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Abstract

Our physical environment gives rise to extreme events (river floods, heatwaves, at-

mospheric pollution, hurricanes, earthquakes) that have the potential to endanger

lives and cause large economic loss. Understanding the characteristics of extreme

ocean environments in particular, and their interactions with marine and coastal

structures, is critical to the safety of all who inhabit coastal regions, or depend on

the ocean for their livelihoods. Extreme value analysis presents a useful framework

to quantifying the extreme ocean environment from samples of observations.

Reliable extreme value models for the ocean environment must accommodate

known sources of systematic variation in ocean storm severity due to covariates

such as wave direction and season. This motivates the two main areas of research

addressed in this thesis. The first area considers the introduction of covariates

in the generalised Pareto and non-homogeneous Poisson point process models for

extremes. The relative performance of non-stationary forms of these models is

investigated in terms of ease of implementation, parameter estimation and predic-

tive performance on both simulated and hindcast samples. Both approaches have

their merits. The key finding is the importance of employing a model formulation

that captures the covariate-response relationship appropriately.
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The second area of research is the development and evaluation of approaches to

estimate the covariate-response relationship. Covariate effects in extreme ocean

storms are often intricate, requiring a flexible framework to estimate the variation

of extreme value model parameters as a function of covariates. Parameterisations

need to be sufficiently complex to be physically realistic, but sufficiently parsimo-

nious to be practically useful. Semi- and non-parametric models are ideal candi-

dates. A covariate parameterisation often needs to accommodate rapid change or

specific covariate interactions in one part of the covariates domain, but smoother

variation in other parts. The covariate parameterisation needs to be sufficiently

flexible and reliable to facilitate the study of extreme ocean environments from dif-

ferent ocean basins with fundamentally different physical characteristics. Model

sophistication usually comes at the expense of computational stability and ef-

ficiency. Modelling procedures are required which are capable of incorporating

multiple covariates (suche as direction, season, location, water depth), ensuring

appropriate smoothness of model parameter variation with covariates, to max-

imise predictive performance whilst avoiding overfitting.

Extreme value models within which model parameter variation with respect to co-

variates is described using penalised splines, Bayesian adaptive regression splines,

radial basis functions and covariate domain partitioning are considered for 1-D and

2-D covariates. The performance of each is evaluated using simulated and hind-

cast samples. Spline-based models perform relatively well, in terms of predictive

performance and computational stability, across a range of applications. Radial

basis functions and covariate domain partitioning formulations appear to provide

a promising parsimonious alternative when covariates interact strongly.

VI



CONTENTS

Contents

Declaration II

Acknowledgements III

Abstract V

List of Figures XI

List of Tables XXV

1 Introduction 1

1.1 Environmental extremes . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Hindcast datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Motivating questions . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background material and literature review 11

2.1 Univariate extreme value theory . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Block maxima model and the generalised extreme value dis-

tribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Threshold exceedances and the generalised Pareto distribution 17

2.1.3 Accounting for non-stationarity . . . . . . . . . . . . . . . . 24

VII



CONTENTS

2.2 Inference procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Bayesian model and Markov chain Monte Carlo Markov tech-

niques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.2 Metropolis-Hastings algorithm . . . . . . . . . . . . . . . . . 31

2.2.3 Derivative-based MCMC algorithms . . . . . . . . . . . . . . 34

2.2.4 MCMC methods with dimension-changing state space . . . . 36

2.3 Covariate parameterisations . . . . . . . . . . . . . . . . . . . . . . 39

2.3.1 Basis description . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.2 Constant parameterisation . . . . . . . . . . . . . . . . . . . 41

2.3.3 Polynomial and Fourier series formulation . . . . . . . . . . 41

2.3.4 Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.5 Radial functions . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 A comparison of peaks over threshold methods 50

3.1 Threshold approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.1 Non-homogeneous Poisson process interpretation as yearly

maxima . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.2 Peaks over threshold models for non-stationary series . . . . 58

3.2 Simulation routine . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.1 GPD simulation . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.2 Poisson point process simulation . . . . . . . . . . . . . . . . 68

3.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.1 Model fitting . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4 Hindcast data study . . . . . . . . . . . . . . . . . . . . . . . . . . 88

VIII



CONTENTS

3.4.1 South China Sea . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4.2 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . 93

3.5 Discussion and further work . . . . . . . . . . . . . . . . . . . . . . 108

4 One-dimensional covariate modelling 111

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2 Estimating non-stationary extremes . . . . . . . . . . . . . . . . . . 118

4.2.1 Extreme value model . . . . . . . . . . . . . . . . . . . . . . 118

4.2.2 Covariate parameterisation . . . . . . . . . . . . . . . . . . . 119

4.3 Inference procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.3.1 Bayesian model . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.3.2 Standard MCMC inference algorithms . . . . . . . . . . . . 128

4.3.3 Moving between dimensions . . . . . . . . . . . . . . . . . . 130

4.4 Evaluation of methods . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.4.1 Return value distributions and comparison methods . . . . . 150

4.4.2 Case studies and inference . . . . . . . . . . . . . . . . . . . 157

4.4.3 Assessing quality of inference . . . . . . . . . . . . . . . . . 164

4.5 Northern North Sea hindcast . . . . . . . . . . . . . . . . . . . . . . 168

4.5.1 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Appendices 176

4.A Gaussian kernels BARBaR model and derivatives with respect to

the basis parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 176

4.B Simplified mMALA approach for the Gaussian kernel BARBaR

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

IX



CONTENTS

4.C Derivatives of the generalised Pareto distribution . . . . . . . . . . 181

5 Two-dimensional covariate modelling 184

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.2 Non-stationary extremes . . . . . . . . . . . . . . . . . . . . . . . . 193

5.2.1 Covariate parameterisation . . . . . . . . . . . . . . . . . . . 193

5.2.2 Spline basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5.2.3 Voronoi basis . . . . . . . . . . . . . . . . . . . . . . . . . . 196

5.2.4 Bayesian adaptive radial basis functions in 2-D . . . . . . . 201

5.3 Inference procedures and methods evaluation . . . . . . . . . . . . . 202

5.3.1 Investigated models . . . . . . . . . . . . . . . . . . . . . . . 203

5.3.2 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . 205

5.3.3 MCMC inference algorithms . . . . . . . . . . . . . . . . . 208

5.3.4 Return value distributions and comparison methods . . . . . 210

5.4 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

5.4.1 Inference and tests . . . . . . . . . . . . . . . . . . . . . . . 215

5.5 Hindcast data study . . . . . . . . . . . . . . . . . . . . . . . . . . 223

5.5.1 Northern North Sea hindcast . . . . . . . . . . . . . . . . . 224

5.5.2 South China Sea hindcast . . . . . . . . . . . . . . . . . . . 230

5.6 Discussion and concluding remarks . . . . . . . . . . . . . . . . . . 237

Appendices 242

5.A Inference and tests for Cases 1 and 2 . . . . . . . . . . . . . . . . . 242

5.B Threshold diagnostics for hindcast datasets . . . . . . . . . . . . . . 256

6 Further work 259

X



6.1 Bayesian inference and dimension-jumping models . . . . . . . . . . 259

6.2 Study of computational efficiency . . . . . . . . . . . . . . . . . . . 261

6.3 Model extension and threshold selection . . . . . . . . . . . . . . . 262

6.4 Models for multi-dimensional covariates . . . . . . . . . . . . . . . . 264

Bibliography 265

List of Figures

1.2.1 Map of the hindcast locations in the South China Sea (left

panel), with peak significant wave height Hs (m) on wave di-

rection (right upper panel) and season (in day of the year,

right lower panel) for one of the datasets. . . . . . . . . . . . 5

1.2.2 Map of the hindcast location in the North Sea (left panel),

peak significant wave height Hs (m) on wave direction (right

upper panel) and season (in day of the year, right lower panel). 7

2.3.1 A representation of first (top) and second (bottom) degree B-

spline components (adapted from Eilers and Marx 1996) . . . 45

2.3.2 A representation of first (left) and second (right) degree B-

spline components, defined by some interior knots (red *), and

resulting function f(x) (–). . . . . . . . . . . . . . . . . . . . 46

XI



LIST OF FIGURES

3.1.1 Scale-shape joint NHPP negative log-likelihood, conditional on

µ = 3. The infeasible region is depicted in grey, and parameter

combinations leading to negative log-likelihood values above

the 60th percentile of all the values computed are shown in

white. True parameters and computed estimates leading to

the minima of the conditional negative log-likelihood are also

given. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Empirical cdf and covariate subspace selection for wave direction. 73

3.3.1 Histogram of a sample of covariates (left) and corresponding

covariate density (right) with 95% confidence bands from ker-

nel density estimation. . . . . . . . . . . . . . . . . . . . . . . 77

3.3.2 Probability of exceedance for the GPD model with 95% boot-

strap confidence intervals, given simulations from all of the

parameter combinations shown in Table 3.3.1. . . . . . . . . . 79

3.3.3 MSE and bias results for maximum likelihood estimates for

each of the models from Table 3.3.1, as compared to the true

model parameters. . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3.4 MSE and bias results for maximum likelihood estimates for

the shape parameter for each of the models from Table 3.3.1,

as compared to the true value using during simulation. . . . . 80

3.3.5 Conditional return values for covariates on (0, 15], and using a

covariate-dependent exceedance probability for the GPD model. 83

3.3.6 Marginal return values, where the exceedance probability for

the GPD model is taken to be covariate-dependent. . . . . . . 85

XII



LIST OF FIGURES

3.4.1 Overview of the South China Sea location(left), mean residual

life plot for threshold selection (middle), with q0.9 := 90%

q0.95 := 95% empirical quantiles of the data shown, and an

overview of the directional-seasonal relationship (right). . . . . 89

3.4.2 QQ plot diagnostics for fitting GPD and PP directional models. 93

3.4.3 Histogram of wave direction covariate (left) and covariate den-

sity with 95% confidence bands from kernel density estimation. 94

3.4.4 Probability of exceedance estimated from logistic regression

given the wave direction observations, with 95% confidence

intervals. Results are shown for different choices of threshold,

all taken as empirical quantiles of the original dataset, which

will be used further in Section 3.4.2 . . . . . . . . . . . . . . . 95

3.4.5 Overview of the spread of simulated exceedances per sector,

with sector 1 = [315o, 60o), sector 2 = [60o, 200o) and sector

3 = [200o, 315o). The corresponding number of exceedances of

the original dataset over the 90% and 95% empirical quantiles

are shown by the red and the blue line respectively. . . . . . . 97

3.4.6 Overview of the size of simulated exceedances per sector, with

sector 1 = [315o, 60o), sector 2 = [60o, 200o) and sector 3 =

[200o, 315o). The lines show the 50%, 90% and 95% empirical

quantiles of the original exceedances. . . . . . . . . . . . . . . 98

XIII



LIST OF FIGURES

3.4.7 100 year conditional return levels (left) and omnidirectional

(right) return levels with 95% empirical confidence intervals,

computed from models (1) and (2) fitted in Section 3.4.1. The

dashed line identifies the maximum observation recorded in

the 50 years of data, namely 6.915 m. . . . . . . . . . . . . . . 100

3.4.8 Overview of empirical quantiles of the original dataset, to be

used as threshold values. . . . . . . . . . . . . . . . . . . . . . 101

3.4.9 Covariate-dependent parameter estimates from a repeated simulation-

fitting routine, using empirical quantiles of the original dataset

as thresholds, for both GPD model (1) and PP model (2) . . . 102

3.4.10 Marginal GPD (right) and PP (left) return values from fitting

model (1) and (2) respectively with empirical quantiles of the

original dataset as thresholds, with 95% empirical confidence

intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.4.11 Values of 90% quantile regression over wave direction using

different number of spline knots (left). Exceedances selected

only using a constant 90% quantile threshold (blue), only from

a non-homogenous 90% quantile regressed threshold with k =

36 knots (red), and from both thresholds (purple). . . . . . . . 105

3.4.12 QQ plot diagnostics for fitting GPD model (1) and PP model

(2) with a non-homogenous 90% quantile threshold regressed

over wave direction observations (left). 100 year conditional

return values compared for GPD and PP models for constant

(90% quantile) and non-homogeneous thresholds (right). . . . 106

XIV



LIST OF FIGURES

3.4.13 Overview of threshold excesses for the original South China

Sea wave heights, using a constant 90% quantile threshold

(left) and non-homogenous 90% quantile threshold regressed

over wave direction observations (right). . . . . . . . . . . . . 107

3.4.14 Covariate-dependent parameter estimates from a repeated simulation-

fitting routine, using quantile regression on the original dataset

to obtain thresholds, for both GPD model (1) and PP model

(2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.1.1 Storm peak significant wave heigh Hs hindcast (in meters) for

a location in the North Sea, with corresponding wave direction

(in degrees, with 0 corresponding to waves approaching from

the north, and degrees increasing clockwise). . . . . . . . . . 114

4.3.1 Intuitive representation of RJ moves, where the components

shown in red are the ones modified (split or combined), birthed

or killed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.4.1 Posterior expected omnidirectional cdf F̂ l
MT

