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Films of rhombohedral graphite as two-dimensional
topological semimetals
Sergey Slizovskiy 1,2,3, Edward McCann 4*, Mikito Koshino5 & Vladimir I. Fal’ko 1,2,6

Topologically non-trivial states appear in a number of materials ranging from spin-orbit-

coupling driven topological insulators to graphene. In multivalley conductors, such as mono-

and bilayer graphene, despite a zero total Chern number for the entire Brillouin zone, Berry

curvature with different signs concentrated in different valleys can affect the material’s

transport characteristics. Here we consider thin films of rhombohedral graphite, which appear

to retain truly two-dimensional properties up to tens of layers of thickness and host two-

dimensional electron states with a large Berry curvature, accompanied by a giant intrinsic

magnetic moment carried by electrons. The size of Berry curvature and magnetization in the

vicinity of each valley can be controlled by electrostatic gating leading to a tuneable

anomalous Hall effect and a peculiar structure of the two-dimensional Landau level spectrum.
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Berry curvature1,2 is a measure of the topological nature of
non-trivial states appearing in materials ranging from
spin–orbit-coupling-driven topological insulators3–6 to

graphene7–9. In multivalley conductors, such as graphene, Berry
curvature with different signs concentrated in different valleys10

can affect the material’s observable properties even though the
Chern number for the entire Brillouin zone may be zero.
Recently, there has been renewed interest in rhombohedral gra-
phite11 due to progress in fabricating and characterizing thin
films12–17. Rhombohedral is one of the structural phases of gra-
phite which has a specific “ABC” stacking of consecutive hon-
eycomb layers of carbon atoms such that every atom has a nearest
neighbor from an adjacent layer either directly above or under-
neath it. The interlayer hybridization of all carbon Pz orbitals
with characteristic energy γ1 � 0:38 eV leads to a gapped elec-
tronic spectrum in the middle of a thin film of N layers (the bulk
gap � 3πγ1=N , see Methods). However, in the surface layers of
the film, half of the carbon atoms do not have a nearest neighbor
in the next layer for hybridizing their Pz orbitals, leading, as in the
Su–Schrieffer–Heeger model6,18, to low-energy surface states.
These low-energy states form bands that cover the entire energy
range within the thin film bulk gap19–26.

In this article, we theoretically model thin films of rhombo-
hedral graphite and find that they retain their two-dimensional
(2D) nature for tens of layers of thickness. The low-energy surface
states give rise to a semimetallic band structure with two bands
that are almost degenerate near the valley center, but split apart at
p � pc where the dispersion is highly anisotropic (pc ¼ γ1=v
where v is the Dirac velocity of electrons in graphene determined
by the intralayer carbon–carbon hopping parameter γ0). The
presence of spatial asymmetry between the surface layers, which
may be controlled using an electric displacement field applied
perpendicularly to the film27,28 or which may arise from
interaction-induced spontaneous symmetry breaking29,30, can
create an insulator with an energy band gap and topologically
non-trivial states represented by a giant Berry curvature and
intrinsic magnetic moment of electrons. We predict that the
topological nature of the surface states will be manifest in elec-
tronic transport properties including a large anomalous Hall
effect and anomalous transverse photoconductivity. In addition,
these features are reflected in the electronic spectra in the pre-
sence of a perpendicular magnetic field (the Landau level spectra)
whereupon spatial asymmetry breaks valley degeneracy with
different patterns of level crossing and hybridization in the two
valleys.

Results
Semimetallic band structure. When studied taking into account
all details of intra- and interlayer carbon–carbon couplings (see
Methods) in the full Slonzewski–Weiss–McClure (SWMcC) tight-
binding model11,22,25,31, the surface states in a thin film of
rhombohedral graphite produce a semimetallic band structure
illustrated in Fig. 1a. The dispersion in Fig. 1a is plotted as a
function of the in-plane momentum p counted in a zigzag
direction from the center of the valley K and normalized by
pc ¼ γ1=v. In contrast to some earlier studies13,26, the dispersion
in Fig. 1 takes into account both skew interlayer couplings γ3 and
γ4. The two bands of the surface states in an ABC graphite film,
below referred to as conduction (blue) and valence (red), are
almost degenerate near the valley center, splitting apart in the
momentum range p ≳ pc. The electron dispersion at p � pc is
highly anisotropic, due to trigonal warping effects generated by
skew interlayer hoppings, with inverted orientation in valley K 0.

