
Manuscript Details

Manuscript number JAG_2019_478_R2

Title Crop classification from full-year fully-polarimetric L-band UAVSAR time-series
using the Random Forest algorithm

Article type Research Paper

Abstract

Accurate and timely information on the distribution of crop types is vital to agricultural management, ecosystem
services valuation and food security assessment. Synthetic Aperture Radar (SAR) systems have become increasingly
popular in the field of crop monitoring and classification. However, the potential of time-series polarimetric SAR data
has not been explored extensively, with several open scientific questions (e.g. the optimal combination of image dates
for crop classification) that need to be answered. In this research, the usefulness of full year (both 2011 and 2014) L-
band fully-polarimetric Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data in crop classification was
fully investigated over an agricultural region with a heterogeneous distribution of crop categories. In total,11 crop
classes including tree crops (almond and walnut), forage crops (grass, alfalfa, hay, and clover), a spring crop (winter
wheat), and summer crops (corn, sunflower, tomato, and pepper), were discriminated using the Random Forest (RF)
algorithm. The SAR input variables included raw linear polarization channels as well as polarimetric parameters
derived from Cloude-Pottier (CP) and Freeman-Durden (FD) decompositions. Results showed clearly that the
polarimetric parameters yielded much higher classification accuracies than linear polarizations. The combined use of
all variables (linear polarizations and polarimetric parameters) produced the maximum overall accuracy of 90.50% and
84.93% for 2011 and 2014, respectively, with a significant increase of approximately 8 percentage points compared
with linear polarizations alone. The variable importance provided by the RF illustrated that the polarimetric parameters
had a far greater influence than linear polarizations, with the CP parameters being much more important than the FD
parameters. The most important acquisitions were the images dated during the peak biomass stage (July and August)
when the differences in structural characteristics between most crops were the largest. At the same time, the images
in spring (April and May) and autumn (October) also contributed to the crop classification since they respectively
provided unique information for discriminating fruit crops (almond and walnut) as well as summer crops (corn,
sunflower, and tomato). As a result, the combined use of only four acquisitions (dated May, July, August, and October
for 2011 and April, June, August, and October for 2014) was adequate to achieve a nearly-optimal overall accuracy. In
light of the promising classification accuracies demonstrated in this research, it becomes increasingly viable to provide
accurate and up-to-date crops inventories over large areas based solely on multitemporal polarimetric SAR.

Keywords Crop classification; multitemporal SAR imagery; polarimetric SAR; Random
Forest algorithm; UAVSAR.

Taxonomy Mapping, Multi-Temporal Image, Classification

Corresponding Author Huapeng Li

Order of Authors Huapeng Li, Ce Zhang, Shuqing Zhang, Pete Atkinson

Suggested reviewers Pat Dale, Qunming Wang, Jadu Dash, Tiejun Wang



Submission Files Included in this PDF

File Name [File Type]

Cover letter.pdf [Cover Letter]

Response letter.pdf [Response to Reviewers]

Highlights.pdf [Highlights]

Manuscript.pdf [Manuscript File]

Fig1.pdf [Figure]

Fig2.pdf [Figure]

Fig3.pdf [Figure]

Fig4.pdf [Figure]

Fig5.pdf [Figure]

Fig6.pdf [Figure]

Fig7.pdf [Figure]

Fig 8.pdf [Figure]

Table 1.pdf [Table]

Table 2.pdf [Table]

Table 3.pdf [Table]

Table 4.pdf [Table]

Table 5.pdf [Table]

Conflict of interest.pdf [Conflict of Interest]

JAG Author statement.pdf [Author Statement]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE
Homepage, then click 'Download zip file'.



Dear Dr. F. Cigna, Associate Editor,  

Prof. van der Meer, Editor-in-Chief, 

International Journal of Applied Earth Observations and Geoinformation 

 

On behalf of my co-authors, we thank you very much for giving us the opportunity to revise 

the manuscript, and we are grateful to editor and reviewers for their constructive comments and 

suggestions on our manuscript titled “Crop classification from full-year fully-polarimetric L-

band UAVSAR time-series using the Random Forest algorithm” (Former Ref: 

JAG_2019_478_R1). 

 

We have revised the manuscript carefully according to the comments, and highlighted the 

revisions in the revised manuscript using the blue text. In our point-by-point response letter 

attached below, the comments of editor and each reviewer are provided in plain text followed 

by our responses in blue text. 

 

We trust that you will find the revised manuscript acceptable for publication in International 

Journal of Applied Earth Observations and Geoinformation. 

 

Looking forward to hearing from you. 

Best wishes 

 

Professor Peter M. Atkinson 

Dean, Faculty of Science and Technology, 

Lancaster University, 

Tel: 01524 595203 

Email: pma@lancaster.ac.uk 

 



 

Response to Editor and Reviewers 

 

We are grateful to editor and reviewers for their constructive comments and suggestions, and 

have carefully revised the manuscript in response to their advice. The comments of editor and 

each reviewer in plain text followed by our responses in blue text are provided below.  

 

Editor: 

The reviewers recognize that the manuscript has been improved through the major revision, 

and identify a few final issues to resolve, which are detailed in the review reports. In addition 

to those comments, please: 

1. Revise the research highlights to comply with JAG’s guidelines for authors: 3 to 5 bullet 

points (maximum 85 characters, including spaces, per bullet point). 

Response (R): Thanks for this reminder. We have rewritten the highlights as suggested as 

follows: 

"• Overall accuracy of crop classification reaches 85%-90% by using full year 

UAVSAR  

• Polarimetric parameters contribute more than linear polarizations to crop 

mapping 

• The CP parameters are much more important than the FD parameters for crop 

mapping 

• The combined use of four acquisitions is adequate to achieve a nearly optimal 

accuracy ".  

 

2. Revise Figure 3, 4 and 5 to add north arrow, scale bars, colour scales/legends. 

R: Yes, we have revised Figure 3 (a) and (c) to include north arrow and scale bar into the 

figures. There seems no need to revise Figures 4 and 5 since they are of the same location and 

spatial size as Figure 3 (a) and (c).  

 

3. Revise Figure 6 to make the labels of the bars readable. 

R: Yes, we have redrawn Figure 6 to make the labels clearer. Please refer to the revised 

manuscript for detail. 

 

 



 

-Reviewer 1 

 

  - All issues raised by the review have been satisfactorily addressed 

Response (R): Many thanks for this positive feedback. 

 

-Reviewer 2 

 

Many thanks for providing us with these very careful and constructive comments. We have 

revised the manuscript carefully according to the comments and responded to them point by 

point as below. 

 

1. In the abstract in line number 31, the use of the greatest word is not suitable. Change it to 

maximum overall accuracy. 

Response (R): Agreed. We have replaced the word as suggested.  

" …produced the maximum overall accuracy of 90.50% and 84.93% for 2011 

and 2014…" (page 2, line 30-31).  

 

2. There is a mismatch between the title and the work done. Authors are mentioning full-year 

data UAVSAR time-series data for crop identification. However, on line number 42, they are 

indicating that only four acquisitions are enough to do so. Hence, a full year SAR signature is 

not required. Therefore, they should change the title related to the crop classification/ 

identification phenomenon. 