(yp) (in grey) for

each of the 100 sample realisations of Case 2 shown in Figure

4.4.2, corresponding to a return period of ten times the period

of the original sample, with the true return value cdf in solid

black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

XV



LIST OF FIGURES

4.4.2 Illustrations of sample realisations from each of Cases 1 (left)

and 2 (right). Upper panels show parameter variation of GPD

shape ξ (x) , scale ψ (x) and Poisson rate φ (x) with direc-

tion x for each case. Lower panels show a realisation of the

corresponding simulated samples. . . . . . . . . . . . . . . . . 158

4.4.3 Parameter estimates for rate of occurrence φ (x) of the ex-

ceedances (upper), the GPD shape ξ (x) (middle) and GPD

scale ψ (x) (lower) for the sample realisation of Case 1 (top)

and Case 2 (bottom) shown in Figure 4.4.2, for Models 1-5.

Each panel illustrates the true parameter (solid green), poste-

rior median estimate (solid black) with 95% credible interval

(dashed black). . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.4.4 Average posterior expected return value cdf for the sample

realisations of of Case 1 (left) and Case 2 (right) shown in

Figure 4.4.2, corresponding to a return period of ten times

the period of the original sample. The left hand panel shows

the omnidirectional return value distribution, and right hand

panels the corresponding directional estimates. The title for

each panel gives the expected percentage of individuals in that

directional sector. The true return value distribution is given

in solid black. . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

XVI



LIST OF FIGURES

4.4.5 Box-whisker comparison of samples of the Kolmogorov-Smirnov

(KS, top) and Kullback-Leibler (KL, bottom) divergence cri-

teria between omnidirectional posterior expected return value

cdf’s (corresponding to a return period of ten times that the

original sample) and by directional sector, estimated under

samples from the true return value distribution and those es-

timated under models of each of 100 sample realisations for

Case 1. The sample of the KS and KL divergence criteria

are summarised by the median (white disc with black central

dot), the interquartile range (blue rectangular box, with ver-

tical lines showing the 2.5%, 97.5% interval). . . . . . . . . . . 165

4.4.6 Same as Figure 4.4.5 but applied to Case 2. . . . . . . . . . . 166

4.5.1 GPD shape estimates for the North Sea hindcast HS data

shown in Figure 4.1.1. Here, Model 1 from Section 4.4.2 is

used to fit the exceedances of thresholds obtained from non-

exceedance probability ranging between 0.6 and 0.8, with in-

terquantile ranges shaded for the highest and lowest value. . . 169

4.5.2 Parameter estimates for rate of occurrence φ (x) of the ex-

ceedances (upper), the GPD scale ψ (x) (middle) and GPD

shape ξ (x) (lower) for the North Sea hindcast dataset shown

in Figure 4.1.1, for different model parameterisations. Each

panel illustrates posterior median estimate (solid) with 95%

credible interval (dashed). . . . . . . . . . . . . . . . . . . . . 171

XVII



LIST OF FIGURES

4.5.3 Posterior expected return value cdf for the NNS hindcast dataset

shown in Figure 4.1.1, corresponding to a return period of ten

times the period of the original North Sea sample. The left

hand panel shows the omnidirectional return value distribu-

tion, and right hand panels the corresponding directional esti-

mates. The title for each panel gives the expected percentage

of individuals in that directional sector. . . . . . . . . . . . . . 172

5.1.1 Storm peak significant wave heigh Hs hindcast (in meters) for

a location in the North Sea, with corresponding wave direction

(in degrees, with 0 corresponding to waves approaching from

the North, and degrees increasing clockwise) and season (in

day of the year, for a year consisting of 360 seasonal days). . 185

5.1.2 Example of a knots locations for a 2-D P-spline basis obtained

with the approach from Section 5.2.2. The knot locations for

each individual covariate domain are shown as •, while ∗ in-

dicates the resulting knots on the 2-D domain. Here we show

the effect of adding a knot, denoted as a blue • in the first co-

variate domain, requiring the addition of all the knots denoted

by blue ∗ in the final 2-D basis. . . . . . . . . . . . . . . . . . 187

5.1.3 Smoothing was performed for the motorcycle crash helmet im-

pact data from Silverman (1985). Correlation values and con-

ditioning numbers are shown for the inverse matrix, defined

as in Eq.5.1.1, for bases with (left to right, top to bottom)

p = 20, 40, 80, 500 spline components. . . . . . . . . . . . . . 189

XVIII



LIST OF FIGURES

5.2.1 Example of a Voronoi tessellation of a [0, 1] covariate space,

with cell edges shown by the dashed line and sites by the red ∗.197

5.2.2 Partition of a periodic domain into 6 cells with fixed random

locations and coefficients, and decay parameter (left to right,

top to bottom) s = 0.0001, 0.1, 1, π. . . . . . . . . . . . . . . 200

5.2.3 Single Von-Mises component, for x1, x2 ∈ [0, 2π], with a fixed

coefficient, for different values of the κ1, κ2, κ3 parameters. . . 202

5.4.1 Parameter values used to simulate datasets for Case 1 (top),

Case 2 (middle) and Case 3 (bottom). From left to right,

panels show parameter variation of GPD shape ξ (x) , scale

ψ (x) and Poisson rate φ (x) with direction and season for

each case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

5.4.2 Illustrations of a sample realisation from each of Cases 1 (top),

Case 2 (middle) and Case 3 (bottom). From left to right,

panels show the response Hs values against direction, season

and with respect to both covariates. . . . . . . . . . . . . . . 214

5.4.3 Parameter estimates for rate of occurrence φ (x) of the ex-

ceedances (upper), the GPD scale ψ (x) (middle) and GPD

shape ξ (x) (lower) for simulated samples from Case 3, for

Models 1-7. Each panel illustrates the posterior median esti-

mate, while the leftmost panels show the true parameters used

during the simulation. . . . . . . . . . . . . . . . . . . . . . . 216

XIX



LIST OF FIGURES

5.4.4 95% interquantile ranges for the posterior estimates of the rate

of occurrence φ (x) of the exceedances (upper), the GPD scale

ψ (x) (middle) and GPD shape ξ (x) (lower) for simulated

samples from Case 3, for Models 1-7. . . . . . . . . . . . . . . 217

5.4.5 Average posterior expected return value cdf for simulated sam-

ples from Case 3, corresponding to a return period of ten times

the period of the original sample. The panel show, from left

to right, the omnidirectional return value distribution (left),

the corresponding directional estimates (middle) and the sea-

sonal estimates split by month (right). The title for each panel

gives the expected percentage of individuals in that directional

sector. The true return value distribution is given in solid black.219

5.4.6 Box-whisker comparison of samples of the Kolmogorov-Smirnov

(KS) divergence criterion between omnidirectional (left) pos-

terior expected return value cdf’s (corresponding to a return

period of ten times that the original sample), by directional

sector (middle) and seasonal monthly sector (right), estimated

under samples from the true return value distribution and

those estimated under models of each of 100 sample realisa-

tions for Case 3. The sample of the KS divergence criterion

are summarised by the median (white disc with black central

dot), the interquartile range (blue rectangular box, with ver-

tical lines showing the 2.5%, 97.5% interval). . . . . . . . . . . 221

XX



LIST OF FIGURES

5.4.7 Same as Figure 5.4.6, here for the Kullback-Leibler (KL) cri-

terion for Case 3. . . . . . . . . . . . . . . . . . . . . . . . . . 222

5.5.1 Storm peak significant wave height Hs hindcast (in meters)

for a location in the Northern North Sea, with corresponding

wave direction (in degrees, with 0 corresponding to waves ap-

proaching from the North) and season (in day of the year),

both increasing clockwise. . . . . . . . . . . . . . . . . . . . . 224

5.5.2 Parameter estimates for rate of occurrence φ (x) of the ex-

ceedances (upper), the GPD scale ψ (x) (middle) and GPD

shape ξ (x) (lower) for the North Sea hindcast dataset shown

in Figure 4.1.1, for Models 1-7. Each panel illustrates the pos-

terior median estimate. Different color scales are used depend-

ing on the model, in order to show both the pattern detected

and the range of values estimated. . . . . . . . . . . . . . . . 226

5.5.3 95% interquantile ranges for the posterior estimates of the rate

of occurrence φ (x) of the exceedances (upper), the GPD scale

ψ (x) (middle) and GPD shape ξ (x) (lower) for the North

Sea hindcast dataset shown in Figure 4.1.1, for Models 1-7.