The interplay between these factors makes an undoped film of
rhombohedral graphite a two-dimensional semi-metal (2DSM) as
its Fermi level lies within both the conduction and valence surface

bands. It becomes a two-dimensional metal (2DM) upon n- or p-
doping when the Fermi level lies in only one of the conduction or
valence surface bands and, eventually, a bulk metal (3DM) where
the Fermi level lies within the bulk bands. In Fig. 1b, we identify
parametric regimes for each of these three cases, taking into
account the dependence of the spectrum on the number of layers.
The parametric diagram in Fig. 1b was built by brute-force
diagonalization of a hybrid k � p tight-binding approach model
(HkpTB) based on the full SWMcC model, in which the
intralayer hopping of electrons between carbon atoms is taken
into account in a continuous description of sublattice Bloch states
using k � p theory in the K and K 0 valleys, combined with
interlayer hoppings introduced in the spirit of a tight-binding
model (see Methods). For a film with N layers, this involves
finding eigenvalues and eigenstates of a 2N ´ 2N matrix acting in
the space of the sublattice Bloch states in each valley. When
studied in the presence of a vertical electric displacement field
(perpendicular to the thin film), the bands responsible for the
semimetallicity split by Δ ¼ U1 � UN , where U1 and UN are the
onsite energies of the surface layers, so that the system may be
tuned into a gap-full insulator, Fig. 1c. It may also be possible to
induce a spectral gap by superconductivity25 or spontaneous
symmetry breaking into a magnetic state32–34, making Δ spin
and/or valley dependent as in the layer antiferromagnetic
configurations discussed in the context of bilayer graphene29,30

and experimentally observed in rhombohedral graphite for N ¼ 3
(refs. 35,36) and N ¼ 4 (ref. 15).

When subjected to an external magnetic field perpendicular to
the plane of a film, the low-energy spectrum splits into
interweaving electron-like and hole-like Landau levels (LLs).
For a film of rhombohedral graphite, a representative example is
shown in Fig. 1d computed for N ¼ 10 layers (see Methods), with
electron-like LLs dispersing upwards for energy E≳ 20meV,
hole-like LLs dispersing downward for E≲ 0meV, and both kinds
of levels present in the semimetallic range 0≲ E≲ 20meV, where
one can relate the electron-like and hole-like LLs to different parts
of the 2D electron Fermi lines illustrated in the insets. In Fig. 1e,
we show how the LL spectrum is modified by the opening of a gap
(electrostatically controlled, or induced by exchange energy)
which enhances some of the avoided crossings in the LL
spectrum.

Two-band model. To develop intuition about the LL spectra
shown in Fig. 1 as well as to anticipate the magnetoconductivity
of an ABC film, we use a simplified two-band model which we
derived from the full HkpTB by projecting the 2N ´ 2N Hamil-
tonian onto the pair of surface states in the outermost (bottom
and top) layers,

Ĥ ¼
κyκ
2m?

þ ~Δ
2 �γ1XðpÞ

�γ1X
yðpÞ κκy

2m?

�
~Δ

2
;

0
BBB@

1
CCCA� p2

2m?

þ d � σ;

~Δ ¼ Δ� eazβ1v
2

γ1
½p ´Bk�z; κ ¼ ξpx þ ipy þ iexBz=_:

ð1Þ

Here, m? � 0:4m0 (see Methods), we use a vector σ ¼ ðσx; σy; σzÞ
of Pauli matrices acting in the space of surface states and
d ¼ ðdx; dy; dzÞ, and incorporate the arbitrarily oriented magnetic
field with components both perpendicular, Bz , and parallel,
Bk ¼ ðBx;ByÞ, to the film. In Eq. (1), the two valleys of graphite
K ¼ ð4π=3a; 0Þ and K0 ¼ �K are indexed by ξ ¼ 1 and �1
respectively. In the expression for ~Δ we take into account the effect
of the Lorentz boost experienced by electrons tunneling between
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surface states, where β1 ¼ 2γ4
γ0
ð2N � 3Þ þ 2δ

γ1
ðN � 1Þ (β1 / N for

N � 1), az is the interlayer distance and �e is the electronic
charge. Parameter δ represents a difference in energy between the
dimer sites inside the crystal and non-dimer sites A1 and BN in the
outer layers. In the definition of operator κ and its Hermitian
conjugate, κy, we use the Landau gauge for the out-of-plane mag-
netic field Bz , whereas, for Bz ¼ 0, κ ¼ ξpx þ ipy . The off-diagonal

element, XðpÞ ¼P ðn1þn2þn3Þ!
n1!n2!n3!

� κy
pc

� �n1 � γ3
γ0

κ
pc

� �n2 � γ2
2γ1

� �n3
, arises

from interlayer hoppings (skew hopping between neighboring lay-
ers γ3 and “vertical” next-layer hopping γ2 in addition to γ1
mentioned earlier) passing electrons from one surface to another22,
and the summation is taken over integers ni 	 0 such that
n1 þ 2n2 þ 3n3 ¼ N .