R: Many thanks for this suggestion. We found that the combined use of only four acquisitions 

was able to achieve nearly-optimal overall accuracy. However, such a conclusion was drawn 

based on the analysis of full year UAVSAR time-series (section 4.3). Moreover, the 

experimental results of classifications (section 4.1) and variable importance (section 4.2) were 

also achieved based on full year time-series. The current title thus seems to be suitable for this 

research. 

 

3. Coregistration of the time-series images are mandatory for time series classification. 

Otherwise, the boundary pixels will generate a considerable problem in classification. 

Therefore, no coregistration technique is written in the manuscript. 

R: Thanks for this comment. Actually, there is no need to perform coregistration in this 



research in consideration of the small spatial shifts (< 0.5 pixel) across the UAVSAR 

time-series. We have elaborated this in detail in the study area and data source section as 

follows: 

" Besides, no further geometric corrections were made in view of the small 

spatial shifts (lower than half the pixel) across the time-series by checking the 

boundaries of some randomly selected crop fields. This high-precision spatial 

matching between acquisitions is essential to classification based on 

multitemporal UAVSAR. " (page 8-9, line 186-190).  

 

4. The authors should also infer the cause of the decrease in overall accuracy by 6% from 

2011 to 2014. It is not indicated. 

R: Many thanks for this suggestion. We have elaborated this in the discussion section as 

follows: 

"The overall accuracy of 2014 was lower than that of 2011 by about 6 percentage 

points. This is because July UAVSAR image that can make unique contributions 

to the separation of crop types (Li et al., 2019) was not included in the 2014 

time-series (Table 1)." (page 18, line 425-428).  

 

5. Authors are mentioning that among 81 variables, only 36 are most important (in line 

number 369). Why is it so? The cause is not given. Also, from line number 371 to 382, many 

parameters are written as important without the cause. The authors should investigate the 

cause of the importance of the parameters. 

R: Many thanks for this feedback. We have discussed the cause of the importance for the 

employed variables in the discussion section as follows: 

" The variable importance analysis demonstrated that the polarimetric parameters 

had a far greater influence than linear polarizations, because that with clear 

physical meanings, these parameters are sensitive to crop biophysical parameters 

(e.g. Canisius et al., 2018). Moreover, the relatively large value of variable 

importance achieved by the CP parameters suggested that they were far more 

important than the FD parameters. This is mainly due to the fact that CP 

parameters are more sensitive to structural differences between crop types in 

comparison with the FD parameters (Dickinson et al., 2013). " (page 20, line 

465-471).  

 



Highlight 

• Overall accuracy of crop classification reaches 85%-90% by using full year 

UAVSAR  

• Polarimetric parameters contribute more than linear polarizations to crop 

mapping 

• The CP parameters are much more important than the FD parameters for crop 

mapping 

• The combined use of four acquisitions is adequate to achieve a nearly optimal 

accuracy 
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Abstract 13 

Accurate and timely information on the distribution of crop types is vital to agricultural 14 

management, ecosystem services valuation and food security assessment. Synthetic 15 

Aperture Radar (SAR) systems have become increasingly popular in the field of crop 16 

monitoring and classification. However, the potential of time-series polarimetric SAR 17 

data has not been explored extensively, with several open scientific questions (e.g. the 18 

optimal combination of image dates for crop classification) that need to be answered. In 19 

this research, the usefulness of full year (both 2011 and 2014) L-band fully-polarimetric 20 

Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data in crop 21 

classification was fully investigated over an agricultural region with a heterogeneous 22 

distribution of crop categories. In total,11 crop classes including tree crops (almond and 23 
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walnut), forage crops (grass, alfalfa, hay, and clover), a spring crop (winter wheat), and 24 

summer crops (corn, sunflower, tomato, and pepper), were discriminated using the 25 

Random Forest (RF) algorithm. The SAR input variables included raw linear polarization 26 

channels as well as polarimetric parameters derived from Cloude-Pottier (CP) and 27 

Freeman-Durden (FD) decompositions. Results showed clearly that the polarimetric 28 

parameters yielded much higher classification accuracies than linear polarizations. The 29 

combined use of all variables (linear polarizations and polarimetric parameters) produced 30 

the maximum overall accuracy of 90.50% and 84.93% for 2011 and 2014, respectively, 31 

with a significant increase of approximately 8 percentage points compared with linear 32 

polarizations alone. The variable importance provided by the RF illustrated that the 33 

polarimetric parameters had a far greater influence than linear polarizations, with the CP 34 

parameters being much more important than the FD parameters. The most important 35 

acquisitions were the images dated during the peak biomass stage (July and August) when 36 

the differences in structural characteristics between most crops were the largest. At the 37 

same time, the images in spring (April and May) and autumn (October) also contributed 38 

to the crop classification since they respectively provided unique information for 39 

discriminating fruit crops (almond and walnut) as well as summer crops (corn, sunflower, 40 

and tomato). As a result, the combined use of only four acquisitions (dated May, July, 41 

August, and October for 2011 and April, June, August, and October for 2014) was 42 

adequate to achieve a nearly-optimal overall accuracy. In light of the promising 43 

classification accuracies demonstrated in this research, it becomes increasingly viable to 44 

provide accurate and up-to-date crops inventories over large areas based solely on 45 

multitemporal polarimetric SAR. 46 

 47 
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Forest algorithm; UAVSAR. 49 

 50 

1. Introduction 51 

 52 

Information on crop types and their spatial distribution is of great importance to 53 

agricultural management, ecosystem services valuation and food security assessment 54 

(Thenkabail et al., 2012; Bargiel, 2017). For example, detailed crop distribution data are 55 

critical for assessing accurately agricultural water use at different spatial scales and 56 

making effective policies to increase water use efficiency in agricultural areas (Zheng et 57 

al., 2015). Agriculture is also a major source of greenhouse gas (GHG); high accuracy 58 

modelling of GHG emissions from agriculture relies heavily on the detailed distribution 59 

of crop types (Pena-Barragan et al., 2011). Besides, crop classification data is the 60 

fundamental input to estimating agricultural production, which serves as an important 61 

early warning indicator of famine (Thornton et al., 1997). As a result, crop maps are 62 

updated routinely in many cropland regions by ground survey. However, this procedure 63 

is usually labour intensive and expensive, and is impractical for many developing 64 

countries. In addition, it is difficult to generate consistent and intercomparable data 65 

between countries or even continents in consideration of the different ground field survey 66 

methods adopted (Ozdogan and Woodcock, 2006).  67 

Remote sensing, which provides routine coverage over large areas, could serve as a 68 

cost-effective means of complementing or even replacing field survey. A large body of 69 

studies has classified single or multiple crop types using optical images at medium spatial 70 

resolution (e.g. Landsat and SPOT; Duro et al., 2012), or coarse resolution (e.g. MODIS; 71 
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Wardlow and Egbert, 2008). However, access to optical remotely sensed imagery relies 72 

heavily on the weather conditions, which hugely limits the utility of such data in real 73 

applications (Sonobe et al., 2014). Synthetic aperture radar (SAR) is an active sensor 74 

which operates at relatively long wavelengths and which can penetrate cloud and haze. 75 