Different color scales are used depending on the model, in order

to show both the pattern detected and the range of values

estimated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

XXI



LIST OF FIGURES

5.5.4 Posterior expected return value cdf for the North Sea hindcast

dataset shown in Figure 4.1.1, corresponding to a return period

of ten times the period of the original NNS sample. The panel

show, from left to right, the omnidirectional return value dis-

tribution (left), the corresponding directional estimates (mid-

dle) and the seasonal estimates split by month (right). The

title for each panel gives the expected percentage of individuals

in that directional sector. . . . . . . . . . . . . . . . . . . . . . 229

5.5.5 Storm peak significant wave height Hs hindcast (in meters)

for a location in the South China Sea, with corresponding

wave direction (in degrees, with 0 corresponding to waves ap-

proaching from the North) and season (in day of the year),

both increasing clockwise. . . . . . . . . . . . . . . . . . . . . 230

5.5.6 Parameter estimates for rate of occurrence φ (x) of the ex-

ceedances (upper), the GPD scale ψ (x) (middle) and GPD

shape ξ (x) (lower) for the South China Sea hindcast dataset

shown in Figure 5.5.5, for Models 1-7. Each panel illustrates

the posterior median estimate. Different color scales are used

depending on the model, in order to show both the pattern

detected and the range of values estimated. . . . . . . . . . . . 232

XXII



LIST OF FIGURES

5.5.7 95% interquantile ranges for the posterior estimates of the rate

of occurrence φ (x) of the exceedances (upper), the GPD scale

ψ (x) (middle) and GPD shape ξ (x) (lower) for the South

China Sea hindcast dataset, for Models 1-7. Different color

scales are used depending on the model, in order to show both

the pattern detected and the range of values estimated. . . . . 233

5.5.8 Posterior expected return value cdf for the South China Sea

hindcast dataset shown in Figure 5.5.5, corresponding to a

return period of ten times the period of the original sam-

ple. The panel show, from left to right, the omnidirectional

return value distribution (left), the corresponding directional

estimates (middle) and the seasonal estimates split by month

(right). The title for each panel gives the expected percentage

of individuals in that directional sector. . . . . . . . . . . . . . 236

5.A.2 Parameter estimates (Figure 5.A.1a) and 95% interquantile

ranges (Figure 5.A.2a) for rate of occurrence φ (x) of the ex-

ceedances (upper), the GPD scale ψ (x) (middle) and GPD

shape ξ (x) (lower) for Case 1, for Models 1-7. Each panel

illustrates the posterior median estimate. . . . . . . . . . . . 245

5.A.4 Same as Figure 5.A.2, here for Case 2. . . . . . . . . . . . . . 247

XXIII



LIST OF FIGURES

5.A.6 Average posterior expected return value cdf for simulated sam-

ples from Case 1 (Figure 5.A.5a) and 2 (Figure 5.A.6a), cor-

responding to a return period of ten times the period of the

original sample. The panel show, from left to right, the omni-

directional return value distribution (left), the corresponding

directional estimates (middle) and the seasonal estimates split

by month (right). The title for each panel gives the expected

percentage of individuals in that directional sector. The true

return value distribution is given in solid black. . . . . . . . . 250

5.A.8 Box-whisker comparison of samples of the Kolmogorov-Smirnov

(KS) divergence criterion between omnidirectional (left) pos-

terior expected return value cdf’s (corresponding to a return

period of ten times that the original sample), by directional

sector (middle) and seasonal monthly sector (right), estimated

under samples from the true return value distribution and

those estimated under models of each of 100 sample realisa-

tions for Case 1 (Figure 5.A.7a) and 2 (Figure 5.A.8a). The

sample of the KS divergence criterion are summarised by the

median (white disc with black central dot), the interquartile

range (blue rectangular box, with vertical lines showing the

2.5%, 97.5% interval) . . . . . . . . . . . . . . . . . . . . . . . 253

5.A.10 Same as Figure 5.A.8, here for the Kullback-Leibler (KL) cri-

terion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

XXIV



5.B.1 Omnidirectional posterior expected return median return value

estimates for the North Sea hindcast HS (top) and South

China Sea (bottom) introduced in Section 1.2 across increas-

ing return periods (pictured in log-scale for readability). Here,

Model 1 from Section 5.3.1 is used to fit the exceedances of

thresholds obtained from non-exceedance probability ranging

between 0.6 and 0.8, with 95% interquantile ranges shaded for

the highest and lowest value. . . . . . . . . . . . . . . . . . . . 257

List of Tables

3.3.1 Overview of parameter values used during simulation and fit-

ting procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.1 Estimates for constant parameters for both GPD model (1)

and PP model (2), together with profile likelihood confidence

intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.4.2 Estimates of constant parameters for both GPD model (1)

and PP model (2), when fitting is performed using a range

of covariate-dependent threshold obtained via quantile regres-

sion. Profile likelihood confidence intervals are shown in brack-

ets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

XXV



LIST OF TABLES

5.3.1 Summary of the total number of unknown parameters for the

models fitted in Sections 5.4 and 5.5. P-spline bases have p1

and p2 components for the two covariates domain respectively,

and the other models have p total components. The second

column considers the basis formulation parameters required for

each component listed by type, e.g. each BARBaR-f compo-

nent is defined by 1 coefficient, 2 locations and 3 κ parameters.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

XXVI



Chapter 1

Introduction

Extreme value theory is defined as the study of the extremal properties of random

processes. This field of statistics has been applied in many different areas, including

environmental processes, finance, drug safety and insurance. This thesis focuses

in particular on modelling environmental phenomena. Hence, while the theory

and models developed would be valid for different applications, the examples and

datasets presented are of environmental origin.

1.1 Environmental extremes

Environmental processes which may be of interest include rainfall, river flow, pol-

lution levels, wind speed and wave height. Although these processes are not ex-

tremes, we may be interested in the extreme events that arise from them, as these

often yield disastrous consequences for the environment, with associated heavy

costs and risk to human lives. For some processes, such as wave height and wind
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speed, extreme value theory can be used to estimate the probabilities of extreme

levels of the processes, which in turn can be used to help, for example, in the

design of structures such as oil platforms or water defences. They can also be used

to assess the danger associated with extreme events, including the risk of flooding,

structural damage, environmental contamination and potential loss of life. Both

univariate and multivariate processes have been studied extensively, although in

this work we focus on the former.

As one of the six oil and gas “supermajors”, Shell is interested in the design,

construction and maintenance of offshore structures. It then becomes essential to

understand the extreme conditions that marine structures are likely to experience

in their lifetime in order to manage the risk of structural damage, which can lead

to losses in revenue, environmental pollution and staff endangerment. In particu-

lar, a variety of institutions, such as the American Petroleum Institute (API), the

Norwegian Petroleum Safety Authority (PSA) or the International Organization

for Standardization (ISO), stipulate offshore regulation guidelines. These dictate

that structures must be designed to withstand a 1 in N year storm i.e. a storm so

bad that it is only observed on average once in N years, where N is usually chosen

to be between 100 and 10000 years.

Extreme value analysis provides the ideal framework for modelling and predicting

phenomena with very low probabilities. Nevertheless, a variety of issues arise in

extreme value modelling, especially since only the most extreme observations are

considered for modelling purposes. The focus is then on a relatively small amount

of data in comparison with the long term predictions desired, and the resulting un-

certainty needs to be accounted for in a consistent and reliable manner. Moreover,
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the phenomena underlying the processes of interest are often very complex, and

observations tend to be non-homogeneous in space, time or both. Hence, consider-

ing covariates becomes essential to proposing a realistic model. For example, one

cause of structural damage is storm waves, with the most severe ones being wind

generated. A variable commonly used to summarise the impact of a storm and its

severity in the metocean engineering is the significant wave height, often denoted

by Hs, which is defined as the mean wave height of the highest third of waves. We

may suspect that the height of waves is affected by physical considerations such

as seasonal cycles of storm severity, variation of water depth or fetch variability

with direction; then, the inclusion of the corresponding covariates is likely to be

important for good model fit. Unsurprisingly, it is then common for design guide-

lines for offshore sites to require directional and omni-directional predictions, while

installation, maintenance and manning schedules expect seasonal (e.g. monthly)

ones. Jonathan et al. (2008) and Jonathan and Ewans (2011) demonstrate that,

for this type of data, a directional or a seasonal extreme value model generally

explains the observed variation significantly better than a model which ignores

directionality and seasonality, and that omni-directional criteria developed from

a covariate-dependent model are different from a constant model which ignores

them. Hence, constructing a model that adequately captures these effects is nec-

essary, and statistical tools to analyse and extrapolate from such a model become

essential.

This thesis concentrates on peaks over threshold (POT) methods, where we focus

on the tail of the distribution by only considering observations that are above

an arbitrary large value. In the stationary case, two models are available from
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the literature, namely the generalised Pareto distribution (GPD) and the non-

homogeneous Poisson point (NHPP) process formulation, which are introduced in

Section 2.1. Although these models are theoretically equivalent, they both require

adaptations to account for covariate effects, with each method having advantages

and limitations.

Once a suitable extreme value model has been chosen, further important con-

siderations are necessary. When analysing extreme characteristics of the ocean

environment, often multiple sources (e.g. direction, season and two-dimensional

location) of covariate-dependence are at work, and a flexible and scalable frame-

work for covariate-dependent modelling is then needed. There are different meth-

ods to incorporate covariate effects into an extreme value model, and in this thesis

we focus on representing the parameters of a chosen statistical model as functions

of covariates. First of all, an ideal approach would be capable of being applied

to, for example, samples from neighbouring or distant locations without requiring

extensive ad hoc changes. Furthermore, computational efficiency and stability for

single- or multi-dimensional covariates is essential. Different parameterisations are

available from the literature. In oceanographic applications, it is often necessary

to consider one that is complex enough to be practically useful, such as semi-

parametric and non-parametric models. One then needs to consider a series of key

aspects. First of all, while semi- and non-parametric formulations yield flexible

models, they can lead to a large number of correlated parameters. It is also im-

portant to implement suitable strategies to avoid overfitting while fully capturing

the covariate information. Furthermore, computational efficiency and stability are

paramount, especially when high-dimensional covariates affect the process.
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This thesis considers different existing models and formulations in light of the issues

mentioned above, and focuses on proposing methods with the desired character-

istics that are capable of yielding accurate predictions for non-stationary extreme

processes.

1.2 Hindcast datasets

The approaches and methodologies considered in this thesis are applied, in different

chapters, to two hindcast wave height datasets from different ocean basins.

Figure 1.2.1: Map of the hindcast locations in the South China Sea (left panel),
with peak significant wave height Hs (m) on wave direction (right upper panel)
and season (in day of the year, right lower panel) for one of the datasets.

Two of the datasets come from locations in the South China Sea, and consist of a

hindcast time-series for sea state significant wave height Hs. They include time-

series for the dominant wave direction and season, the latter defined as day of the

year, for a notional year consisting of 360 days. They are part of the SEAFINE
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hindcast database by Oceanweather, which produced wind and wave hindcast data

on a fine grid of the southern part of the South China Sea for a continuous period

between 1956 and 2015 (SEAFINE, 2015). For the purpose of the work in this

thesis, we only consider the storm peak significant wave height, such as the one

shown in Figure 1.2.1 for one of the South China Sea locations. This is obtained

from the hindcast by setting a low threshold for peak-picking, in order to identify

separate storm events, and then selecting the maximum of significant wave height

during the storm interval.

The North Sea hindcast was previously reviewed by Breivik et al. (2007). It was

produced using calibrated meteorological computer models based on historical data

from existing offshore sites, and covers the Norwegian Sea, Barents Sea and the

North Sea. The model makes use of the ERA40 global hindcast project (see Uppala

et al., 2005 for a comprehensive overview), the HIRLAM atmospheric model (see

Undén et al. (2002)) and a modified version of the WAM Cycle 4 model for the

wave components Gunther et al. (1992). The storm peak significant wave heights in

Figure 1.2.2 come from a specific location off the coast of Norway, from September

1957 to December 2008.
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Figure 1.2.2: Map of the hindcast location in the North Sea (left panel), peak
significant wave height Hs (m) on wave direction (right upper panel) and season
(in day of the year, right lower panel).

1.3 Motivating questions

• In what ways do covariates affect extreme value peaks over threshold models?

What advantages and disadvantages do the different models show in handling

non-stationarity?

• Can extreme value models incorporate covariates in a flexible way that does

not require ad hoc formulations for each dataset?

• How do different model formulations perform with respect to balancing flex-

ibility, accuracy and ability to avoid overfitting?

• How do models performances differ when one or multiple covariates are con-

sidered?

7



CHAPTER 1. INTRODUCTION

1.4 Thesis overview

The aim of the thesis is to assess and improve inference for existing extreme value

methodology in order to properly model covariate effects. To do this, first we

consider different extreme value models and assess their performance on non-

stationary data. Secondly, we focus on formulations for model parameters and

aim to develop some approaches that capture this non-stationarity appropriately,

in terms of flexibility, efficiency and accuracy. Notation is defined and consistent

within each chapter, although not necessarily across different chapters.

Chapter 2 provides an overview to the existing theory and techniques this thesis

builds upon. In particular the material is divided into three main sections. First,

we review models from univariate extreme value theory which are used as the basis

of statistical methodology in this thesis, as well as standard approaches to capture

covariate effects. Next, we introduce the main notation and concepts of Bayesian

inference approaches used in later chapters. Finally, we introduce the notation

for basis formulations, which can be used to represent the model parameters as

functions of covariates. We then provide an overview of a few specific known for-

mulations, some of which provide the basis for the ones developed and presented

in later chapters.