Qualitatively, the spectrum of Ĥ, ϵ± ðpÞ ¼ p2=ð2m?Þ± jdj,
reproduces the exact multilayer 2N ´ 2N solutions shown in
Fig. 1, and it is particularly useful to discuss the features of the LL
spectra (for a detailed comparison, see Methods). Without
symmetry breaking, ~Δ ¼ 0, the spectrum of Ĥ is valley
degenerate, leading to a fourfold degeneracy (spin and valley)

of each of the LLs in Fig. 1d. In the low magnetic field range, one
can also identify closely-packed groups of three LLs (i.e. 12-fold
degenerate) whose origin we trace to three mini-valleys forming
at p � pc sketched in Fig. 1b. At high magnetic fields, Ĥ generates
N separate groups of fourfold degenerate low-energy LLs, which
were considered to be degenerate in previous studies13,21 where

the effects of γ4 and δ were neglected, and XðpÞ � ð�κy=pcÞN
resulted in a Berry phase Nπ singularity at p ¼ 0. At high fields,
this group of N LLs clearly separates from electron- and hole-like
levels in the spectrum, whereas, at low fields, their mixing with
hole-like dispersive LLs leads to an additional two-fold degen-
eracy for all but the ϵ ¼ 0 level.

Topological properties. The other notable feature of the low-
energy “non-dispersive” LLs is that their states in opposite valleys
are located on opposite surfaces of the film. Consequently, when
asymmetry, Δ, between the bottom and top surfaces is introduced
by, e.g, a displacement field, Ez , these LLs split apart, lifting the
valley degeneracy. This evolution can be traced in the LL spec-
trum shown in Fig. 1e where K and K 0 valley states are marked

Fig. 1 Electron dispersion and Landau levels in a film of rhombohedral graphite. Low-energy dispersion ϵðpx;0Þ as a function of the in-plane momentum
px in the K valley for N ¼ 10 layers with a top/bottom asymmetry Δ ¼ 0 and c Δ ¼ 40meV. Insets: 3D plots of ϵðpÞ with parametric regimes for different
Fermi surface topology shown in b as a function of carrier density ne and number of layers N for Δ ¼ 0 with a two-dimensional semi-metal (2DSM), a two-
dimensional metal (2DM), and a bulk metal (3DM). Landau level (LL) spectrum as a function of perpendicular magnetic field Bz in a ten-layer film with:
d Δ ¼ 0 and e Δ ¼ 40meV. In e, magenta/cyan lines correspond to the K0/K valleys. Plots were obtained by numerical diagonalization of the full hybrid
k � p tight-binding model (ĤN in Methods). In d, red/black lines show extrapolation of LLs to Bz ! 0 estimated using semiclassical quantization near
band edges.
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using different colors. The first noticeable difference is that, now,
groups of N lowest-energy LLs in opposite valleys can be traced to
±Δ=2 convergence points marked by arrows in Fig. 1e. To
highlight the difference in the LLs spectra in the opposite valleys,
we plot them separately in Fig. 2a, b and point out that groups of
LLs that converge towards the top of the valence band (high-
lighted in black) slightly differ in valleys K and K 0. As these states
originate from the valence band maxima, where the electron
dispersion is approximately parabolic, the difference between LL
spectra reflects topological properties of electron states as char-
acterized by Berry curvature Ωð± ÞðpÞ and associated magnetic
moment mzðpÞ1,2,

Ωð± ÞðpÞ ¼ i_2h∇pu± j ´ j∇pu± i � êz ¼ 
 _2

2d3
d � ð∂pxd ´ ∂pydÞ;

mzðpÞ ¼ � ie_
2
h∇pu ± j ´ ½Ĥ � ϵ± �j∇pu± i � êz

¼ � e_

2d2
d � ð∂pxd ´ ∂pydÞ;

where uT± ¼ N ± ðdz ± d; dx þ idyÞ is the sublattice Bloch spinor

in the ϵ ± (conduction/valence) band, N ± ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dðd ± dzÞ

p
,

d ¼ jdj, and ∇p ¼ ð∂px ; ∂py Þ. Note that Ωð�ÞðpÞ ¼ �ΩðþÞðpÞ,
whereas mzðpÞ is the same for the ϵþ and ϵ� bands.

Using the two-component model (1) for N � 1 and neglecting
trigonal warping (parameters γ2 and γ3), the Berry curvature
Ωð± Þ for conduction/valence bands is given by32

Ωð± ÞðpÞ � ± ξ
2N2

p2γ1

~ΔðpÞ ðp=pcÞ2N

ð~ΔðpÞ=γ1Þ
2 þ 4ðp=pcÞ2N

h i3=2 ; ð2Þ

which generalizes the result for finite Δ determined in monolayer
and bilayer graphene2,10. The orbital magnetic moment for both
bands is

mzðpÞ � ξ
e
_

N2

p2
~ΔðpÞ ðp=pcÞ2N

ð~ΔðpÞ=γ1Þ
2 þ 4ðp=pcÞ2N

: ð3Þ

We note the strong N2 layer dependence and the fact that in-
plane magnetic field Bk can contribute to the gap ~ΔðpÞ.

