
,

Commissioning of the electron injector for the AWAKE

experiment

S.-Y. Kim∗ and M. Chung†

Department of Physics, Ulsan National Institute of

Science and Technology, Ulsan 44919, Republic of Korea

M. Dayyani

Institute for Research in Fundamental Sciences, 19395-5531, Tehran, Iran

S. Doebert‡ and S. Gessner, I. Gorgisyan, S. Mazzoni, M. Turner

BE Department, CERN, Geneva 1211, Switzerland

J. T. Moody

Max Planck Institute for Physics, 80805 Munich, Germany

R. Apsimon, G. Burt

Lancaster University, LA1 4YW Lancaster,

United Kingdom, Cockcroft Institute,

WA4 4AD Warrington, United Kingdom

O. Apsimon, B. Williamson

Manchester University, M13 9PL Manchester,

United Kingdom, Cockcroft Institute,

WA4 4AD Warrington, United Kingdom

1



Abstract

The Advanced Wakefield Experiment (AWAKE) at CERN is the first proton beam-driven plasma

wakefield acceleration experiment. The main goal of AWAKE RUN 1 was to demonstrate the seeded

proton beam self-modulation (SSM), and the electron witness beam acceleration in the plasma

wakefield. For the AWAKE experiment a 10-meter-long Rubidium-Vapor cell together with the

high-power laser for ionization has been used to generate the plasma. The plasma wakefield is

driven by a 400 GeV/c Proton beam extracted from the Super Proton Synchrotron (SPS) which

is self-modulated, a mechanism seeded by the lionization laser. The electron witness beam used

to probe the wakefields is generated from a S-band RF photo-cathode gun and then accelerated

by a booster structure up to energies between 16 and 20 MeV. In the first run of the AWAKE

experiment, it has been measured that the energy gain after the plasma cell can reach up to 2

GeV, and the SSM mechanism of the proton beam has been verified. In this paper, we present

the details of the AWAKE electron injector used for the electron acceleration experiments. A

comparison of the measured electron beam parameters such as beam size, energy and normalized

emittance with the simulation results will be shown.
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I. INTRODUCTION TO AWAKE

The Advanced Wakefield Experiment (AWAKE) at CERN studies electron beam accel-

eration in proton beam-driven plasma wakefields [1, 2]. The proton beam driver has a

momentum of 400 GeV/c, a bunch length of 6-12 cm (RMS), and a transverse beam size of

0.2 mm (RMS). The plasma is generated in a 10-meter-long heated Rubidium-Vapor source

that can reach plasma densities of the order of 1× 1014 ∼ 1× 1015 /cm3. The ionization

laser has an energy of 450 mJ and a pulse length of 120 fs (FWHM) allowing full ioniza-

tion of a plasma channel with a radius of 1 mm. The laser pulse and the proton beam

co-propagate through the vapor source to create the plasma and seed the self modulation

within the long proton bunch. The maximum accelerating gradient of the plasma wakefield

[3] Emax = mewpec/e is determined by the plasma electron density ne where me is the elec-

tron mass, wpe =
√
nee2/meε0 is the plasma frequency, ε0 the vacuum permittivity, c the

speed of light, and e the electron charge, respectively. In the case of AWAKE, the nom-

inal plasma density is 7× 1014 /cm3, and the maximum accelerating gradient is therefore

expected to be on the order of GV/m.

Particular to AWAKE, an important condition for the generation of high plasma wake-

fields is the Seeded Self-Modulation (SSM) of the proton beam [4, 5]. In the linear plasma

wakefield theory the optimal condition to drive plasma wakefields is kpσz ∼=
√

2 where kp is

the plasma wavenumber defined by wpe/c, and σz is the RMS bunch length of the drive beam

[6]. Therefore, the initial proton beam extracted from the Super Proton Synchrotron (SPS)

does not satisfy the condition to generate high-gradient wakefields due to its long bunch

length. However, once the long proton bunch has propagated for a distance in the plasma, it

splits into micro-bunches which have a length corresponding to the plasma wavelength, meet-

ing the condition for driving the high-gradient plasma wakefield [7]. The self-modulation of

the proton beam is reliably seeded by the front of the ionization laser which is placed in the

center of the proton beam, then the self-modulation of the proton beam density starts from

this point enabling phase stable wakefields.

