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Key Points:10

• We present observations of Saturn’s ultraviolet aurorae in unprecedented resolu-11

tion, revealing previously unseen small-scale features12

• The main aurorae can be smooth or rippled, likely depending on magnetospheric13

conditions, and multiple parallel arcs are observed near dusk14

• An outer emission is, although variable in brightness, always present and suggested15

to be driven by hot electrons from the ring current16
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Abstract17

Cassini’s mission exploring the Saturn system ended with the Grand Finale, a series of18

orbits bringing the spacecraft closer to the planet than ever before and providing unique19

opportunities for observations of the ultraviolet aurorae. This study presents a selection20

of high-resolution imagery showing the aurorae’s small-scale structure in unprecedented21

detail. We find the main arc to vary between a smooth and a rippled structure, likely22

indicating quiet and disturbed magnetospheric conditions, respectively. It is usually ac-23

companied by a diffuse and dim outer emission on its equatorward side which appears24

to be driven by wave-scattering of hot electrons from the inner ring current into the loss25

cone. The dusk side is characterized by highly dynamic structures which may be signa-26

tures of radial plasma injections. This image set will be the only high-resolution data27

for the foreseeable future and hence forms an important basis for future auroral research28

on Saturn.29

Plain Language Summary30

At the end of its mission, the Cassini spacecraft performed a set of orbits bringing it closer31

to Saturn than ever before. By passing over the planet’s polar regions at such low al-32

titude, its ultraviolet camera could observe Saturn’s aurorae in unprecedented resolu-33

tion. The observations show for the first time the detailed structure of the main auro-34

ral arc which varies between a smooth and a rippled shape, likely depending on how quiet35

or disturbed the plasma near Saturn is. We further find a host of small arcs and blobs36

near dusk whose origins are not readily explained with the current understanding of how37

Saturn’s aurorae are driven. Diffuse features surrounding the brightest auroral emissions38

are attributed to hot electrons from the equatorial plane which are scattered such that39

they can reach Saturn’s atmosphere. These observations are of unique quality and in-40

valuable for future auroral studies.41

1 Introduction42

Saturn’s ultraviolet (UV) aurorae consist of various morphological components lo-43

cated around the planet’s poles. Some of these are rather static and long-lived, while oth-44

ers are more transient, indicating explosive energy release somewhere along the associ-45

ated magnetic field lines.46

The overall auroral morphology is typically dominated by the so called “main au-47

roral oval” or “main emission”. Located at typically 15−20◦ colatitude from either pole48

(e.g., Carbary, 2012; Bader, Badman, Kinrade, et al., 2019), equatorward of Saturn’s po-49

lar hexagon in the north (Pryor et al., 2019), the relatively circular bright band of main50

UV emission around the pole is colocated with the infrared main aurorae (e.g., Melin51

et al., 2011; Badman, Achilleos, et al., 2011; Badman, Tao, et al., 2011) and expected52

to map to equatorial distances beyond the middle ring current (e.g., Belenkaya et al.,53

2014). The exact mechanism causing the acceleration of electrons into Saturn’s polar iono-54

spheres and thus generating the aurorae is unclear, but it is presumed that azimuthal55

flow shears between plasma populations subcorotating at different angular velocities in56

the outer magnetosphere may provide the required electric fields driving the observed57

auroral field-aligned currents (FACs) (e.g., Cowley, Bunce, & O’Rourke, 2004; Stallard58

et al., 2007; Talboys et al., 2009; Hunt et al., 2014; Bradley et al., 2018).59

The auroral brightness varies with local time (LT), which may partly be due to the60

interaction of Saturn’s magnetosphere with the solar wind flow. Both a static flow shear61

between the solar wind and magnetospheric plasma populations (e.g., Cowley, Bunce,62

& Prangé, 2004) and viscous interaction through Kelvin-Helmholtz (KH) waves (e.g., De-63

lamere & Bagenal, 2010; Delamere et al., 2013) could cause asymmetries arising between64

the dawn and dusk aurorae. Further dynamic asymmetries are known to be imposed by65
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the rotating patterns of FACs imposed by the two planetary period oscillation (PPO)66

current systems (e.g., Hunt et al., 2014; Bader et al., 2018) and frequent auroral plasma67

injections due to magnetotail reconnection (e.g., Mitchell et al., 2009; Radioti et al., 2016;68

