", "beta1.alte",

"beta2.alte", "beta3.alte",

"beta0.gold", "beta1.gold",

"beta2.gold", "beta3.gold",

"alpha", "log.sigma.alte",

"log.phi.alte", "log.nu.alte",

"log.sigma.gold", "log.phi.gold",

"log.nu.gold")
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return(estim)

}

fit_asymm_M1 <- function(data){

coords <- data[,c("web_x","web_y")]

set.seed(1234)

n <- nrow(data)

U <- as.matrix(dist(coords ))

units.m <- data$n # number tested at locations

y.alte <- data$y.alte # alternative test outcome

y.gold <- data$y.gold # loa loa outcome

# Design matrices

D.alte <- model.matrix (~ elev_below750 + elev_between750_1015 +

elev_above1015, data = data)

D.gold <- model.matrix (~ elev_below750 + elev_between750_1015 +

elev_above1015, data = data)

# Number of regression parameters for the two outcomes

p.D.alte <- ncol(D.alte)

p.D.gold <- ncol(D.gold)

# Parameter values to simulate the data

# betas for the alternative diagnostic

beta.alte <-c(-0.791, 0.515e-3, -3.529e-3, -0.110e-3)

# betas for the gold standard

beta.gold <- c(-1.762, 0.208e-3, -0.223e-3, -0.591e-3)

# Parameter of the linear association

between f_1(P_1) and f_2(P_2)

alpha <- 1.005

# scale parameter of the spatial process

# for the alternative diagnostic

phi.alte <- 182.037

# relative variance

# of the nugget effect for the gold standard

nu2.alte <- 0.205

# variance of the spatial process for

# the alternative diagnostic

sigma2.alte <- 1.581

# relative variance of the

# nugget effect for the gold standard

tau2.gold <- 0.308

Sigma.alte <- sigma2.alte*exp(-U/phi.alte)

diag(Sigma.alte) <- diag(Sigma.alte)+ sigma2.alte*nu2.alte

Sigma.alte.inv <- solve(Sigma.alte)
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Sigma.gold <- diag(tau2.gold ,n)

Sigma.gold.inv <- solve(Sigma.gold)

n.tot <- 2*n # total number of random effects = 2* nlocations

M <- Matrix(0,n.tot ,n.tot ,sparse=TRUE)

M[1:n,1:n] <- -Sigma.alte.inv

M[(n+1):n.tot ,(n+1):n.tot] <- -Sigma.gold.inv

mu.alte <- as.numeric(D.alte %*% beta.alte)

mu.gold <- as.numeric(D.gold %*% beta.gold)

f <- function(x) log(x/(1-x))

grad.f <- function(x) -1/((x-1)*x)

hess.f <- function(x) (2*x-1)/((x-1)^2*x^2)

ind.alte <- 1:n

ind.gold <- (n+1):n.tot

integrand <- function(S) {

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

diff.S.alte <- S.alte -mu.alte

q.f_S.alte <- t(diff.S.alte )%*% Sigma.alte.inv %*%( diff.S.alte)

diff.S.gold <- S.gold -mu.gold

q.f_S.gold <- t(diff.S.gold )%*% Sigma.gold.inv %*%( diff.S.gold)

q.f_S <- -0.5*as.numeric(q.f_S.alte+q.f_S.gold)

p.alte <- exp(S.alte )/(1+exp(S.alte))

eta.gold <- S.gold+alpha*f(p.alte)

llik <- sum(y.alte*S.alte -units.m*log(1+exp(S.alte )))+

sum(y.gold*eta.gold -units.m*log(1+exp(eta.gold )))

as.numeric(q.f_S+llik)

}

grad.integrand <- function(S) {

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

diff.S.alte <- S.alte -mu.alte

diff.S.gold <- S.gold -mu.gold

p.alte <- exp(S.alte )/(1+exp(S.alte))

der.p.alte <- p.alte/(1+exp(S.alte)) # checked

p.gold <- exp(S.gold+alpha*f(p.alte ))/

(1+exp(S.gold+alpha*f(p.alte ))) # checked

aux.gold <- y.gold -units.m*p.gold

der.q.f_S <- -c(Sigma.alte.inv%*% diff.S.alte ,

Sigma.gold.inv%*% diff.S.gold)

der.llik <- c(y.alte -units.m*p.alte+

aux.gold*alpha*grad.f(p.alte)*der.p.alte ,

aux.gold)



Appendix B. R Code for statistical analysis using Models 4.14 and 4.15 198

out <- der.q.f_S+der.llik

return(out)

}

hessian.integrand <- function(S) {

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

p.alte <- exp(S.alte )/(1+exp(S.alte))

der.p.alte <- p.alte/(1+exp(S.alte))

der2.p.alte <- (1-exp(S.alte ))*

exp(S.alte )/((1+exp(S.alte ))^3)

p.gold <- exp(S.gold+alpha*f(p.alte ))/

(1+exp(S.gold+alpha*f(p.alte )))

aux.gold <- y.gold -units.m*p.gold

der.aux.gold <- -units.m*exp(S.gold+alpha*

f(p.alte ))/((1+exp(S.gold+alpha*f(p.alte )))^2)

res <- M

diag(res)[ind.alte] <- diag(res)[ind.alte]-

units.m*exp(S.alte )/((1+exp(S.alte ))^2)+

aux.gold*

(alpha*(hess.f(p.alte )*(der.p.alte^2)+

grad.f(p.alte)*der2.p.alte ))+

der.aux.gold *(( alpha*grad.f(p.alte)*der.p.alte)^2)

diag(res)[ind.gold] <- diag(res)[ind.gold]+der.aux.gold

diag(res[ind.gold ,ind.alte]) <- diag(res[ind.alte ,ind.gold]) <-

der.aux.gold*( alpha*grad.f(p.alte)*der.p.alte)

return(res)

}

S.estim <-nlminb(start=c(mu.alte ,mu.gold),

function(x) -as.numeric(integrand(x)),

function(x) -as.numeric(grad.integrand(x)),

function(x) -as.matrix(hessian.integrand(x)),

control=list(trace=1)

)

S.estim$gradient <- grad.integrand(S.estim$par)

S.estim$hessian <- hessian.integrand(S.estim$par)

S.estim$Sigma.tilde <- round(solve(-S.estim$hessian), 9)

S.estim$estimate <- S.estim$par

Sigma.sroot <- t(chol(S.estim$Sigma.tilde ))

A <- solve(Sigma.sroot)

library(Matrix)

Sigma.W.inv <- solve(A%*% bdiag(Sigma.alte ,Sigma.gold )%*%t(A))

mu.W <- as.numeric(A%*%(c(mu.alte ,mu.gold)-S.estim$estimate ))

n.sim <- 12000 # number of simulations

burnin <- 2000 # burnin

thin <- 5 # thinning

n.samples <- (n.sim -burnin )/thin
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h <- 1.65/((n.tot)^(1/6))

c1.h <- 0.01

c2.h <- 1e-04

# reparameterization of the model

# rewrite likelihood based on W

cond.dens.W <- function(W,S) {

diff.W <- W-mu.W

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

p.alte <- exp(S.alte )/(1+exp(S.alte))

eta.gold <- S.gold+alpha*f(p.alte)

llik <- sum(y.alte*S.alte -units.m*log(1+exp(S.alte )))+

sum(y.gold*eta.gold -units.m*log(1+exp(eta.gold )))

as.numeric(-0.5*as.numeric(t(diff.W)%*%

Sigma.W.inv%*% diff.W))+ llik

}

# derivetive w.r.t W for the Langevin -Hastings algorithm

lang.grad <- function(W,S) {

diff.W <- W-mu.W

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

p.alte <- exp(S.alte )/(1+exp(S.alte))

der.p.alte <- p.alte/(1+exp(S.alte))

p.gold <- exp(S.gold+alpha*f(p.alte ))/

(1+exp(S.gold+alpha*f(p.alte )))

aux.gold <- y.gold -units.m*p.gold

der.llik <- c(y.alte -units.m*p.alte+

aux.gold*alpha*grad.f(p.alte)*der.p.alte ,

aux.gold)

out <- as.numeric(-Sigma.W.inv%*% diff.W+

t(Sigma.sroot )%*% der.llik)

return(out)

}

S.estim$mode <- S.estim$estimate

W.curr <- rep(0,n.tot)

S.curr <- as.numeric(Sigma.sroot %*%W.curr+S.estim$mode)

mean.curr <- as.numeric(W.curr + (h^2/2)*lang.grad(W.curr ,S.curr))

lp.curr <- cond.dens.W(W.curr ,S.curr)

acc <- 0

sim <- matrix(NA ,nrow=n.samples ,ncol=n.tot)

h.vec <- rep(NA,n.sim)
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for(i in 1:n.sim) {

W.prop <- mean.curr+h*rnorm(n.tot)

S.prop <- as.numeric(Sigma.sroot %*%W.prop+S.estim$mode)

mean.prop <- as.numeric(W.prop + (h^2/2)*lang.grad(W.prop ,S.prop))

lp.prop <- cond.dens.W(W.prop ,S.prop)

dprop.curr <- -sum((W.prop -mean.curr)^2)/(2*(h^2))

dprop.prop <- -sum((W.curr -mean.prop)^2)/(2*(h^2))

log.prob <- lp.prop+dprop.prop -lp.curr -dprop.curr

if(log(runif(1)) < log.prob) {

acc <- acc+1

W.curr <- W.prop

S.curr <- S.prop

lp.curr <- lp.prop

mean.curr <- mean.prop

}

if( i > burnin & (i-burnin )%% thin==0) {

sim[(i-burnin )/thin ,] <- S.curr

}

h.vec[i] <- h <- max(0,h + c1.h*i^(-c2.h)*(acc/i-0.57))

cat("Iteration",i,"out of",n.sim ,"\r")

flush.console ()

}

if(TRUE) {

acf.plot <- acf(sim[,1],plot=FALSE)

plot(acf.plot$lag ,acf.plot$acf ,type="l",

xlab="lag",ylab="autocorrelation",

ylim=c(-0.1,1),

main="Autocorrelogram of the simulated samples")

for(i in 2:ncol(sim)) {

acf.plot <- acf(sim[,i],plot=FALSE)

lines(acf.plot$lag ,acf.plot$acf)

}

abline(h=0,lty="dashed",col=2)

}

# Objective function. Rewrite like

log.integrand <- function(S,val) {

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

diff.S.alte <- S.alte -val$mu.alte

q.f_S.alte <- t(diff.S.alte )%*% val$R.alte.inv%*%

(diff.S.alte)/val$sigma2.alte

diff.S.gold <- S.gold -val$mu.gold

q.f_S.gold <- sum(diff.S.gold^2)/val$tau2.gold

q.f_S <- -0.5*as.numeric(val$l.det.R.alte+

n*log(val$sigma2.alte)+

n*log(val$tau2.gold)+

q.f_S.alte+q.f_S.gold)
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p.alte <- exp(S.alte )/(1+exp(S.alte))

llik <- sum(y.alte*S.alte -units.m*log(1+exp(S.alte )))+

sum(y.gold*(S.gold+val$alpha*f(p.alte))-units.m*

log(1+exp(S.gold+val$alpha*f(p.alte ))))

as.numeric(q.f_S+llik)

}

compute.log.f <- function(par ,l.det.R.alte=NA ,R.alte.inv=NA) {

beta.alte <- par[1:p.D.alte]

beta.gold <- par[(p.D.alte+1):(p.D.alte+p.D.gold)]

phi.alte <- exp(par[p.D.alte+p.D.gold+3])

nu2.alte <- exp(par[p.D.alte+p.D.gold+4])

val <- list()

val$mu.alte <- as.numeric(D.alte %*% beta.alte)

val$mu.gold <- as.numeric(D.gold %*% beta.gold)

val$sigma2.alte <- exp(par[p.D.alte+p.D.gold+2])

val$tau2.gold <- exp(par[p.D.alte+p.D.gold+5])

val$alpha <- par[p.D.alte+p.D.gold+1]

if(is.na(l.det.R.alte) & is.na(as.numeric(R.alte.inv)[1])) {

R.alte <- exp(-U/phi.alte)

diag(R.alte) <- diag(R.alte) + nu2.alte

val$l.det.R.alte <- determinant(R.alte)$ modulus

val$R.alte.inv <- solve(R.alte)

} else {

val$l.det.R.alte <- l.det.R.alte

val$R.alte.inv <- R.alte.inv

}

sapply(1:n.samples ,function(i) log.integrand(sim[i,],val))

}

# Initial values of the parameters

par0 <- c(beta.alte ,beta.gold ,alpha ,

log(c(sigma2.alte ,phi.alte ,nu2.alte ,

tau2.gold )))

rm(beta.alte ,beta.gold ,alpha ,

sigma2.alte ,phi.alte ,nu2.alte ,tau2.gold)

log.f.tilde <- compute.log.f(par0)

MC.log.lik <- function(par) {

log(mean(exp(compute.log.f(par)-log.f.tilde )))

}

# THE GRADIENT OF THE MONTE CARLO LOG LIKELIHOOD

grad.MC.log.lik <- function(par) {

beta.alte <- par[1:p.D.alte]

beta.gold <- par[(p.D.alte+1):(p.D.alte+p.D.gold)]

alpha <- par[p.D.alte+p.D.gold+1]
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phi.alte <- exp(par[p.D.alte+p.D.gold+3])

mu.alte <- as.numeric(D.alte %*% beta.alte)

mu.gold <- as.numeric(D.gold %*% beta.gold)

sigma2.alte <- exp(par[p.D.alte+p.D.gold+2])

nu2.alte <- exp(par[p.D.alte+p.D.gold+4])

tau2.gold <- exp(par[p.D.alte+p.D.gold+5])

R.alte <- exp(-U/phi.alte)

diag(R.alte) <- diag(R.alte)+nu2.alte

R.alte.inv <- solve(R.alte)

l.det.R.alte <- determinant(R.alte)$ modulus

exp.fact <- exp(compute.log.f(par ,l.det.R.alte ,R.alte.inv)-

log.f.tilde)

L.m <- sum(exp.fact)

exp.fact <- exp.fact/L.m

R.alte.phi.alte <- (U*exp(-U/phi.alte ))/phi.alte

m1.phi.alte <- R.alte.inv%*%R.alte.phi.alte

t1.phi.alte <- -0.5*sum(diag(m1.phi.alte))

m2.phi.alte <- m1.phi.alte %*%R.alte.inv

t1.nu2.alte <- -0.5*sum(diag(R.alte.inv))*nu2.alte

m2.nu2.alte <- R.alte.inv%*%R.alte.inv*nu2.alte

gradient.S <- function(S) {

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

diff.S.alte <- S.alte -mu.alte

diff.S.gold <- S.gold -mu.gold

p.alte <- exp(S.alte )/(1+exp(S.alte))

f.p.alte <- f(p.alte)

p.gold <- exp(S.gold+alpha*f.p.alte)/

(1+exp(S.gold+alpha*f.p.alte))

q.f.alte <- t(diff.S.alte )%*%R.alte.inv%*% diff.S.alte

q.f.gold <- sum(diff.S.gold^2)

grad.beta.alte <- t(D.alte )%*%R.alte.inv %*%

(diff.S.alte)/ sigma2.alte

grad.beta.gold <- t(D.gold )%*%( diff.S.gold)/tau2.gold

grad.alpha <- sum(f.p.alte*(y.gold -units.m*p.gold))

grad.log.sigma2.alte <- (-n/(2*sigma2.alte)+

0.5*q.f.alte/(sigma2.alte^2))* sigma2.alte

grad.log.tau2.gold <- (-n/(2*tau2.gold)+

0.5*q.f.gold/(tau2.gold^2))*tau2.gold

grad.log.phi.alte <- (t1.phi.alte+

0.5*as.numeric(t(diff.S.alte )%*%

m2.phi.alte %*%( diff.S.alte ))/ sigma2.alte)

grad.log.nu2.alte <- (t1.nu2.alte+0.5*
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as.numeric(t(diff.S.alte )%*%

m2.nu2.alte %*%( diff.S.alte ))/ sigma2.alte)

out <- c(grad.beta.alte ,grad.beta.gold ,grad.alpha ,

grad.log.sigma2.alte ,grad.log.phi.alte ,

grad.log.nu2.alte , grad.log.tau2.gold)

return(out)