In the first run of the AWAKE experiment to demonstrate electron beam acceleration

through the plasma wakefields, an electron injector that consists of a S-band RF photocath-

ode gun, and a traveling wave booster structure has been used to produce electron beams

with an energy of 16-20 MeV [8, 9]. The electron beam is then passing through an electron
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transfer line, and injected into the plasma cell co-propagating with the proton beam and

the ionization laser [10]. An energy gain of the electron beam in the 10 m plasma source of

up to 2 GeV [11] has been demonstrated experimentally. In addition, the SSM phenomenon

has been successfully observed and studied by direct measurement of the modulated proton

bunch using streak cameras, and by indirect measurement of the proton beam divergence

due to the transverse wakefield [12, 13]. A schematic of the AWAKE experiment can be seen

in fig 1.

FIG. 1: Schematic of the AWAKE experiment at CERN. The upper right corner shows an example

of a beam spot as observed in the spectrometer. The inserts in the lower left corner illustrate the

injection conditions and the process of seeded self modulation.

In this paper, we present the details of the electron injector used for the acceleration

experiment in Section II. Commissioning results such as transverse beam distributions on

screens and the beam emittance measurements using pepper-pot and quadrupole scan meth-

ods will be shown in the Section III. A careful comparison of the measurements with the

simulation results in order to demonstrate the operating condition of the electron injector

will be presented in Section IV. Finally, the results of the commissioning will be concluded

in the Section V.
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II. DESIGN AND CONSTRUCTION OF THE INJECTOR

An electron injector providing adequate beam quality to demonstrate the first proton

driven plasma wakefield acceleration experiment was designed and constructed within the

AWAKE collaboration. The original target parameters for the injector were an energy of 16

MeV, a bunch charge of 200 pC, an energy spread below 1%, a bunch length of 4 ps and

an emittance of 2 mm mrad. The small emittance was needed to provide an adequate spot

size matching the plasma parameters at the injection point. To achieve these parameters an

RF photo-injector was chosen using a 3 GHz, 2.5-cell RF-gun and a one-meter-long booster

structure. The RF-gun including a load-lock system was available at CERN [14], while the

booster structure was newly developed for this purpose [8]. The load-lock system allows

to use Cs2Te cathodes fabricated at CERN with a quantum efficiency of Qe ∼ 10−2. The

laser beam was derived from the main Ti-Sa laser used to ionize and seed the proton beam

self-modulation. Consequently, an adequate timing synchronization could be achieved. A

small fraction of the initial laser power is frequency tripled to a wavelength of 262 nm and

sent with an off-axis mirror on the cathode. The UV-beamline allows to vary the spot size

and energy on the cathode as well as the bunch length since the IR-laser beam has to be

compressed before the UV conversion [15]. The RF-gun accelerated the electron bunches to

an energy of 5.5 MeV followed by the booster which can add up to 16 MeV. A single klystron

is used to power the gun and the booster structure. A high power wave-guide attenuator and

phase-shifter allow for individual phasing and powering of the two structures. A particular

challenge for the design and construction was the severe space constraints in the AWAKE

experiment. The complete injector has a total length of only 5 m before the beam transport

towards the plasma cell starts. The injector is equipped with a number of beam diagnostics

as described in more detail in the next section.