Bader, Badman, Cowley, et al., 2019).69

The main emission usually does not assume a fully closed circular shape, but con-70

sists of multiple structures subcorotating with the planet (e.g., Grodent et al., 2005). It71

is not centered on Saturn’s magnetic/spin pole, but slightly displaced toward the midnight-72

dawn direction due to the compression of the dayside magnetosphere by the solar wind73

and the dawn-dusk differences in auroral morphology; the location of the oval is mod-74

ulated about this average position by the rotating PPO current systems (e.g., Nichols75

et al., 2008, 2016; Bader, Badman, Kinrade, et al., 2019). Due to the significant quadrupole76

moment of Saturn’s internal magnetic field, effectively an offset of the internal dipole field77

toward the northern hemisphere, the southern oval is typically larger than the northern78

one (e.g., Carbary, 2012; Bader, Badman, Kinrade, et al., 2019).79

The structure of the main emission is highly variable. The dawn side generally fea-80

tures a thin well-defined arc, while the aurorae cover a wider swath in latitude post-noon.81

In either of those regions the arc can include interesting substructures such as “auroral82

beads”, which are multiple detached and consecutive auroral spots located along the main83

emission which may be related to shear flow-ballooning instabilities (Radioti et al., 2019).84

Similar small isolated features are sometimes observed in the dayside aurora; Grodent85

et al. (2011) termed this the “bunch of grapes” configuration and proposed FACs driven86

by nonuniform plasma flow in the equatorial plane and vortices triggered by magnetopause87

KH waves as possible drivers.88

Equatorward of the main aurorae a semi-permanent band of emission can often be89

observed, the so called “outer emission”. While first observed in Hubble Space Telescope90

(HST) imagery near Saturn’s limb (Grodent et al., 2005, 2010), the outer emission is typ-91

ically too faint to exceed the HST’s detection threshold on the dayside. Nevertheless,92

outer emission signatures were tentatively identified in some images of the most recent93

HST observation campaign (Lamy et al., 2018). The Cassini UVIS detector however pro-94

vided many more observations (visible in, e.g., Radioti et al., 2017), which will here be95

exploited to further investigate this signature. It is believed to be caused by hot elec-96

trons between 7-10RS (Schippers et al., 2008) which may reach the ionosphere through97

pitch angle scattering by plasma waves (Grodent et al., 2010; Grodent, 2015; Tripathi98

et al., 2018).99

In this study a selection of auroral imagery from Cassini’s Grand Finale mission100

is presented. The orbit geometry of the spacecraft during this mission phase allowed the101

UVIS instrument to obtain imagery of unprecedented resolution, revealing previously un-102

seen details of Saturn’s aurorae and the high complexity of this dynamic system. Sec-103

tion 2 summarizes the processing methods used to obtain clean auroral imagery from the104

raw observation data, while sections 3 to 4 show and discuss different aspects of the ob-105

served morphology and signatures. We conclude this study in section 5 by summariz-106

ing our findings.107

2 Data and methods108

The far-ultraviolet channel of Cassini’s UVIS instrument performed observations109

at wavelengths between 110-190 nm in up to 1,024 spectral bins (Esposito et al., 2004).110

Its 64 spatial pixels are arranged in a single line to provide an instantaneous field of view111

of 64×1.5mrad. To obtain a two-dimensional image of Saturn’s auroral region, this slit112

was moved across the region of interest by slewing the spacecraft at a slow rate while113

accumulating the exposure. Depending on Cassini’s distance from Saturn and the view-114

ing geometry, repeated slews across different sections of the polar region may be neces-115
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sary to construct a full auroral image. The image resulting from this process is more ap-116

propriately termed a “pseudo-image”, as different pixels in the final product have been117

imaged at different points in time. With exposure times sometimes reaching up to more118

than 2 hr, this is especially important to keep in mind when the dynamics of the auro-119

ral emissions are investigated.120

Each pixel is projected onto a planetocentric polar grid with resolution 0.1◦×0.05◦121

(lon× lat) using Cassini SPICE pointing information from the NASA Planetary Data122