}

out <- rep(0,length(par))

for(i in 1:n.samples) {

out <- out + exp.fact[i]* gradient.S(sim[i,])

}

out

}

# THE HESSIAN OF THE LOG -LIKELIHOOD

hess.MC.log.lik <- function(par) {

beta.alte <- par[1:p.D.alte]

beta.gold <- par[(p.D.alte+1):(p.D.alte+p.D.gold)]

alpha <- par[p.D.alte+p.D.gold+1]

phi.alte <- exp(par[p.D.alte+p.D.gold+3])

nu2.alte <- exp(par[p.D.alte+p.D.gold+4])

mu.alte <- as.numeric(D.alte %*% beta.alte)

mu.gold <- as.numeric(D.gold %*% beta.gold)

sigma2.alte <- exp(par[p.D.alte+p.D.gold+2])

tau2.gold <- exp(par[p.D.alte+p.D.gold+5])

R.alte <- exp(-U/phi.alte)

diag(R.alte) <- diag(R.alte)+nu2.alte

R.alte.inv <- solve(R.alte)

l.det.R.alte <- determinant(R.alte)$ modulus

exp.fact <- exp(compute.log.f(par ,l.det.R.alte ,

R.alte.inv)-log.f.tilde)

L.m <- sum(exp.fact)

exp.fact <- exp.fact/L.m

R.alte.phi.alte <- (U*exp(-U/phi.alte ))/phi.alte

m1.phi.alte <- R.alte.inv%*%R.alte.phi.alte

t1.phi.alte <- -0.5*sum(diag(m1.phi.alte))

m2.phi.alte <- m1.phi.alte %*%R.alte.inv

t1.nu2.alte <- -0.5*sum(diag(R.alte.inv))*nu2.alte

m2.nu2.alte <- R.alte.inv%*%R.alte.inv*nu2.alte

R.gold.phi.alte <- R.alte.phi.alte+(U*(U-2*phi.alte)*

exp(-U/phi.alte ))/phi.alte^2

t2.phi.alte <- -0.5*(sum(R.alte.inv*R.gold.phi.alte)-

sum(m1.phi.alte*t(m1.phi.alte )))

n2.phi.alte <- R.alte.inv %*%(2*R.alte.phi.alte %*%
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m1.phi.alte -R.gold.phi.alte )%*%R.alte.inv

t2.nu2.alte <- -0.5*(sum(diag(R.alte.inv)*nu2.alte)-

sum(diag(m2.nu2.alte)*nu2.alte))

m1.nu2.alte <- R.alte.inv*nu2.alte

nu2.alte.aux <- 2*m1.nu2.alte*nu2.alte

diag(nu2.alte.aux) <- diag(nu2.alte.aux)-nu2.alte

n2.nu2.alte <- R.alte.inv%*%nu2.alte.aux%*%R.alte.inv

t2.phi.alte.nu2.alte <- 0.5*sum(m1.phi.alte*

t(R.alte.inv))*nu2.alte

n2.phi.alte.nu2.alte <- R.alte.inv %*%(nu2.alte*

m1.phi.alte+nu2.alte*

R.alte.phi.alte %*%R.alte.inv )%*%R.alte.inv

ind.beta.alte <- 1:p.D.alte

ind.beta.gold <- (p.D.alte+1):(p.D.alte+p.D.gold)

ind.alpha <- p.D.alte+p.D.gold+1

ind.sigma2.alte <- p.D.alte+p.D.gold+2

ind.phi.alte <- p.D.alte+p.D.gold+3

ind.nu2.alte <- p.D.alte+p.D.gold+4

ind.tau2.gold <- p.D.alte+p.D.gold+5

H <- matrix(0,nrow=length(par),ncol=length(par))

H[ind.beta.alte ,ind.beta.alte] <- -t(D.alte )%*%

R.alte.inv%*%D.alte/sigma2.alte

H[ind.beta.gold ,ind.beta.gold] <- -t(D.gold )%*%

D.gold/tau2.gold

# THE HESSIAN FUNCTION OF THE RANDOM EFFECTS

hessian.S <- function(S,ef) {

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

diff.S.alte <- S.alte -mu.alte

diff.S.gold <- S.gold -mu.gold

p.alte <- exp(S.alte )/(1+exp(S.alte))

f.p.alte <- f(p.alte)

p.gold <- exp(S.gold+alpha*f.p.alte)/

(1+exp(S.gold+alpha*f.p.alte))

q.f.alte <- t(diff.S.alte )%*%R.alte.inv%*% diff.S.alte

q.f.gold <- sum(diff.S.gold^2)

grad.beta.alte <- t(D.alte )%*%R.alte.inv %*%

(diff.S.alte)/ sigma2.alte

grad.beta.gold <- t(D.gold )%*%( diff.S.gold)/tau2.gold

grad.alpha <- sum(f.p.alte*(y.gold -units.m*p.gold))

grad.log.sigma2.alte <- (-n/(2*sigma2.alte)+

0.5*q.f.alte/(sigma2.alte^2))* sigma2.alte

grad.log.tau2.gold <- (-n/(2*tau2.gold)+0.5*q.f.gold/

(tau2.gold^2))*tau2.gold

grad.log.phi.alte <- (t1.phi.alte+0.5*

as.numeric(t(diff.S.alte )%*%
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m2.phi.alte %*%( diff.S.alte ))/ sigma2.alte)

grad.log.nu2.alte <- (t1.nu2.alte+0.5*

as.numeric(t(diff.S.alte )%*%

m2.nu2.alte %*%( diff.S.alte ))/ sigma2.alte)

g <- c(grad.beta.alte ,grad.beta.gold ,grad.alpha ,

grad.log.sigma2.alte ,

grad.log.phi.alte ,grad.log.nu2.alte ,

grad.log.tau2.gold)

H[ind.alpha ,ind.alpha] <- -sum((f.p.alte^2)*

units.m*p.gold/(1+exp(S.gold+alpha*f.p.alte )))

H[ind.beta.alte ,ind.sigma2.alte] <-

H[ind.sigma2.alte ,ind.beta.alte] <- -t(D.alte )%*%

R.alte.inv %*%( diff.S.alte)/sigma2.alte

H[ind.beta.gold ,ind.tau2.gold] <-

H[ind.tau2.gold ,ind.beta.gold] <- -t(D.gold )%*%

(diff.S.gold)/tau2.gold

H[ind.beta.alte ,ind.phi.alte] <-

H[ind.phi.alte ,ind.beta.alte] <- -as.numeric(t(D.alte )%*%

m2.phi.alte %*%( diff.S.alte ))/ sigma2.alte

H[ind.beta.alte ,ind.nu2.alte] <-

H[ind.nu2.alte ,ind.beta.alte] <- -as.numeric(t(D.alte )%*%

m2.nu2.alte %*%( diff.S.alte ))/ sigma2.alte

H[ind.sigma2.alte ,ind.sigma2.alte] <- (n/(2*sigma2.alte^2)-

q.f.alte/(sigma2.alte^3))* sigma2.alte^2+

grad.log.sigma2.alte

H[ind.tau2.gold ,ind.tau2.gold] <- (n/(2*tau2.gold^2)-

q.f.gold/(tau2.gold^3))*tau2.gold^2+

grad.log.tau2.gold

H[ind.sigma2.alte ,ind.phi.alte] <-

H[ind.phi.alte ,ind.sigma2.alte] <- -(grad.log.phi.alte -t1.phi.alte)

H[ind.sigma2.alte ,ind.nu2.alte] <-

H[ind.nu2.alte ,ind.sigma2.alte] <- -(grad.log.nu2.alte -t1.nu2.alte)

H[ind.phi.alte ,ind.phi.alte] <- t2.phi.alte -0.5*t(diff.S.alte )%*%

n2.phi.alte %*%( diff.S.alte)/sigma2.alte

H[ind.nu2.alte ,ind.nu2.alte] <- t2.nu2.alte -0.5*t(diff.S.alte )%*%

n2.nu2.alte %*%( diff.S.alte)/sigma2.alte

H[ind.phi.alte ,ind.nu2.alte] <-

H[ind.nu2.alte ,ind.phi.alte] <- (t2.phi.alte.nu2.alte -

0.5*t(diff.S.alte )%*%n2.phi.alte.nu2.alte %*%

(diff.S.alte)/sigma2.alte)

out <- list()

out$mat1<- ef*(g%*%t(g)+H)

out$g <- g*ef

out
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}

a <- rep(0,length(par))

A <- matrix(0,length(par),length(par))

for(i in 1:n.samples) {

out.i <- hessian.S(sim[i,],exp.fact[i])

a <- a+out.i$g

A <- A+out.i$mat1

}

(A-a%*%t(a))

}

# THE ESTIMATION

estim <- nlminb(par0,

function(x) -MC.log.lik(x),

function(x) -grad.MC.log.lik(x),

function(x) -hess.MC.log.lik(x),

control=list(trace=1))

estim$gradient <- grad.MC.log.lik(estim$par)

estim$hessian <- hess.MC.log.lik(estim$par)

estim$covariance <- solve(-estim$hessian)

fit_asymm_M2 <- function(data){

coords <- data[,c("web_x","web_y")]

set.seed(1234)

n <- nrow(data)

U <- as.matrix(dist(coords ))

units.m <- data$n # number tested at locations

y.alte <- data$y.alte # alternative test outcome

y.gold <- data$y.gold # loa loa outcome

# Design matrices

D.alte <- model.matrix (~ elev_below750 + elev_between750_1015 +

elev_above1015, data = data)

D.gold <- model.matrix (~ elev_below750 + elev_between750_1015 +

elev_above1015, data = data)

# Number of regression parameters for the two outcomes

p.D.alte <- ncol(D.alte)

p.D.gold <- ncol(D.gold)

# Initial values of the model parameters

beta.alte <- c(-0.763, 0.588e-3, -3.412e-3, -0.059e-3)

beta.gold <- c(-1.736, 0.126e-3, -0.039e-3, -0.612e-3)

alpha <- 1.017

phi.alte <- 187.388

nu2.alte <- 0.20

phi.gold <- 23.686

nu2.gold <- 0.483
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sigma2.alte <- 1.617

sigma2.gold <- 0.216

Sigma.alte <- sigma2.alte*exp(-U/phi.alte)

diag(Sigma.alte) <- diag(Sigma.alte)+ sigma2.alte*nu2.alte

Sigma.alte.inv <- solve(Sigma.alte)

Sigma.gold <- sigma2.gold*exp(-U/phi.gold)

diag(Sigma.gold) <- diag(Sigma.gold)+ sigma2.gold*nu2.gold

Sigma.gold.inv <- solve(Sigma.gold)

n.tot <- 2*n

M <- Matrix(0,n.tot ,n.tot ,sparse=TRUE)

M[1:n,1:n] <- -Sigma.alte.inv

M[(n+1):n.tot ,(n+1):n.tot] <- -Sigma.gold.inv

mu.alte <- as.numeric(D.alte %*% beta.alte)

mu.gold <- as.numeric(D.gold %*% beta.gold)

f <- function(x) log(x/(1-x))

grad.f <- function(x) -1/((x-1)*x)

hess.f <- function(x) (2*x-1)/((x-1)^2*x^2)

ind.alte <- 1:n

ind.gold <- (n+1):n.tot

#####################################################

#### SIMULATING FROM THE CONDITIONAL

#### DISTRIBUTION OF THE RANDOM EFFECT GIVEN THE DATA

#####################################################

integrand <- function(S) {

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

diff.S.alte <- S.alte -mu.alte

q.f_S.alte <- t(diff.S.alte )%*% Sigma.alte.inv %*%( diff.S.alte)

diff.S.gold <- S.gold -mu.gold

q.f_S.gold <- t(diff.S.gold )%*% Sigma.gold.inv %*%( diff.S.gold)

q.f_S <- -0.5*as.numeric(q.f_S.alte+q.f_S.gold)

p.alte <- exp(S.alte )/(1+exp(S.alte))

eta.gold <- S.gold+alpha*f(p.alte)

llik <- sum(y.alte*S.alte -units.m*log(1+exp(S.alte )))+

sum(y.gold*eta.gold -units.m*log(1+exp(eta.gold )))

as.numeric(q.f_S+llik)

}

grad.integrand <- function(S) {
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S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

diff.S.alte <- S.alte -mu.alte

diff.S.gold <- S.gold -mu.gold

p.alte <- exp(S.alte )/(1+exp(S.alte))

der.p.alte <- p.alte/(1+exp(S.alte))

p.gold <- exp(S.gold+alpha*f(p.alte ))/

(1+exp(S.gold+alpha*f(p.alte )))

aux.gold <- y.gold -units.m*p.gold

der.q.f_S <- -c(Sigma.alte.inv%*% diff.S.alte ,

Sigma.gold.inv%*% diff.S.gold)

der.llik <- c(y.alte -units.m*p.alte+

aux.gold*alpha*grad.f(p.alte)*der.p.alte ,

aux.gold)

out <- der.q.f_S+der.llik

return(out)

}

hessian.integrand <- function(S) {

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

p.alte <- exp(S.alte )/(1+exp(S.alte))

der.p.alte <- p.alte/(1+exp(S.alte))

der2.p.alte <- (1-exp(S.alte ))*exp(S.alte)/

((1+exp(S.alte ))^3)

p.gold <- exp(S.gold+alpha*f(p.alte ))/

(1+exp(S.gold+alpha*f(p.alte )))

aux.gold <- y.gold -units.m*p.gold

der.aux.gold <- -units.m*exp(S.gold+alpha*f(p.alte ))/

((1+exp(S.gold+alpha*f(p.alte )))^2)

res <- M

diag(res)[ind.alte] <- diag(res)[ind.alte]-

units.m*exp(S.alte )/((1+exp(S.alte ))^2)+

aux.gold*

(alpha*(hess.f(p.alte )*(der.p.alte^2)+

grad.f(p.alte)*der2.p.alte ))+

der.aux.gold *(( alpha*grad.f(p.alte)*der.p.alte)^2)

diag(res)[ind.gold] <- diag(res)[ind.gold]+der.aux.gold

diag(res[ind.gold ,ind.alte]) <-

diag(res[ind.alte ,ind.gold]) <-

der.aux.gold*( alpha*grad.f(p.alte)*der.p.alte)

return(res)

}

S.estim <- nlminb(start=c(mu.alte , mu.gold),

function(x) -as.numeric(integrand(x)),

function(x) -as.numeric(grad.integrand(x)),

function(x) -as.matrix(hessian.integrand(x)),

control=list(trace=1)

)
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S.estim$gradient <- grad.integrand(S.estim$par)