III. BEAM COMMISSIONING RESULTS

Figure 2 shows a schematic view of the electron injector indicating in particular the

locations of focusing and beam diagnostic elements used in this section. The electron injector

consists of an S-band RF photocathode gun and booster structure. The main solenoid and

the corresponding bucking coil are placed around the RF gun to control the beam focusing
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FIG. 2: Schematic electron injector layout emphasizing the location of magnets and diagnostics

mentioned throughout the paper.

and emittance compensation. Corrector magnets are used to correct the beam trajectory

which can be measured with several strip-line BPM’s [16]. A pepper-pot beam diagnostic

instrument is used to measure the beam emittance out of the RF-gun, the corresponding

screen behind the retractable pepper-pot also allows imaging of the transverse distribution

of the beam. A quadrupole triplet behind the booster structure is used to match the beam

for further beam transportation and for the emittance measurements using the quadrupole

scan method at higher energies. A YAG screen (BTV430042) is used for the measurement

of the transverse beam distribution. The electron beam charge at the end of the injector is

measured in a Faraday-Cup with high precision. The first dipole magnet of the following

transport line together with a second screen also serves as a spectrometer to measure the

beam energy and energy spread. During the commissioning, as many beam parameters as

possible were measured to be used as input parameters for simulations.

First, the initial laser pulse distribution which produces the electron bunch by illuminat-

ing the cathode has been measured using the so-called virtual cathode camera. This camera

images a fraction of the laser beam in similar imaging conditions as the laser pulse sent to

the cathode. The laser energy can be varied with Optical Density (OD) filters to adjust the

final beam charge. The beam charge during the commissioning measurements reported here

was measured to be 140 ± 10 pC. The initial transverse distribution of the laser is shown in

Fig. 3. Figure 3 (a) shows the case without OD filter to enhance the UV imaging. The RMS

transverse beam size can be determined to be σx = 0.33 mm in the horizontal plane, and

σy = 0.34 mm in the vertical plane respectively. In the experiment, however, an OD filter

was used to reduce the beam charge, which results unfortunately in a poorer quality image

of the virtual cathode as can be seen in Fig. 3 (b). The transverse size of the laser obtained
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by analyzing this image appears slightly reduced due to the cut-off of the laser energy, and

we obtain σx and σy are 0.27 mm. The smaller values were used for the particle tracking

simulations later on. The bunch length of the electron beam was not measured during the

experiment. Older measurements of the UV laser beam suggested a laser pulse length of σz

= 2.208 ps (FWHM 5.2 ps).
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FIG. 3: Initial transverse distribution of the laser at the cathode without OD filter (a), and with

OD filter (b).

The energy of the electron beam out of the RF gun has been calculated by measuring the

position of the beam at the pepper-pot screen while scanning the first corrector magnet since

no real spectrometer is available after the gun. The electron beam momentum out of the RF-

gun was determined to be 5.8 MeV/c, which corresponds to a nominal energy of 5.31 MeV.

However, since this measurement has a much lower quality compared to a real spectrometer

magnet we estimate the error of the electron beam energy calculation to be about 10%. The

energy of the electron beam after the traveling wave structure has been measured using the

first dipole magnet in a proper spectrometer setup. The momentum of the electron beam

after acceleration was determined to be 18.5 MeV/c with an error of 0.3%. To optimize

the operating conditions of the electron injector during commissioning, scans of the main

solenoid around the RF-gun responsible for emittance compensation have been performed.

Beam sizes and emittances have been measured before and after the booster structure as

a function of the solenoid current. First, the transverse beam size of the electron beam

was measured on the pepper-pot screen. Figure 4 (a) depicts the beam size and normalized

emittance as a function of the solenoid current. Minimum beam sizes σx and σy at the

pepper-pot screen are 0.47 mm, and 0.38 mm for a solenoid current of 185 A. We found
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during the commissioning that it was very difficult to get reliable and reproducible emittance

measurements with our pepper-pot setup. The cause of that is still under investigation. At

this point, we tend to not believe these measurements. We will come back to that issue in

the simulation section.