Chapter 3 focuses on the two known peaks over threshold methods, namely the gen-

eralised Pareto model and the non-homogeneous Poisson point process approach.

The research within this chapter aims to compare the necessary adaptations and

performances of these approaches in the presence of covariates, and maximum like-

lihood methods are used for inference. Simulation studies, as well as an application

to the hindcast data from the South China Sea introduced in Section 1.2, show
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how the models perform and highlight the relative advantages and disadvantages

of both methods.

In Chapter 4, we first explore model parameter formulations aimed at capturing

covariate effects, and in particular we focus on the case where only one covariate

is considered. We review penalised spline bases and their previous application to

extreme value data. We use the P-spline set-up as a benchmark model, and we

then propose an alternative basis formulation consisting of a linear combination of

kernels, in a way which is related to radial basis functions. Inference is performed

using Markov chain Monte Carlo methods, which are applied to a fixed-dimensional

basis as well as additional models where the number of basis components is allowed

to change. The models are applied to simulated data, and performance is assessed

based on parameter and return level estimates, as well as test statistics compar-

ing the return level distributions to the pre-determined underlying ones of the

simulated data in order to assess the accuracy of return level estimates. Further

analysis is presented by applying the models to the hindcast data from the North

Sea introduced in Section 1.2.

In Chapter 5, we consider model parameter formulations for two-dimensional co-

variates. The standard penalised spline basis approach is illustrated for higher

dimensional covariates and again used as a benchmark. We then propose a tessella-

tion formulation which yields a piecewise constant representation of the model pa-

rameters on the covariate space. We also extend the linear combination of kernels

approach from Chapter 4 by considering suitable adaptations of two-dimensional

kernels. Only models with a fixed number of components are considered, and

Markov chain Monte Carlo methods are again used for inference. The models are
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applied to a new simulation study, and performance is assessed using the same

techniques and methods as in Chapter 4. Further analysis is presented by apply-

ing the models to both the South China Sea and the North Sea hindcast datasets.

The chapter concludes with some observations about extending the approaches

considered to higher dimensional covariates and opportunities for further work.

10



Chapter 2

Background material and

literature review

The novel approaches and methodologies introduced in this thesis build upon the-

oretical results and techniques well established in the literature from different

statistical fields. The reader can find here a broad survey of the most relevant

concepts and recent advances, which provide a solid background for the work pre-

sented in the rest of this thesis. The review is divided into three main areas

of interest, namely extreme value theory (EVT), covariate parameterisations and

inference methods, where all of the above focus on univariate random variables.

2.1 Univariate extreme value theory

Extreme value theory is a relatively recent branch of statistics which differentiates

itself from other statistical fields by focusing on the tail behaviour of probability
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distributions. Starting in the middle part of last century, it was developed to bet-

ter describe rare events which could not be fully and accurately characterised by

existing statistical methods. In general, most data are concentrated in the body of

distributions, which means that estimates such as the mean and standard devia-

tion are typically driven by these central values. Usually, a fit to the centre of the

distribution also allows many different extrapolation models for the tail regions.

This uncertainty reduces the reliability of estimates of high quantiles, which are

more relevant in the study of the distribution tails, and produces results that are

biased by the most common values observed. It is also typical for applications fo-

cused on extreme values to require estimates for levels that are beyond the range

of the current data. Extreme value theory relies on asymptotic theory to provide

probabilistic results that apply specifically to the tail of distributions and disre-

gard their body, yielding a more accurate representation of the tail behaviour and

allowing this type of extrapolation.

Two main types of modelling approaches are available in the literature, depend-

ing on how univariate extreme observations are identified. In Section 2.1.1 we

introduce the block maxima model, while Section 2.1.2 focuses on methods for

threshold exceedances. Finally, we review extensions for non-stationary series in

Section 2.1.3. We refer the reader to Leadbetter et al. (1983) and Embrechts et al.

(1997) for thorough overviews of the mathematical background and probabilistic

results, while Coles (2001) and Beirlant et al. (2004) provide excellent reviews of

EVT applications and data analysis approaches.
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2.1.1 Block maxima model and the generalised extreme

value distribution

Let us consider a sequence Y1, . . . , Yn of independent and identically distributed

(i.i.d.) random variables over some given temporal interval (block) with same un-

known distribution function F such that Y ∼ F . If we defineMn = max(Y1, . . . , Yn)

to be the maximum value recorded, then it is possible to infer about the upper

tail of F by focusing on the statistical behaviour of Mn. By simple manipulation

and use of the i.i.d. characteristic, we find that the distribution of these sample

maxima can be expressed as

P (Mn 6 y) = P (Y1 6 y, . . . , Yn 6 y) (2.1.1)

= P (Y1 6 y) · · ·P (Yn 6 y)

= {F (y)}n.

Note, before we proceed any further, that the work presented in this thesis focuses

on right tails of distributions, so we will use maxima notation for the remaining

of this section. Nevertheless, the same approach can be applied to define minima,

so that all the theory and methodology on extremes data can be applied for both

tails of a distribution.

The distribution F as defined in Eq. 2.1.1 is not usually known. One can instead

consider families of distributions that ensure that F n converges to the tails of the

distribution F . Nevertheless, the distribution of Mn is degenerate, that is, in the
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limit n→∞, it collapses to a point mass at the upper end of F such that

Mn → yF , where yF = sup{y : F (y) < 1}.

In order to overcome this issue, we can use a linear normalisation of Mn which

converges to a non-degenerate limit distribution. In particular, let an > 0 and bn be

some sequences of constants. Then the Unified Extremal Types Theorem (Fisher

and Tippett, 1928) ensures that, for appropriate choice of normalising constants

an > 0 and bn and for n→∞,

P

(
Mn − bn
an

6 y

)
→ G(y), (2.1.2)

where G is non-degenerate and can take one of the following forms:

Negative-Weibull: G(y) =


exp{−(−y)α} y < 0, α > 0

1 y > 0;

Gumbel: G(y) = exp{− exp(−y)}, −∞ < y <∞

Fréchet: G(y) =


0 y 6 0

exp{−y−α} y > 0, α > 0.

Although these distributions have been used directly in the literature, it can be

restrictive to choose one a priori to capture the tail behaviour. The Unified Ex-

tremal Types Theorem (UETT) provides a common parameterisation for these
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forms, known as the Generalised Extreme Value (GEV) distribution, defined as

G(y) = exp

{
−
[
1 + ξ

(
y − µ
ψ

)]−1/ξ

+

}
, (2.1.3)

where [·]+ = max{·, 0}, and is defined through three parameters, namely a location

µ, scale ψ and shape ξ, such that G ≡ GEV (µ, ψ, ξ), where ψ > 0. The GEV

distribution comprises all the possible limit distribution of Mn, and in particular

we can link it to the known three formulations from before using the shape as

a distinguishing feature. More precisely, if ξ < 0, then G will be a Negative-

Weibull distribution with a finite upper end point, whereas ξ > 0 indicates a

Fréchet distribution with a heavy upper tail, and ξ = 0 denotes a Gumbel

distribution with exponential upper tail.

A detailed proof of the theorem is omitted here, although the reader may find an

intuitive justification in Coles (2001), while Leadbetter et al. (1983) provides a

more formal overview.

In practice, in order to use the UETT to derive a statistical model for extreme

data, we need to first separate this data into k smaller preselected blocks, such as

by years, with n observations. It is important to notice that this is an asymptotic

result. In other words, it relies on the assumption that the limit in Eq. 2.1.2 holds

for some finite value of n as long as k and n are chosen carefully. In particular, n

should set as high as possible to ensure sufficiently many observations are grouped

before their maximum is computed. Nevertheless, sufficiently many independent

maxima are required in order to perform inference, such that k needs to be set as

high as possible too, leading to a trade-off. One should notice that the block length
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n is given by the context in many practical applications, such as daily, monthly or

yearly maxima for environmental applications. Then, one can use some inference

methods, such as moments based approaches, maximum likelihood or Bayesian

inference, to estimate the three model parameters (µ, ψ, ξ).

Prediction

Once a distribution G has been fitted to the data, the information obtained needs

to be used for prediction. As mentioned in Chapter 1, the concept of return levels

is the main tool to perform this task. More specifically, the N -year return level

zN is the (1 − 1/N) quantile of F , i.e. 1 − F (zN) = 1/N , and indicates that an

event exceeding such a level is expected to occur on average once every N years.

In the case where F can be modelled by a GEV(µ, ψ, ξ) distribution, the return

levels are given by:

zN =


µ− ψ

ξ

[
1−

{
− log

(
1− 1

N

)}−ξ]
for ξ 6= 0,

µ− ψ log

{
− log

(
1− 1

N

)}
for ξ = 0.

(2.1.4)

Different inference methods can be used to obtain estimates of the return values.

A common approach is to use maximum likelihood to obtain estimates (µ̂, ψ̂, ξ̂) of

the GEV parameters. These can then be substituted in Eq. 2.1.4 to obtain the

corresponding return level estimates ẑN . This is the approach used, for peaks over

threshold methods in Chapter 3, while in Chapter 4 we review the estimation of

return levels in a Bayesian framework.

While this chapter provides an introduction to the GEV model, given its essential
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role in the development of extreme value theory, it is not used in the work presented

in the next chapters. For this reason, we omit any further details on this model.

2.1.2 Threshold exceedances and the generalised Pareto

distribution

As mentioned in Chapter 1, extreme datasets are, by definition, limited in size. As

a consequence, statistical modelling and analysis can present additional challenges

given the limited information available. Hence, preserving as much data as possible

can be desirable, although care should be taken to ensure only observations from

the tail are considered, as further discussed further below. The block maxima

approach can sometimes be wasteful as it disregards all but the most extreme

observations in each block, even if more than one large value is present. Hence,

after the selection of block maxima, there are often unselected observations that

lie between the smallest and largest block maxima recorded in the data. These

tail values, despite being more extreme than some of the block maxima considered,

are ignored by the block maxima approach. A more efficient alternative is instead

to define as extreme those observations that exceed a sufficiently high threshold

u. It is then possible to obtain a similar result for the threshold exceedances to

the Extremal Types Theorem for block maxima, and develop what is known as a

peaks over threshold (POT) model.

Assume, as before, that the observations Y1, . . . , Yn are i.i.d. random variables

from the same unknown distribution function F . Let us also assume that F is

in the domain of attraction of the GEV distribution G ∼ GEV(0, 1, ξ), with zero
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location parameter, unit scale and normalising constants an > 0 and bn, such that

the asymptotic results in Eq. 2.1.2 and 2.1.3 hold. Then we can think of the

(normalised) observations Y1, . . . , Yn, Yi > u ∀i, as realisations of a point process,

where the limiting process leads to an asymptotic model for the upper tail of

F . More specifically, we can then construct the non-homogeneous point processes

P1, P2, . . . on [0, 1]× R, where

Pn =

{(
i

n+ 1
,
Yi − bn
an

)
; i = 1, . . . , n

}
−→ P, as n→∞

can be shown to converge to a non-homogeneous Poisson point process P (Pickands,

1975) with intensity

λ(t, y) = (1 + ξy)−1−1/ξ
+ . (2.1.5)

Note that this limiting process is non-degenerate, as it retains the large observa-

tions, while smaller points are all normalised to the same value

bl = lim
n→∞

(yF − bn)/an,

where bl ∈ R. To use this result as a basis for a statistical model for data with a

finite sample size, a suitable threshold must first be chosen, such that the validity

of the asymptotic argument is preserved. One can then use the NHPP result

to obtain a conditional model of the distribution of threshold exceedances. In

particular, given an appropriate threshold v > bl, v ∈ R, we can study the Poisson

18



CHAPTER 2. BACKGROUND MATERIAL AND LITERATURE REVIEW

point process on the set Bv = [0, 1]× [v,∞), where the integrated intensity

Λ(Bv) =

1∫
0

λ(v, t) dt = (1 + ξv)
−1/ξ
+ (2.1.6)

represents the expected number of points in Bv.