S.estim$hessian <- hessian.integrand(S.estim$par)

S.estim$Sigma.tilde <- round(solve(-S.estim$hessian), 9)

S.estim$estimate <- S.estim$par

Sigma.sroot <- t(chol(S.estim$Sigma.tilde ))

A <- solve(Sigma.sroot)

library(Matrix)

Sigma.W.inv <- solve(A%*% bdiag(Sigma.alte ,Sigma.gold )%*%t(A))

mu.W <- as.numeric(A%*%(c(mu.alte ,mu.gold)-S.estim$estimate ))

n.sim <- 12000 # number of simulations

burnin <- 2000 # burnin

thin <- 5 # thinning

n.samples <- (n.sim -burnin )/thin

h <- 1.65/((n.tot)^(1/6))

c1.h <- 0.01

c2.h <- 1e-04

# reparameterization of the model

cond.dens.W <- function(W,S) {

diff.W <- W-mu.W

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

p.alte <- exp(S.alte )/(1+exp(S.alte))

eta.gold <- S.gold+alpha*f(p.alte)

llik <- sum(y.alte*S.alte -units.m*log(1+exp(S.alte )))+

sum(y.gold*eta.gold -units.m*log(1+exp(eta.gold )))

as.numeric(-0.5*as.numeric(t(diff.W)%*%

Sigma.W.inv%*% diff.W))+ llik

}

lang.grad <- function(W,S) {

diff.W <- W-mu.W

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

p.alte <- exp(S.alte )/(1+exp(S.alte))

der.p.alte <- p.alte/(1+exp(S.alte))

p.gold <- exp(S.gold+alpha*

f(p.alte ))/(1+exp(S.gold+alpha*f(p.alte )))

aux.gold <- y.gold -units.m*p.gold

der.llik <- c(y.alte -units.m*p.alte+

aux.gold*alpha*grad.f(p.alte)*der.p.alte ,

aux.gold)

out <- as.numeric(-Sigma.W.inv%*%

diff.W+t(Sigma.sroot )%*% der.llik)

return(out)

}
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S.estim$mode <- S.estim$estimate

W.curr <- rep(0,n.tot)

S.curr <- as.numeric(Sigma.sroot %*%W.curr+S.estim$mode)

mean.curr <- as.numeric(W.curr +

(h^2/2)*lang.grad(W.curr ,S.curr))

lp.curr <- cond.dens.W(W.curr ,S.curr)

acc <- 0

sim <- matrix(NA ,nrow=n.samples ,ncol=n.tot)

h.vec <- rep(NA,n.sim)

for(i in 1:n.sim) {

W.prop <- mean.curr+h*rnorm(n.tot)

S.prop <- as.numeric(Sigma.sroot %*%W.prop+S.estim$mode)

mean.prop <- as.numeric(W.prop +

(h^2/2)*lang.grad(W.prop ,S.prop))

lp.prop <- cond.dens.W(W.prop ,S.prop)

dprop.curr <- -sum((W.prop -mean.curr)^2)/(2*(h^2))

dprop.prop <- -sum((W.curr -mean.prop)^2)/(2*(h^2))

log.prob <- lp.prop+dprop.prop -lp.curr -dprop.curr

if(log(runif(1)) < log.prob) {

acc <- acc+1

W.curr <- W.prop

S.curr <- S.prop

lp.curr <- lp.prop

mean.curr <- mean.prop

}

if( i > burnin & (i-burnin )%% thin==0) {

sim[(i-burnin )/thin ,] <- S.curr

}

h.vec[i] <- h <- max(0,h + c1.h*i^(-c2.h)*(acc/i-0.57))

cat("Iteration",i,"out of",n.sim ,"\r")

flush.console ()

}

if(TRUE) {

acf.plot <- acf(sim[,1],plot=FALSE)

plot(acf.plot$lag ,acf.plot$acf ,type="l",

xlab="lag",ylab="autocorrelation",

ylim=c(-0.1,1),

main="Autocorrelogram of the simulated samples")

for(i in 2:ncol(sim)) {

acf.plot <- acf(sim[,i],plot=FALSE)

lines(acf.plot$lag ,acf.plot$acf)

}

abline(h=0,lty="dashed",col=2)

}

######################################
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#### APROXIMATING AND MAXIMIZING THE

#### LIKELIHOOD USING THE MCMC SAMPLES

######################################

# Objective function

log.integrand <- function(S,val) {

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

diff.S.alte <- S.alte -val$mu.alte

q.f_S.alte <- t(diff.S.alte )%*% val$R.alte.inv%*%

(diff.S.alte)/val$sigma2.alte

diff.S.gold <- S.gold -val$mu.gold

q.f_S.gold <- t(diff.S.gold )%*% val$R.gold.inv%*%

(diff.S.gold)/val$sigma2.gold

q.f_S <- -0.5*as.numeric(val$l.det.R.alte+val$l.det.R.gold+

n*log(val$sigma2.alte)+n*

log(val$sigma2.gold)+q.f_S.alte+q.f_S.gold)

p.alte <- exp(S.alte )/(1+exp(S.alte))

llik <- sum(y.alte*S.alte -units.m*log(1+exp(S.alte )))+

sum(y.gold*(S.gold+val$alpha*f(p.alte))-

units.m*log(1+exp(S.gold+val$alpha*f(p.alte ))))

as.numeric(q.f_S+llik)

}

compute.log.f <- function(par ,l.det.R.alte=NA ,R.alte.inv=NA ,

l.det.R.gold=NA ,R.gold.inv=NA) {

beta.alte <- par[1:p.D.alte]

beta.gold <- par[(p.D.alte+1):(p.D.alte+p.D.gold)]

phi.alte <- exp(par[p.D.alte+p.D.gold+3])

nu2.alte <- exp(par[p.D.alte+p.D.gold+4])

phi.gold <- exp(par[p.D.alte+p.D.gold+6])

nu2.gold <- exp(par[p.D.alte+p.D.gold+7])

val <- list()

val$mu.alte <- as.numeric(D.alte %*% beta.alte)

val$mu.gold <- as.numeric(D.gold %*% beta.gold)

val$sigma2.alte <- exp(par[p.D.alte+p.D.gold+2])

val$sigma2.gold <- exp(par[p.D.alte+p.D.gold+5])

val$alpha <- par[p.D.alte+p.D.gold+1]

if(is.na(l.det.R.alte) & is.na(as.numeric(R.alte.inv)[1])) {

R.alte <- exp(-U/phi.alte)

diag(R.alte) <- diag(R.alte) + nu2.alte

R.gold <- exp(-U/phi.gold)

diag(R.gold) <- diag(R.gold) + nu2.gold

val$l.det.R.alte <- determinant(R.alte)$ modulus

val$R.alte.inv <- solve(R.alte)

val$l.det.R.gold <- determinant(R.gold)$ modulus

val$R.gold.inv <- solve(R.gold)

} else {

val$l.det.R.alte <- l.det.R.alte

val$R.alte.inv <- R.alte.inv

val$l.det.R.gold <- l.det.R.gold

val$R.gold.inv <- R.gold.inv
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}

sapply(1:n.samples ,function(i) log.integrand(sim[i,],val))

}

# theta0

par0 <- c(beta.alte , beta.gold , alpha ,

log(c(sigma2.alte ,phi.alte ,nu2.alte ,

sigma2.gold ,phi.gold ,nu2.gold )))

rm(beta.alte ,beta.gold ,alpha ,sigma2.alte ,

phi.alte ,nu2.alte ,sigma2.gold ,phi.gold ,nu2.gold)

log.f.tilde <- compute.log.f(par0)

MC.log.lik <- function(par) {

log(mean(exp(compute.log.f(par)-log.f.tilde )))

}

grad.MC.log.lik <- function(par) {

beta.alte <- par[1:p.D.alte]

beta.gold <- par[(p.D.alte+1):(p.D.alte+p.D.gold)]

alpha <- par[p.D.alte+p.D.gold+1]

phi.alte <- exp(par[p.D.alte+p.D.gold+3])

nu2.alte <- exp(par[p.D.alte+p.D.gold+4])

phi.gold <- exp(par[p.D.alte+p.D.gold+6])

nu2.gold <- exp(par[p.D.alte+p.D.gold+7])

mu.alte <- as.numeric(D.alte %*% beta.alte)

mu.gold <- as.numeric(D.gold %*% beta.gold)

sigma2.alte <- exp(par[p.D.alte+p.D.gold+2])

sigma2.gold <- exp(par[p.D.alte+p.D.gold+5])

R.alte <- exp(-U/phi.alte)

diag(R.alte) <- diag(R.alte)+nu2.alte

R.alte.inv <- solve(R.alte)

l.det.R.alte <- determinant(R.alte)$ modulus

R.gold <- exp(-U/phi.gold)

diag(R.gold) <- diag(R.gold)+nu2.gold

R.gold.inv <- solve(R.gold)

l.det.R.gold <- determinant(R.gold)$ modulus

exp.fact <- exp(compute.log.f(par ,l.det.R.alte ,

R.alte.inv ,l.det.R.gold ,R.gold.inv)-log.f.tilde)

L.m <- sum(exp.fact)

exp.fact <- exp.fact/L.m

R.alte.phi.alte <- (U*exp(-U/phi.alte ))/phi.alte

m1.phi.alte <- R.alte.inv%*%R.alte.phi.alte

t1.phi.alte <- -0.5*sum(diag(m1.phi.alte))

m2.phi.alte <- m1.phi.alte %*%R.alte.inv

t1.nu2.alte <- -0.5*sum(diag(R.alte.inv))*nu2.alte
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m2.nu2.alte <- R.alte.inv%*%R.alte.inv*nu2.alte

R.alte.phi.gold <- (U*exp(-U/phi.gold ))/phi.gold

m1.phi.gold <- R.gold.inv%*%R.alte.phi.gold

t1.phi.gold <- -0.5*sum(diag(m1.phi.gold))

m2.phi.gold <- m1.phi.gold %*%R.gold.inv

t1.nu2.gold <- -0.5*sum(diag(R.gold.inv))*nu2.gold

m2.nu2.gold <- R.gold.inv%*%R.gold.inv*nu2.gold

gradient.S <- function(S) {

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

diff.S.alte <- S.alte -mu.alte

diff.S.gold <- S.gold -mu.gold

p.alte <- exp(S.alte )/(1+exp(S.alte))

f.p.alte <- f(p.alte)

p.gold <- exp(S.gold+alpha*f.p.alte)/

(1+exp(S.gold+alpha*f.p.alte))

q.f.alte <- t(diff.S.alte )%*%R.alte.inv%*% diff.S.alte

q.f.gold <- t(diff.S.gold )%*%R.gold.inv%*% diff.S.gold

grad.beta.alte <- t(D.alte )%*%R.alte.inv %*%

(diff.S.alte)/ sigma2.alte

grad.beta.gold <- t(D.gold )%*%R.gold.inv %*%

(diff.S.gold)/ sigma2.gold

grad.alpha <- sum(f.p.alte*(y.gold -units.m*p.gold))

grad.log.sigma2.alte <- (-n/(2*sigma2.alte)+0.5*

q.f.alte/( sigma2.alte^2))* sigma2.alte

grad.log.sigma2.gold <- (-n/(2*sigma2.gold)+0.5*

q.f.gold/( sigma2.gold^2))* sigma2.gold

grad.log.phi.alte <- (t1.phi.alte+0.5*

as.numeric(t(diff.S.alte )%*%

m2.phi.alte %*%( diff.S.alte ))/ sigma2.alte)

grad.log.phi.gold <- (t1.phi.gold+0.5*

as.numeric(t(diff.S.gold )%*%

m2.phi.gold %*%( diff.S.gold ))/ sigma2.gold)

grad.log.nu2.alte <- (t1.nu2.alte+0.5*

as.numeric(t(diff.S.alte )%*%

m2.nu2.alte %*%( diff.S.alte ))/ sigma2.alte)

grad.log.nu2.gold <- (t1.nu2.gold+0.5*

as.numeric(t(diff.S.gold )%*%

m2.nu2.gold %*%( diff.S.gold ))/ sigma2.gold)

out <- c(grad.beta.alte ,grad.beta.gold ,grad.alpha ,

grad.log.sigma2.alte ,grad.log.phi.alte ,grad.log.nu2.alte ,

grad.log.sigma2.gold ,grad.log.phi.gold ,grad.log.nu2.gold)

return(out)

}

out <- rep(0,length(par))

for(i in 1:n.samples) {
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out <- out + exp.fact[i]* gradient.S(sim[i,])

}

out

}

hess.MC.log.lik <- function(par) {

beta.alte <- par[1:p.D.alte]

beta.gold <- par[(p.D.alte+1):(p.D.alte+p.D.gold)]

alpha <- par[p.D.alte+p.D.gold+1]

phi.alte <- exp(par[p.D.alte+p.D.gold+3])

nu2.alte <- exp(par[p.D.alte+p.D.gold+4])

phi.gold <- exp(par[p.D.alte+p.D.gold+6])

nu2.gold <- exp(par[p.D.alte+p.D.gold+7])

mu.alte <- as.numeric(D.alte %*% beta.alte)

mu.gold <- as.numeric(D.gold %*% beta.gold)

sigma2.alte <- exp(par[p.D.alte+p.D.gold+2])

sigma2.gold <- exp(par[p.D.alte+p.D.gold+5])

R.alte <- exp(-U/phi.alte)

diag(R.alte) <- diag(R.alte)+nu2.alte

R.alte.inv <- solve(R.alte)

l.det.R.alte <- determinant(R.alte)$ modulus

R.gold <- exp(-U/phi.gold)

diag(R.gold) <- diag(R.gold)+nu2.gold

R.gold.inv <- solve(R.gold)

l.det.R.gold <- determinant(R.gold)$ modulus

exp.fact <- exp(compute.log.f(par ,l.det.R.alte ,

R.alte.inv ,l.det.R.gold ,R.gold.inv)-log.f.tilde)