In addition to the measurement at the pepper pot screen, beam size and the normal-

ized emittance after the traveling wave structure have been measured. This time a well

established quadrupole scanning method was used since the beam is no longer space charge

dominated. The beam size has been measured at the BTV430042 screen, while the normal-

ized emittance was determined from a quadrupole scan by varying the magnetic field of the

center quadrupole of the triplet (MQAWA430034). Figure 4 (b) shows the beam size at the

screen (BTV430042), and the normalized emittance as a function of the solenoid current.

The minimum beam size was found at the solenoid current of 175 A: σx is 0.30 mm, and σy

is 0.29 mm. The minimum normalized emittance however was found at a solenoid current of

185 A, which are 1.01 mm mrad in the horizontal plane, and 1.06 mm mrad in the vertical

plane, respectively.
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FIG. 4: Measured transverse beam size and normalized emittance of the electron beam at the

pepper-pot (a), and BTV 430042 screen (b).

In the next section, we will show a comparative analysis of experimental measurements

with the results obtained from simulations.
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IV. COMPARISON WITH SIMULATIONS

In order to compare measured beam parameters with the simulation results, particle

tracking has been performed mainly using the ASTRA [17] code. The cathode material

used in AWAKE is Cs2Te, and characteristic parameters of the electron beam emitted from

the cathode such as thermal emittance, momentum distribution can be defined as the Fermi-

Dirac distribution [18, 19]. In ASTRA, the momentum distribution, and thermal emittance

of the initial beam at the cathode are defined as follows [20].

σpx = σpy =

√
Ephoton − φeff

3mec2
, (1)

σE =
Ephoton − φeff

3
√

2
, (2)

εx,y = σx,y

√
Ephoton − φeff

3mec2
, (3)

where σpx,y is the RMS value of the transverse momentum, Ephoton is the photon energy of

the laser, φeff is the effective work function of the cathode material, σE is the energy spread,

and εx,y is the thermal emittance, respectively.

Through above equations and Ref. [19], the transverse momentum and energy spread

are determined only by the photon energy of the laser and the work function of the cathode

material, regardless of the spatial distribution type of the laser. Based on the fact that the

momentum distribution is determined by Ephoton and φeff irrespective of the laser shape,

the initial beam distribution measured at the cathode (see previous section), was used as

an input to the simulation. As can be seen in Fig. 3 (b), the distribution is not fully

symmetric. In order to perform the simulations we converted the measured image into an

transverse input distribution suitable for simulations. For the longitudinal components, a

distribution generated by ASTRA was used assuming a Gaussian laser pulse shape. For the

simulations, since we do not have a real bunch length measurement, we studied three values,

the 2.2 ps as indicated by older UV laser measurements and shorter beams with 1.0 ps, and

1.5 ps bunch length for comparison.

The RF fields of the RF gun are overlaid with the magnetic fields of the solenoids. The

maximum accelerating gradient has been set to be 79.6 MV/m to obtain the measured
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beam energy of 5.3 MeV out of the RF gun. At 1.6 m, a traveling wave structure (booster

structure) has been placed to increase the beam energy to match the measured value of 18.1

MeV, therefore its accelerating gradient is 17.8 MV/m. In the ASTRA simulation a full 3D

field map of the booster structure obtained from CST has been used, while the field map of

the RF gun is determined by the 1D axial electric field due to a lack of 3D data. The phase

of the gun has been checked to achieve the maximum energy gain, corresponding nominally

to the smallest emittance as well. Therefore the beam launch phase is approximately 30◦

off crest in the simulations. In the experiment, we tried to minimize the emittance varying

the phase of the gun and solenoid around the nominal working point. The traveling wave

booster structure was set to on-crest acceleration as optimised for maximum energy in the

experiment.