Now let un(v) = anv+bn be the threshold on the original scale. Given some y > 0,

Pr(Yi > any + un(v)|Yi > un(v)) = Pr

(
Yi − bn
an

> y + v | Yi − bn
an

> v

)
(2.1.7)

= Pr(a given point in Pn > y + v | a given point in Pn > v)

n→∞−−−→ Pr(a given point in P > y + v | a given point in P > v)

=
[1 + ξ(y + v)]

−1/ξ
+

[1 + ξv]
−1/ξ
+

=

[
1 + ξ

(
y

1 + ξv

)]−1/ξ

+

=

[
1 + ξ

y

ψv

]−1/ξ

+

,

which is the survival function of the generalised Pareto distribution (GPD), with

ψv = 1 + ξv. It follows that

an
−1[Yi − un(v)]+ | Yi > un(v)→ GPD(ψv, ξ).

The result is only exact in the limit, as we need to consider n→∞ for the third

step of Eq. 2.1.7 to hold. In reality, though, we only have finite samples of size

n < ∞. Hence, we need to shift our focus from the limiting case to a finite

sample with unknown normalising constants an and bn. Letting Yu be the excess

variable over some sufficiently high threshold u, i.e. Yu = (Y − u)+, we can then
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approximate the asymptotic result, for y > 0, by

Pr(Yu > y|Yu > 0) =

[
1 + ξ

y

ψu

]−1/ξ

+

, (2.1.8)

where the scale parameter accounts for the normalising constants an and bn. The

variable Yu|Yu > 0 is then said to follow a GPD(ψu, ξ). Note that the value of

the scale parameter ψu is threshold dependent, but can be easily converted to the

corresponding scale for a higher threshold v > u, by using

ψv = ψu + ξ(v − u). (2.1.9)

Threshold estimation and uncertainty

The choice of a suitable threshold u is essential for threshold exceedance models.

If u is too low, one might include too many observations that are not “extreme”,

and the asymptotic limiting distribution does not adequately describe the data.

Nevertheless, it is advisable to choose as low a threshold as possible to maximise

the amount of observations used, obtain a more accurate inference and reduce the

uncertainty in the parameter estimates. This trade-off introduces some subjec-

tivity, although some diagnostics are available to help in the choice. We briefly

overview the two most common diagnostics, which will be used in Chapters 3 and

4.

The mean residual life (MRL) plot tests the stability of the expected value of the

distribution for a range of increasing thresholds. In particular, if we assume a

set of threshold exceedances Yi|Yi > u, i = 1, . . . ,m follow a generalised Pareto
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(ψu, ξ) distribution, then the expected value of the threshold excesses Y − u can

be written as

E[Y − u|Y > u] =
ψu

1− ξ
,

for ξ < 1. If one then considers a higher threshold v, such that v > u, then the

expectation of this subset of excesses would be

E[Y − v|Y > v] =
ψu + ξ(v − u)

1− ξ
,

for ξ < 1. In other words, if the original threshold u is large enough, then the mean

excesses for higher thresholds should be linear in v for all v > u. One can then use

graphical methods such as the mean residual life plot to assess this stability. From

this type of plot, as shown in Chapter 3, one can visually choose a threshold above

which the mean residuals and confidence bounds stabilise - small threshold values

usually show narrow bounds and an average behaviour that is still changing, while

very high thresholds exhibit an erratic behaviour due to the lack of data.

A different diagnostic applies a similar argument to the parameter estimates, which

should be stable for a range of increasing threshold values. Let us assume again

that, for a given threshold u, Y follows a generalised Pareto (ψu, ξ) distribution.

Then, for any higher threshold v > u, we know from Eq. 2.1.9 that

Y − v|Y > v ∼ GPD(ψu + ξ(v − u), ξ).

While the scale of the distribution changes for increasing thresholds, we know

from the theory that the shape parameter is threshold invariant and hence the

parameter estimates should be constant. With the use of reparameterisation, we
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can obtain a scale formulation that is also stable over changing thresholds, where

this modified scale is given by ψ∗ = ψu − ξv. A suitable threshold would then

retain as much data as possible while preserving parameter stability. That is, it

would be the lowest possible value of u above which the estimates of the modified

scale and shape parameter remain constant.

While traditionally the threshold is selected before analysis and treated as fixed

and known, some work has been done to include the estimation of the threshold and

its uncertainty in the inference mechanism. Wadsworth and Tawn (2012) propose

a way to account for the uncertainty due to the intrinsic subjectivity for a choice

of a threshold. We have just reviewed how a classic approach to pick a threshold

uses the stability of the model parameters. Following the same logic, Wadsworth

and Tawn (2012) focus on a sub-asymptotic form of extreme value theory (Smith,

1987). The idea is to incorporate the uncertainty due to the choice of threshold

in the model, and the authors then provide a likelihood ratio testing procedure

for the threshold selection. In particular, second order asymptotic arguments are

used to increase the flexibility in the fit of the GPD.

The models above all focus solely on data from the tail of the distribution and

are based on the asymptotic theory behind extreme value models. Recently, a

different approach has emerged, with authors advocating that all the data can be

informative for the choice of threshold. These models are known as “whole-body”

approaches and often consist of two parametric components, namely a model for

the bulk distribution below the threshold and a POT model above it. These two

different components are then joined together at the threshold, which is itself

treated as an unknown parameter. In this way, the estimation of the threshold
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exploits all of the data, so as to provide a more accurate result, and all uncertainties

are accounted for by the Bayesian inference. A noticeable example of this two-

component parametric approach can be found in the work by Behrens et al. (2004).

More recent work in the area is presented in MacDonald et al. (2011), where a

flexible extreme value mixture model is proposed. This model aims to use as much

of the information available as possible by combining a non-parametric kernel

density estimator for the bulk of the distribution with a GPD model for the tail.

Prediction and return levels

In Section 2.1.1 we introduced the mathematical definition of a return level and an

approach to prediction for the block maxima model. Using the GPD approach, the

result obtained is a conditional distribution for the upper tail, and the conditioning

needs to be undone to obtain a marginal model for the observations Y . To this end,

the proportion of observations which exceed the threshold u can be used as a rate

of exceedance parameter φu = P (Y > u). When a GPD is used to conditionally

model F , then the N -year return level zN , given ny observations per year, is

zN =


u+ ψu log(nyNφu) if ξ = 0,

u+ ψu
ξ

[
(nyNφu)

ξ − 1
]

otherwise.

(2.1.10)

As mentioned before in Section 2.1.1, one can use different inference methods to

obtain estimates for (ψu, ξ). Then, for stationary processes, we can approximate
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the probability of exceedance as the proportion

φu =
E [Nexc]

Nobs

≈ Nexc

Nobs

, (2.1.11)

where Nobs is the total number of observations.

For the NHPP approach, there is no closed form formulation for computing return

levels. Instead, one needs to move to either a GEV (following the methodology in

Section 3.1.1) or a GPD framework. In view of work presented in later sections, we

prefer using the latter. Hence, to obtain return levels zn for a NHPP, we first need

to compute the GPD scale as ψu = σ + ξ(u − µ). Then, we can exploit the fact

that the expected number of exceedances can be approximated by the integrated

intensity Λ(Bu) over Bu = [0, 1]× [u,∞), and get

φu =
E [Nexc]

Nobs

≈ Λ(Bu)

Nobs

, (2.1.12)

where Λ(Bu) is given by Eq. 2.1.6.

2.1.3 Accounting for non-stationarity

The theoretical results and statistical models discussed so far rely on the assump-

tion of independent and identically distributed observations. In reality this is rarely

the case and both the independence and the identically distributed assumptions

may fail. In particular, extreme observations often display signs of a variety of

trends. This is especially common in environmental datasets which are affected by

a variety of climate processes, with different fluctuating behaviours, as is the case
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for the data we introduced in Chapter 1. Due to the physical process by which

waves are generated, these generally have a strong seasonal pattern, with an annual

periodicity; decadal or semi-decadal climate phenomena can also account for large

scale variations. For a specific location, we can also detect variability with respect

to wave direction; for example, wind is typically stronger from some directions

than others, and, together with fetch and water depth, can strongly influence the

resulting magnitude of the waves. Further, location itself can be an important fac-

tor. For example, a more exposed location will be associated with longer fetches,

resulting in a more extreme wave climate.

In a similar way to generalised linear modelling, the standard approach to account

for non-stationarity is to build an extreme value model where one or more of the

parameters of the statistical distribution considered are described as a function of

the covariate (Smith, 1989). These functions can take different forms; amongst the

parametric approaches, Davison and Smith (1990) introduce the simplest formula-

tion, where the generalised Pareto distribution parameters are linear functions of

covariates, with an exponential link function to ensure positivity of the scale pa-

rameter. Note that, while the methodology is presented for threshold exceedances,

since these are the type of data analysed in later chapters, the same approach can

be applied to block maxima.

Let us consider a process {Yt}, with t = 1, . . . , n and Yt ∈ R, and let {X t},

X t ∈ Rm, be the corresponding m covariates. For example, the response variable

may be significant wave height with wave direction as the covariate.

Smith (1989) and Davison and Smith (1990) provide the first full extension of

the GPD to the non-stationary case. First, they deal with short-term dependence
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using the extremal index to select a mean cluster size and identify cluster maxima

(Leadbetter et al., 1983; Leadbetter and Rootzen, 1988). Note that the data is

then assumed to have no temporal dependence, and the reader should refer to the

literature for more details on methods to check and, if necessary, account for this

(see Coles 2001 Section 5.3.2. and Ferro and Segers 2003). Then they apply the

peaks over threshold model to these maxima, and introduce non-stationarity in

the parameters, which are now modelled as functions of covariates. It is then pos-

sible to model the excesses as GPD(ψu(x), ξ(x)) with probability of exceedance

φu(x) = Pr(Y > u|X = x).

Then, for y > 0, we obtain the non-stationary version of Eq. 2.1.8 as

Pr(Y > y + u | Y > u,X = x) =

[
1 +

ξ(x)y

ψu(x)

]−1/ξ(x)

+

.

Now let us represent the covariate dependence using some known function f such

that, for example, φu(x) = f(x,φu), where φu is a vector of coefficients for

the covariate contribution to the parameter, and we denote the vector of all the

unknown coefficients as θ = (φu,ψu, ξ). Then, the likelihood function for θ is

L(θ) =
n∏
t=1

(1− φu(xt))1−I[yt>u]

[
φu(xt)

1

ψu(xt)

(
1 + ξ(xt)

yt − u
ψu(xt)

)−1−1/ξ(xt)

+

]I[yt>u]

.

Both Smith (1989) and Davison and Smith (1990) propose a linear model for the

parameters, with

logψu(x) = ψu
′
x, ξ(x) = ξ

′
x, logit φu(x) = φu

′x.