System. The projection altitude is chosen to be 1100 km above Saturn’s 1-bar pressure123

level (defined by RSEQ = 60268 km and RSPO = 54364 km as Saturn’s equatorial and124

polar radii), corresponding to the approximate altitude at which Saturn’s aurorae are125

thought to be generated (Gérard et al., 2009). Finally, we obtain the estimated total un-126

absorbed H2 auroral emission intensity in the 70-170 nm spectral range from the observed127

intensity in the UVIS FUV range by multiplying the intensity measured in the 155- to128

162-nm band by a factor 8.1, as this minimizes hydrocarbon absorption effects (Gustin129

et al., 2016, 2017). Some dayglow usually remains in sunlit regions, but it can be removed130

as described in Bader, Badman, Yao, et al. (2019) if needed. Dayglow removal was only131

performed for the images shown in Figure 4 below.132

Most images presented in this study were obtained from radial distances between133

2-5RS , such that one UVIS pixel at the planet measures approximately 120-300 km across.134

This is at least comparable to three UVIS images from 2008 where a resolution of ∼200 km/pixel135

could be achieved (Grodent et al., 2011) and represents about a tenfold increase in res-136

olution compared to most other UVIS images which were obtained from distances be-137

tween 20-50RS . The HST for comparison offers a theoretical resolution of ∼150 km/pixel,138

but only values of >500 km/pixel can realistically be achieved due to the presence of leak-139

ing sunlight, a relatively wide point spread function and the long exposure times required140

due to the high detection threshold (Grodent et al., 2011). Furthermore, the usually oblique141

viewing geometry from Earth orbit largely limits observations to Saturn’s dayside and142

can lead to significant pixel stretching and limb-brightening close to the terminator re-143

gion (Grodent et al., 2005).144

3 Dawn-dusk asymmetries of the main aurorae145

The first set of images, presented in Figure 1, shows six near-complete views of the146

northern and southern polar auroral regions. As has already been observed in the ear-147

liest HST campaigns imaging Saturn’s aurorae before the arrival of Cassini (Gérard et148

al., 2004, 2005), there typically is a distinct morphological difference between the dawn149

and dusk emissions. The region poleward of the relatively circumpolar band of variable150

main emission is typically dark and featureless, unlike in infrared observations where a151

complete infilling of the polar cap can be observed (Stallard et al., 2008). Exceptions are152

small patches slightly poleward of the main oval on, e.g., 2017-080/232 (Fig. 1a/d); these153

may be related to similar “polar dawn spots” in Jupiter’s auroral emissions which appear154

to be signatures of internally driven magnetotail reconnection (Radioti et al., 2008, 2010).155

The region equatorward of the brightest aurorae often features a typically dimmer band156

of diffuse emission, the outer aurorae, which will be considered in more detail in the fol-157

lowing section.158

The dawn side is usually characterized by a narrow arc which, while essentially al-159

ways present, shows significant variations in latitude and intensity. The latitudinal vari-160

ation is thought to be controlled by the amount of open flux contained in the polar cap,161

by periodic displacements due to PPO FACs and by solar activity (e.g., Badman et al.,162

2005, 2014; Cowley et al., 2005; Bader, Badman, Kinrade, et al., 2019); the variation in163

intensity is less understood but seems to be influenced by solar wind conditions and PPO164

current systems overlaid with different transient signatures resulting from dynamic events165

in the magnetosphere (e.g., Bader, Badman, Cowley, et al., 2019). This auroral arc is166
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Figure 1. Selection of (nearly) full views of the (a-d) northern and (e-f) southern auroral
oval obtained during Cassini’s Grand Finale mission phase. The view is from above the north
pole, down onto the northern or “through” the planet into the southern polar region; local noon
(12LT) is at the bottom and dawn (6LT) at the left. Grey concentric rings mark colatitude from
the pole in steps of 5◦, radial lines mark local time in steps of 1 h. The images are sorted by the
time of their observation; start time, exposure time, observed hemisphere and radial distance of
Cassini from Saturn’s surface are given at the top of each panel. The differences in background
brightness (dayglow) between the northern and southern hemisphere are a seasonal effect; 2017
was a year of northern summer and southern winter.
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Figure 2. Selection of high-resolution imagery of Saturn’s pre-dawn main auroral arc in the
(a-c,e) northern and (d,f) southern hemisphere. The view is the same as in Figure 1, but now
only showing part of the polar region between roughly ∼1-5 LT and 10◦-25◦ colatitude. (g-j) Lat-
itudinal intensity profiles of panels b-f. Shown is the intensity versus colatitude averaged within
40min LT around the colored lines in panels (b-f). Vertical dashed lines indicate the approximate
equatorward boundary of the outer emission.
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thought to correspond to the layer of upward FAC seen in in situ field data in the same167