Whereas Ωð± ÞðpÞ and mzðpÞ are peaked at p � 0 in monolayer
and bilayer, for rhombohedral graphene with N � 1 they are
peaked at p � pc. Moreover, trigonal warping (parameters γ2 and
γ3) introduces anisotropy such that Ωð± ÞðpÞ and mzðpÞ are

Fig. 2 Orbital magnetic moment and valley-dependent Landau level spectra in an ABC graphitic film with broken symmetries. a Landau level spectra as
a function of perpendicular magnetic field Bz in K0 and K valleys for bottom/top asymmetry Δ ¼ 10meV, and for in-plane magnetic field By ¼ 20T. b Green
highlighting in the insets in b indicate parts of electron/hole-like Fermi lines connected upon magnetic breakdown, resulting in LLs with new spacings
(green dashed lines). c Magnetic moment, mzðpÞ, of Bloch states in valleys K0 and K for Δ ¼ 10meV, showing opposite sign and orientation in the two
valleys and magnitude peaked near the valence band mini-valleys at p � pc.
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peaked in the vicinity of the valence band maxima. This is
demonstrated in Fig. 2c where we plot the distribution of
magnetic moment mz across momentum space in both valleys for
Δ ¼ 10meV. This magnetic moment leads to a valley splitting,
2mzBz (e.g. of the LL converging towards the valence band edge
(Fig. 2a)), that can be characterized by a factor gv ¼ mz=μB which
can be as large as gv � 100 (Fig. 3a). An application of in-plane
magnetic field would additionally lift the degeneracy between the
three valence band maxima, as illustrated using the LL fan in
Fig. 2b.

Anomalous Hall effect. In the small magnetic field range where
electron dynamics can be described classically (rather than using
Landau quantization), the splitting of magnetic moments at the
valence band edges in the opposite valleys would shrink the size
of the Fermi pockets for the holes in one valley and expand them
in the other. The resulting valley polarization of holes would
manifest itself in transport characteristics. This is because, in the
presence of in-plane electric field E, carriers in bands with Berry
curvature experience a drift2,37,

v ± ðpÞ ¼ ∇pϵ± ðpÞ þ ðe=_ÞE ´ êzΩ
ð± ÞðpÞ;

so that, together, Berry curvature and valley polarization produce
an anomalous contribution to the Hall effect,

σAxy ¼ � e2Bz

π2_3
X
i

I
LiðKÞ

Ωð± Þ
i mi;z

j∇pϵij
dp: ð4Þ

Here i lists all Fermi lines Li in valley K for both ϵ± bands, and
the linear integral is taken in the anticlockwise direction along
each Fermi line, Li. When combined with the classical kinetic
Hall coefficient,

σHxy ¼ � e3τ2

π2_2
X
i;γ

I
LiðKÞ

ð∂pxϵiÞ
j∇pϵij

½∇pϵi ´B�γ
dp
mγy

;

computed for the same band structure (m�1
αβ ¼ ∂2ϵi

∂pα∂pβ
) and elastic

scattering time τ ¼ 5 ´ 10�14 s, this yields the overall Hall con-
ductivity, σxy , displayed in Fig. 3b. The anomalous contribution is
most pronounced for small scattering times, τ � 10�13 s, other-
wise the classical kinetic Hall conductivity dominates, as shown in
Fig. 3c, where we plot the ratio σxy=ðBτ2Þ for τ ¼
10�13; 2 ´ 10�13; 10�12 s [note that the value obtained for τ ¼
10�12 s is indistinguishable from σHxy=ðBτ2Þ].

The doping density dependence of the overall Hall conductiv-
ity, shown in Fig. 3b for 10- and 20-layer films with Δ ¼ 10 meV
and 40 meV, carries certain features reflecting the distribution of
Berry curvature and magnetic moment (Fig. 2c) across the
electron dispersion. According to the parametric plot shown on
the basal plane of Fig. 3a, both 10- and 20-layer films with
Δ ¼ 40 meV are gapful 2D semiconductors (2DSC), so that the
states with the maximium mzΩ near the valence band edge
(Fig. 1c) are reached at a relatively small p-doping, resulting in a
hump in σxyðneÞ at ne < 0 indicated by a star. For a smaller gap,
the films appear to be 2DSM, so that the part of the band where

Fig. 3 Anomalous Hall effect. a Maximum magnitude of the magnetic moment mz in valley K in units of Bohr magneton μB, plotted as a function of the
number of layers, N, and asymmetry Δ; the basal plane identifies the parametric range where the top/bottom layer asymmetry transforms a 2DSM into a
semiconductor (2DSC). b Total Hall coefficient σxy ¼ σAxy þ σHxy per unit magnetic field Bz for scattering time τ ¼ 5 ´ 10�14 s plotted as a function of carrier
density ne where σ