26



CHAPTER 2. BACKGROUND MATERIAL AND LITERATURE REVIEW

Other parametric models, such as Fourier parameterisation, have also been used,

especially in the presence of one or more periodic covariates, see for example Coles

and Walshaw (1994) who model extreme wind speeds. An alternative approach to

the use of link functions would be to constrain the parameter space for the likeli-

hood optimisation algorithms, to match the support of the distribution. There are

some definite advantages to parametric models: they are easy to fit, given the low

number of unknown model parameters, and it is relatively straightforward to use

them for return level prediction. Nonetheless, there are also considerable limita-

tions. First of all, the choice of an appropriate functional form is often not simple

and open for debate. Furthermore, these models might not manage to fully capture

more “local” behaviour and over-simplify the relationship between the covariate

and the response: a parametric formulation is often smoother than what would

be considered reasonable from a visual inspection of the data, and its lack of local

flexibility might provide poorly-fitting models even when large numbers of param-

eters are used. One alternative is to use a local likelihood technique, as presented

by both Davison and Ramesh (2000) and Hall and Tajvidi (2000), while Chavez-

Demoulin (1999) and Pauli and Coles (2001) propose penalised semi-parametric

formulations for the peaks over threshold and the block maxima approach respec-

tively. Semi-parametric and non-parametric techniques model the parameters as

smooth functions of the covariates, potentially capturing local features better than

parametric models. The seminal work by Chavez-Demoulin and Davison (2005)

focuses, in particular, on the use of spline smoothers to parametrise the rela-

tionship between the covariate and model parameters, while Yee and Stephenson

(2007) propose vector generalized additive models (VGAM) models. The reader
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should refer to Chavez-Demoulin and Davison (2012) for a general review on non-

stationary methods for extremes, while more details on different parameterisations

are provided in Section 2.3.

2.2 Inference procedures

Different estimation methods for extreme value models are available, including

moment based methods, such as probability-weighted moment estimation and

L-moments (Hosking, 1990), maximum likelihood (ML) and Bayesian inference.

Hosking et al. (1985) show that the L-moments approach can yield better perfor-

mance than maximum likelihood methods when the sample size is small. Moments-

based methods are in general conceptually and practically simple, and these fac-

tors, together with their good performance for small samples, have contributed

to their popularity in geoscience fields such as hydrology. Nevertheless, moment-

based methods are difficult to apply beyond the i.i.d. case, that is when a covariate

trend is present such as for the type of data considered in this thesis, while max-

imum likelihood methods can be easily extended to this case (Katz et al., 2002).

Coles (1999) also criticize the L-moments method since it requires an a priori as-

sumption that the shape ξ < 1, and they suggest that the issue of the ML estimates

with small samples can be improved by using a penalized likelihood method. While

maximum likelihood methods have been widely used in the literature, Bayesian

inference is an increasingly popular alternative, especially with the development of

Markov chain Monte Carlo (MCMC) algorithms. Bayesian methods can be easily

applied to non-stationary series and show some additional advantages when com-
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pared to ML techniques. Coles and Simiu (2003) argue the importance of properly

accounting for the uncertainty in an extreme value model to produce accurate

prediction, and they suggest it can be better accomplished using a fully Bayesian

framework. A possible advantage of Bayesian inference is the option of using prior

information to exploit experts’ knowledge; while this can aid model fitting in sit-

uations where data is sparse, as is the case for extremes observations, in this work

we opt to use uninformative priors which allow the algorithms to explore the esti-

mated posterior density freely. There are various noticeable contributions to the

literature of fitting extremes with Bayesian inference, from earlier publications of

Coles and Powell (1996) and Coles and Tawn (1996) to more recent work by de Zea

Bermudez and Turkman (2003), Beirlant et al. (2004) and Cabras et al. (2011).

For a more general introduction to Bayesian techniques, we refer the reader to the

popular monograph by Casella and Berger (2002). Brooks (1998) and Gilks et al.

(1996) provide excellent introductions to Markov chain Monte Carlo methods in

particular, while more advanced details on performance and convergence of these

algorithms can be found, amongst others, in the works by Roberts et al. (1997),

Roberts and Rosenthal (1998) and Roberts et al. (2001).

2.2.1 Bayesian model and Markov chain Monte Carlo Markov

techniques

Suppose we are interested in some variable Y , and we have a model that can be

parametrised by a vector of unknown parameters θ ∈ Θ. Bayesian inference allows

the inclusion of prior beliefs about θ for a given parametric distribution f(Y ;θ).
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These beliefs can be expressed in what is known as a prior distribution π(θ). Then

Bayes theorem states that

p(θ|Y ) =
π(θ)f(Y |θ)∫

Θ
π(θ)f(Y |θ)dθ

, (2.2.1)

where and p(θ|Y ) is known as the posterior. Then we can use this result to per-

form inference on the parameters via the posterior distribution. It is worth noting

that the normalising integral in Eq. 2.2.1 makes the computation of the posterior

harder. In some cases, “conjugate” prior distributions can be chosen so that prob-

abilistic properties can be exploited to avoid the need to calculate the integral, but

most often a closed form solution for the posterior is not available. A major revolu-

tion in Bayesian inference was marked by the development of Markov chain Monte

Carlo (MCMC) techniques, which have enabled the use of Bayesian inference where

it could not be used before. As an example, consider cases with a high number of

unknown parameters, where a closed form solution to the integral is not available

and numerical approximation would be too computationally intensive. In partic-

ular, MCMC techniques provide a framework that allows the estimation of the

posterior when other approaches, such as conjugacy or other sampling techniques

e.g. importance sampling, are not suitable. In all Bayesian inference, one can

obtain more exhaustive results than the point estimates, their asymptotic distri-

bution and marginal confidence intervals yielded by maximum likelihood methods.

Similar summaries to those computed via maximum likelihood, such as posterior

mean and credible intervals, can still be obtained. Bayesian inference can provide

a more complete picture, as it incorporates both the uncertainty in the parameter

and that stemming from sampling, while only the latter is accounted for in maxi-
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mum likelihood estimates.

In Sections 2.2.2 and 2.2.3 we present the main MCMC procedures we use in

the upcoming chapters, while Section 2.2.4 introduces an extension of MCMC

techniques where the size of the unknown parameter vector θ changes between

iterations.

2.2.2 Metropolis-Hastings algorithm

The Metropolis sampler (Metropolis et al., 1953) is one of the most general MCMC

technique and allows one to work on distributions that are difficult to sample from,

such as complex posteriors, where other sampling schemes such as importance or

Gibbs sampling might not be suitable. In fact, this method works on the as-

sumption that the target distribution p(θ|y) is only known up to a constant of

proportionality. The main advantage of this method is that it does not require

knowledge of such constants of proportionality in order for sampling to be per-

formed, so that the normalising integral need not be computed. Starting with

an initial value θ0, the sampler requires a candidate point to be sampled from a

proposal distribution q(·|θ(i−1)), which is dependent on only the previous point

θ(i−1). While the original algorithm called for the proposal density q to be sym-

metric, Hastings (1970) proposed a generalisation of the algorithm, known as the

Metropolis-Hastings sampler (MH), which could use non-symmetric proposals. If

we denote the target distribution as p(·) and the proposal as q(·), the resulting

approach is shown in Algorithm 1.

In practice, the proposal distribution is frequently chosen to be symmetric. This
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Algorithm 1 Metropolis-Hastings algorithm

1: Initialize:
θ as some value θ0 in the support of the target p(θ|y)

2: for i=1, . . . , M do
3: Generate a proposal θ∗ from q(θ∗|θ(i−1));
4: Calculate the acceptance probability

a(θ(i−1),θ∗) = min

{
p(θ∗|y)q(θ∗|θ(i−1))

p(θ(i−1)|y)q(θ(i−1)|θ∗)
, 1

}
. (2.2.2)

5: Draw u from a uniform distribution of a range [0, 1]
6: if a > u then
7: Accept: θ(i+1) ← θ∗

8: else
9: Reject: θ(i+1) ← θ(i−1)

10: end if
11: end for

popular version of the algorithm is called a random walk Metropolis (RWM). This

is a special case of the MH algorithm above, where at each iteration the update

is centred around the current value and from there a symmetric proposal is made,

such that q(θ∗|θ(i−1)) = q(θ(i−1)|θ∗). Then, the resulting acceptance probability

simplifies to

a(θ(i−1),θ∗) = min

{
p(θ∗|y)q(θ∗|θ(i−1))

p(θ(i−1)|y)q(θ(i−1)|θ∗)
, 1

}
= min

{
p(θ∗|y)

p(θ(i−1)|y)
, 1

}
.

A typical choice for q(θ∗|θ(i−1)) is such that

θ∗|θ(i−1) ∼ N(θ(i−1), λ2Σ), (2.2.3)

where the matrix Σ is often chosen in an attempt to match the correlation structure

of the target distribution, for example by approximating such correlation from

some initial parameter estimates or a priori knowledge, or it can simply be taken as

the identity matrix. The tuning parameter λ, commonly referred to as the stepsize,
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is the only other user-specific input required. Choosing such a stepsize is a balance

between proposing large enough jumps to ensure fast convergence, and ensuring

that a reasonable proportion of the proposed parameter updates are accepted, as

values that are too different from the current are more likely to lead to a worse

model and be rejected. The random walk Metropolis (RWM) is often referred

to as a blind algorithm since the proposal density, in principle, does not depend

on the target distribution. The algorithm also requires manual tuning of the

proposal covariance and can show high autocorrelation in the parameter estimates,

with resulting mixing issues in the chain, which can yield slow convergence to the

target as well as less reliable estimates of the uncertainty. On the other hand, the

RWM algorithm is relatively simple to implement, as it does not require any in

depth knowledge of correlation and surface information of the target distribution.

Furthermore, it is easily extendible to any dimension of the unknown parameter

vector θ, as one can either propose a joint update or iteratively consider each single

parameter separately. The latter option can, in particular, aid mixing in high-

dimensional cases: randomly proposing multiple parameter updates can lead to

very low acceptance rates, or require very small stepsizes and hence suffer from slow

convergence. By considering each single unknown parameter in turn, both issues

can be avoided, albeit requiring more computations. A different improvement can

be obtained by first running a short chain using the RWM algorithm, using the

parameter chains to estimate the correlation matrix Σ for the proposal distribution,

and then running a longer chain with this informed MH algorithm. A large number

of extensions have been developed and in the next Section we focus on those used

in the rest of this thesis.
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2.2.3 Derivative-based MCMC algorithms

There are different ways of improving the proposal distribution, and in this section

we focus on what are known as derivative-driven MCMC algorithms, which use a

similar approach to gradient ascent methods to optimise the parameter estimates

in maximum likelihood. For these techniques, information in the form of the gra-

dient of the log-posterior is used in the proposal mechanism. This allows us to

explore the parameter space in a more informed manner, yielding higher accep-

tance rate and faster convergence. The simplest of these approaches use the first

derivative of the target distribution to produce proposals towards the centre of its

domain. In this thesis, we use in particular the Metropolis-adjusted Langevin al-

gorithm (MALA). This technique is based on approximation methods to discretise

the stochastic differential equation in a Langevin diffusion process. Roberts and

Stramer (2002) construct a proposal q(θ∗|θ(i−1)) through an Euler–Maruyama dis-

cretisation of the Langevin diffusion equation and use it as a candidate kernel in a

Metropolis–Hastings algorithm. The resulting proposal q(θ∗|θ(i−1)) is formulated

such that

θ∗|θ(i−1) ∼ N

(
θ(i−1) +

λ2

2
∇ log p(θ(i−1)|y), λ2I

)
(2.2.4)

where λ is some tuning parameter. Comparing Eq. 2.2.4 to the random walk

proposal in Eq. 2.2.3, the Langevin proposal has the additional deterministic term

λ
2
∇ log p(θ(i−1)|y), which is also known as the drift term. Essentially, the drift term

moves the current state θ∗ to a point with higher posterior density, provided that

the stepsize λ is sufficiently small. It is worth noticing that typically, if λ >> λ2

(e.g. λ << 1), then the random part of the proposal will dominate and vice versa,
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though this also depends on the form of derivative of the log-posterior. Although

the algorithm construction often implies markedly faster mixing and convergence

than RWM (Roberts et al., 2001), the performance of MALA can sometimes be

frustrating for the practitioner and it is still critical to find a good proposal co-

variance when using this method (Roberts et al., 2001). Girolami and Calderhead

(2011) developed a modification of the Metropolis proposal mechanism in which

the steps are made using a Riemannian metric instead of the standard Euclidean

distance. This procedure is referred to as Riemann manifold MALA (mMALA).