As a result, SAR provides the best opportunity for monitoring crops through the growing 76 

season as it is able to acquire data regardless of meteorological conditions (Sonobe et al., 77 

2014). SAR imagery differs from reflectance measured by optical imagery, as SAR 78 

characterizes the structural attributes as well as the dielectric properties of the vegetation 79 

canopy which may be unique to each class, thus being valuable for crop discrimination 80 

(McNairn et al., 2009). 81 

Different from other land cover types, agricultural regions may experience great 82 

variations during a short time depending on climatic conditions, soil properties, farmer’s 83 

decisions, and so on (Wardlow and Egbert, 2008). Thus, crop areas with the same crop 84 

type may have distinctive polarimetric (spectral) properties, whereas those with different 85 

crop types often exhibit similar polarimetric behaviours (Li et al., 2019). This poses great 86 

difficulties for single-date SAR image-based crop classification (Silva et al., 2009), which 87 

can be improved by the utilization of image time series. As a certain crop type might be 88 

correctly separated from others at specific crop stages (Jiao et al., 2014; Bargiel, 2017), 89 

multi-temporal SAR data can thus improve crop classification results (Skriver et al., 90 

2012). For example, Tso and Mather (1999) classified an agricultural area in Norfolk, UK 91 

with seven ERS-1 SAR images, obtaining a classification accuracy of 75%; with six 92 

scenes of ENVISAT ASAR images, Wang et al. (2010) mapped an agricultural area in 93 

south China and produced an overall accuracy of 80%. Recently, some studies attempted 94 

to classify crop types using SAR time series from the newly launched Sentinel-1 satellites 95 
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(e.g. Nguyen et al., 2016; Ndikumana et al., 2018). However, the SAR data used in these 96 

works were restricted to single polarization (ERS-1 and Radarsat-1) or dual-polarization 97 

mode (ENVISAT ASAR and Sentinel-1), thus without making full use of polarization 98 

information.  99 

Radar response to vegetation structure is polarization-dependent. Herein, horizontally 100 

polarized waves (H) show good capability in penetrating the vegetation canopy, thus 101 

achieving more information about surface soil condition by HH polarization. In contrast, 102 

vertically polarized waves are very sensitive to vertical vegetation structure, which 103 

explains the fact that VV polarization performs well in characterizing vertical vegetation 104 

structure (Lin and Sarabandi, 1999). Moreover, the cross polarizations (HV and VH) 105 

provide information about the total canopy volume that is complementary to the co-106 

polarizations (HH and VV). The fully polarimetric SAR, with all types of polarizations, 107 

can significantly improve the observed information dimension of agricultural targets 108 

(McNairn and Brisco, 2004). In addition, polarimetric parameters that provide unique 109 

information for crop discrimination can be generated with full polarimetric (HH, HV, and 110 

VV) SAR (Jiao et al., 2014). McNairn et al. (2009) demonstrated the unique value of 111 

polarimetric SAR in crop classification in comparison to single- or dual-polarization data. 112 

With polarimetric SAR time-series, efforts had been devoted to crop classification. For 113 

example, Jiao et al. (2014) achieved promising crop classification results (with overall 114 

accuracy > 90%) over an agricultural area in Canada with 19 scenes of C-band 115 

RADARSAT-2 data; with the same data type, Liu et al. (2013) obtained an overall 116 

classification accuracy of 85% in classifying corn, spring wheat, and soybean over a test 117 

site in Eastern Ontario, Canada; Whelen and Siqueira (2017) acquired the best 118 

classification accuracy of 83% on an agricultural site in California's San Joaquin Valley 119 
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by using L-band Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). The 120 

above-mentioned classification results are encouraging. However, the full year or full 121 

growing season SAR data adopted by these studies are heavily redundant, and such data 122 

requirements suffer from high expense, limited data availability, and low data processing 123 

efficiency. In contrast, comparable crop classification results might be achieved by 124 

combining a few images dated on critical phenology (Jiao et al., 2014; Li et al., 2019). 125 

Such research topic has, however, received little attention. In addition, few efforts have 126 

been made to quantitatively investigate the importance of polarimetric parameters, 127 

although they are widely used in crop classification studies. 128 

The primary objective of this paper was to explore the potential of L-band UAVSAR 129 

time-series for crop mapping. With a relatively long wavelength, UAVSAR has the 130 

capacity to penetrate crop canopies, which is critical for crop classification. UAVSAR 131 

data are acquired in polarimetric mode with fine spatial resolution (5 m) by National 132 

Aeronautics and Space Administration (NASA), which provides a unique opportunity to 133 

assess the usefulness of multitemporal fully-polarimetric SAR for crop classification. 134 

Herein, the Random Forest (RF) classifier, an ensemble machine learning technique, was 135 

applied to the UAVSAR time-series in light of its robust to high-dimensional and noise 136 

data (Belgiu and Draguţ, 2016). Besides, previous studies have demonstrated that the RF 137 

algorithm is suitable for SAR-based crop classification (Loosvelt et al., 2012a, 2012b). 138 

An agricultural region with heterogeneous and complex crop types in the Sacramento 139 

Valley, California was selected as the test site in this research.  140 

The major innovations and contributions of this research are summarized as follows: 141 
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(1) By using the well-known non-parametric machine learning RF algorithm, the 142 

potential of different combinations of predicator variables in crop discrimination was 143 

fully explored; 144 

(2) The variable importance for crop classification was quantified across input 145 

variables (including linear polarizations and polarimetric parameters) as well as over 146 

acquisitions spanning two full calendar years (2011 and 2014); 147 

(3) A forward selection procedure was conducted to search for the optimal combination 148 

of SAR images that made the best tradeoff between classification accuracy and number 149 

of acquisitions, which could be transferable to other agricultural areas. 150 

 151 

2. Study area and data source  152 

 153 

2.1 Study area 154 

The study area of this research is located at an agricultural region in the middle of the 155 

Sacramento Valley, USA. It stretches over Solano and Yolo counties of California, with 156 

a size of about 11 km × 17 km (Fig. 1). The climate of this area is characterized as 157 

Mediterranean, with dry hot summers and wet cool winters (Zhong et al., 2012). The 158 

annual rainfall amount is nearly 750 mm, mainly concentrated during the period from 159 

winter to the next spring. This area is characterized by a vast flat terrain and deep soil 160 

layers which makes it suitable for farming. Indeed, it is one of the most productive 161 

agricultural areas in the United States. A total of 11 crop types comprising most of the 162 

study area were considered in this research, including almond, walnut, grass, alfalfa, hay, 163 

clover, winter wheat, corn, sunflower, tomato and pepper. These multiple crop types 164 
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provide a unique opportunity to investigate the capability of time-series UAVSAR for 165 

crop classification over heterogeneous regions.  166 

 167 

Fig. 1 is here 168 

 169 

2.2 UAVSAR data 170 

Full-polarimetric airborne UAVSAR data were employed in this research. This SAR 171 

system was developed by NASA JPL, with the primary design goal of monitoring 172 

deforming surfaces resulting either from natural factors or human activities (Hensley et 173 

al., 2009). It operates in L-band with a frequency of 1.26 GHz and a wavelength of 23.84 174 

cm. Nominally, the system flown at an altitude of 12.5 km covers a swath of about 20-175 

km (Chapman et al., 2011), and all flights have nearly identical flight headings and 176 

altitude. The range and azimuth pixel spacings in single-look complex (SLC) imagery are, 177 

respectively, 1.66 and 1 m, with the incidence angles ranging from 25° to 65°.  178 