L.m <- sum(exp.fact)

exp.fact <- exp.fact/L.m

R.alte.phi.alte <- (U*exp(-U/phi.alte ))/phi.alte

m1.phi.alte <- R.alte.inv%*%R.alte.phi.alte

t1.phi.alte <- -0.5*sum(diag(m1.phi.alte))

m2.phi.alte <- m1.phi.alte %*%R.alte.inv

t1.nu2.alte <- -0.5*sum(diag(R.alte.inv))*nu2.alte

m2.nu2.alte <- R.alte.inv%*%R.alte.inv*nu2.alte

R.alte.phi.gold <- (U*exp(-U/phi.gold ))/phi.gold

m1.phi.gold <- R.gold.inv%*%R.alte.phi.gold

t1.phi.gold <- -0.5*sum(diag(m1.phi.gold))

m2.phi.gold <- m1.phi.gold %*%R.gold.inv

t1.nu2.gold <- -0.5*sum(diag(R.gold.inv))*nu2.gold

m2.nu2.gold <- R.gold.inv%*%R.gold.inv*nu2.gold
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R.gold.phi.alte <- R.alte.phi.alte+(U*(U-2*phi.alte)*

exp(-U/phi.alte ))/phi.alte^2

t2.phi.alte <- -0.5*(sum(R.alte.inv*R.gold.phi.alte)-

sum(m1.phi.alte*t(m1.phi.alte )))

n2.phi.alte <- R.alte.inv %*%(2*R.alte.phi.alte %*%

m1.phi.alte -R.gold.phi.alte )%*%R.alte.inv

R.gold.phi.gold <- R.alte.phi.gold+(U*(U-2*phi.gold)*

exp(-U/phi.gold ))/ phi.gold^2

t2.phi.gold <- -0.5*(sum(R.gold.inv*R.gold.phi.gold)-

sum(m1.phi.gold*t(m1.phi.gold )))

n2.phi.gold <- R.gold.inv %*%(2*R.alte.phi.gold %*%

m1.phi.gold -R.gold.phi.gold )%*%R.gold.inv

t2.nu2.alte <- -0.5*(sum(diag(R.alte.inv)*nu2.alte)-

sum(diag(m2.nu2.alte)*nu2.alte))

m1.nu2.alte <- R.alte.inv*nu2.alte

nu2.alte.aux <- 2*m1.nu2.alte*nu2.alte

diag(nu2.alte.aux) <- diag(nu2.alte.aux)-nu2.alte

n2.nu2.alte <- R.alte.inv%*%nu2.alte.aux%*%R.alte.inv

t2.phi.alte.nu2.alte <- 0.5*sum(m1.phi.alte*

t(R.alte.inv))*nu2.alte

n2.phi.alte.nu2.alte <- R.alte.inv %*%(nu2.alte*

m1.phi.alte+nu2.alte*R.alte.phi.alte %*%

R.alte.inv )%*%R.alte.inv

t2.nu2.gold <- -0.5*(sum(diag(R.gold.inv)*

nu2.gold)-sum(diag(m2.nu2.gold)*nu2.gold))

m1.nu2.gold <- R.gold.inv*nu2.gold

nu2.gold.aux <- 2*m1.nu2.gold*nu2.gold

diag(nu2.gold.aux) <- diag(nu2.gold.aux)-nu2.gold

n2.nu2.gold <- R.gold.inv%*%nu2.gold.aux%*%R.gold.inv

t2.phi.gold.nu2.gold <- 0.5*sum(m1.phi.gold*

t(R.gold.inv))*nu2.gold

n2.phi.gold.nu2.gold <- R.gold.inv %*%(nu2.gold*

m1.phi.gold+nu2.gold*R.alte.phi.gold %*%

R.gold.inv )%*%R.gold.inv

ind.beta.alte <- 1:p.D.alte

ind.beta.gold <- (p.D.alte+1):(p.D.alte+p.D.gold)

ind.alpha <- p.D.alte+p.D.gold+1

ind.sigma2.alte <- p.D.alte+p.D.gold+2

ind.phi.alte <- p.D.alte+p.D.gold+3

ind.nu2.alte <- p.D.alte+p.D.gold+4

ind.sigma2.gold <- p.D.alte+p.D.gold+5

ind.phi.gold <- p.D.alte+p.D.gold+6

ind.nu2.gold <- p.D.alte+p.D.gold+7

H <- matrix(0,nrow=length(par),ncol=length(par))

H[ind.beta.alte ,ind.beta.alte] <- -t(D.alte )%*%

R.alte.inv%*%D.alte/sigma2.alte

H[ind.beta.gold ,ind.beta.gold] <- -t(D.gold )%*%

R.gold.inv%*%D.gold/sigma2.gold

hessian.S <- function(S,ef) {
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S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

diff.S.alte <- S.alte -mu.alte

diff.S.gold <- S.gold -mu.gold

p.alte <- exp(S.alte )/(1+exp(S.alte))

f.p.alte <- f(p.alte)

p.gold <- exp(S.gold+alpha*f.p.alte)/

(1+exp(S.gold+alpha*f.p.alte))

q.f.alte <- t(diff.S.alte )%*%R.alte.inv%*% diff.S.alte

q.f.gold <- t(diff.S.gold )%*%R.gold.inv%*% diff.S.gold

grad.beta.alte <- t(D.alte )%*%R.alte.inv %*%

(diff.S.alte)/ sigma2.alte

grad.beta.gold <- t(D.gold )%*%R.gold.inv %*%

(diff.S.gold)/ sigma2.gold

grad.alpha <- sum(f.p.alte*(y.gold -units.m*p.gold))

grad.log.sigma2.alte <- (-n/(2*sigma2.alte)+0.5*

q.f.alte/(sigma2.alte^2))* sigma2.alte

grad.log.sigma2.gold <- (-n/(2*sigma2.gold)+0.5*

q.f.gold/(sigma2.gold^2))* sigma2.gold

grad.log.phi.alte <- (t1.phi.alte+0.5*

as.numeric(t(diff.S.alte )%*%

m2.phi.alte %*%( diff.S.alte ))/ sigma2.alte)

grad.log.phi.gold <- (t1.phi.gold+0.5*

as.numeric(t(diff.S.gold )%*%

m2.phi.gold %*%( diff.S.gold ))/ sigma2.gold)

grad.log.nu2.alte <- (t1.nu2.alte+0.5*

as.numeric(t(diff.S.alte )%*%m2.nu2.alte %*%

(diff.S.alte ))/ sigma2.alte)

grad.log.nu2.gold <- (t1.nu2.gold+0.5*

as.numeric(t(diff.S.gold )%*%m2.nu2.gold %*%

(diff.S.gold ))/ sigma2.gold)

g <- c(grad.beta.alte ,grad.beta.gold ,grad.alpha ,

grad.log.sigma2.alte ,grad.log.phi.alte ,

grad.log.nu2.alte , grad.log.sigma2.gold ,

grad.log.phi.gold ,grad.log.nu2.gold)

H[ind.alpha ,ind.alpha] <- -sum((f.p.alte^2)*

units.m*p.gold/(1+exp(S.gold+alpha*f.p.alte )))

H[ind.beta.alte ,ind.sigma2.alte] <-

H[ind.sigma2.alte ,ind.beta.alte] <- -t(D.alte )%*%

R.alte.inv %*%( diff.S.alte)/sigma2.alte

H[ind.beta.gold ,ind.sigma2.gold] <-

H[ind.sigma2.gold ,ind.beta.gold] <- -t(D.gold )%*%

R.gold.inv %*%( diff.S.gold)/sigma2.gold

H[ind.beta.alte ,ind.phi.alte] <-

H[ind.phi.alte ,ind.beta.alte] <- -as.numeric(t(D.alte )%*%

m2.phi.alte %*%( diff.S.alte ))/ sigma2.alte

H[ind.beta.gold ,ind.phi.gold] <-
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H[ind.phi.gold ,ind.beta.gold] <- -as.numeric(t(D.gold )%*%

m2.phi.gold %*%( diff.S.gold ))/ sigma2.gold

H[ind.beta.alte ,ind.nu2.alte] <-

H[ind.nu2.alte ,ind.beta.alte] <-

-as.numeric(t(D.alte )%*%m2.nu2.alte %*%

(diff.S.alte ))/ sigma2.alte

H[ind.beta.gold ,ind.nu2.gold] <-

H[ind.nu2.gold ,ind.beta.gold] <-

-as.numeric(t(D.gold )%*%m2.nu2.gold %*%

(diff.S.gold ))/ sigma2.gold

H[ind.sigma2.alte ,ind.sigma2.alte] <-

(n/(2*sigma2.alte^2)-q.f.alte/

(sigma2.alte^3))* sigma2.alte^2+

grad.log.sigma2.alte

H[ind.sigma2.gold ,ind.sigma2.gold] <-

(n/(2*sigma2.gold^2)-q.f.gold/

(sigma2.gold^3))* sigma2.gold^2+

grad.log.sigma2.gold

H[ind.sigma2.alte ,ind.phi.alte] <-

H[ind.phi.alte ,ind.sigma2.alte] <-

-(grad.log.phi.alte -t1.phi.alte)

H[ind.sigma2.gold ,ind.phi.gold] <-

H[ind.phi.gold ,ind.sigma2.gold] <-

-(grad.log.phi.gold -t1.phi.gold)

H[ind.sigma2.alte ,ind.nu2.alte] <-

H[ind.nu2.alte ,ind.sigma2.alte] <-

-(grad.log.nu2.alte -t1.nu2.alte)

H[ind.sigma2.gold ,ind.nu2.gold] <-

H[ind.nu2.gold ,ind.sigma2.gold] <-

-(grad.log.nu2.gold -t1.nu2.gold)

H[ind.phi.alte ,ind.phi.alte] <- t2.phi.alte -

0.5*t(diff.S.alte )%*%n2.phi.alte %*%

(diff.S.alte)/ sigma2.alte

H[ind.phi.gold ,ind.phi.gold] <- t2.phi.gold -

0.5*t(diff.S.gold )%*%n2.phi.gold %*%

(diff.S.gold)/ sigma2.gold

H[ind.nu2.alte ,ind.nu2.alte] <- t2.nu2.alte -

0.5*t(diff.S.alte )%*%n2.nu2.alte %*%

(diff.S.alte)/sigma2.alte

H[ind.phi.alte ,ind.nu2.alte] <-

H[ind.nu2.alte ,ind.phi.alte] <-

(t2.phi.alte.nu2.alte -0.5*t(diff.S.alte )%*%

n2.phi.alte.nu2.alte %*%( diff.S.alte)/sigma2.alte)

H[ind.nu2.gold ,ind.nu2.gold] <- t2.nu2.gold -

0.5*t(diff.S.gold )%*%n2.nu2.gold %*%

(diff.S.gold)/sigma2.gold

H[ind.phi.gold ,ind.nu2.gold] <-

H[ind.nu2.gold ,ind.phi.gold] <-

(t2.phi.gold.nu2.gold -0.5*t(diff.S.gold )%*%

n2.phi.gold.nu2.gold %*%( diff.S.gold)/sigma2.gold)
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out <- list()

out$mat1<- ef*(g%*%t(g)+H)

out$g <- g*ef

out

}

a <- rep(0,length(par))

A <- matrix(0,length(par),length(par))

for(i in 1:n.samples) {

out.i <- hessian.S(sim[i,],exp.fact[i])

a <- a+out.i$g

A <- A+out.i$mat1

}

(A-a%*%t(a))

}

estim <- nlminb(par0,

function(x) -MC.log.lik(x),

function(x) -grad.MC.log.lik(x),

function(x) -hess.MC.log.lik(x),

control=list(trace=1))

estim$gradient <- grad.MC.log.lik(estim$par)

estim$hessian <- hess.MC.log.lik(estim$par)

estim$covariance <- solve(-estim$hessian)

names(estim$par) <- c("beta0.alte", "beta1.alte",

"beta2.alte", "beta3.alte",

"beta0.gold", "beta1.gold",

"beta2.gold", "beta3.gold",

"alpha", "log.sigma.alte",

"log.phi.alte", "log.nu.alte",

"log.nu.gold")

return(estim)

}

return(estim)

}

predictions.M2 <- function(data , grid.pred , covariate , estim ){

n <- nrow(data)

coords <- data[,c("web_x","web_y")]

U <- as.matrix(dist(coords ))

units.m <- data$n

y.alte <- data$y.alte

y.gold <- data$y.gold

D.alte <- model.matrix (~ elev_below750 +

elev_between750_1015 + elev_above1015, data = data)

D.gold <- model.matrix (~ elev_below750 +

elev_between750_1015 + elev_above1015, data = data)

p.D.alte <- ncol(D.alte)
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p.D.gold <- ncol(D.gold)

# I’m defining theta0

beta.alte <- estim$par[1:p.D.alte]

beta.gold <- estim$par[(p.D.alte+1):(p.D.alte+p.D.gold)]

alpha <- estim$par[p.D.alte+p.D.gold+1]

sigma2.alte <- exp(estim$par[p.D.alte+p.D.gold+2])

phi.alte <- exp(estim$par[p.D.alte+p.D.gold+3])

nu2.alte <- exp(estim$par[p.D.alte+p.D.gold+4])

sigma2.gold <- exp(estim$par[p.D.alte+p.D.gold+5])

phi.gold <- exp(estim$par[p.D.alte+p.D.gold+6])

nu2.gold <- exp(estim$par[p.D.alte+p.D.gold+7])

Sigma.alte <- sigma2.alte*exp(-U/phi.alte)

diag(Sigma.alte) <- diag(Sigma.alte)+ sigma2.alte*nu2.alte

Sigma.alte.inv <- solve(Sigma.alte)

Sigma.gold <- sigma2.gold*exp(-U/phi.gold)

diag(Sigma.gold) <- diag(Sigma.gold)+ sigma2.gold*nu2.gold

Sigma.gold.inv <- solve(Sigma.gold)

n.tot <- 2*n # total number of random effects = 2* nlocations

M <- Matrix(0,n.tot ,n.tot ,sparse=TRUE)

M[1:n,1:n] <- -Sigma.alte.inv

M[(n+1):n.tot ,(n+1):n.tot] <- -Sigma.gold.inv

mu.alte <- as.numeric(D.alte %*% beta.alte)

mu.gold <- as.numeric(D.gold %*% beta.gold)

f <- function(x) log(x/(1-x))

grad.f <- function(x) -1/((x-1)*x)

hess.f <- function(x) (2*x-1)/((x-1)^2*x^2)

ind.alte <- 1:n

ind.gold <- (n+1):n.tot

integrand <- function(S) {

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

diff.S.alte <- S.alte -mu.alte

q.f_S.alte <- t(diff.S.alte )%*% Sigma.alte.inv %*%( diff.S.alte)

diff.S.gold <- S.gold -mu.gold

q.f_S.gold <- t(diff.S.gold )%*% Sigma.gold.inv %*%( diff.S.gold)

q.f_S <- -0.5*as.numeric(q.f_S.alte+q.f_S.gold)

p.alte <- exp(S.alte )/(1+exp(S.alte))

eta.gold <- S.gold+alpha*f(p.alte)

llik <- sum(y.alte*S.alte -units.m*log(1+exp(S.alte )))+

sum(y.gold*eta.gold -units.m*log(1+exp(eta.gold )))

as.numeric(q.f_S+llik)

}
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grad.integrand <- function(S) {

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

diff.S.alte <- S.alte -mu.alte

diff.S.gold <- S.gold -mu.gold

p.alte <- exp(S.alte )/(1+exp(S.alte))

der.p.alte <- p.alte/(1+exp(S.alte))

p.gold <- exp(S.gold+alpha*f(p.alte ))/

(1+exp(S.gold+alpha*f(p.alte )))

aux.gold <- y.gold -units.m*p.gold

der.q.f_S <- -c(Sigma.alte.inv%*% diff.S.alte ,

Sigma.gold.inv%*% diff.S.gold)

der.llik <- c(y.alte -units.m*p.alte+

aux.gold*alpha*grad.f(p.alte)*der.p.alte ,

aux.gold)

out <- der.q.f_S+der.llik

return(out)

}

hessian.integrand <- function(S) {

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

p.alte <- exp(S.alte )/(1+exp(S.alte))

der.p.alte <- p.alte/(1+exp(S.alte))

der2.p.alte <- (1-exp(S.alte ))*

exp(S.alte )/((1+exp(S.alte ))^3)

p.gold <- exp(S.gold+alpha*

f(p.alte ))/(1+exp(S.gold+alpha*f(p.alte )))

aux.gold <- y.gold -units.m*p.gold

der.aux.gold <- -units.m*exp(S.gold+

alpha*f(p.alte ))/((1+exp(S.gold+alpha*f(p.alte )))^2)

res <- M

diag(res)[ind.alte] <- diag(res)[ind.alte]-

units.m*exp(S.alte )/((1+exp(S.alte ))^2)+

aux.gold*

(alpha*(hess.f(p.alte )*(der.p.alte^2)+

grad.f(p.alte)*der2.p.alte ))+

der.aux.gold *(( alpha*grad.f(p.alte)*der.p.alte)^2)

diag(res)[ind.gold] <- diag(res)[ind.gold]+der.aux.gold

diag(res[ind.gold ,ind.alte]) <-

diag(res[ind.alte ,ind.gold]) <-

der.aux.gold*( alpha*grad.f(p.alte)*der.p.alte)

return(res)