LT sector, which is located about 1◦ equatorward of the open-closed field line bound-168

ary (OCB) and may be related to a subcorotation flow shear modulated by conductiv-169

ity gradients (Hunt et al., 2014; Bradley et al., 2018).170

Figure 2 shows high-resolution views of the pre-dawn aurorae in both hemispheres,171

with panel 2c presenting the highest-resolved image of Saturn’s UV aurorae obtained to172

date where one pixel on the planet measures ∼100 km across. Next to the main auro-173

ral arc an outer emission is discernible in all images, suggesting that it is continuously174

present but often too weak to be observed with HST or UVIS depending on the dayglow175

intensity and observation geometry. Both the main arc and the outer emission show in-176

teresting substructure, which appears to be quite variable. While, for example, panels 2a/c/f177

are characterized by a rather smooth and largely featureless main arc, 2b/d/e show patchy178

or wavy substructure which may indicate disturbed magnetospheric conditions. Even the179

usually rather smooth outer emission shows patchy features in 2a/e. Another interest-180

ing feature is an apparent bifurcation of the main arc in panel 2c, similar to observations181

of the terrestrial aurorae.182

Panels 2g-j show selected latitudinal intensity profiles of these auroral images. The183

main auroral arc is clearly distinguishable in most cases, being brighter than surround-184

ing emissions by about an order of magnitude in the northern hemisphere (2g/i) but only185

of comparable intensity in the south (2h/j). The width of the main arc (clearly discernible186

in the northern hemisphere, at ∼18-19◦ in the southern) is typically found to be just be-187

low 1◦ in colatitude, or ∼1000 km in the emission layer, both in the northern and south-188

ern hemisphere.189

Signatures on the dusk side are of a fundamentally different nature. Instead of a190

defined arc, scattered patches, bifurcations and other small-scale structures indicate dis-191

turbed magnetospheric conditions thought to be controlled by the interplay between day-192

side reconnection activity and Vasyliūnas cycle outflow down the magnetotail. Figure 3193

shows a number of high-resolution slews across the dusk aurorae (except for 3c all from194

the southern hemisphere) with selected colatitudinal intensity profiles shown in panels195

3i-l. The emissions are structured at least down to the smallest resolvable scale of UVIS196

(here ∼150 km for images from the southern hemisphere); one example is a very fine arc197

protruding somewhat poleward in panel 3f (near ∼ 18LT and ∼ 14◦ colatitude), whose198

full width at half maximum is ∼0.2◦, or ∼200 km (see inset in 3j).199

Only a few similarities can be discerned among this set of images, highlighting the200

great temporal variability of the system, and a clear separation of the main emission and201

the outer emission is not usually evident. While, for example, panels 3f-h allow the iden-202

tification of a thin main arc and a dimmer, discrete outer emission on its equatorward203

side, emissions in the remaining images cannot easily be classified into any of the exist-204

ing groups of recurrent signatures identified and investigated in previous works (e.g., Bad-205

man et al., 2015; Grodent, 2015).206

Several images show single or multiple parallel arcs with various inclination across207

the “auroral oval”. Both 2017-219 and 2017-252 exhibit four parallel arcs oriented in the208

near-azimuthal direction, separated by about 1-2◦ colatitude each (see panels 3c/i and209

h/l, respectively) and slightly more equatorward at their leading edge. While it is un-210

clear whether one of the parallel arcs on 2017-219 corresponds to the main emission, the211

arcs’ appearance equatorward of the main emission on 2017-252 and their extent reach-212

ing the equatorward edge of the diffuse emission suggests a source region in the middle213

magnetosphere. It is thus unlikely that they are driven by solar wind interaction at the214

magnetopause and related to the corresponding bifurcations observed in previous stud-215

ies (e.g., Radioti et al., 2011, 2013; Badman et al., 2013).216
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Figure 3. Selection of high-resolution imagery of Saturn’s dusk auroral region in the (c)
northern and (a-b,d-h) southern hemisphere. The view is the same as in Figure 1, but now only
showing part of the polar region between 16-24 local time and 7-27◦ colatitude. (i-l) Intensity ver-
sus colatitude averaged within (i, k-l) 40min LT (10◦ longitude) or (j) 1min LT (0.25◦ longitude)
around the colored lines in panels (c,f-h). (i,l) Parallel arcs are highlighted with dotted vertical
lines. (j) An inset shows the thin intensity peak in more detail.
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In panels 3a-b/d-f, sheared arcs of comparable size are visible, extending to later217