The UAVSAR images used in this research were the calibrated and ground range 179 

projected (GRD) product. The covariance matrices contained in the product are multilook 180 

with 3 × 12 pixels in the range and azimuth directions, with a pixel spacing of 5 m. The 181 

linear polarization channels for each dataset were extracted and georeferenced to the 182 

UTM coordinate using the MapReady software (Alaska Satellite Facility, ASF). There 183 

was no requirement to apply speckle filters as the multiplicative noise (speckle) inherent 184 

in the SAR was reduced markedly by the multilook procedure (Dickinson et al., 2013), 185 

producing an estimated equivalent number of looks between 6 and 8. Besides, no further 186 

geometric corrections were made in view of the small spatial shifts (lower than half the 187 

pixel) across the time-series by checking the boundaries of some randomly selected crop 188 
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fields. This high-precision spatial matching between acquisitions is essential to 189 

classification based on multitemporal UAVSAR.  190 

In total, nine scenes of UAVSAR imagery spanning the full year of 2011 were collected 191 

over the study area. Besides, seven scenes of UAVSAR imagery captured in 2014 were 192 

also acquired to further investigate the potential of UAVSAR time series for crop 193 

classification. Table 1 provides detailed descriptions of the data as well as meteorological 194 

data on the image acquisition dates. The meteorological data were acquired at a station 195 

(in the city of Sacramento) next to the study area (NOAA-NCEI, 2011, 2014). The 196 

presence of rainfall may have an impact on crop classification owing to the higher 197 

moisture contained in the canopy and soil. Fortunately, nearly all the UAVSAR images 198 

were collected under dry conditions except the acquisition in October 2011 and 199 

November 2014 when very light precipitation (less than 7 mm) was recorded (Table 1). 200 

Besides, freezing in the soil may also interfere with the radar response by altering the 201 

dielectric constant of soil. However, the effect of freezing on the SAR observations should 202 

be minimal given the relatively small amounts of precipitation on the data acquisition 203 

dates (January and December 2011) with air temperatures around freezing point (Table 204 

1). 205 

 206 

Table 1 is here 207 

 208 

3. Methods 209 

 210 

In this section, the data preprocessing and analysis methodologies were elaborated in 211 

detail. A flowchart that illustrates data processing and analysis steps of this research is 212 

shown in Fig. 2.  213 
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 214 

Fig. 2 is here 215 

 216 

3.1 SAR polarimetric decomposition 217 

The rationale for a decomposition lies in the fact that polarimetric SAR signal can be 218 

deconstructed to derive polarimetric parameters that characterize structural properties and 219 

the scattering mechanisms of ground targets. In this research, two widely accepted 220 

decompositions, Cloude-Pottier (CP) and Freeman-Durden (FD), were applied to each 221 

UAVSAR dataset. The former is an eigenvector-eigenvalue based decomposition, while 222 

the latter belongs to the family of model-based decompositions. The CP decomposition 223 

is designed to characterize primary scattering mechanisms for surface targets (Cloude and 224 

Pottier, 1997), with three parameters including entropy (H), anisotropy (A), and alpha 225 

angle (α) being commonly generated. Both entropy and anisotropy vary between 0 to 1, 226 

while alpha angle has a range of 0-90°. Entropy is a measurement of the randomness of 227 

scattering, with a high value indicating a multiplicity of scattering mechanisms. 228 

Anisotropy describes the relative importance of the secondary mechanism, and the value 229 

represents the strength of scattering. Alpha angle characterizes the dominant scattering 230 

mechanisms, with angle values below 40°, around 45°, and over 50° denoting the 231 

dominance of surface scattering, volume or dipole scattering, and double-bounce 232 

scattering, respectively. The FD decomposition is built on a physical model, based on 233 

which fractions of surface scattering (Ps), volume scattering (Pv), and double-bounce 234 

scattering (Pd) are determined for each target (each pixel of image) (Lee and Pottier, 2009). 235 

The model describes the polarimetric backscatter from natural scatterers including first-236 
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order Bragg surface, double-bounce dihedral corner reflector, and thin randomly oriented 237 

cylindrical dipoles (Freeman and Durden, 1998).  238 

3.2 Collection of reference data 239 

The United States Department of Agriculture (USDA) Cropland Data Layer (CDL) 240 

served as the reference data to acquire ground samples for crop classification and 241 

validation. The CDL is produced annually based on several types of medium spatial 242 

resolution optical images (e.g. Landsat TM) and a large number of ground reference data 243 

(Boryan et al., 2011), with a spatial resolution of 30 m. CDL data have been used in a 244 

wide range of applications because of its very high quality (e.g. Sun et al., 2008; Zheng 245 

et al., 2015; Whelen and Siqueira, 2017). According to the USDA National Agricultural 246 

Statistics Services (NASS), the overall classification accuracy for the CDL in 2011 and 247 

2014 over the state of California was determined to be 83% and 81%, respectively, with 248 

the accuracies for the major crop types (alfalfa, sunflower, and tomato) ranging between 249 

83% and 94%. It is noted that the mislabeled pixels of CDL are mainly at the edge of crop 250 

fields and the fields with relatively small area by visual inspection. However, these areas 251 

were not included in the subsequent manual labelling procedure (see below), by which 252 

the actual accuracies of the reference data used in this research should be much higher 253 

than those reported by the USDA-NASS.  254 

 255 

Fig. 3 is here 256 

 257 

The acquisition of ground sample points was comprised of three steps. First, the August 258 

SAR acquisition with clear boundaries between crop fields was overlaid on the CDL 259 

image to identify crop fields over the study area; note that fields with an area below 5 ha 260 

were not considered. Second, the identified crop fields were outlined manually and 261 
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buffered inward by one pixel to remove the mislabeled edge pixels (Fig. 3); a stratum for 262 

each crop class was made by merging the outlined patches belonging to the class. Third, 263 

patches of each crop type were split randomly into two equal subsets; one half subset was 264 

for generating training samples, and the other half subset for collecting testing samples, 265 

so as to make sure that training and testing samples are taken from different crop patches. 266 

In total, 2316 and 2124 sample points (pixels) were acquired for 2011 and 2014, 267 

respectively, with a number of about 200 samples for each crop type.  268 

3.3 Random Forest classification 269 

In total, nine predictor variables were created from each UAVSAR dataset, consisting 270 

of three linear polarizations (HH, HV and VV), three CP decomposition parameters (H, 271 