}

S.estim <-nlminb(start=c(mu.alte , mu.gold),

function(x) -as.numeric(integrand(x)),

function(x) -as.numeric(grad.integrand(x)),

function(x) -as.matrix(hessian.integrand(x)),

control=list(trace=0)

)
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S.estim$gradient <- grad.integrand(S.estim$par)

S.estim$hessian <- hessian.integrand(S.estim$par)

S.estim$Sigma.tilde <- round(solve(-S.estim$hessian) , 9)

S.estim$estimate <- S.estim$par

Sigma.sroot <- t(chol(S.estim$Sigma.tilde ))

A <- solve(Sigma.sroot)

Sigma.W.inv <- solve(A%*% bdiag(Sigma.alte ,Sigma.gold )%*%t(A))

mu.W <- as.numeric(A%*%(c(mu.alte ,mu.gold)-S.estim$estimate ))

n.sim <- 1400 # number of simulations

burnin <- 400 # burnin

thin <- 10 # thinning

n.samples <- (n.sim -burnin )/thin

h <- 1.65/((n.tot)^(1/6))

c1.h <- 0.01

c2.h <- 1e-04

# reparameterization of the model

cond.dens.W <- function(W,S) {

diff.W <- W-mu.W

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

p.alte <- exp(S.alte )/(1+exp(S.alte))

eta.gold <- S.gold+alpha*f(p.alte)

llik <- sum(y.alte*S.alte -units.m*log(1+exp(S.alte )))+

sum(y.gold*eta.gold -units.m*log(1+exp(eta.gold )))

as.numeric(-0.5*as.numeric(t(diff.W)%*%

Sigma.W.inv%*% diff.W))+ llik

}

lang.grad <- function(W,S) {

diff.W <- W-mu.W

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

p.alte <- exp(S.alte )/(1+exp(S.alte))

der.p.alte <- p.alte/(1+exp(S.alte))

p.gold <- exp(S.gold+alpha*f(p.alte ))/

(1+exp(S.gold+alpha*f(p.alte )))

aux.gold <- y.gold -units.m*p.gold

der.llik <- c(y.alte -units.m*p.alte+

aux.gold*alpha*grad.f(p.alte)*der.p.alte ,

aux.gold)

out <- as.numeric(-Sigma.W.inv%*%

diff.W+t(Sigma.sroot )%*% der.llik)

return(out)

}

S.estim$mode <- S.estim$estimate

W.curr <- rep(0,n.tot)

S.curr <- as.numeric(Sigma.sroot %*%W.curr+S.estim$mode)

mean.curr <- as.numeric(W.curr +
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(h^2/2)*lang.grad(W.curr ,S.curr))

lp.curr <- cond.dens.W(W.curr ,S.curr)

acc <- 0

sim <- matrix(NA ,nrow=n.samples ,ncol=n.tot)

h.vec <- rep(NA,n.sim)

for(i in 1:n.sim) {

W.prop <- mean.curr+h*rnorm(n.tot)

S.prop <- as.numeric(Sigma.sroot %*%W.prop+S.estim$mode)

mean.prop <- as.numeric(W.prop +

(h^2/2)*lang.grad(W.prop ,S.prop))

lp.prop <- cond.dens.W(W.prop ,S.prop)

dprop.curr <- -sum((W.prop -mean.curr)^2)/(2*(h^2))

dprop.prop <- -sum((W.curr -mean.prop)^2)/(2*(h^2))

log.prob <- lp.prop+dprop.prop -lp.curr -dprop.curr

if(log(runif(1)) < log.prob) {

acc <- acc+1

W.curr <- W.prop

S.curr <- S.prop

lp.curr <- lp.prop

mean.curr <- mean.prop

}

if( i > burnin & (i-burnin )%% thin==0) {

sim[(i-burnin )/thin ,] <- S.curr

}

h.vec[i] <- h <- max(0,h + c1.h*i^(-c2.h)*(acc/i-0.57))

cat("Simulating from cond distn of the random effects: Iteration",

i," out of ",n.sim , "\r")

flush.console ()

}

##################

##################

# Design matrices at at prediction locations

D.pred.alte <- model.matrix (~ elev_below750 +

elev_between750_1015 + elev_above1015, data = covariate)

D.pred.gold <- model.matrix (~ elev_below750 +

elev_between750_1015 + elev_above1015, data = covariate)

# covariates effects at prediction locations

mu.pred.alte <- as.numeric(D.pred.alte %*% beta.alte)

mu.pred.gold <- as.numeric(D.pred.gold %*% beta.gold)

# covariates effects at observed locations

mu.alte <- as.numeric(D.gold %*% beta.alte)

mu.gold <- as.numeric(D.gold %*% beta.gold)

n.samples <- nrow(sim)

n.pred <- nrow(grid.pred)

# Alternative diagnostic predictions

U.pred <- as.matrix(pdist(grid.pred ,coords ))

C.alte <- sigma2.alte*exp(-U.pred/phi.alte)
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A.alte <- C.alte %*% Sigma.alte.inv

# Simulations for linear predictor of alternative diagnostic

mu.cond.alte <- mu.pred.alte+sapply(1:n.samples ,

function(i) A.alte %*%( sim[i,1:n]-mu.alte))

sd.cond.alte <- sqrt(sigma2.alte -apply(A.alte*C.alte ,1,sum))

eta.alte.samples <- sapply(1:n.samples ,

function(i) mu.cond.alte[,i]+sd.cond.alte*rnorm(n.pred))

prev.alte.samples <- exp(eta.alte.samples )/

(1+exp(eta.alte.samples ))

prev.alte.mean <- apply(prev.alte.samples ,1,mean)

prev.mean.alte <- apply(prev.alte.samples ,1,mean) #

prev.sd.alte <- apply(prev.alte.samples ,1,sd)

CI.lower.alte <- apply(prev.alte.samples ,1,

function(x) quantile(x,0.025))

CI.upper.alte <- apply(prev.alte.samples ,1,

function(x) quantile(x,0.975))

exceed.20p.prob.alte <- sapply(1:dim(prev.alte.samples)

[1],function(i) mean(prev.alte.samples[i,] > 0.2) )

# Gold standard predictions

C.gold <- sigma2.gold*exp(-U.pred/phi.gold)

A.gold <- C.gold %*% Sigma.gold.inv

# Simulations for linear predictor of the gold standard

mu.cond.gold <- mu.pred.gold+sapply(1:n.samples ,

function(i) A.gold %*%( sim[i,(n+1):(2*n)]-mu.gold))

sd.cond.gold <- sqrt(sigma2.gold -apply(A.gold*C.gold ,1,sum))

eta.gold.samples <- sapply(1:n.samples ,

function(i) mu.cond.gold[,i]+sd.cond.gold*rnorm(n.pred)+

alpha*eta.alte.samples[,i])

prev.gold.samples <- exp(eta.gold.samples )/

(1+exp(eta.gold.samples ))

prev.mean.gold <- apply(prev.gold.samples ,1,mean) #

prev.sd.gold <- apply(prev.gold.samples ,1,sd)

CI.lower.gold <- apply(prev.gold.samples ,1,

function(x) quantile(x,0.025))

CI.upper.gold <- apply(prev.gold.samples ,1,

function(x) quantile(x,0.975))

exceed.20p.prob.gold <- sapply(1:dim(prev.gold.samples )[1],

function(i) mean(prev.gold.samples[i,] > 0.2) )

df <- data.frame(grid.pred , prev.mean.gold , prev.sd.gold ,

CI.lower.gold , CI.upper.gold , exceed.20p.prob.gold ,

prev.mean.alte , prev.sd.alte , CI.lower.alte ,

CI.upper.alte , exceed.20p.prob.alte)

return(df)

}
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pred.asymm.M1 <- function(data , grid.pred , covariate , estim){

coords <- data[,c("web_x","web_y")]

U <- as.matrix(dist(coords ))

n <- nrow(data)

units.m <- data$n

y.alte <- data$y.alte

y.gold <- data$y.gold

D.alte <- model.matrix (~ elev_below750 +

elev_between750_1015 + elev_above1015, data = data)

D.gold <- model.matrix (~ elev_below750 +

elev_between750_1015 + elev_above1015, data = data)

p.D.alte <- ncol(D.alte)

p.D.gold <- ncol(D.gold)

# I’m defining theta0

beta.alte <- estim$par[1:p.D.alte]

beta.gold <- estim$par[(p.D.alte+1):(p.D.alte+p.D.gold)]

alpha <- estim$par[p.D.alte+p.D.gold+1]

phi.alte <- exp(estim$par[p.D.alte+p.D.gold+3])

nu2.alte <- exp(estim$par[p.D.alte+p.D.gold+4])

sigma2.alte <- exp(estim$par[p.D.alte+p.D.gold+2])

sigma2.gold <- exp(estim$par[p.D.alte+p.D.gold+5])

Sigma.alte <- sigma2.alte*exp(-U/phi.alte)

diag(Sigma.alte) <- diag(Sigma.alte)+ sigma2.alte*nu2.alte

Sigma.alte.inv <- solve(Sigma.alte)

Sigma.gold <- diag(sigma2.gold ,n)

Sigma.gold.inv <- solve(Sigma.gold)

n.tot <- 2*n

M <- Matrix(0,n.tot ,n.tot ,sparse=TRUE)

M[1:n,1:n] <- -Sigma.alte.inv

M[(n+1):n.tot ,(n+1):n.tot] <- -Sigma.gold.inv

mu.alte <- as.numeric(D.alte %*% beta.alte)

mu.gold <- as.numeric(D.gold %*% beta.gold)

f <- function(x) log(x/(1-x))

grad.f <- function(x) -1/((x-1)*x)

hess.f <- function(x) (2*x-1)/((x-1)^2*x^2)

ind.alte <- 1:n

ind.gold <- (n+1):n.tot

integrand <- function(S) {

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

diff.S.alte <- S.alte -mu.alte

q.f_S.alte <- t(diff.S.alte )%*% Sigma.alte.inv %*%( diff.S.alte)

diff.S.gold <- S.gold -mu.gold
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q.f_S.gold <- t(diff.S.gold )%*% Sigma.gold.inv %*%( diff.S.gold)

q.f_S <- -0.5*as.numeric(q.f_S.alte+q.f_S.gold)

p.alte <- exp(S.alte )/(1+exp(S.alte))

eta.gold <- S.gold+alpha*f(p.alte)

llik <- sum(y.alte*S.alte -units.m*log(1+exp(S.alte )))+

sum(y.gold*eta.gold -units.m*log(1+exp(eta.gold )))

as.numeric(q.f_S+llik)

}

grad.integrand <- function(S) {

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

diff.S.alte <- S.alte -mu.alte

diff.S.gold <- S.gold -mu.gold

p.alte <- exp(S.alte )/(1+exp(S.alte))

der.p.alte <- p.alte/(1+exp(S.alte))

p.gold <- exp(S.gold+alpha*f(p.alte ))/

(1+exp(S.gold+alpha*f(p.alte )))

aux.gold <- y.gold -units.m*p.gold

der.q.f_S <- -c(Sigma.alte.inv%*% diff.S.alte ,

Sigma.gold.inv%*% diff.S.gold)

der.llik <- c(y.alte -units.m*p.alte+

aux.gold*alpha*grad.f(p.alte)*der.p.alte ,

aux.gold)

out <- der.q.f_S+der.llik

return(out)

}

hessian.integrand <- function(S) {

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

p.alte <- exp(S.alte )/(1+exp(S.alte))

der.p.alte <- p.alte/(1+exp(S.alte))

der2.p.alte <- (1-exp(S.alte ))*

exp(S.alte )/((1+exp(S.alte ))^3)

p.gold <- exp(S.gold+alpha*f(p.alte ))/

(1+exp(S.gold+alpha*f(p.alte )))

aux.gold <- y.gold -units.m*p.gold

der.aux.gold <- -units.m*exp(S.gold+

alpha*f(p.alte ))/

((1+exp(S.gold+alpha*f(p.alte )))^2)

res <- M

diag(res)[ind.alte] <- diag(res)[ind.alte]-

units.m*exp(S.alte )/((1+exp(S.alte ))^2)+

aux.gold*

(alpha*(hess.f(p.alte )*(der.p.alte^2)+

grad.f(p.alte)*der2.p.alte ))+

der.aux.gold *(( alpha*grad.f(p.alte)*der.p.alte)^2)

diag(res)[ind.gold] <- diag(res)[ind.gold]+der.aux.gold
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diag(res[ind.gold ,ind.alte]) <- diag(res[ind.alte ,ind.gold]) <-

der.aux.gold*( alpha*grad.f(p.alte)*der.p.alte)

return(res)

}

S.estim <-nlminb(start=c(mu.alte ,mu.gold),

function(x) -as.numeric(integrand(x)),

function(x) -as.numeric(grad.integrand(x)),

function(x) -as.matrix(hessian.integrand(x)),

control=list(trace=0)

)

S.estim$gradient <- grad.integrand(S.estim$par)

S.estim$hessian <- hessian.integrand(S.estim$par)

S.estim$Sigma.tilde <- round(solve(-S.estim$hessian), 9)

S.estim$estimate <- S.estim$par

Sigma.sroot <- t(chol(S.estim$Sigma.tilde ))

A <- solve(Sigma.sroot)

Sigma.W.inv <- solve(A%*% bdiag(Sigma.alte ,Sigma.gold )%*%t(A))

mu.W <- as.numeric(A%*%(c(mu.alte ,mu.gold)-S.estim$estimate ))

n.sim <- 1400 # number of simulations

burnin <- 400 # burnin

thin <- 10 # thinning

n.samples <- (n.sim -burnin )/thin

h <- 1.65/((n.tot)^(1/6))

c1.h <- 0.01

c2.h <- 1e-04

# reparameterization of the model

cond.dens.W <- function(W,S) {

diff.W <- W-mu.W

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

p.alte <- exp(S.alte )/(1+exp(S.alte))

eta.gold <- S.gold+alpha*f(p.alte)

llik <- sum(y.alte*S.alte -units.m*log(1+exp(S.alte )))+

sum(y.gold*eta.gold -units.m*log(1+exp(eta.gold )))

as.numeric(-0.5*as.numeric(t(diff.W)%*%

Sigma.W.inv%*% diff.W))+ llik

}

lang.grad <- function(W,S) {

diff.W <- W-mu.W

S.alte <- S[ind.alte]

S.gold <- S[ind.gold]

p.alte <- exp(S.alte )/(1+exp(S.alte))

der.p.alte <- p.alte/(1+exp(S.alte))

p.gold <- exp(S.gold+alpha*f(p.alte ))/

(1+exp(S.gold+alpha*f(p.alte )))

aux.gold <- y.gold -units.m*p.gold

der.llik <- c(y.alte -units.m*p.alte+

aux.gold*alpha*grad.f(p.alte)*der.p.alte ,

aux.gold)
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out <- as.numeric(-Sigma.W.inv%*% diff.W+

t(Sigma.sroot )%*% der.llik)

return(out)

}

S.estim$mode <- S.estim$estimate

W.curr <- rep(0,n.tot)