In this technique, both the mean vector and covariance matrix in the proposal

distribution depend on the current state of the Markov chain, although we re-

fer the reader to Girolami and Calderhead (2011) for further details. While the

proposal distribution assumes a complex form in the original mMALA, one can

assume constant curvature of the target distribution to obtain a simplified mech-

anism (Girolami and Calderhead, 2011; Xifara et al., 2014). Then the proposal

distribution q(θ∗|θ(i−1)) is formulated such that

θ∗|θ(i−1) ∼ N

(
θ(i−1) +

λ2

2
G−1(θ(i−1))∇ log p(θ|y), λ2G−1(θ(i−1))

)
(2.2.5)

where G(θ) is some metric tensor of choice, for example based on e metric on the

Fisher Information. In this simplified version of the mMALA, the state-dependent

covariance matrix in the proposal mechanism still allows adaptation to the local

curvature of the target distribution depending on the current state (Xifara et al.,

2014). There are different options for the tensor metric: in Chapters 4 and 5 we

adopt this algorithm as it produced the most accurate estimates and we choose to

use the expectation of the second-order derivative of the log target, which again

35



CHAPTER 2. BACKGROUND MATERIAL AND LITERATURE REVIEW

equates to maximum likelihood techniques using second-order derivative informa-

tion. Note also that, if a constant metric tensor such that G(θ) = cI, for some

scalar c, then the mMALA reduces to a MALA algorithm with scaled matrix G.

One of the main potential issues with this techniques lies in the choice of metric

tensor, and in obtaining analytical expressions and stable estimates for both the

tensor and its derivatives. Secondly, as shown in Eq. 2.2.5, it is necessary to invert

the metric tensor matrix, which can be computationally intensive and potentially

unstable for high dimensional problems. Despite these issues, both versions of

the mMALA algorithm have proposal mechanism with automated tuning that de-

pends on the current state of the chain. In fact, by exploiting the natural Riemann

structure of the parameter space of statistical models, they have the potential to

overcome tuning issues of simpler MCMC techniques, which is particularly useful

when the unknown parameter vector is of high dimension and exhibits strong corre-

lations. The mixing and convergence of these algorithms can then be considerably

better for target densities with complex geometries and behaviours.

2.2.4 MCMC methods with dimension-changing state space

Green (1995) introduced one of the most significant recent development of MCMC

methods to enable these methods to be applicable to statistical problems where the

number of unknowns is itself one of the unknowns. These methods were defined

as reversible jump Markov chain Monte Carlo (RJ MCMC) and can be viewed

as an extension of the Metropolis-Hastings algorithm onto a more general state

space. Nevertheless, these models are often regarded as difficult to implement. In
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the original paper, Green (1995) use measure theory to demonstrate the method’s

validity, although knowledge of this field of probability is not required to apply

this technique to real problems. While we refer the reader to the original paper

for details on the derivation of the method and its foundations, we present here

a more implementation-based review that tries to link the model back to the

MH algorithm. More practically-based introductions to the topic can be found in

Richardson and Green (1997), Tierney (1998) and Green (2003).

As with the standard Metropolis-Hastings, reversible jump Markov chains use the

detailed balance conditions to implement time-reversible Markov chains (Hastings,

1970). Although we omit in depth detail, this condition essentially guarantees that

moves from state θ to θ∗ are made as often as moves from θ∗ to θ, which ensures

that the chain will converge to the desired target distribution. As mentioned be-

fore, extending the Metropolis-Hastings algorithm to cases where the dimension

of the parameter vector changes between iterations presents theoretical challenges

and resorts to measure theory. Nevertheless, the resulting algorithm is relatively

straightforward. Suppose, as before, that we have some observed data y, and that

we have a countable collection of candidate models M = M1,M2, . . ., where the

models are indexed by some parameter k ∈ K. We can consider the index k as an

auxiliary model indicator variable, such that Mk∗ denotes the model with k = k∗.

As before, we have vectors of unknown parameters, although now each model Mk

has an nk-dimensional vector of unknowns θk ∈ Θnk , where nk can take different

values for different models. As with the standard Metropolis-Hastings algorithm,

on some iteration i, we have some current state, which now includes the informa-

tion of the state space dimension, such that θ(i−1) = (k,θ
(i−1)
k ) in model Mk(i−1) .
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Markov chain transitions are then performed by first proposing θ∗ = (k∗,θ∗k∗) in

model Mk∗ from a proposal distribution q(θ∗|θ(i−1)). Then, the standard MCMC

detailed balance condition is enforced through the acceptance probability which is

calculated using Eq. 2.2.2 as for the general MH algorithm. This probability needs

to be properly adapted to account for the change in dimensionality in the state

space. First, consider a set of move types (e.g. birth, death, etc.), which present

the essential property of being reversible and can be denoted by m. One approach

to implementing such moves is by drawing a vector of continuous random variables

u, independent of θ, and setting θ∗ by using an invertible deterministic function

h(θ, u). The reverse of the move (from θ∗ to θ(i−1)) can then be accomplished by

using the inverse transformation, so that the proposal is deterministic. Green and

Silverman (1994) show that, if we consider the trans-dimensional scenario with

some move type m from a lower to a higher dimensional state space, such that

nk∗ > nk(i−1) , Eq. 2.2.2 can be seen as

am(θ(i−1),θ∗) = min {1, A} , where A =
p(θ∗|y)rm(θ∗)

p(θ(i−1)|y)rm(θ(i−1))q(u)
J,

where rm(θ(i−1)) is the probability of choosing move m when in state θ(i−1), q(u)

is the full density function of u, and the final term is the Jacobian of the change

of variables matrix

J =

∣∣∣∣det

(
∂θ∗

∂(θ(i−1), u)

)∣∣∣∣
Note that, in case of a move to a lower dimensional state, am(θ(i−1),θ∗) = min {1, 1/A}.

As standard MCMC practice, if rejected, the chain remains at the current state

θ(i−1).
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In practice, a reversible jump sampler often alternates, between moves “within-

model”, where the state space is unchanged, and “between-models”, with a change

in dimensionality. Within-model moves follow the standard MCMC practices

and methods reviewed in the previous sections. More care needs to be taken

for dimension-changing moves, which need to show full reversibility. In Chapter

4 we provide an overview of a standard approach to “between-models” moves,

which is based on the work presented Green (1995) and is commonly adopted in

the literature.

2.3 Covariate parameterisations

Classical regression models and approaches, such as weighted least squares, rely on

the assumption that the distribution of interest belongs to the normal distribution

or exponential family. Extreme value distributions do not fall into either category,

and hence require a different approach. This section reviews different covariate

modelling techniques, all of which can be interpreted as extensions of generalised

linear models (GLMs). We assume here that the reader is familiar with the basic

theory of GLMs, although we recommend the monographs by McCullagh and

Nelder (1989) and Dobson and Barnett (2008) for further details.

In Section 2.3.1 we introduce some notation and terminology common to all mod-

els. In Sections 2.3.2 and 2.3.3 we provide an overview of constant, linear and

Fourier series descriptions, while Section 2.3.4 focuses on spline formulations. Fi-

nally, Section 2.3.5 considers the use of kernels to describe covariate-dependent

variations.

39



CHAPTER 2. BACKGROUND MATERIAL AND LITERATURE REVIEW

2.3.1 Basis description

Assume, as before, that the observations Y1, . . . , Yn are independent random vari-

ables from an unknown distribution function F (θ), for some distribution parameter

θ. Now we consider the case where some non-stationarity is present, in which case

the assumption of identically distributed data is no longer fulfilled. Then, this

non-stationarity can be captured by assuming that the distribution parameter θ is

covariate-dependent. Let {X t}, X t ∈ Rm, be some corresponding m covariates.

A common approach is then to model the variation of θ by defining it as a function

of the covariates of interest, such that

θ(x) = f(x),

for some function f .

There are many choices of functional forms possible. A particularly useful way of

representing such relationships is through a combination of linear basis functions.

This set-up provides a common frame of reference across different modelling ap-

proaches and a common framework to represent linear and nonlinear relationships

alike. In particular, we can assume that the aim is to obtain a linear combination

of a set of p basis functions b1(x), . . . , bp(x), such that

θ(x) = β1b1(x) + β2b2(x) + ...+ βpbp(x) (2.3.1)

for some coefficients β1, . . . , βp. We can see this approach as a generalization of

linear regression, where essentially the input is replaced with a function of inputs.
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A common way to present the basis formulation is via the use of what is known

as “basis matrix”. We then rewrite Eq. 2.3.1 as

θ(x) = B (x)β, (2.3.2)

where B(x) is a matrix of p columns, and its jth column corresponds to the jth

basis function bj, denoted as in Eq. 2.3.1 and evaluated at x, for j = 1, 2, ..., p.

Then, β = (β1, · · · , βp) is a p-vector of basis coefficients β ∈ Rp to be estimated

during statistical modelling.

2.3.2 Constant parameterisation

The simplest statistical models assume stationary series, that is, the model param-

eter is constant. In the constant parameterisation, the value of θ does not vary

with respect to the covariates x. We therefore adopt a scalar basis function, where

p = 1 and the function is constant across all values of covariate, so that B(x) = 1,

where 1 = (1, . . . , 1) is a 1× n vector of ones.

2.3.3 Polynomial and Fourier series formulation

For simplicity in this case, we hereafter assume m = 1 (so that X = X for ease of

notation) and X ∈ D = [0, 2π).

The simplest covariate-dependent formulation is through a polynomial regression
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model. Such a model for a predictors Xis

θ(x) = β0 + β1x+ β2x
2 + ...+ βpx

p,

where p is the degree of the polynomial. Note that the case p = 1 corresponds to

a linear relation.

The Fourier series formulation provides a suitable extension of the polynomial

model in the case where the covariates of interest show periodic behaviour. Then

we write θ(x) in terms of a p-order Fourier series

θ(x) = c0 +

p∑
k=1

{ck cos(kx) + dk sin(kx)} ,

where ck ∈ R and dk ∈ R for k = 1, 2, ..., p. This can be written in basis notation

by defining a basis matrix B with basis column vectors

b(x) = (1, cos(x), cos(2x), . . . , cos(px), sin(x), sin(2x), . . . , sin(px))
′
,

and basis coefficients

β = (c0, c1, c2, . . . , cp, d1, d2, . . . , dp)
′
.

We refer the reader to the work of Ruppert et al. (2003) for a more in depth pre-

sentation of these models as well as other semi-parametric regression approaches.
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2.3.4 Splines

Spline formulations have developed rapidly in the statistics literature during the

past decades. They are of particular interest because they are not restricted by

distribution functions as they require no a priori knowledge of it. In these section

we introduce the principles of splines, based on the material from Hastie et al.

(2001), Green and Silverman (1994), Ruppert et al. (2003), and Brezger and Lang

(2006).

Let us again, for simplicity of notation, assume only one covariate is present such

that m = 1, so that X = X and X ∈ D for some non-periodic domain D =

[a, b]. We can then obtain the piecewise polynomial function f(x) by dividing

the domain of X into contiguous intervals defining f as a separate polynomial in

each subinterval. Then an order-M spline with interior knots τr, r = 1, . . . , nτ is

piecewise-polynomial of degree dS such that M = (dS + 1). The general form for

the function f in terms of the the truncated power basis set is then

f(x) = β1 + β2x+ β3x
2 + · · ·+ βdS+1x

dS +
nτ∑
r=1

βdS+r+1(x− τr)dS+ , (2.3.3)

where (x − τr)+ equals x − τr if x > τ and 0 otherwise, and a < τ1 6 τ2 6

· · · 6 τnτ−1 6 τnτ < b. The resulting model consists of dS + 1 polynomials and nτ

truncated polynomials, such that dS + nτ + 1 basis functions exist.