A and α), and three FD decomposition parameters (𝑃𝑠,𝑃𝑣,𝑃𝑑). The Random Forest (RF) 272 

algorithm was applied using different combinations of input image layers: 1) linear 273 

polarizations alone, 2) CP decomposition parameters alone, 3) FD decomposition 274 

parameters alone, and 4) all predicator variables (linear polarizations and CP and FD 275 

parameters). Descriptions of the combinations of input variables are shown in Table 2.  276 

 277 

Table 2 is here 278 

 279 

The RF algorithm is an ensemble classifier consisting of a collection of tree-type 280 

classifiers {ℎ(𝑥, 𝜃𝑘), 𝑘 = 1, 2, … , 𝑇} , where 𝑥  is an input vector (pattern), 𝜃𝑘  are 281 

independent and identically distributed random vectors, and 𝑇 is the number of trees 282 

defined by users (Breiman, 2001). In the training process, the RF creates multiple 283 

classification and regression trees, each of which is trained on a different bootstrap sample 284 

by randomly resampling the original training sample with replacement (called bagging 285 

strategy). For an input pattern 𝑥 each tree votes for the predicted class and the pattern is 286 
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labelled with the class having the most votes. In this research, the number of trees created 287 

for each classification was set as 500 to achieve a stable state for the out-of-bag (OOB) 288 

accuracy of the RF. Besides, the square root of inputs wasused as the number of variables 289 

to determine splits at the nodes.  290 

The variable importance (𝑉𝐼) provided by the RF can not only quantify the influence 291 

of each variable separately, but also multivariate interactions with other variables 292 

(Gislason et al., 2006). In general, the 𝑉𝐼 for a certain variable 𝑋𝑖 can be estimated with 293 

the following steps. First, the prediction error with OOB samples (𝑒𝑟𝑟𝑂𝑂𝐵) is calculated 294 

over the created trees. Second, the classifier randomly permutes the OOB samples of 295 

variable 𝑋𝑖, with which the prediction error (𝑒𝑟𝑟𝑂𝑂𝐵𝑖) for each tree is measured. Finally, 296 

the 𝑉𝐼 is computed by averaging the difference in the prediction errors between original 297 

OOB samples and randomly permuted samples through all trees as follows: 298 

           𝑉𝐼(𝑋𝑖) =
1

𝑛𝑡𝑟𝑒𝑒
∑ 𝑒𝑟𝑟𝑂𝑂𝐵𝑡

𝑖 − 𝑒𝑟𝑟𝑂𝑂𝐵𝑡
𝑛𝑡𝑟𝑒𝑒
𝑡=1                   (1) 299 

where 𝑡  denotes a certain tree, and 𝑛𝑡𝑟𝑒𝑒  is the total number of trees. The 𝑉𝐼  is 300 

subsequently normalized by dividing the variable’s 𝑉𝐼 by its standard deviation.  301 

3.4 Accuracy assessment 302 

To evaluate the accuracies of the classification maps, a confusion matrix was generated 303 

for each classification by comparing the classified data with the reference points at each 304 

of the sampled pixels. The overall accuracy (OA) and per-class mapping accuracy were 305 

computed for each classification (Foody, 2004). The Kappa coefficients of agreement and 306 

their variances were also estimated, based on which a Kappa z-test was adopted to 307 

evaluate the statistical significance of Kappa coefficients for pairwise classifications 308 

using the following equation (Congalton and Green, 1999): 309 

                    𝑧 =  (𝑘1 − 𝑘2)/ √(𝑣1 + 𝑣2)                         (2) 310 
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where 𝑘 is the Kappa coefficient and 𝑣 is the Kappa variance. If z exceeds a threshold 311 

of 1.96, the two classification results are considered significantly different at the 95% 312 

confidence level. 313 

3.5 Optimal combination of SAR data 314 

In total, nine scenes of images in 2011 and seven scenes of images in 2014 covering a 315 

full calendar year respectively were used in this research. However, contributions from 316 

different acquisitions to crop classification accuracy may vary greatly (Li et al., 2019). 317 

Hence, it is necessary to determine an optimal combination of images that could gain an 318 

acceptable level of classification accuracy. This may not only reduce the cost of images, 319 

but also lighten the computational burden of image processing and classification. In this 320 

research, a forward image selection procedure was adopted in search of the optimal 321 

combination of SAR imagery for crop classification (Pena and Brenning, 2015). Hereinto, 322 

the images were gradually selected and included in the feature set (starting with an empty 323 

feature set) with an increment of one date, and the image combination with the best 324 

classification accuracy was chosen at each step. 325 

 326 

4. Results 327 

 328 

4.1 Random Forest classifications 329 

Figs. 4 and 5 show the classification maps achieved by the Random Forest (RF) 330 

algorithm using different combinations of predictor variables from 2011 and 2014 331 

UAVSAR time series, respectively. Tables 3 and 4 list the detailed accuracy assessment 332 

of the RF classifications with overall accuracy (OA), Kappa coefficient (k) as well as 333 

class-wise producer’s accuracy (PA), user’s accuracy (UA), and mapping accuracy (MA, 334 
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i.e. F1 score). From the tables, it can be seen that the classification based on LP temporal 335 

profile has the smallest OAs, 82.38% and 76.18% for 2011 and 2014, respectively. By 336 

comparison, both CP and FD parameters achieved much more accurate results, with OAs 337 

= 83.63% and 87.65% for 2011 and OAs = 78.06% and 80.32% for 2014, respectively 338 

(Tables 3 and 4). When simultaneously using the LP, CP, and FD temporal profiles, the 339 

RF produced the highest OAs of 90.50% and 84.93% for 2011 and 2014 respectively, 340 

which were significantly greater than those using LP, CP, or FD temporal profiles 341 

according to the Kappa z-test analysis (Table 5). However, there was no significant 342 

difference when comparing the RF classifications with CP parameters and FD parameters.  343 

 344 

Figs. 4 and 5 are here 345 

 346 

The classification accuracies amongst classifications were also compared by class-wise 347 

accuracy assessment (Tables 3 and 4). As shown in the tables, similar trends are found 348 

between the MA and the PA and UA when using different predictor variables. Thus, the 349 

MA is taken as an example to analyze variations of the class-wise accuracy. From the 350 

tables, it can be seen that the MA produced with all variables outperforms that based on 351 

LP channels for all crop classes in both of the years. Prominent increases in accuracy 352 

were seen for the classes of alfalfa, corn, and tomato in 2011, and for those of hay, tomato, 353 

and clover in 2014, with a relatively large margin of 14.31, 13.59, and 13.11 percentage 354 

points (Table 3), and 23.04, 16.99, and 13.32 percentage points (Table 4), respectively. 355 

Similarly, class-wise mapping accuracies with all variables were found to be consistently 356 

superior to those with CP parameters, achieving the largest increase of 16.52 and 14.97 357 

percentage points for the classes of clover (2011, Table 3) and corn (2014, Table 4), 358 

respectively. When compared with the classification using FD parameters, most classes 359 
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except for walnut, hay, and wheat in 2011 and wheat in 2014 were classified with greater 360 

accuracy, with the largest increase of 6.47 and 10.21 percentage points for corn (2011) 361 

and walnut (2014), respectively.  362 

 363 

Tables 3 and 4 are here 364 

Table 5 is here 365 

 366 

4.2 Variable importance 367 

The RF classifications with all variables were selected to investigate the relative 368 

importance of input variables for crop classification. Among the 81 variables used by the 369 