S.curr <- as.numeric(Sigma.sroot %*%W.curr+S.estim$mode)

mean.curr <- as.numeric(W.curr +

(h^2/2)*lang.grad(W.curr ,S.curr))

lp.curr <- cond.dens.W(W.curr ,S.curr)

acc <- 0

sim <- matrix(NA ,nrow=n.samples ,ncol=n.tot)

h.vec <- rep(NA,n.sim)

for(i in 1:n.sim) {

W.prop <- mean.curr+h*rnorm(n.tot)

S.prop <- as.numeric(Sigma.sroot %*%W.prop+S.estim$mode)

mean.prop <- as.numeric(W.prop +

(h^2/2)*lang.grad(W.prop ,S.prop))

lp.prop <- cond.dens.W(W.prop ,S.prop)

dprop.curr <- -sum((W.prop -mean.curr)^2)/(2*(h^2))

dprop.prop <- -sum((W.curr -mean.prop)^2)/(2*(h^2))

log.prob <- lp.prop+dprop.prop -lp.curr -dprop.curr

if(log(runif(1)) < log.prob) {

acc <- acc+1

W.curr <- W.prop

S.curr <- S.prop

lp.curr <- lp.prop

mean.curr <- mean.prop

}

if( i > burnin & (i-burnin )%% thin==0) {

sim[(i-burnin )/thin ,] <- S.curr

}

h.vec[i] <- h <- max(0,h + c1.h*i^(-c2.h)*(acc/i-0.57))

cat("Simulating from cond distn of random effects: Iteration",

i," out of ",n.sim , "\r")

flush.console ()

}

###########################

###########################

# Design matrices at at prediction locations

D.pred.alte <- model.matrix (~ elev_below750 +

elev_between750_1015 + elev_above1015, data = covariate)

D.pred.gold <- model.matrix (~ elev_below750 +

elev_between750_1015 + elev_above1015, data = covariate)
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# covariates effects at prediction locations

mu.pred.alte <- as.numeric(D.pred.alte %*% beta.alte)

mu.pred.gold <- as.numeric(D.pred.gold %*% beta.gold)

# covariates effects at observed locations

mu.alte <- as.numeric(D.gold %*% beta.alte)

mu.gold <- as.numeric(D.gold %*% beta.gold)

n.samples <- nrow(sim)

n.pred <- nrow(grid.pred)

# RAPLOA predictions

U.pred <- as.matrix(pdist(grid.pred ,coords ))

C.alte <- sigma2.alte*exp(-U.pred/phi.alte)

A.alte <- C.alte %*% Sigma.alte.inv

# Simulations for linear predictor for RAPLOA

mu.cond.alte <- mu.pred.alte+sapply(1:n.samples ,

function(i) A.alte %*%( sim[i,1:n]-mu.alte))

sd.cond.alte <- sqrt(sigma2.alte -apply(A.alte*C.alte ,1,sum))

eta.alte.samples <- sapply(1:n.samples ,

function(i) mu.cond.alte[,i]+sd.cond.alte*rnorm(n.pred))

prev.alte.samples <- exp(eta.alte.samples )/

(1+exp(eta.alte.samples ))

prev.mean.alte <- apply(prev.alte.samples ,1,mean) #

prev.sd.alte <- apply(prev.alte.samples ,1,sd)

CI.lower.alte <- apply(prev.alte.samples ,1,

function(x) quantile(x,0.025))

CI.upper.alte <- apply(prev.alte.samples ,1,

function(x) quantile(x,0.975))

exceed.20p.prob.alte <- sapply(1:dim(prev.alte.samples )[1],

function(i) mean(prev.alte.samples[i,] > 0.2) )

eta.gold.samples <- sapply(1:n.samples ,

function(i) mu.pred.gold+

alpha*eta.alte.samples[,i])

prev.gold.samples <- exp(eta.gold.samples )/

(1+exp(eta.gold.samples ))

prev.mean.gold <- apply(prev.gold.samples ,1,mean) #

prev.sd.gold <- apply(prev.gold.samples ,1,sd)

CI.lower.gold <- apply(prev.gold.samples ,1,

function(x) quantile(x,0.025))

CI.upper.gold <- apply(prev.gold.samples ,1,

function(x) quantile(x,0.975))

exceed.20p.prob.gold <- sapply(1:dim(prev.gold.samples )[1],

function(i) mean(prev.gold.samples[i,] > 0.2) )

df <- data.frame(grid.pred , prev.mean.gold , prev.sd.gold ,

CI.lower.gold , CI.upper.gold ,

exceed.20p.prob.gold ,

prev.mean.alte , prev.sd.alte ,
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CI.lower.alte , CI.upper.alte ,

exceed.20p.prob.alte)

return(df)

}

File Loaloa Examples.R

# rm(list=ls())

# It is important to keep all the files in a single folder and set

# this folder as the working directory. Edit the next line to set

# your working directory.

workingdir <- "~/../ Examples_Code_and_Data/loaloa_application"

setwd(workingdir)

library(rgdal)

library(geoR)

library(PrevMap)

source("loa_functions.R")

#################################################################

###################################################################

# Simulating data under the fitted asymmetric Model 2 in the paper ,

# using jittered locations of the original Loa loa study

###################################################################

#################################################################

# An example data that mimics the origional loa loa data

# has been provided as LoaloaExampleData.RData. However ,

# you can simulate your own data under the fitted asymmetric

# Model 2 in the paper. The next two lines simulate such data.

input.data <- get(load("input_data.RData"))

data <- sim_from_asymm_M2(input.data)

head(data)

plot(data$prev.alte , data$prev.gold)

# save(data , file=" LoaloaExampleData.RData ")

#################################################################

################################################################

# ANALYSES USING THE MODEL 1 SPECIFICATION OF ASYMMETRIC MODEL

################################################################

#################################################################

# Loading the example loa loa prevalence data

data <- get(load("LoaloaExampleData.RData"))

# Estimating the Model 1 specification of the asymmetric model

# You could estimate the parameters of the model or

# used alread estimated

# and saved parameters for your predictions.
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estim <- fit_asymm_M1(data)

# save(estim , file="MCML_estimates_asymm_M1.RData ")

# You can change the number of MCMC samples , thining ,

# and burnin in the loa_functions.R file.

# Getting the predictions grid

grid.pred <-

get(load("prediction_grid_covariates.RData"))[, c("web_x", "web_y")]

# Getting the values of elevation at the prediction locations

elev <- prediction_grid_covariates$elev

# Comuping the spline variables for elevation at the

# prediction location.

covariate <- get_elev_vars(elev , 750, 1015)

# Loading the already estimated parameters the asymetric model

# You can skip this line if you wish to use parameters you have

# estimated using the function fit_asymm_M1()

estim <- get(load("MCML_estimates_asymm_M1.RData"))

# You can change the number of MCMC samples , thining ,

# and burnin in the loa_functions.R file.

# Predicting with the M1 specification of the assymetric model

# You can change the number of MCMC samples , thining ,

# and burnin in the loa_functions.R file.

predictions.asymm.M1 <- pred.asymm.M1(data , grid.pred ,

covariate , estim)

# web_x , web_y : Cordinates of the prediction locations

# that form the grid

# prev.mean.gold : Mean prevalence as defined by the gold

# standard diagnostic

# prev.sd.gold : Standard deviation based on the gold

# standard diagnostic

# CI.lower.gold : lower end of the 95% predictive interval

# based on the gold standard diagnostic

# CI.upper.gold : upper end of the 95% predictive interval

# based on the gold standard diagnostic

# exceed.20p.prob.gold : predictive probability of prevalence

# based on the gold standard diagnostic exceeding 20%

# prev.mean.alte : Mean prevalence as defined by the

# alternate standard diagnostic

# prev.sd.alte : Standard deviation based on the

# alternate diagnostic

# CI.lower.alte : lower end of the 95% predictive interval

# based on the alternate diagnostic

# CI.upper.alte : upper end of the 95% predictive interval

# based on the alternate diagnostic

# exceed.20p.prob.alte : predictive probability of prevalence

# based on the alternate diagnostic exceeding 20%

# ploting the mean prevalence as defined by the

# gold standard diagnostic

plot(rasterFromXYZ(predictions.asymm.M1

[, c("web_x", "web_y", "prev.mean.gold")]))
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#################################################################

################################################################

# ANALYSES USING THE MODEL 2 SPECIFICATION OF ASYMMETRIC MODEL

################################################################

################################################################

# Loading the example loa loa prevalence data

data <- get(load("LoaloaExampleData.RData"))

# Fitting the M2 specification of the assymetric model

# You could estimate the parameters of the model or

# used alread estimated

# and saved parameters for your predictions.

# You can change the number of MCMC samples , thining ,

# and burnin in the loa_functions.R file.

estim <- fit_asymm_M2(data)

#save(estim , file="MCML_estimates_asymm_M2.RData ")

# Getting the predictions grid

grid.pred <- get(

load("prediction_grid_covariates.RData"))[, c("web_x", "web_y")]

# Getting the values of elevation at the prediction locations

elev <- prediction_grid_covariates$elev

# Comuping the spline variables for elevation at the

# prediction location.

covariate <- get_elev_vars(elev , 750, 1015)

# Geting the estimates of the model parameters

# for the plugged -in predictions

# Loading the already estimated parameters the asymetric model

# You can skip this line if you wish to use parameters you have

# estimated using the function fit_asymm_M1()

estim <- get(load("MCML_estimates_asymm_M2.RData"))

# Predicting with the M2 specification of the assymetric model

# You can change the number of MCMC samples , thining ,

# and burnin in the loa_functions.R file.

predictions.asymm.M2 <-

predictions.M2(data , grid.pred , covariate , estim)

head(predictions.asymm.M2)

# web_x , web_y : Cordinates of the prediction locations

# that form the grid

# prev.mean.gold : Mean prevalence as defined by the

# gold standard diagnostic

# prev.sd.gold : Standard deviation based on the

# gold standard diagnostic

# CI.lower.gold : lower end of the 95% predictive interval

# based on the gold standard diagnostic

# CI.upper.gold : upper end of the 95% predictive interval
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# based on the gold standard diagnostic

# exceed.20p.prob.gold : predictive probability of prevalence

# based on the gold standard diagnostic exceeding 20%

# prev.mean.alte : Mean prevalence as defined by the

# alternate standard diagnostic

# prev.sd.alte : Standard deviation based on the

# alternate diagnostic

# CI.lower.alte : lower end of the 95% predictive interval

# based on the alternate diagnostic

# CI.upper.alte : upper end of the 95% predictive interval

# based on the alternate diagnostic

# exceed.20p.prob.alte : predictive probability of prevalence

# based on the alternate diagnostic exceeding 20%

# ploting the mean prevalence as defined by the gold standard diagnostic

plot(rasterFromXYZ(predictions.asymm.M2

[, c("web_x", "web_y", "prev.mean.gold")]))
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Appendix C: R Code for
statistical analysis using Model
4.16

File README2.TXT

The folder malaria_application contains two R scripts and four

.RData files. The R script malaria_Example.R demonstrates the

malaria analysis with an example data. It calls functions in the

other R script malaria_functions.R. Detailed description of the

malaria analysis are given as comments in the malaria_Example.R.

The .RData files are as follows:

malaria_input4sim.RData is a dataframe used as input data to

simulated the RDT and PCR prevalence datasets. It contains the

following variables.

ageless5, agegreater5: variables defining the age spline

sex: gender of the individual

web_x, web_y: gitter geolocations of the original data

diagnostic: the diagnostic used

MalariaExampleData.RData is an example dataset for the malaria

analysis. It contains , in addition to the variables of

malaria_input4sim.RData described above , the variable malaria ,

which is a binary outcome of weather the individual has malaria

(1) or not (0). malaria_site_grid.RData is the prediction grid of

the malaria analyses. MCML_estimates_malaria.RData is a list

containing the MCML estimates for the malaria analyses.

233
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File malaria functions

#########################################################

#########################################################

# SIMULATING FROM THE MODEL OF THE MALARIA APPLICATION

#########################################################

#########################################################

simulate_malaria_data <- function (){

data <- get(load("malaria_input4sim.RData"))

estim <- get(load("MCML_estimates_malaria.RData"))

D <- model.matrix( ~ diagnostic+diagnostic :(sex +

ageless5 + agegreater5),

data=data ,family = binomial , x =TRUE)

p <- ncol(D)

beta0 <- estim$par[1:p]

sigma2.pcr.0 <- exp(estim$par[p+1])

sigma2.rdt.0 <- exp(estim$par[p+2])

phi0 <- exp(estim$par[p+3])

n.tot <- nrow(data)

n.indiv <- n.tot/2

mu0.pcr <- as.numeric(D%*% beta0)[1:n.indiv]

mu0.rdt <- as.numeric(D%*% beta0)[(n.indiv+1):n.tot]

units.m <- rep(1,2*n.indiv)

indiv.coords <- data[1:n.indiv ,c("web_x","web_y")]

ID.indiv.coords <- create.ID.coords(indiv.coords ,~web_x+web_y)

locs.coords <- unique(indiv.coords)

n.locs <- nrow(locs.coords)

y.pcr = data$malaria[1:n.indiv]

y.rdt = data$malaria [(n.indiv+1):n.tot]

U <- as.matrix(dist(locs.coords ))

R <- ((exp(-U/phi0)))

R.sroot <- t(chol(R))

C.S <- sapply(1:n.locs ,function(i) ID.indiv.coords ==i)*1

T.process <- R.sroot %*% rnorm(n.locs)

eta.rdt <- mu0.rdt + C.S %*% (sqrt(sigma2.rdt.0)*T.process)

eta.pcr <- mu0.pcr + C.S %*% (sqrt(sigma2.pcr.0)*T.process)

prob.pos.pcr <- exp(eta.pcr )/(1 + exp(eta.pcr))

prob.pos.rdt <- exp(eta.rdt )/(1 + exp(eta.rdt))

malaria <- rbinom(n.indiv , 1, c(prob.pos.pcr ,prob.pos.rdt) )

outdata <- cbind(data , malaria)

return(outdata)
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}

#########################################################

#########################################################

# ESTIMATING THE MODEL OF THE MALARIA APPLICATION

#########################################################

#########################################################

estim_mal <- function(data.mod){

D <- model.matrix (~ diagnostic+diagnostic :(sex +

ageless5 + agegreater5), data=data.mod)

# Initializing the model parameters

estim <- get(load("MCML_estimates_malaria.RData"))

p <- ncol(D)

beta0 <- estim$par[1:p]

sigma2.pcr.0 <- exp(estim$par[p+1])

sigma2.rdt.0 <- exp(estim$par[p+2])

phi0 <- exp(estim$par[p+3])-2

coords <- unique(data.mod[,c("web_x","web_y")])

U <- as.matrix(dist(coords ))

Sigma <- exp(-U/phi0)

Sigma.inv <- solve(Sigma)

n.x <- dim(Sigma.inv)[1]

n <- nrow(data.mod)/2

scale0 <- sqrt(c(rep(sigma2.pcr.0,n),rep(sigma2.rdt.0,n)))

mu0 <- as.numeric(D%*% beta0)

ID.coords <- create.ID.coords(data.mod ,~web_x+web_y)

C.S <- t(sapply(1:n.x,function(i) ID.coords ==i))

y <- data.mod$malaria

units.m <- rep(1,2*n)