A
xy is the anomalous Hall coefficient and σHxy is the classical contribution (parameters according to the legend). c Total Hall coefficient σxy

per unit magnetic field Bz for Δ ¼ 40 meV, N ¼ 20, plotted for different choices of scattering time and normalized by τ2. d Absorption coefficient gðωÞ for
an ABC graphitic film in the 2DSC range, as a function of photon energy _ω, calculated in the full multi-band model (see discussion in Methods).
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mzΩ is the largest is set above the Fermi level for undoped
materials, shifting the hump in σxy to ne > 0. A double-peak
structure is caused by the convolution of the mzΩ product and
the density of states with a pronounced Van Hove singularity
(pointed by down arrows) in Eq. (4). At higher electron dopings,
the Fermi level reaches the maximum of mzΩ for the conduction
band, causing a negative peak in Hall coefficient (pointed by up
arrows).

Pumping interband transitions with circularly polarized
photons induces a partial valley polarization in graphene and
graphite (thus breaking the time-inversion symmetry). Combined
with the Berry curvature effect, this would produce a Hall-like
drift current (at Bz ¼ 0) perpendicular to the static in-plane
electric field, which can be characterized by an anomalous
transverse photoconductivity, δσxy , which appears to be especially
pronounced for ABC graphitic films in the 2DSC regime. This
effect is determined by the resonant interband absorption of
circularly polarized photons with energy ω and absorption
coefficient gðωÞ, plotted in Fig. 3d,

δσxy ¼ �ζ
e2

_

W
_ω

τrecjΩ�
K ðpmaxÞjgðωÞ; ð5Þ

where ζ ¼ ±1 stands for left/right handed circular polarization of
the pump (radiation is approaching from the top) with power
densityW, Ω�

K is the Berry curvature of the valence band at valley
K , and τrec is the lifetime of photo-excited holes at the top, pmax,
of the valence band in the photo-activated valley.

Discussion
We have shown that thin films of rhombohedral graphite with up
to tens of layers of thickness host 2D electron states characterized
by a large Berry curvature and a giant intrinsic magnetic moment.
Note that stacking faults38 in an rhombohedral film give rise to an
additional strongly dispersing band that simply overlays the
surface states spectrum. For example, in Fig. 4 we show the
spectrum of an eleven layer rhombohedral (ABC) film with an
ABA stacking fault at the top surface, which features a graphene-
like Dirac band with velocity v=

ffiffiffi
2

p
and a small asymmetry gap,

determined by δ.
Semiconducting ABC graphitic films may be also used to create

topologically protected edge modes at interface regions with an
inverted sign of Δ, controlled, e.g., by an oppositely directed
displacement field. Similarly to a ±Δ domain wall in bilayer
graphene39, a ±Δ interface in N layer ABC graphite would host N
co-propagating one-dimensional bands inside the spectral gap
(with opposite direction of propagation in K and K 0 valleys).
Also, an atomic step in the film thickness may produce an iso-
lated pair of edge states inside the gap (one in each valley with

opposite directions of drift), but this feature will depend on the
crystallographic orientation of the edge: it would be best devel-
oped for a zigzag termination of the additional layer, and it would
be suppressed for the armchair edge due to valley mixing. Finally,
as the gapful spectrum of an ABC film may be the result of many
body effects leading to spontaneous spin/valley symmetry
breaking40,41, topological features of ABC graphite, enhanced by
the N � 1 number of layers, would produce various possibilities
for gapless edge modes in the system. For valley-symmetric
magnetic phases, this would result in valley-current carrying
domain walls, hosting N one-dimensional channels with the
opposite direction of drift in valleys K and K 0. For phases with a
valley antisymmetric order parameter, this would result in 2N
electrical-current carrying edge modes at the physical edge of the
sample. Overall, multilayer rhombohedral graphite films offer an
attractive playground for studying giant topological effects in
their electronic transport characteristics.

Methods
Hybrid k � p theory and tight-binding model. Our calculations are based on the
hybrid k � p theory and tight-binding model (HkpTB). HkpTB combines the
expansion of the electronic Hamiltonian for a single graphene layer in the lowest
relevant order of momentum counted from the center of the K and K

0
valleys,

which we use in the form κ ¼ ξpx þ ipy þ iexBz=_, with interlayer hopping that
takes into account the lattice arrangement for rhombohedral graphite displayed in
Fig. 5a. Here we use a 2N component basis ðψA1;ψB1;ψA2;ψB2; � � � ;ψAN;ψBNÞ of
A and B sublattice Bloch states for each valley and take into account all hoppings in
the Slonczewski–Weiss–McClure parametrization of graphite11,22,31, as marked in
Fig. 5a. The Hamiltonian that determines the electronic bands in N-layer rhom-
bohedral graphite reads

ĤN ¼

D1 V1;2 W 0 � � �
Vy

1;2 D2 V2;3 W � � �
Wy Vy

2;3 D3 V3;4 � � �
0 Wy Vy

3;4 D4 � � �
..
. ..