LTs with increasing colatitude. Auroral emissions are expected to rotate faster at larger218

colatitudes, as they are located on magnetic field lines which map into the magnetodisc219

closer to the planet where plasma rotates with a larger angular velocity (e.g., McAndrews220

et al., 2009; Thomsen et al., 2010; Wilson et al., 2017). An example of this differential221

rotation is visible when considering the fine arc in panel 3f (near ∼ 18LT and ∼ 14◦222

colatitude). While the arc is still rather diagonal in this image, the exposure taken di-223

rectly after this image (shown in Fig. 1f) shows it to be oriented in the near-azimuthal224

direction. Extending this evolution backwards, it seems quite possible that this arc may225

have had a radial orientation initially and undergone some shearing before the first of226

the two images was obtained.227

We propose that these sheared and azimuthal arcs, sometimes parallel to one an-228

other, may be auroral signatures of radial interchange injections. These would, similar229

to large-scale plasma injections triggered by magnetotail reconnection (e.g., Mitchell et230

al., 2009; Bader, Badman, Cowley, et al., 2019), set up localized field-aligned current sys-231

tems linking to the ionosphere and cause enhanced particle precipitation, although on232

a much smaller scale. Additionally to their orientation and evolution, the small width233

of the sheared arcs appears to be comparable to the azimuthal width of injections in the234

equatorial plane of roughly 2◦-4◦ longitude (e.g., Chen & Hill, 2008; Thomsen et al., 2015;235

Paranicas et al., 2016). However, the available auroral imagery seems to indicate a pref-236

erence for these auroral features to appear near dusk while in situ observations of fresh237

interchange injections were shown to slightly favor the nightside (e.g., Chen & Hill, 2008;238

Azari et al., 2019). This is somewhat surprising as the LT preference of interchange in-239

jections and their auroral signature should be the same, but may well be an result of bias240

in Cassini’s auroral and in situ data relating to, e.g., season or solar wind activity or the241

overall sparsity of observations.242

4 The outer emission243

Nearly all images presented up to this point have in common the presence of an244

outer emission. It usually seems to be more prominent on the nightside, although this245

may be due to its low brightness which is comparable to the intensity of dayglow on the246

Sun-facing side of the planet. The outer emission is typically more pronounced and spa-247

tially separated from the main emission in the southern hemisphere, whereas it forms248

no more than a dim, diffuse band just equatorward of the main emission in the north-249

ern hemisphere.250

In general, the outer emission appears circular and centered on the spin pole in both251

hemispheres as visible in Figures 1 and 3. Considering the latitudinal intensity profiles252

shown in Figures 2g-j and 3k-l it usually has a clearly defined outer edge at ∼19-21◦ in253

the northern and ∼22-24◦ in the southern hemisphere (indicated with dashed vertical254

lines), the clear difference in northern and southern colatitudes being due to the quadrupole255

asymmetry. These outer boundaries map to a radial distance of ∼6-7RS in the magnetic256

equator plane, corresponding to the inner edge of the region of hot ion/electron plasma257

as determined in equatorial data (Schippers et al., 2008; Kellett et al., 2010, 2011; Car-258

bary et al., 2018; Carbary, 2019). The “diffuse” emission observed here and in previous259

studies is consistent with wave-driven precipitation from this hot plasma population (Grodent260

et al., 2010; Tripathi et al., 2018), similar to the diffuse outer emission in Jupiter’s au-261

rorae (Radioti et al., 2009).262

The poleward boundary of the outer emission typically appears to be colocated with263

the main aurorae. To verify whether this is true, we consider Figure 4; a quite extreme264

example of poleward contracted main aurorae in the northern hemisphere. The mean265