# Implementation of the MCMC

integrand <- function(S) {

eta <- mu0+as.numeric(scale0*S[ID.coords ])

llik <- sum(y*eta -units.m*log(1+exp(eta )))

q.f_S <- t(S)%*% Sigma.inv %*%(S)
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-0.5*q.f_S+llik

}

grad.integrand <- function(S) {

eta <- as.numeric(mu0+scale0*as.numeric(S[ID.coords ]))

h <- units.m*exp(eta)/(1+exp(eta))

as.numeric(-Sigma.inv %*%S+

sapply(1:n.x,

function(i) sum((scale0*(y-h))[C.S[i ,]])))

}

hessian.integrand <- function(S) {

eta <- as.numeric(mu0+scale0*as.numeric(S[ID.coords ]))

h <- units.m*exp(eta)/(1+exp(eta))

h1 <- h/(1+exp(eta))

grad.S.S <- -Sigma.inv

diag(grad.S.S) <- diag(grad.S.S)-sapply(1:n.x,

function(i) sum((( scale0^2)*h1)[C.S[i,]]))

as.matrix(grad.S.S)

}

estim <- maxBFGS(integrand ,grad.integrand ,

hessian.integrand ,rep(0,n.x))

mode <- estim$estimate

Sigma.tilde <- solve(-estim$hessian)

Sigma.sroot <- t(chol(Sigma.tilde ))

A <- solve(Sigma.sroot)

Sigma.w.inv <- solve(A%*% Sigma %*%t(A))

mu.w <- -as.numeric(A%*% mode)

cond.dens.W <- function(W,S) {

eta <- mu0+scale0*as.numeric(S[ID.coords ])

llik <- sum(y*eta -units.m*log(1+exp(eta )))

diff.w <- W-mu.w

-0.5*as.numeric(t(diff.w)%*% Sigma.w.inv %*% diff.w)+

llik

}

lang.grad <- function(W,S) {

diff.w <- W-mu.w

eta <- mu0+scale0*as.numeric(S[ID.coords ])

der <- units.m*exp(eta)/(1+exp(eta))

grad.S <- sapply(1:n.x,

function(i) sum((( scale0)*(y-der))[C.S[i,]]))

as.numeric(-Sigma.w.inv %*%(W-mu.w)+ t(Sigma.sroot )%*% grad.S)

}

h <- 1.65/(n.x^(1/6))
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n.sim <- 9000

burnin <- 1000

thin <- 2

c1.h <- 0.001

c2.h <- 0.0001

W.curr <- rep(0,n.x)

S.curr <- as.numeric(Sigma.sroot %*%W.curr+mode)

C.S <- t(sapply(1:n.x,function(i) ID.coords ==i))

mean.curr <- as.numeric(W.curr + (h^2/2)*lang.grad(W.curr ,S.curr))

lp.curr <- cond.dens.W(W.curr ,S.curr)

acc <- 0

S.sim <- matrix(NA,nrow=(n.sim -burnin )/thin ,ncol=n.x)

h.vec <- rep(NA,n.sim)

for(i in 1:n.sim) {

W.prop <- mean.curr+h*rnorm(n.x)

S.prop <- as.numeric(Sigma.sroot %*%W.prop+mode)

mean.prop <- as.numeric(W.prop +

(h^2/2)*lang.grad(W.prop ,S.prop))

lp.prop <- cond.dens.W(W.prop ,S.prop)

dprop.curr <- -sum((W.prop -mean.curr)^2)/(2*(h^2))

dprop.prop <- -sum((W.curr -mean.prop)^2)/(2*(h^2))

log.prob <- lp.prop+dprop.prop -lp.curr -dprop.curr

if(log(runif(1)) < log.prob) {

acc <- acc+1

W.curr <- W.prop

S.curr <- S.prop

lp.curr <- lp.prop

mean.curr <- mean.prop

}

if( i > burnin & (i-burnin )%% thin==0) {

S.sim[(i-burnin )/thin ,] <- S.curr

}

h.vec[i] <- h <- max(0,h + c1.h*i^(-c2.h)*(acc/i-0.57))

cat("Iteration",i,"out of",n.sim ,"\r")

flush.console ()

}

####################################################

log.integrand <- function(S,val) {

n.x <- length(S)

scale <- sqrt(c(rep(val$sigma2.pcr ,n),rep(val$sigma2.rdt ,n)))

eta <- scale*S[ID.coords ]+val$mu

llik <- sum(y*eta -units.m*log(1+exp(eta )))

q.f_S <- t(S)%*% val$R.inv%*%S

as.numeric(-0.5*(val$ldetR+q.f_S)+

llik)

}
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# Maximization of the likelihood

compute.log.f <- function(par ,ldetR=NA ,R.inv=NA) {

beta <- par[1:p]

sigma2.pcr <- exp(par[p+1])

sigma2.rdt <- exp(par[p+2])

phi <- exp(par[p+3])

val <- list()

val$sigma2.pcr <- sigma2.pcr

val$sigma2.rdt <- sigma2.rdt

val$mu <- as.numeric(D%*% beta)

if(is.na(ldetR) & is.na(as.numeric(R.inv)[1])) {

R <- varcov.spatial(dists.lowertri=U,cov.model="matern",

cov.pars=c(1,phi),

nugget=0,kappa=0.5)$ varcov

val$ldetR <- determinant(R)$ modulus

val$R.inv <- solve(R)

} else {

val$ldetR <- ldetR

val$R.inv <- R.inv

}

sapply(1:(dim(S.sim)[1]),

function(i) log.integrand(S.sim[i,],val))

}

U <- dist(coords)

par0 <- c(beta0,log(c(sigma2.pcr.0,sigma2.rdt.0,phi0)))

log.f.tilde <- compute.log.f(par0)

MC.log.lik <- function(par) {

log(mean(exp(compute.log.f(par)-log.f.tilde )))

}

der.phi <- function(u,phi ,kappa) {

u <- u+10e-16

if(kappa==0.5) {

out <- (u*exp(-u/phi))/phi^2

} else {

out <- (( besselK(u/phi ,kappa+1)+ besselK(u/phi ,kappa -1))*

phi^(-kappa -2)*u^( kappa+1))/(2^kappa*gamma(kappa))-

(kappa*2^(1-kappa )* besselK(u/phi ,kappa )*phi^(-kappa -1)*

u^kappa )/gamma(kappa)

}

out

}

der2.phi <- function(u,phi ,kappa) {

u <- u+10e-16

if(kappa==0.5) {

out <- (u*(u-2*phi)*exp(-u/phi))/phi^4

} else {

bk <- besselK(u/phi ,kappa)

bk.p1 <- besselK(u/phi ,kappa+1)

bk.p2 <- besselK(u/phi ,kappa+2)

bk.m1 <- besselK(u/phi ,kappa -1)

bk.m2 <- besselK(u/phi ,kappa -2)
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out <- (2^(-kappa -1)*phi^(-kappa -4)*

u^kappa*(bk.p2*u^2+2*bk*u^2+

bk.m2*u^2-4*kappa*bk.p1*phi*u-4*

bk.p1*phi*u-4*kappa*bk.m1*phi*u-4*bk.m1*phi*u+

4*kappa^2*bk*phi^2+4*kappa*bk*phi^2))/( gamma(kappa ))

}

out

}

matern.grad.phi <- function(U,phi ,kappa) {

n <- attr(U,"Size")

grad.phi.mat <- matrix(NA ,nrow=n,ncol=n)

ind <- lower.tri(grad.phi.mat)

grad.phi <- der.phi(as.numeric(U),phi ,kappa)

grad.phi.mat[ind] <- grad.phi

grad.phi.mat <- t(grad.phi.mat)

grad.phi.mat[ind] <- grad.phi

diag(grad.phi.mat) <- rep(der.phi(0,phi ,kappa),n)

grad.phi.mat

}

matern.hessian.phi <- function(U,phi ,kappa) {

n <- attr(U,"Size")

hess.phi.mat <- matrix(NA ,nrow=n,ncol=n)

ind <- lower.tri(hess.phi.mat)

hess.phi <- der2.phi(as.numeric(U),phi ,kappa)

hess.phi.mat[ind] <- hess.phi

hess.phi.mat <- t(hess.phi.mat)

hess.phi.mat[ind] <- hess.phi

diag(hess.phi.mat) <- rep(der2.phi(0,phi ,kappa),n)

hess.phi.mat

}

grad.MC.log.lik <- function(par) {

beta <- par[1:p]; mu <- D%*% beta

sigma2.pcr <- exp(par[p+1])

sigma2.rdt <- exp(par[p+2])

phi <- exp(par[p+3])

R <- varcov.spatial(dists.lowertri=U,cov.model="matern",

cov.pars=c(1,phi),

nugget=0,kappa=0.5)$ varcov

R.inv <- solve(R)

ldetR <- determinant(R)$ modulus

exp.fact <- exp(compute.log.f(par ,ldetR ,R.inv)-log.f.tilde)

L.m <- sum(exp.fact)

exp.fact <- exp.fact/L.m

R1.phi <- matern.grad.phi(U,phi ,0.5)

m1.phi <- R.inv%*%R1.phi

t1.phi <- -0.5*sum(diag(m1.phi))

m2.phi <- m1.phi%*%R.inv; rm(m1.phi)

scale <- sqrt(c(rep(sigma2.pcr ,n),rep(sigma2.rdt ,n)))

gradient.S <- function(S) {
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eta <- mu+scale*S[ID.coords]

h <- units.m*exp(eta)/(1+exp(eta))

q.f <- t(S)%*%R.inv%*%S

grad.beta <- t(D)%*%(y-h)

grad.log.sigma2.pcr <- sum((y[1:n]-h[1:n])*

S[ID.coords[1:n]])* sqrt(sigma2.pcr)/2

grad.log.sigma2.rdt <- sum((y[-(1:n)]-h[-(1:n)])*

S[ID.coords[-(1:n)]])* sqrt(sigma2.rdt)/2

grad.log.phi <- (t1.phi+

0.5*as.numeric(t(S)%*%m2.phi %*%(S)))* phi

out <- c(grad.beta ,grad.log.sigma2.pcr ,

grad.log.sigma2.rdt ,grad.log.phi)

out

}

out <- rep(0,length(par))

for(i in 1:(dim(S.sim)[1])) {

out <- out + exp.fact[i]* gradient.S(S.sim[i,])

}

out

}

hess.MC.log.lik <- function(par) {

beta <- par[1:p]; mu <- D%*% beta

sigma2.pcr <- exp(par[p+1])

sigma2.rdt <- exp(par[p+2])

phi <- exp(par[p+3])

R <- varcov.spatial(dists.lowertri=U,cov.model="matern",

cov.pars=c(1,phi),

nugget=0,kappa=0.5)$ varcov

R.inv <- solve(R)

ldetR <- determinant(R)$ modulus

exp.fact <- exp(compute.log.f(par ,ldetR ,R.inv)-log.f.tilde)

L.m <- sum(exp.fact)

exp.fact <- exp.fact/L.m

R1.phi <- matern.grad.phi(U,phi ,0.5)

m1.phi <- R.inv%*%R1.phi

t1.phi <- -0.5*sum(diag(m1.phi))

m2.phi <- m1.phi%*%R.inv; rm(m1.phi)

R2.phi <- matern.hessian.phi(U,phi ,0.5)

t2.phi <- -0.5*sum(diag(R.inv%*%

R2.phi -R.inv%*%R1.phi%*%R.inv%*%R1.phi))

n2.phi <- R.inv %*%(2*R1.phi%*%R.inv%*%R1.phi -R2.phi )%*%R.inv

H <- matrix(0,nrow=length(par),ncol=length(par))
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scale <- sqrt(c(rep(sigma2.pcr ,n),rep(sigma2.rdt ,n)))

hessian.S <- function(S,ef) {

eta <- mu+scale*S[ID.coords]

h <- units.m*exp(eta)/(1+exp(eta))

h1 <- as.numeric(h/(1+exp(eta)))

q.f <- t(S)%*%R.inv%*%S

grad.beta <- t(D)%*%(y-h)

grad.log.sigma2.pcr <- sum((y[1:n]-h[1:n])*

S[ID.coords[1:n]])* sqrt(sigma2.pcr)/2

grad.log.sigma2.rdt <- sum((y[-(1:n)]-h[-(1:n)])*

S[ID.coords[-(1:n)]])* sqrt(sigma2.rdt)/2

grad.log.phi <- (t1.phi+0.5*

as.numeric(t(S)%*%m2.phi %*%(S)))* phi

g <- c(grad.beta ,grad.log.sigma2.pcr ,

grad.log.sigma2.rdt ,grad.log.phi)

grad2.log.lsigma2.lsigma2.pcr <- grad.log.sigma2.pcr/2+

-sum(h1[1:n]*((S[ID.coords[1:n]])^2))* sigma2.pcr/4

grad2.log.lsigma2.beta.pcr <- apply(-D[1:n,]*

h1[1:n]*S[ID.coords[1:n]]* sqrt(sigma2.pcr)/2,2,sum)

grad2.log.lsigma2.lsigma2.rdt <- grad.log.sigma2.rdt/2+

-sum(h1[-(1:n)]*((S[ID.coords[-(1:n)]])^2))* sigma2.rdt/4

grad2.log.lsigma2.beta.rdt <- apply(-D[-(1:n),]*

h1[-(1:n)]*S[ID.coords[-(1:n)]]*

sqrt(sigma2.rdt)/2, 2,sum)

grad2.log.lphi.lphi <-(t2.phi -0.5*t(S)%*%

n2.phi %*%(S))*phi^2+grad.log.phi

H[1:p,1:p] <- -t(D)%*%(D*h1)

H[p+1,p+1] <- grad2.log.lsigma2.lsigma2.pcr

H[1:p,p+1] <- H[p+1,1:p] <- grad2.log.lsigma2.beta.pcr

H[p+2,p+2] <- grad2.log.lsigma2.lsigma2.rdt

H[1:p,p+2] <- H[p+2,1:p] <- grad2.log.lsigma2.beta.rdt

H[p+3,p+3] <- grad2.log.lphi.lphi

out <- list()

out$mat1<- ef*(g%*%t(g)+H)

out$g <- g*ef

out

}

a <- rep(0,length(par))

A <- matrix(0,length(par),length(par))

for(i in 1:(dim(S.sim)[1])) {

out.i <- hessian.S(S.sim[i,],exp.fact[i])

a <- a+out.i$g

A <- A+out.i$mat1

}

(A-a%*%t(a))

}

estim <- nlminb(start = par0,

function(x) -MC.log.lik(x),

function(x) -grad.MC.log.lik(x),

function(x) -hess.MC.log.lik(x),
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control=list(trace=1))

estim$gradient <- grad.MC.log.lik(estim$par)

estim$hessian <- hess.MC.log.lik(estim$par)

estim$covariance <- solve(-estim$hessian)

return(estim)

}

#########################################################

#########################################################

# PREDICTION WITH THE MODEL OF THE MALARIA APPLICATION

#########################################################

#########################################################

predict_mal <- function(data.mod , estim , grid.pred){

mcml.estimates <- estim

D <- model.matrix (~ diagnostic+diagnostic :(sex +

ageless5 + agegreater5), data=data.mod)

p <- ncol(D)

coords <- unique(data.mod[,c("web_x","web_y")])

U <- as.matrix(dist(coords ))

n <- nrow(data.mod)/2

y <- data.mod$malaria

units.m <- rep(1,2*n)

beta0 <- estim$par[1:p]

sigma2.pcr.0 <- exp(estim$par[p+1])

sigma2.rdt.0 <- exp(estim$par[p+2])

phi0 <- exp(estim$par[p+3])