165 170 175 180 185 190 195 200 205

Solenoid current (A)

0

0.5

1

1.5

2

2.5

rm
s
 b

e
a

m
 s

iz
e

 (
m

m
)

(a)

165 170 175 180 185 190 195 200 205

Solenoid current (A)

0

5

10

15
N

o
rm

a
liz

e
d

 e
m

it
ta

n
c
e

 (
m

m
 m

ra
d

) (b)

165 170 175 180 185 190 195

Solenoid current (A)

0

0.5

1

1.5

2

2.5

rm
s
 b

e
a

m
 s

iz
e

 (
m

m
)

(c)

165 170 175 180 185 190 195

Solenoid current (A)

0

1

2

3

4

5

6

7

N
o

rm
a

liz
e

d
 e

m
it
ta

n
c
e

 (
m

m
 m

ra
d

)

(d)

FIG. 5: Transverse beam size, and normalized emittance obtained from ASTRA simulation at the

pepper-pot screen (a, b), and BTV430042 screen (c, d) without misalignement.

Solenoid scans have been simulated with bunch lengths of 1 ps, 1.5 ps and 2.2 ps. The

simulation results together with the measured data are shown in Fig. 5, upper plots for the
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pepper-pot screen and the lower plots for the BTV 430042 screen. In this case, misalignment

of the RF structure, and solenoid magnet have not been considered. One can see that the

slopes of the beam size scans match better with shorter bunch length on both screens. This

results indicate that the bunch length might have been shorter than 2.2 ps as indicated by

older UV measurements. At the pepper-pot screen, the minimum beam sizes σx and σy

for the case of 1 ps bunch length are 0.32 mm, 0.31 mm, and the minimum values of the

normalized emittance are 0.80 mm mrad in the horizontal plane, and 0.78 mm mrad in the

vertical plane. In addition, the minimum beam sizes σx and σy at the BTV430042 screen are

0.48 mm and 0.44 mm, and the minimum values of the normalized emittance are very similar

to the values at the pepper-pot screen. However, the shape of the scan for the emittance

measurements does not correspond well to the simulations. The emittance determination

using the pepper-pot data seems to fail since the larger measured values do not agree neither

with simulations nor with the quadrupole scan measurements which seem to match the

simulations at least for the minimum values. The emittance values measured using the

pepper-pot device and method seem not to match at all the expectations from simulations

while the measurements further downstream of the beam line using the quadrupole scan

method seem to match well at least for the region of the minimum. Therefore at this point

we concluded that the pepper-pot results are likely not reliable. The reason for this is still

under investigation, there are hints that the location and dimensions of our device are not

optimal [21].

During the experiments, the machine operation and in particular the beam alignment

were optimized for the minimum emittance values at 185 A since these beams have been

used for the plasma wakefield acceleration experiments. The alignment of the beam was

not corrected during the scan. Therefore, we suspect some misalignment of the beam due

to steering of the solenoid magnet as a cause for the particular shape of the emittance

measurements. Particle tracking simulations have been used again to study possible offsets

of the booster structure and the solenoids since we had some experimental hints from beam

trajectory data that this might have been the case.

Various offsets of the main solenoid and the booster structure have been studied using

ASTRA with 3D space charge calculations and a 3D field map for the booster structure. It

turned out that the measurements are best described assuming a relatively big offset of the

booster structure only. Figure 6 shows the simulation results obtained for a -4.5 mm offset
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FIG. 6: Comparison of the transverse beam size (a) and normalized emittance (b) at BTV430042

screen taking into account a misalignment of the booster structure.

at the entrance of the booster structure in comparison with the experimental data. In this

simulation, 1.5 ps bunch length was used. Both the emittance and the spot size show good

qualitative agreements for these misalignment assumptions.

FIG. 7: Horizontal phase space of the beam at the input coupler section. Top: on-axis simulation,

bottom: off-axis simulation with -4.5 mm booster structure offset. Solenoid current: (a, d) 170 A,

(b, e) 185 A, (c, f) 190 A.

The main reason for the emittance growth seen in the simulations is an RF kick within
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the input coupler of the booster structure due to its not perfectly compensated RF fields.