brightness per colatitude (all images combined to reduce noise) is shown in panel 4d. The266

outer emission, albeit very dim, seems to still occupy all latitudes between the main emis-267
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Figure 4. Observations of Saturn’s outer auroral emission with the main aurorae contracted
far poleward. (a-c) Images from 2017-023 with the dayglow subtracted, showing a dim and wide
incomplete ring of outer emission. View is again the same as in Figure 1. (d) Average brightness
per colatitude of images in panels a-c combined for all LTs. A secondary peak between 15-20◦

marks the outer emission, near fully detached from the main emission.
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sion and its typical equatorward boundary at ∼20◦ colatitude. There is however a dip268

in intensity between the main and the outer emission, similar to some observations in269

the southern hemisphere where the outer emission is most intense near its equatorward270

edge and becomes dimmer closer to the main emission (see, e.g., Figures 1f and 2d/h).271

This suggests that the driving mechanism of the outer emission operates throughout the272

ring current, but is most efficient near its planetward boundary.273

It seems that the outer emission is typically weaker in the northern than in the south-274

ern hemisphere; considering the intensity profiles shown in Figures 2g-j and 3i-l, the north-275

ern outer emission reaches up to 4 kR only in exceptional cases (Fig. 2i) whereas larger276

intensities are observed frequently in the south (Fig. 1f, 2d/h and 3h/l). This implies277

that the wave diffusion responsible is “weak”, i.e. the loss cone is not filled. Weak dif-278

fusion corresponds to pitch angle scattering per bounce which is less than the angular279

width of the loss cone, so that only the outer part of the loss cone gets filled. With the280

loss cone being smaller in the north than in the south as a result of the higher magnetic281

field strength in the north, arising from the significant quadrupole asymmetry, more par-282

ticles precipitate in the south. An equivalent effect is found in the South Atlantic Anomaly283

at Earth (e.g., Vampola & Gorney, 1983). If the pitch angle scattering becomes “strong”,284

meaning scattering by at least the loss cone angle in each bounce, then the loss cone will285

be “full” in both hemispheres, resulting in an isotropized distribution with identical pre-286

cipitating flux in both hemispheres.287

5 Conclusions288

In this study we presented a selection of auroral images from Cassini’s Grand Fi-289

nale orbits, providing auroral observations of unprecedented spatial resolution in both290

hemispheres, and put them into context with previous results obtained in auroral stud-291

ies. The data presented here reveal the amazing small-scale structure and dynamics of292

Saturn’s UV aurorae which were usually not resolvable during earlier mission phases, and293

remains hidden with the limited capabilities of the HST.294

Close views of the main auroral oval at pre-dawn LTs reveal that the main arc’s295

structure is highly variable; it can be smooth or rippled and at times bifurcated. It is296

yet to be investigated in detail what controls this changeable behavior, but it seems rea-297

sonable to suggest that disturbed magnetospheric conditions are associated with more298

rippled configurations as an effect of disturbed plasma flows and density gradients in the299

equatorial magnetodisc.300

The dusk emission was shown to be highly complex, every image exhibiting very301

different signatures. Recurring behavior could not readily be observed for the most part,302

although several observations of multiple parallel arcs with different inclination across303

the auroral oval were found. Their orientation and size seem to indicate they are signa-304

tures of radial interchange injections, evolving into a sheared and eventually azimuthal305

configuration due to the differential rotation of the magnetosphere.306

Virtually all imagery obtained during the Grand Finale shows an outer emission307

to be present, a diffuse ring of dim aurorae just equatorward of the main emission. Based308

on its location and circular shape we presume that it is driven by hot electrons from the309

inner ring current which are scattered into the loss cone by wave activity. The interhemi-310

spheric difference in intensity and latitudinal position, owing to the significant quadrupole311

moment of Saturn’s internal magnetic field, indicates the wave diffusion to be weak such312

that only a part of the loss cone is filled.313

After being in orbit around Saturn for more than 13 years, these are the last au-314

roral images from the Cassini spacecraft. They reveal previously unseen detail of Sat-315

urn’s UV aurorae and perhaps prompt more questions about their origins than they can316

help answer - highlighting ever more the need for capable missions to planets in the outer317
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solar system and, especially in absence of such missions to the Saturn system anytime318

soon, the need for comparative planetology.319
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