RF, the most important 36 variables are listed in descending order in Fig. 6. It is clear 370 

from the figure that the variables derived from the CP decomposition are generally 371 

important in comparison to those from FD and LP. The CP variables occupy ten and eight 372 

places in the first 15 most important variables (including those of the first four and first 373 

two) for 2011 and 2014, respectively. In particular, the alpha from the August image was 374 

the most important variable in both years, with the largest NVI of 1.26 and 1.01 for 2011 375 

and 2014, respectively. The variables derived from the FD decomposition were of 376 

intermediate importance, and they accounted for three and four places in the first 15 most 377 

important variables for the 2011 and 2014 classifications, respectively. Among the FD 378 

variables, the most important one was the double-bounce scatter from the July image in 379 

2011 and the June image in 2014 (Fig. 6). Moreover, the LP channels were rated as being 380 

the least important with only two and three variables squeezed into the first 15 most 381 

important places in 2011 and 2014, respectively (Fig. 6). 382 

 383 
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Figs. 6 and 7 are here 384 

 385 

It is interesting to note that the importance of UAVSAR imagery to the RF 386 

classification varied greatly across the time-series dataset. The accumulated normalized 387 

importance on a monthly basis over both years with the first 36 most important variables 388 

is illustrated in Fig. 7. It can be seen from the figure that the summer acquisitions (June 389 

and July in 2011 and June and August in 2014) stand out as possessing the greatest 390 

importance, and the spring (May in 2011 and April and May in 2014) and autumn 391 

(October in 2011) acquisitions have medium importance values. In contrast, the winter 392 

acquisitions (January and December in 2011 and February in 2014) were found to have 393 

limited influence on crop classification, and no contribution of importance towards 394 

classification was observed for the November acquisition in 2011. In summary, 395 

acquisitions during the crop growing season (March to October) are far more important 396 

than those during the off season (November to the next March) for the UAVSAR-based 397 

crop classification over both of the years (Fig. 7).  398 

4.3 Optimal combination of SAR 399 

The forward image selection results to search for the optimal combination of images 400 

(best tradeoff between accuracy and number of images) using the RF for crop 401 

classification are shown in Fig. 8. It can be seen from the figure that the August 402 

acquisition achieves the highest single date-based overall accuracy (66.23%) for the year 403 

2011, followed by those dated July, June, and October, while the overall accuracies 404 

yielded by the other acquisitions are relatively low. With the adding of images, the overall 405 

accuracies first increased rapidly and then became rather stable (Fig. 8). However, the 406 

combination of merely four images dated May, July, August, and October produced an 407 
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early-optimal classification accuracy, with an overall accuracy of 88.26%. Similarly, for 408 

the year 2014 the August acquisition obtained the best single date-based accuracy 409 

(64.12%), and the combination of images dated April, June, August, and October 410 

generated an early-optimal classification accuracy of 83.90%. A Kappa z-test further 411 

indicated that there was no significant difference between the classification based on the 412 

four images and that using all images for the year 2011 (z = 1.62) and 2014 (z = 0.60), 413 

respectively. Classification accuracy was not increased substantially when many more 414 

images were progressively added to the classifier. 415 

 416 

Fig. 8 is here 417 

 418 

5. Discussion 419 

 420 

5.1 Crop classification accuracy 421 

The crop classification accuracies produced in this research were very promising, 422 

yielding an overall accuracy of 90.50% and 84.93% for 2011 and 2014, respectively, 423 

when all predicator variables were available. This is not trivial in consideration of the 424 

relatively large number of crop types being considered. The overall accuracy of 2014 was 425 

lower than that of 2011 by about 6 percentage points. This is because July UAVSAR 426 

image that can make unique contributions to separation of crop types (Li et al., 2019) was 427 

not included in the 2014 time-series (Table 1). It should be noted that the classification 428 

accuracy might be improved further by applying speckle reduction algorithms to original 429 

UAVSAR datasets, as the equivalent number of looks of UAVSAR may markedly 430 

increase (Ding et al., 2013). Our results showed that polarimetric parameters 431 
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outperformed linear polarizations, suggesting that much more valuable information had 432 

been provided by the polarimetric parameters. A possible reason for this is that the 433 

polarimetric parameters have a close relationship with growth parameters of crops (e.g. 434 

plant height, biomass, and leaf area index). However, for the case of dual co-polarized 435 

(HH, VV) SAR, polarimetric features (e.g. the correlation coefficient (ρ) and the phase 436 

difference (φ) between the co-polarized linear responses), which provide information 437 

about the scattering mechanisms (Loosvelt et al., 2012a; Canisius et al., 2018), should be 438 

considered for crop classification. In terms of per-class accuracy, we note that accuracies 439 

for crop classes with large biomass (tree crops and summer crops) were greater than 91% 440 

and 85% for 2011 and 2014, respectively, when making use of all variables (Tables 3 and 441 

4). This indicates that L-band microwave with a relatively long wavelength can penetrate 442 

into the crop canopy and, thus, capture the unique structural characteristics of those crop 443 

types. In contrast, hay and clover, two types of forage crops with relatively small biomass, 444 

were classified with mapping accuracies ranging from 63% to 84%. Examining the 445 

confusion matrix of the classification (not shown in the paper), we found that the mutual 446 

mis-identification of the two classes was the main reason for their lower accuracies. For 447 

crops with small biomass, surface scattering was overwhelmingly dominant across the 448 

full year with L-band images (Li et al., 2019). That is, the unique structural characteristics 449 

of small biomass crops are hard to capture due to the effect of soil surface on the radar 450 

response, which is responsible for the mutual misclassification of hay and clover in this 451 

research. The C-band SAR with a smaller wavelength that observes ground objects at a 452 

different scale might be helpful in discriminating these small-biomass crop types (Skriver, 453 

2012). 454 
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SAR-based classification accuracy might be affected by weather conditions and 455 

incidence angle of radar signal (Skriver et al., 1999). Precipitation may raise soil 456 

conductivity and freezing decrease dielectric constant of soil, thus altering the intensity 457 

of the backscatter response. Fortunately, nearly all the UAVSAR data over both years 458 

used in this work were collected under dry conditions with the minimum air temperatures 459 

above freezing point (Table 1), suggesting that weather conditions exerted little impact 460 

on crop signatures. The impact of incidence angle is also negligible in this research 461 

because of the relatively small area of the test site. Besides, such impact tends to be 462 

relatively weak with the growth of crop plants (Saich and Borgeaud, 2000).  463 

5.2 Variable importance of crop classification 464 

The variable importance analysis demonstrated that the polarimetric parameters had a 465 

far greater influence than linear polarizations, because that with clear physical meanings, 466 

these parameters are sensitive to crop biophysical parameters (e.g. Canisius et al., 2018). 467 