. ..
. ..

. . .
.

0
BBBBBBBB@

1
CCCCCCCCA
; ð6Þ

where we use 2 ´ 2 blocks

D1 ¼
U1 vκy1;1
vκ1;1 U1 þ δ

 !
; DN ¼ UN þ δ vκyN;N

vκN;N UN

 !
;

Dn ¼ Un þ δ vκyn;n
vκn;n Un þ δ

 !
ðn ¼ 2; 3; ¼ ;N � 1Þ;

Vn;nþ1 ¼
�v4κ

y
n;nþ1 v3κn;nþ1

γ1 �v4κ
y
n;nþ1

 !
; W ¼ 0 1

2 γ2
0 0

� �

κn;n ¼ κþ 1
2
eazð2n� N � 1ÞðξBy � iBxÞ ;

κn;nþ1 ¼ κþ 1
2
eazð2n� NÞðξBy � iBxÞ :

Here az is the interlayer spacing, v ¼ ð ffiffiffi
3

p
=2Þaγ0=_, v3 ¼ ð ffiffiffi

3
p

=2Þaγ3=_,
v4 ¼ ð ffiffiffi

3
p

=2Þaγ4=_, and a is the in-plane lattice constant. The intra (Dn) and
interlayer (Vn;nþ1) elements take into account the in-plane components Bx , By of
an arbitrarily oriented magnetic field via the Peierls substitution, generalizing an
approach applied previously to bilayer graphene42. Matrix element W describes
next-neighboring-layer hopping in the vertical direction and δ represents a dif-
ference in energy between the dimer sites inside the crystal and non-dimer sites A1
and BN in the outer layers.

The minimal tight-binding model, consisting of only nearest-neighbor intra-

and interlayer hopping γ0 and γ1, approximates XðpÞ � ð�κy=pcÞ
N
in Eq. (1)

yielding flat, isotropic surface bands ϵ ± � ðp=pcÞN . Skew interlayer hopping γ3 and
next-nearest-layer hopping γ2 produce trigonal warping as shown in the dispersion
(Fig. 1a) and the Fermi surface plots in Fig. 1b. Skew interlayer hopping γ4 and
parameter δ break electron–hole symmetry in the energy spectrum. For numerical
diagonalization of Eq. (6) we use the following values of tight-binding parameters43

γ0 ¼ 3:16 eV, γ1 ¼ 0:381 eV, γ3 ¼ 0:38 eV, γ4 ¼ 0:14 eV, γ2 ¼ �0:020 eV31, and
δ ¼ 0:0 eV.

The band structure near the valley center is plotted in Fig. 5b, obtained by
diagonalization of the Hamiltonian in Eq. (6) for N ¼ 10 layers. There are N � 1
conduction/valence bands with apex at p ¼ 0 and energy ±γ1 arising from the
interlayer hybridization of carbon orbitals within the middle of the graphite film.

Fig. 4 Rhombohedral graphite film with a surface stacking fault. Low-
energy dispersion ϵðpx;0Þ in the K valley of a rhombohedral graphite film
with N ¼ 11 layers and an ABA stacking fault at the surface. Here we use
the same parameters as in Fig. 1 with Δ ¼ 0 and δ ¼ 10 meV (see Methods
for details).
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Additionally, there are two flat bands at the conduction/valence band edge with
wave functions made of Pz carbon orbitals on sites A1 and BN in the surface layers
(the ones that do not find a nearest neighbor in the next layer to hybridize into a
dimer state). Zooming into the dispersion of the flat bands at low energy reveals
semimetallic behavior in Fig. 1a and parametric regimes identified in Fig. 1b. The
full band model was used to compute the anomalous Hall coefficient using the
formal definitions of Ωð± ÞðpÞ and mzðpÞ with the results in Fig. 5c; Fig. 5d
indicates how features in the low-energy dispersion are related to peaks in the
anomalous Hall effect. Fig. 5e, f shows the anomalous Hall effect for a smaller
number of layers with different asymmetry values.

The simplified 2 ´ 2 (two band) Hamiltonian in Eq. (1) was derived using a
Schrieffer–Wolff transformation which eliminated all high-energy conduction and
valence subbands projecting Hamiltonian ĤN onto a basis of ðψA1;ψBNÞ Bloch
states using perturbation theory in intra- and interlayer hoppings up to the Nth
order with effective mass m�1

? ¼ ð2v2=γ1Þð2γ4=γ0 þ δ=γ1Þ � ð0:4m0Þ�1 where m0
is the free electron mass. The energy spectrum predicted by the two band model
Eq. (1) is compared with that of the full HkpTB Eq. (6) in Fig. 6a for zero magnetic
field and zero asymmetry, in Fig. 6b as a function of perpendicular magnetic field

Bz with zero asymmetry, and in Fig. 6c for zero magnetic field and finite
asymmetry Δ ¼ 40 meV.