Sigma <- exp(-U/phi0)

Sigma.inv <- solve(Sigma)

n.x <- dim(Sigma.inv)[1]

scale0 <- sqrt(c(rep(sigma2.pcr.0,n),rep(sigma2.rdt.0,n)))

mu0 <- as.numeric(D%*% beta0)

ID.coords <- create.ID.coords(data.mod ,~web_x+web_y)

C.S <- t(sapply(1:n.x,function(i) ID.coords ==i))
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##########################################

#### Some important functions

##########################################

integrand <- function(S) {

eta <- mu0+as.numeric(scale0*S[ID.coords ])

llik <- sum(y*eta -units.m*log(1+exp(eta )))

q.f_S <- t(S)%*% Sigma.inv %*%(S)

-0.5*q.f_S+llik

}

grad.integrand <- function(S) {

eta <- as.numeric(mu0+scale0*as.numeric(S[ID.coords ]))

h <- units.m*exp(eta)/(1+exp(eta))

as.numeric(-Sigma.inv %*%S+

sapply(1:n.x,function(i) sum(( scale0*(y-h))[C.S[i ,]])))

}

hessian.integrand <- function(S) {

eta <- as.numeric(mu0+scale0*as.numeric(S[ID.coords ]))

h <- units.m*exp(eta)/(1+exp(eta))

h1 <- h/(1+exp(eta))

grad.S.S <- -Sigma.inv

diag(grad.S.S) <- diag(grad.S.S)-sapply(1:n.x,

function(i) sum((( scale0^2)*h1)[C.S[i,]]))

as.matrix(grad.S.S)

}

cond.dens.W <- function(W,S) {

eta <- mu0+scale0*as.numeric(S[ID.coords ])

llik <- sum(y*eta -units.m*log(1+exp(eta )))

diff.w <- W-mu.w

-0.5*as.numeric(t(diff.w)%*% Sigma.w.inv %*% diff.w)+

llik

}

lang.grad <- function(W,S) {

diff.w <- W-mu.w

eta <- mu0+scale0*as.numeric(S[ID.coords ])

der <- units.m*exp(eta)/(1+exp(eta))

grad.S <- sapply(1:n.x,

function(i) sum((( scale0)*(y-der))[C.S[i,]]))

as.numeric(-Sigma.w.inv %*%(W-mu.w)+

t(Sigma.sroot )%*% grad.S)

}

# simulating from conditional distribution of random effects
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estim <- maxBFGS(integrand ,grad.integrand ,

hessian.integrand ,rep(0,n.x))

mode <- estim$estimate

Sigma.tilde <- solve(-estim$hessian)

Sigma.sroot <- t(chol(Sigma.tilde ))

A <- solve(Sigma.sroot)

Sigma.w.inv <- solve(A%*% Sigma %*%t(A))

mu.w <- -as.numeric(A%*% mode)

h <- 1.65/(n.x^(1/6))

n.sim <- 1150

burnin <- 150

thin <- 5

c1.h <- 0.001

c2.h <- 0.0001

W.curr <- rep(0,n.x)

S.curr <- as.numeric(Sigma.sroot %*%W.curr+mode)

C.S <- t(sapply(1:n.x,function(i) ID.coords ==i))

mean.curr <- as.numeric(W.curr + (h^2/2)*

lang.grad(W.curr ,S.curr))

lp.curr <- cond.dens.W(W.curr ,S.curr)

acc <- 0

S.sim <- matrix(NA,nrow=(n.sim -burnin )/thin ,ncol=n.x)

h.vec <- rep(NA,n.sim)

for(i in 1:n.sim) {

W.prop <- mean.curr+h*rnorm(n.x)

S.prop <- as.numeric(Sigma.sroot %*%W.prop+mode)

mean.prop <- as.numeric(W.prop +

(h^2/2)*lang.grad(W.prop ,S.prop))

lp.prop <- cond.dens.W(W.prop ,S.prop)

dprop.curr <- -sum((W.prop -mean.curr)^2)/(2*(h^2))

dprop.prop <- -sum((W.curr -mean.prop)^2)/(2*(h^2))

log.prob <- lp.prop+dprop.prop -lp.curr -dprop.curr

if(log(runif(1)) < log.prob) {

acc <- acc+1

W.curr <- W.prop

S.curr <- S.prop

lp.curr <- lp.prop

mean.curr <- mean.prop

}

if( i > burnin & (i-burnin )%% thin==0) {

S.sim[(i-burnin )/thin ,] <- S.curr

}

h.vec[i] <- h <- max(0,h + c1.h*i^(-c2.h)*(acc/i-0.57))

cat("Iteration",i,"out of",n.sim ,"\r")

flush.console ()

}
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# Doing spatial predictions

estim <- mcml.estimates

beta <- estim$par[1:p]

mu <- as.numeric(D%*% beta)

sigma2.pcr <- exp(estim$par[p+1])

sigma2.rdt <- exp(estim$par[p+2])

phi <- exp(estim$par[p+3])

mu <- as.numeric(D%*% beta)

sigma2.pcr <- exp(estim$par[p+1])

sigma2.rdt <- exp(estim$par[p+2])

phi <- exp(estim$par[p+3])

U <- as.matrix(dist(coords ))

Sigma <- exp(-U/phi)

Sigma.inv <- solve(Sigma)

n.x <- dim(Sigma.inv)[1]

U.pred <- as.matrix(pdist(grid.pred ,coords ))

C <- exp(-U.pred/phi)

A <- C%*% Sigma.inv

n.samples <- nrow(S.sim)

mu.cond <- t(sapply(1:n.samples ,

function(i) A%*%S.sim[i,]))

sd.cond <- sqrt(1-apply(A*C,1,sum))

T.samples <- sapply(1:n.samples ,

function(i) mu.cond[i,]+sd.cond*

rnorm(nrow(grid.pred )))

# Predict RDT

D.pred.rdt <- data.frame(sex=

factor(rep("male",nrow(grid.pred)),

levels=levels(data.mod$sex)),

diagnostic=factor(rep("rdt",

nrow(grid.pred)),

levels=levels(data.mod$diagnostic )),

ageless5=5, agegreater5=0)

D.pred.rdt <- model.matrix (~ diagnostic+

diagnostic :(sex + ageless5 +

agegreater5),D.pred.rdt)

mu.rdt <- as.numeric(D.pred.rdt %*% beta)

prev.rdt.samples <- sapply(1:n.samples ,

function(i) 1/(1+exp(-mu.rdt -

sqrt(sigma2.rdt)*T.samples[,i])))
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# Predict PCR

D.pred.pcr <- data.frame(sex=factor(rep("male",

nrow(grid.pred)),levels=levels(data.mod$sex)),

diagnostic=factor(rep("pcr",nrow(grid.pred)),

levels=levels(data.mod$diagnostic )),

ageless5=5, agegreater5=0)

D.pred.pcr <- model.matrix (~ diagnostic+

diagnostic :(sex + ageless5 + agegreater5),D.pred.pcr)

mu.pcr <- as.numeric(D.pred.pcr %*% beta)

prev.pcr.samples <- sapply(1:n.samples ,

function(i) 1/(1+exp(-mu.pcr -sqrt(sigma2.pcr)*T.samples[,i])))

mean.prev.rdt <- apply(prev.rdt.samples , 1, mean)

mean.prev.pcr <- apply(prev.pcr.samples , 1, mean)

mean.sd.rdt <- apply(prev.rdt.samples , 1, sd)

mean.sd.pcr <- apply(prev.pcr.samples , 1, sd)

ex10_rdt <- sapply(1:dim(prev.rdt.samples )[1],

function(i) sum(prev.rdt.samples[i,] > 0.1 ))/n.samples

ex10_pcr <- sapply(1:dim(prev.pcr.samples )[1],

function(i) sum(prev.pcr.samples[i,] > 0.1 ))/n.samples

out.df <- data.frame(grid.pred , mean.prev.rdt , mean.prev.pcr ,

mean.sd.rdt , mean.sd.pcr , ex10_rdt , ex10_pcr)

return(out.df)

}

File malaria Examples.R

#################################################################

#################################################################

# ANALYSES OF THE MALARIA DATA USING THE MODEL 1

# SPECIFICATION OF ASYMMETRIC MODEL

################################################################

################################################################

# It is important to keep all the files in a single folder and set

# this folder as the working directory. Edit the next line to set

# your working directory.

workingdir <- "~/ Examples_Code_and_Data/malaria_application"

setwd(workingdir)

library(rgdal)

library(geoR)

library(PrevMap)
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# Loading the script that has the functions

# for the malaria analysis

source("malaria_functions.R")

################################################################

# Simulating data under the fitted symmetric model for the

# malaria application # in the paper , using jittered locations

# of the original malaria study

#################################################################

# An example data that mimics the origional loa loa data

# has been provided as MalariaExampleData.RData. However ,

# you can simulate your own data under the fitted symmetric

# model in the paper. The next line simulates such data.

malaria_simulated_data <- simulate_malaria_data()

head(malaria_simulated_data)

# save(MalariaExampleData , file=" MalariaExampleData.RData ")

# The variables in the data are as follows

# ageless5, agegreater5 : Variables defining the age spline

# sex : gender of the individual

# web_x web_y : The (gittered) geolocations of the individuals

# diagnostic : the diagnostic used pcr/rdt

# malaria : 0 for negative malaria test and 1 for positive.

ppp <- get(load("MalariaExampleData.RData"))

head(ppp)

##########################################################

# Estimating the specified symmetric model

# for the malaria analysis

##########################################################

# Loading the example malaria prevalence data

data.mod <- get(load("MalariaExampleData.RData"))

# Estimating the model specified symmetric model for

# the malaria analysis

# You could estimate the parameters of the model or used

# already estimated

# and saved parameters for your predictions.

estim <- estim_mal(data.mod)

# estim <- estim_mal(data.mod=malaria_simulated_data)

# use this line instead of the preceeding if

# you intend not to use the example data provided ,

# but data you have simulated above.

# You can change the number of MCMC samples , thining ,

# and burnin in the malaria_functions.R file.

# save(estim ,file="MCML_estimates_malaria2.RData ")
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#########################################################

# Predicting with the specified symetric

# model for the malaria analysis

##########################################################

# Loading the example malaria prevalence data

# If you simlated

data.mod <- get(load("MalariaExampleData.RData"))

# a different dataset , set data.mod to that data using

# data.mod = malaria_simulated_data

# Loading the prediction grid

grid.pred <- get(load("malaria_site_grid.RData"))

# Loading the saved model estimates

# You can also use the estimates you obtained above

estim <- get(load("MCML_estimates_malaria.RData"))

# You can change the number of MCMC samples , thining ,

# and burnin in the malaria_functions.R file.

# Spatial predictions using the malaria model

predictions.mal <- predict_mal(data.mod , estim , grid.pred)

# web_x , web_y : Cordinates of the prediction locations

# that form the grid

# mean.prev.rdt : Mean prevalence as defined by the rdt

# mean.prev.pcr : Mean prevalence as defined by the pcr

# mean.sd.rdt : Standard deviation of rdt prevalence

# mean.sd.pcr : Standard deviation of pcr prevalence

# ex10_rdt : Probability of exceeding 10%

# threshold of rdt prevalence

# ex10_pcr : Probability of exceeding 10% threshold of

# rdt prevalence

plot(rasterFromXYZ(predictions.mal[, c("web_x",

"web_y", "mean.prev.rdt")]))

plot(rasterFromXYZ(predictions.mal[, c("web_x",

"web_y", "mean.prev.pcr")]))


	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Papers
	1 Introduction
	1.1 Fundamentals of model-based geostatistical methods for disease mapping
	1.1.1 Geostatistical data
	1.1.2 The geostatistical linear model
	1.1.3 The generalized linear geostatistical model

	1.2 Objectives and structure of the thesis
	1.2.1 Objectives of Chapter 2
	1.2.2 Objectives of Chapter 3
	1.2.3 Objectives of Chapter 4

	References

	2 Paper 1. On the Relationship Between Plasmodium falciparum Parasite Prevalence and Entomological Inoculation Rate: a Case Study in Rural Malawi
	2.1 Summary
	2.2 Introduction
	2.3 Materials and methods
	2.3.1 Study area
	2.3.2 Data
	2.3.3 Environmental and climatic factors
	2.3.4 Geostatistical Analysis
	2.3.5 Modelling the relationship between PfEIR and PfPR

	2.4 Results
	2.4.1 rMIS and mosquito sampling
	2.4.2 Hot-spots detection using PfEIR and PfPR
	2.4.3 The relationship between PfEIR and PfPR

	2.5 Discussion
	S1 Appendix: Details of the models and estimates of their parameters.
	S2 Appendix: Maps of predicted PfEIR and PfPR.
	S3 Appendix: Maps of Exceedance probabilities and Hot-spots of PfEIR and PfPR.
	S4 Appendix: Additional figures.
	References

	3 Paper 2. Geostatistical Modelling of the Association between Malaria and Child Growth in Africa
	3.1 Summary
	3.2 Background
	3.3 Methods
	3.3.1 Data
	3.3.2 Model formulation and spatial prediction
	3.3.3 Model Validation
	3.3.4 Understanding the variation in the effect of malaria on HAZ

	3.4 Results
	3.4.1 Non-spatial analysis
	3.4.2 Geostatistical analysis
	3.4.3 Mapping of Stunting Risk
	3.4.4 Variation in the effect of malaria on HAZ

	3.5 Discussion
	3.5.1 Limitations of the study
	3.5.2 Novel extensions to longitudinal geostatistical data

	3.6 Conclusion
	3.7 List of Abbreviations
	3.8 Declarations
	Additional File 1: Computational details
	Additional File 2: Details of the World Bank development indicators
	Additional File 3: Estimates of covariance parameters
	Additional File 4: Results from the model validation
	Additional File 5: Maps of stunting risk
	Additional File 6: Accounting for the uncertainty in malaria incidence
	References

	4 Paper 3. A Geostatistical Framework for Combining Spatially Referenced Disease Prevalence Data from Multiple Diagnostics
	4.1 Summary
	4.2 Introduction
	4.3 Motivating applications
	4.3.1 Loa loa mapping in Central and West Africa
	4.3.2 Malaria mapping in the highlands of Western Kenya

	4.4 Literature review
	4.4.1 Non-spatial approaches
	4.4.2 The Crainiceanu, Diggle and Rowlingson model

	4.5 Two classes of bivariate geostatistical models
	4.5.1 Case I: Predicting prevalence for a gold-standard diagnostic
	4.5.2 Case II: Joint prediction of prevalence from two complementary diagnostics
	4.5.3 Inference and model validation

	4.6 Application I: Re-analysis of the Loa loa data
	4.6.1 Results
	4.6.2 Simulation Study

	4.7 Application II: Joint prediction of Plasmodium falciparum prevalence using RDT and PCR
	4.7.1 Results

	4.8 Conclusions and extensions
	Web-based Supplementary Materials
	References

	5 Conclusion and Future Research
	5.1 Achievement of the objectives of the thesis
	5.2 Originality and contribution to knowledge
	5.3 The common thread of the thesis
	5.4 Limitations of the thesis
	5.5 Recommendations and future research
	References

	A Appendix A: Published version of Paper 2 
	B Appendix B: R Code for statistical analysis using Models 4.14 and 4.15 
	C Appendix C: R Code for statistical analysis using Model 4.16 