The beam size is large at this location for low and high solenoid fields (170 A and 190

A) which leads to a sampling of this asymmetric fields across the beam size. Phase space

distortion due to the asymmetric field is illustrated in Figure 7 where the top row shows the

horizontal phase space at the input coupler of the booster structure obtained from on-axis

simulation, while the bottom row images are with the booster structure offset. One can see

that the momentum distribution of the on-axis case is concentrated in the center. In the

case with a large beam offset, simulation results show that the momentum distribution is

distorted with respect to the core, which leads to the emittance growth. However, for well

focused beams at the entrance of the booster ( solenoid currents of 180 and 185 A), the

effect is much smaller and the emittance growth is not significant.

In a second beam commissioning campaign the misalignment of the beam in the booster

structure and the question of the not well known bunch length was addressed. The original

misalignment of the solenoids could not be solved therefore we corrected the beam at the

entrance of the booster structure for each solenoid setting using a pair of corrector magnets

when taking data. In addition, since the UV pulse shape and length were not clearly

determined during the last measurement, UV pulse measurements using streak camera were

performed again. Unfortunately, it was not possible to get reliable data from direct bunch

length measurements using light from an OTR screen on the streak camera. The intensity

arriving at the streak camera was simply not high enough.
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FIG. 8: Initial transverse beam distribution at the cathode (a), and longitudinal profile of the UV

laser pulse (b). Intensity of the UV laser is normalized.

The transverse beam distribution and charge of the beam were slightly different from the
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first campaign therefore the following inputs were used for the simulations. Figure 8 shows

the measured transverse beam distribution at the cathode and the measured longitudinal

profile of the UV laser pulse. The initial beam size is slightly changed compared to Fig. 3

(b). beam sizes σx and σy is 0.25 mm. The measured beam charge at the Faraday cup

was 150 pC. In the case of the UV measurement, it has been confirmed that the RMS UV

pulse length was 1.5 ps. In addition one can see that there is secondary pulse behind main

pulse, but it should be negligible since the amplitude is very small compared to the main

pulse. This after-pulse was not taken into account in the simulations. Even though the

simulation results with 1.5 ps bunch length is not perfectly matched with the experimental

data indicated in Fig. 5, it has been confirmed that the measured bunch length is significantly

shorter than assumed previously.

Using the new measured inputs ASTRA simulations have been performed again. The

booster structure gradient has been slightly changed to obtain the experimentally measured

18.8 MeV/c momentum value in the simulation. This time we obtained a good agree-

ment between simulations and measurements confirming the assumptions concluded from

the analysis of the first measurement campaign. The measured emittance values obtained

from quadrupole scans and the simulation results are compared in Fig. 9. In addition the

overall emittance of the beam has been reduced due to a better and more careful setup of

the beam.
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FIG. 9: Horizontal normalized emittance measured at the BTV 430042 screen compared to simu-

lations.
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V. CONCLUSIONS

The probe beam electron injector for the AWAKE experiment has been successfully con-

structed and commissioned. It enabled the succesful demonstration of the first ever proton

driven plasma wakefield experiments. Despite the time constraints of beam delivery for

acceleration experiments, systematic beam commissioning measurements were successfully

performed with the electron injector. These measurements were compared with intensive

beam dynamics modeling using ASTRA. A maximum of measured input parameters was

used to reproduce the experimental results. There was good overall agreement giving us

confidence in our injector model. In order to improve the agreement even further two main

parameters were identified, a potentially large misalignment in the booster structure and

a tendency for a shorter initial bunch length as originally anticipated. Recent UV pulse

measurement confirmed that the actual measured pulse length was shorter as expected by

the simulations. Correcting the alignment of the beam through the booster structure for

each solenoid setting improved the emittance and resulted in a good agreement compared to

simulations assuming an on-axis beam. The next step for AWAKE is to inject a very short

bunch of 200 fs, with a matched beta-function and bunch charge to load the wakefield into

the plasma. The goal will be to demonstrate emittance preservation and a low energy spread

at the end of the plasma acceleration. This challenging task requires a new injector which

is currently under design. The good agreement between simulations and measurements for

the current injector gives us confidence for the future work.
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