Moreover, the relatively large value of variable importance achieved by the CP 468 

parameters suggested that they were far more important than the FD parameters. This is 469 

mainly due to the fact that CP parameters are more sensitive to structural differences 470 

between crop types in comparison with the FD parameters (Dickinson et al., 2013). This 471 

finding is consistent with a recent study of Canisius et al. (2018), in which a large 472 

correlation between plant height and alpha angle (a parameter from CP decomposition) 473 

was observed when monitoring the growth of spring wheat and canola using 474 

RADARSAT-2 data. It was also found that the importance of UAVSAR imagery to crop 475 

classification varied greatly across the year. As expected, images dated during the peak 476 

biomass stage (July and August) were the most important, which agrees with our previous 477 

JM distance-based research showing that the largest separability amongst crop types 478 
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occurred during July and August (Li et al., 2019). In contrast, several optical image-based 479 

studies reported that crop types can be best separated during the green-up and senescence 480 

phenological stages (e.g. Wardlow et al., 2007; Pena and Brenning, 2015). This might be 481 

attributable to the intrinsic differences between optical sensors and SAR. The optical 482 

reflectance observed in the visible spectral domain was found to be sensitive to vegetation 483 

with low leaf area index (LAI) (Prevot et al., 2003). As a result, crop types can be 484 

discriminated with optical images dated during the green-up and senescence stages 485 

(Wardlow et al., 2007). In contrast, SAR sensors tend to capture ground targets’ structural 486 

characteristics (e.g. height, bulk amount, and texture) which are distinctive amongst crop 487 

classes during the peak biomass stage.  488 

5.3 Optimal combination of SAR data 489 

In this research, a combination of only four acquisitions (from May, July, August, and 490 

October for 2011 and April, Jun, August, and October for 2014) achieved near-optimal 491 

crop classification accuracy. This means that, in addition to the summer acquisitions (June, 492 

July, and August) as mentioned above, images dated during green-up and senescence 493 

stages also provided useful information for crop classification. By examining the 494 

confusion matrices (not shown here), two fruit crops (almond and walnut) as well as 495 

winter wheat and grass were found to be better discriminated from each other when 496 

adding the spring acquisitions (May for 2011 and April for 2014) into the image 497 

combination. This is mainly attributed to the relatively large difference in canopy 498 

structure between almond and walnut as well as winter wheat and grass in spring, 499 

resulting from different bloom time (March to mid-April for almond and mid-April to 500 

May for walnut) and germination time (last autumn for winter wheat and spring for grass), 501 

respectively (Pena-Barragan et al., 2011). Besides, the October acquisition was found to 502 
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contribute to the separation of corn from the other two summer crops (sunflower and 503 

tomato). This is due to the distinctive canopy structure of corn in contrast to sunflower 504 

and tomato in Autumn, caused by different harvest time (September-November for corn 505 

and July-September for sunflower and tomato) (Li et al., 2019). 506 

 507 

6. Summary and conclusion 508 

 509 

In this research, the capability of time-series L-band UAVSAR for crop classification 510 

was explored using the RF algorithm. The polarimetric parameters from both Cloude–511 

Pottier (CP) and Freeman–Durden (FD) decompositions were superior to linear 512 

polarizations with respect to crop discrimination. The synergistic use of all variables 513 

further produced an overall accuracy of 90.50% and 84.93% for 2011 and 2014, 514 

respectively, increasing about 8 percentage points in comparison with those using linear 515 

polarizations alone. Polarimetric parameters played a more important role than linear 516 

polarizations in crop discrimination, and the CP parameters were found to be much more 517 

important than the FD parameters. The most important acquisitions were the images 518 

during the peak biomass stage (July and August), and the spring (April and May) and 519 

autumn (October) acquisitions were also useful for crop classification as they respectively 520 

provided unique information for discriminating fruit crops (almond and walnut) as well 521 

as summer crops (corn as well as sunflower and tomato). Hence, a combination of only 522 

four images from May, July, August, and October for 2011 and April, June, August, and 523 

October for 2014 yielded nearly-optimal classification results, achieving an overall 524 

accuracy of 88.26% and 83.90%, respectively. Such combinations make the best tradeoff 525 

between classification accuracy and number of acquisitions for crop classification.  526 



Random forest classification of crop types using UAVSAR 

 23 

This research highlights the unique value of multitemporal fully-polarimetric SAR data 527 

in crop discrimination over agricultural regions with diverse crop types. The results 528 

demonstrate that a relatively high classification accuracy (>84%) of agricultural crops 529 

can be expected with only a few polarimetric SAR acquisitions. In light of the promising 530 

crop classification accuracies acquired in this research, it becomes increasingly viable to 531 

attain accurate and up-to-date crops inventories based solely on polarimetric L-band SAR 532 

data, which provides a cost-effective alternative to field survey of crops over large areas 533 

(e.g. nation-wide scale).  534 
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Fig. 1. Location of the study area in the Sacramento Valley, California. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Fig. 2. Flowchart of processing and analysis steps in this work. (A) data pre-processing steps, (B) 

image classification steps, and (C) analysis steps. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

  
 

 

 

 

 

 

Fig. 3. False colour map of the UAVSAR dated on (a) 29 August 2011 (bands VV, HV, HH) and 

(c) 14 August 2014 (bands VV, HV, HH), and the manually labeled ground reference data in (b) 

2011 and (d) 2014. 

(a) (b) 

(c) (d) 



 

 

 

 

 

 

 

 

 

Fig. 4. Crop classification maps in 2011 produced with the Random Forest algorithm using the linear 

polarizations (LP), Cloude-Pottier parameters (CP), Freeman-Durden parameters (FD), and all 

predicator variables (All).  

 

 

 

 

 

 

 

 

LP CP 

FD All 

Alfalfa Grass Walnut Almond Hay Clover 

Wheat Corn Sunflower Tomato Pepper 



 

 

 

 

 

 

 

 

 

Fig. 5. Crop classification maps in 2014 produced with the Random Forest algorithm using the 

linear polarizations (LP), Cloude-Pottier parameters (CP), Freeman-Durden parameters (FD), and 

all predicator variables (All) in 2014.  
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Fig. 6. Normalized variable importance of RF classifications (2011 and 2014) using all variables 

with bars in green, pink, and violet indicating the variables from the linear polarizations, CP 

decomposition, and FD decomposition, respectively. A variable name consists of three parts, with 

the prefix, centre, and suffix respectively indicating date of acquisition, data source, and a certain 

variable (abbreviations ent, anis, alp, odd, vol, and dbl denote the polarimetric parameters of entropy, 

anisotropy, alpha angle, surface scatter, double-bounce scatter, and volume scatter, respectively). 

For example, the first variable name 08_CP_alp represents the variable alpha angle derived from 

the CP decomposition using the August image. 



 

Fig. 7. Histograms of accumulated normalized variable importance from the images in 2011 and 

2014. Note that numbers in the legend indicate acquisition dates. For example, “1” in the upper 

subfigure denotes the image acquired in January 2011 (see Table 1), and so on.   