To study the Landau level spectra in a perpendicular magnetic field B ¼
ð0; 0;BzÞ we use the Landau gauge for the vector potential A ¼ ð0;Bzx; 0Þ. Then, κ
and κy transform into raising and lowering operators for magnetic oscillator states
ϕn in valley K22,27 (vice versa in valley K

0
) with κϕn ¼ ið_=λBÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þp

ϕnþ1 and

κyϕn ¼ �ið_=λBÞ
ffiffiffiffiffi
2n

p
ϕn�1 with λB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_=ðeBzÞ
p

. Numerical diagonalization of the
Hamiltonian in Eq. (6) is performed in a basis with a series of oscillator states for
each sublattice component, ðϕ0; ϕ1; � � � ; ϕN0þn�1Þ for An and ðϕ0; ϕ1; � � � ; ϕN0þnÞ
for Bn , where N0 ¼ 250 is a cutoff, sufficient for convergence for B> 0:5 T. The
result of the exact diagonalization is shown in Fig. 1d and e, indicating that the
two-band model is sufficient to catch the qualitative features in the behavior of LLs
at small magnetic fields, but with substantial quantitative deviations developing at
Bz > 8 T.

Estimate of the bulk band gap. For an infinite number of layers (3D rhombo-
hedral graphite), the bulk bands are gapless at p ¼ pc (the position of the Dirac

Fig. 5 Rhombohedral graphite film spectrum with the full band model and anomalous Hall coefficient. a Hopping parameters in the
Slonzewski–Weiss–McClure model. b Subband spectrum ϵðpx; pyÞ of 10-layer ABC graphite. c Anomalous Hall contribution σAxy to the Hall effect per unit
magnetic field Bz plotted as a function of carrier density ne. Black down arrows indicate van Hove singularities, cyan stars and black up arrows indicate the
peaks originating from hot spots of Berry curvature in the valence/conduction bands, as shown in the dispersion plot (d). e, f Anomalous Hall contribution
σAxy per unit magnetic field Bz for a smaller number N of layers. As expected from Fig. 3a, the anomalous effect is maximal at low Δ for N≲ 6, while it grows
with Δ for N≳6.
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point follows a continuous spiral as a function of the out-of-plane wave
vector23,26,44–46). In order to estimate the magnitude of the bulk gap for finite N ,
we consider the minimal model (including only γ0 and γ1) with in-plane
momentum of magnitude p ¼ pc and directed in the x direction only, i.e.
p ¼ ðpc; 0Þ. Then, the 2N ´ 2N Hamiltonian [Eq. (6) with
γ2 ¼ γ3 ¼ γ4 ¼ δ ¼ Ui ¼ jBj ¼ 0] may be written as

ĤN ¼ γ1

0 1 0 0 0 � � �
1 0 1 0 0 � � �
0 1 0 1 0 � � �
0 0 1 0 1 � � �
0 0 0 1 0 � � �
..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBB@

1
CCCCCCCCCA
;

This is simply the tight-binding model of a linear chain with 2N sites and nearest-
neighbor hopping γ1 between every site. The solutions are E ¼ 2γ1 cosðπj=ð2N þ
1ÞÞ for j ¼ 1; 2; ¼ ; 2N which describes an electron–hole symmetric series of
energies. The positive energy closest to zero (j ¼ N) which describes the surface
state is E0 ¼ 2γ1 cosðπN=ð2N þ 1ÞÞ ¼ 2γ1 sinðπ=½2ð2N þ 1Þ�Þ and E0 � πγ1=ð2NÞ
for N � 1. The positive energy which is the next closest to zero (j ¼ N � 1) which
represents the lowest-energy bulk band is E1 ¼ 2γ1 cosðπðN � 1Þ=ð2N þ 1ÞÞ ¼
2γ1 sinð3π=½2ð2N þ 1Þ�Þ and E1 � 3πγ1=ð2NÞ for N � 1. Thus, we estimate the

bulk band gap Δbulk ¼ 2E1 to be

Δbulk � 3πγ1=N; ð7Þ
for N � 1. We estimate Δbulk � 120meV for N ¼ 30 which seems to be in
agreement with the numerical calculation of Henni et al.13, and we estimate
Δbulk � 36meV for N ¼ 100.