 



 

 

 

Fig. 8. The RF overall accuracies for the optimal combination of images produced by a forward 

image selection procedure using all predicator variables. Note that numbers in the figure denote 

combinations of images, for example “8,7” represents the combination of images dated August and 

July (i.e. the combination achieves the greatest OA), and so on; the markers indicate the 

classification accuracies (the highest accuracy is highlighted by solid marker) achieved with 

different combinations of images. 



 

 

 

 

Table 1  

UAVSAR imagery and the weather conditions at the time of image acquisition. All images were 

acquired in PolSAR (polarimetric SAR) mode, and there was no snow at the date of acquisition. 

Year Date Local time Pcum (mm) Tmax (℃) Tmin (℃) 

2011 2011.01.10 20h59 0 8.3  -2.8  

 2011.03.30 20h00 0 26.7  11.7  

 2011.05.12 22h22 0 26.1  9.4  

 2011.06.16 13h04 0 31.1  14.4  

 2011.07.20 18h54 0 35.6  15.0  

 2011.08.29 20h21 0 34.4  14.4  

 2011.10.03 22h02 0.5 20.6  10.0  

 2011.11.02 22h45 0 22.8  5.6  

 2011.12.07 20h20 0 14.4  -0.6  

2014 2014.02.12 19h15 0 17.8  7.2  

 2014.04.02 19h01 0 16.1  6.1  

 2014.05.15 18h43 0 36.1  13.9  

 2014.06.16 18h52 0 24.4  13.3  

 2014.08.14 22h44 0 32.2  16.1  

 2014.10.06 20h17 0 35.6  13.9  

 2014.11.13 21h11 6.6 17.2  12.8  

Note that Pcum denotes daily precipitation, and Tmax and Tmin denote daily maximum and minimum air temperatures, 

respectively. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Table 2 

Summary of predictator variables derived from UAVSAR for RF classification. Note that 

abbreviations are explained in the text. 

Year Data source Variable 
Number of 

Images 
Number of layers 

2011 LP HH, HV, VV 9 9×3=27 

 CP H, A, α 9 9×3=27 

 FD 𝑃𝑠, 𝑃𝑣, 𝑃𝑑 9 9×3=27 

 All 
HH, HV, VV, H, A, α 

𝑃𝑠, 𝑃𝑣, 𝑃𝑑 
9 9×9=81 

2014 LP HH, HV, VV 7 7×3=21 

 CP H, A, α 7 7×3=21 

 FD 𝑃𝑠, 𝑃𝑣, 𝑃𝑑 7 7×3=21 

 All 
HH, HV, VV, H, A, α 

𝑃𝑠, 𝑃𝑣, 𝑃𝑑 
7 7×9=63 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Table 3 

Accuracy assessment of RF classifications (2011) using different combinations of variables. Note 

that the greatest mapping accuracy (MA) per row is shown in the bold font. 

Crop class  

LP CP FD All 

PA UA MA PA UA MA PA UA MA PA UA MA 

Almond 93.33 93.33 93.33 93.33 95.45 94.38 95.56 95.56 95.56 95.56 95.56 95.56 

Walnut 93.48 92.47 92.97 92.39 89.47 90.91 97.83 94.74 96.26 96.74 94.68 95.70 

Grass 85.56 74.04 79.38 82.22 77.08 79.57 88.89 85.11 86.96 94.44 81.73 87.63 

Alfalfa 73.13 79.67 76.26 88.06 83.69 85.82 85.07 84.44 84.76 89.55 91.60 90.57 

Hay 58.23 95.83 72.44 60.76 96.00 74.42 68.35 98.18 80.60 62.03 100 76.56 

Clover 71.28 72.04 71.66 61.70 68.24 64.80 77.66 76.04 76.84 78.72 84.09 81.32 

Wheat 89.34 76.22 82.26 86.07 66.88 75.27 95.08 83.45 88.89 95.90 80.14 87.31 

Corn 82.73 87.50 85.05 93.64 98.10 95.81 90.91 93.46 92.17 99.09 98.20 98.64 

Sunflower 78.26 89.11 83.33 77.39 90.82 83.57 79.13 92.86 85.45 86.09 97.06 91.24 

Tomato 86.92 71.52 78.47 93.85 84.72 89.05 94.62 78.34 85.71 96.15 87.41 91.58 

Pepper 91.18 92.08 91.63 92.16 94.95 93.53 86.27 95.65 90.72 93.14 95.00 94.06 

OA 82.38 84.63 87.65 90.50 

Kappa 0.8055 0.8302 0.8636 0.8951 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Table 4 

Accuracy assessment of RF classifications (2014) using different combinations of variables. Note 

that the greatest mapping accuracy (MA) per row is shown in the bold font. 

Crop class  

LP CP FD All 

PA UA MA PA UA MA PA UA MA PA UA MA 

Almond 79.05  78.30  78.67  92.38  76.38  83.62  89.52  76.42  82.46  95.24 83.33 88.89 

Walnut 80.58  77.57  79.05  71.84  90.24  80.00  70.87  83.91  76.84  81.55 93.33 87.05 

Grass 77.78  82.89  80.25  79.01  75.29  77.11  79.01  87.67  83.12  80.25 90.28 84.97 

Alfalfa 79.20  68.75  73.61  85.60  71.81  78.10  83.20  78.79  80.93  86.4 77.14 81.51 

Hay 26.83  81.48  40.37  52.44  66.15  58.50  52.44  70.49  60.14  47.56 95.12 63.41 

Clover 81.25  64.36  71.82  86.25  86.25  86.25  80.00  70.33  74.85  88.75 78.89 83.53 

Wheat 95.20  81.51  87.82  79.20  83.19  81.15  92.80  85.29  88.89  96 79.47 86.96 

Corn 60.42  84.06  70.30  66.67  79.01  72.32  68.75  89.19  77.65  82.29 92.94 87.29 

Sunflower 75.56  88.70  81.60  80.00  78.26  79.12  82.96  77.78  80.29  87.41 84.29 85.82 

Tomato 88.46  67.25  76.41  80.00  76.47  78.20  90.00  82.98  86.35  90.77 88.72 89.73 

OA 76.18 78.06 80.32 84.93 

Kappa 0.7336 0.7550 0.7801 0.8316 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Table 5 

Kappa z-test comparing the performance of the four RF classifications using different combinations 

of predicatator variables. Note that significantly different accuracies at 95% confidence level are 

shown in bold.  

 

 Kappa coefficient (κ) Kappa z-test 

Year 
Data source Kappa Variance (10-4) CP FD All 

2011 LP 0.8055 1.7644 1.3476 3.2990 5.3225 

 CP 0.8302 1.5949 - 1.9505 3.9760 

 FD 0.8636 1.3372 - - 2.0305 

 All 0.8951 1.0695 - - - 

2014 LP 0.7336 2.4538 0.9792 2.1633 4.7597 

 CP 0.7550 2.3228 - 1.1846 3.7792 

 FD 0.7801 2.1665 - - 2.5906 

 All 0.8316 1.7855 - - - 
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