Semiclassical quantization in a magnetic field and magnetic breakdown. For a
given cyclotron orbit C with area SðCÞ in reciprocal space2, the semiclassical
quantization condition is

SðCÞ ¼ 2π

λ2B
nþ 1

2
� ΓðCÞ

2π

� �
; ð8Þ

and ΓðCÞ is the Berry phase of orbit C defined as the E ¼ ϵðpÞ � B �mðpÞ contour.
We find that for the K valley and Δ> 0, the Landau levels are described by Eq. (8)
with n ¼ 0; 1; 2:::, while for Δ< 0 the levels are described by Eq. (8) with
n ¼ 1; 2:::, see Fig. 2a. Similarly, taking into account that parallel magnetic field
creates an effective top-bottom asymmetry gap � ½p ´ Bk�z (see Eq. (1)), for
By ¼ 20 T, Landau levels of the px > 0 conduction band pocket are described in the
K valley by Eq. (8) with n ¼ 1; 2:::, while the two pockets with px < 0 are described
by Eq. (8) with n ¼ 0; 1; 2; ::. These rules are swapped in the other valley (or, for
By ¼ �By), see Fig. 2b.

Fig. 6 Comparison of the full band model with the effective two-band model. a Low-energy dispersion ϵðpx;0Þ for B ¼ 0 and Δ ¼ 0. b Landau level
spectrum as a function of perpendicular magnetic field Bz for Δ ¼ 0. c Low-energy dispersion ϵðpx;0Þ for B ¼ 0 and Δ ¼ 40 meV. In c we indicate the
threshold _ω� for photo-absorption which appears to be lower than Δ when calculated in the multi-band model (similarly to bilayer graphene27).

Fig. 7 a Landau level spectra as a function of perpendicular magnetic field Bz for Δ ¼ 5 meV showing strong interband magnetic breakdown for the K valley
and almost none for the K0 valley. b Fermi surfaces offset by orbital magnetic moment at Bz ¼ 3T are plotted for Δ ¼ 5meV at valley K0/K. Red/blue color
of the contours indicates the amplitude of the wave function on the top/bottom layers, the gray level background shows the Berry curvature for the valence
band, that is positive in the K valley and negative in the K0 valley. The blue vector field lines correspond to the value and direction of the maximal gradient
huvðpÞj∇pjucðpÞi. Notable magnetic breakdown (indicated by thick green arrows) happens only in the K valley, where the factor 1þ eΩBz=_ increases the
breakdown phase space.
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As is evident from Fig. 2b for Δ ¼ 10 meV and Fig. 7a for Δ ¼ 5 meV, there is
a significant mixing of LLs of the valence and conduction bands for valley K , while
such mixing is almost absent in valley K 0 (this is reversed for Δ ! �Δ). At zero
magnetic field, the states in the valence and conduction bands are orthogonal for a
given quasimomentum, while a semiclassical wave-packet drifting along the Fermi
contour at non-zero magnetic field has non-zero spread of quasimomenta around
the Fermi contour, leading to non-zero projection onto another band. Thus, there
are two main factors that contribute to interband breakdown: (i) the extent to
which the states in the two bands are non-orthogonal when taken at nearby points
in momentum space and (ii) the time that the wave-packet spends in the part of the
trajectory where breakdown is most probable.

To study the degree of non-orthogonality of valence and conduction band states
at different momentum points, we plot the direction and amplitude of the maximal
gradient huvðpÞj∇pjucðpÞi with blue vectors in Fig. 7b. The potential breakdown
region corresponds to large gradients connecting the two Fermi surfaces (as
illustrated by green arrows in Fig. 7b). The second aspect, which appears to be
crucial for the magnetic breakdown, is related to the value and the sign of Berry
curvature. This can be related to a notable decrease in the momentum-space
velocity of the wave-packet as it passes an area of large Berry curvature. Indeed, the
semiclassical equations of motion for an electron wave-packet in band n are2,47:

_p ¼ �e½v ´ nz �Bz � eE
1þ eΩBz=_

; ð9Þ

_r ¼ v þ eE ´ nzΩ
1þ eΩBz=_

ð10Þ

where vðpÞ ¼ ∇ϵðpÞ and the energy of the wave-packet is offset by the orbital
magnetic moment. As seen in Fig. 7b, there is a large Berry curvature and small
velocity near the two points of every valence band Fermi contour (these points are
near the saddle point of the dispersion, similarly to the discussion in ref. 48), while
the conduction band Fermi contours have higher velocity and are located at low
Berry curvature regions. Looking at the sign of Berry curvature of the valence band,
we see that electrons in the valence band have higher probability to be in the
breakdown-prone region for the K valley due to lower momentum-space velocity
(larger denominator in Eq. (9) due to eΩvBz=_> 0). This qualitatively explains the
difference of breakdown patterns in the two valleys. Empirical evidence from
numerical studies of LL spectra at different layer numbers and Δ indicate that
magnetic breakdown starts when eΩvBz=_≳ 0:6 at the valence band Fermi line
near the breakdown region indicated with green arrows. Despite many years of
studies48, we are not aware of any similar cases studied before. Since Eqs. (9) and
(10)) were derived in the limit jeΩBz=_j � 1, which is no longer valid near the
breakdown region, further theoretical study of this phenomemon is warranted.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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