A B-spline, or basis spline, is a mathematically equivalent but computationally

more stable formulation for the polynomial spline. Under this framework, we can

define

f(x) =

p∑
j=1

βjbj(x) = B(x)β,
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with design matrix B =
(
b′1(x) b′2(x) ... b′p(x)

)
and where βj, j = 1, , . . . , p

are the basis coefficients. In order to construct each B-spline basis functions bj,

we first need to define a sequence of augmented knots {ζ}. Let a = τ0 < τ1 and

τnτ < τnτ+1 = b be two boundary knots. These can be used to define the domain

over which we wish to evaluate our spline. The augmented set of knots ζ can then

be defined as follows:

• ζ1 6 ζ2 6 · · · 6 ζM 6 τ0;

• ζj+M = τj, j = 1, . . . , nτ ;

• τnτ+1 6 ζnτ+M+1 6 ζnτ+M+2 6 · · · 6 ζnτ+2M .

Note that the actual values of these additional knots beyond the boundary are

arbitrary, and it is common practice to have them equal to τ0 and τnτ+1 respectively.

Using nτ interior knots for a spline of order M results in p = nτ+2M B-spline basis

functions. We can then compute each basis functions bj, j = 1, , . . . , p recursively

Let bmj be the jth B-spline basis function of order m, m 6 M , for the augmented

knot sequence {ζ}. The basis function can then be constructed using the Cox-

de Boor recursion formula in terms of divided differences of the different m-order

polynomial pieces. Then

b1
j(x) :=


1 if ζj 6 x < ζj+1

0 otherwise,
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for j = 1, . . . , nτ + 2M − 1, and

bmj (x) :=
x− ζj

ζj+m−1 − ζj
bm−1
j (x) +

ζj+m − x
ζj+m − ζj+1

bm−1
j+1 (x),

j = 1, . . . , nτ + 2M −m and m = 1, . . . ,M .

Figure 2.3.1: A representation of first (top) and second (bottom) degree B-spline
components (adapted from Eilers and Marx 1996)

B-splines are considered, because they have many desirable attributes (Eilers and

Marx, 1996). For example, as shown in the top half of Figure 2.3.1, b1
j(x) is a

triangular function that is zero up to x = ζj included, has a maximum of one

at x = ζj+1 and decreases to zero for x > ζj+2 onward. The bottom of the

figure illustrates the second-degree case. This shows one of the most advantageous

characteristics of B-splines: their support, contrary to truncated polynomials, is

bounded. That is, for a B-spline of degree dS, only dS + 2 knots build the support

of each single B-spline curve. We can notice this by producing a function f(x)

using some random coefficients β, shown in Figure 2.3.2.
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Figure 2.3.2: A representation of first (left) and second (right) degree B-spline
components, defined by some interior knots (red *), and resulting function f(x)
(–).

From Figure 2.3.2, we can see that each B-spline overlaps only with dS + 2 neigh-

bouring B-splines. Furthermore, one can prove that at the joining points, deriva-

tives up to order dS − 1 are continuous (De Boor et al., 1978). That is, a B-spline

basis consists of dS + 1 polynomials of degree dS, which are dS − 1 times contin-

uously differentiable, resulting in different smoothness of regression curves. This

effect is shown in Figure 2.3.2, where we obtain a piecewise linear curve for a

1-degree spline and a piecewise quadratic for a 2-degree spline respectively.

Regression splines exploit the formulations above to represent the parameters of

a probability distribution as a function of some covariates, that is, the model pa-

rameter from the distribution of interest can be modelled using a basis matrix B

and a vector of coefficients β as in Eq. 2.3.2. The choice of number and location

of knots is a crucial issue with regression splines. When too few knots are used,

the resulting function might not be flexible enough to capture the variability in

the data, while overfitting is a risk when a large number of knots is used. Knot

locations can, for similar reasons, have a noticeable impact on the fit obtained. Eil-

ers and Marx (1996) propose a roughness penalty approach as a possible solution:
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they suggest choosing a high number of equally spaced knots, and then imposing a

difference penalty on adjacent spline basis coefficients. This set up allows enough

flexibility while also controlling the smoothness of the fitted curve. We can choose

to penalise the roughness, denoted by Rθ, with respect to x during inference, in

order to impose smoothness of θ with respect to x. Then, one can incorporate this

penalty in the inference mechanism. A quadratic form in β is typically assumed

for the roughness, e.g.

Rθ =
1

2
ρθβ

′
Qθβ, (2.3.4)

where ρθ > 0 is a roughness coefficient, and Qθ is the roughness penalty matrix

expressing the squared magnitude of differences between the values of adjacent ba-

sis coefficients β. For maximum likelihood methods, the penalising term is added,

as a positive term, to the negative log-likelihood to be optimised. In Bayesian

inference, the penalty is imposed via the prior on the parameters β, such that

β|ρθ ∼ ρ
1/2
θ exp

(
− ρθ

2
βTQθβ

)
.

Such a penalty ensures that very sharp changes will be discouraged unless there

is enough evidence from the data, hence providing a smoother curve which does

not overfit to localised random behaviour. The precision matrix Qθ often can be

formulated in terms of some some (p− 1)× p difference matrix Dθ, such that

Qθ = D
′

θDθ. (2.3.5)

Higher-order differences imply that a larger number of adjacent knots have an

impact on each other. In practice (Eilers and Marx, 2010), it is often enough to
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use a first-order difference matrix, such that

Dθ =



−1 1 0 . . . 0

0 −1 1 0

...
. . .

...

0 0 0 . . . 1


,

as this often enough to control the smoothness, while also being more computa-

tionally efficient than higher-order ones. Note that, under this model, inference

consists of the estimation of the basis coefficients β and the global roughness co-

efficient ρθ, while the number and location of the knots of the given degree spline

basis is fixed.

2.3.5 Radial functions

First applied to geodesic approximation, radial basis functions (RBF) have since

been widely applied in a number of fields such as neural networks, image process-

ing and interpolation, kinetic modelling and solution of differential and integral

equations. There is a vast literature on radial basis functions in different fields of

statistics. While more details are beyond the scope of this work we refer the reader

to the papers by Powell (1987) and Girosi and Poggio (1990) for some thorough

reviews of the theory involved, and the monograph by Buhmann (2003) for an

overview of their application and adaptations to different fields.

Radial functions are a special class of function whose response changes monotoni-

cally with distance from a central point c. This distinguishing feature joins many
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specific formulations, which differ by the choice of centre, distance scale and the

precise shape of the radial function. The most general formula for any RBF in any

dimension is

h(x) = f
(
(x− c)′R−1(x− c)

)
,

where f(·) is the specific function used, c is the centre and R is the metric cho-

sen. This metric is often Euclidean, such that R = r2I for some scalar radius

r and identity matrix I. Common example of function choices include Cauchy,

multiquadric and Gaussian functions, the latter of which in 1-D is

h(x) = exp

(
−(x− c)2

r2

)
, (2.3.6)

for some scalar input x ∈ (−∞,∞). Gaussian density functions can also be

classified as an RBF, as they are just a version of Eq. 2.3.6 scaled to ensure the

density integrates to 1. Gaussian RBF’s have a localised impact, as they show a

significant response only in a neighbourhood near the centre, although theoretically

they have global support.

RBF’s can be employed in any sort of linear and nonlinear regression model in

the same way other basis functions types considered in Sections 2.3.3 and 2.3.4.

In particular, assume again that we have a one-dimensional predictor X, then we

can model the variation of a covariate-dependent parameter θ(x) using a linear

combination of RBF’s

θ(x) =

p∑
j=1

βjfj(x),

where each fj is characterised by its own parameters cj and rj and p is the total

number of radial function components.
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Chapter 3

A comparison of peaks over

threshold methods

In Chapter 1, we considered the importance of accurate statistical models for

extreme data in various application, such as for modelling the extreme conditions

offshore structures are subject to. In Chapter 2, we introduced the statistical

theory of extreme value modelling and noticed that often the applications where

this is used tend to produce data showing non-homogeneity, so that considering

covariates becomes essential to proposing a realistic model. For example, one cause

of structural damage to offshore sites are storm waves, with the most severe sea

states usually being wind generated. Consequently, we may suspect that the height

of the waves will change according to, for example, season, geographic location of

the sampling site, or direction of the wind. Constructing a model that includes

such factors is necessary, and statistical tools to analyse and extrapolate from

such a model become essential. Hence, in Section 2.1.3, we reviewed the standard
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approach to account for covariate dependence for extremes data.

In this chapter, we focus our attention on peaks over threshold (POT) methods,

where we study the tail of the distribution by only considering observations that are

above an arbitrary value. In the stationary case, two models are available from

the literature, namely the generalised Pareto distribution (GPD) and the non-

homogeneous Poisson point (NHPP) process formulation. This chapter aims to

compare them and shows that, although theoretically they are equivalent (Smith,

1989; Davison and Smith, 1990), in practice each method has its own advantages

and limitations. Moving from one model to the other is straightforward in the case

of stationary processes. Nonetheless, we are mainly interested in modelling and

analysing non-stationary processes. Model parameters are, in this case, no longer

directly transferable using the equations in Section 2.1.2. Furthermore, being able

to correctly capture covariate effects is complicated, in the EVT framework, by

the reduced amount of data available by construction. This may lead to added

instability in the optimisation of likelihoods used by maximum likelihood (ML)

methods for model fitting. This is particularly true in the case of the Poisson point

process formulation, where additional issues arise compared to the equivalent GPD

model, as shown in Section 3.1.2.

In the following sections, we systematically review the performance of model fitting

and extrapolation for both the GPD and PP models in the non-stationary case,

as well as highlighting areas with potential for further development.
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3.1 Threshold approaches

The peaks over threshold approach is suited to the types of application and datasets

described in Chapter 1, which comprise of more than just annual or monthly max-

ima. In particular, data may be available daily, hourly or even sub-hourly.

Among others, it was used in the seminal work by Smith (1989) applied to air

pollution data, and soon after popularised by Davison and Smith (1990). Assume

that Y1, . . . , Yn are independent and identically distributed (i.i.d.) random vari-

ables from the same unknown distribution function FY over some domain Ω, where,

say, Ω = R . It seems natural to define as extreme those observations that exceed

a certain value, that is, the Yi, i = 1, . . . , n, above a chosen threshold u ∈ R.

Two equivalent models exist in the literature to analyse observations within this

framework, namely:

1. The generalised Pareto distribution with distribution function, for y > u,

P[Y < y] = 1− φu
{

1 + ξ

(
y − u
ψu

)}− 1
ξ

+

,

with scale ψu > 0, exceedance probability φu ∈ [0, 1], both conditional on

the threshold u, and shape ξ ∈ R;

2. The non-homogeneous Poisson point process with intensity on [0, 1]× [u,∞),

λ(t, y) =
1

σ

{
1 + ξ

(
y − µ
σ

)}−1− 1
ξ

+

,

with location µ ∈ R, scale σ ∈ R+, and shape ξ ∈ R, and where we use
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standard notation

[·]+ := max{0, ·}.

Although these models have already been introduced in Section 2.1.2, it is worth

noticing a few intrinsic characteristics and results for the approaches considered,

as both have advantages and drawbacks and neither prevails as an overall “better”

model. In particular,

• The Poisson point process parameters are threshold invariant, provided we

are far enough in the tail of the distribution for a given threshold u. Then,

any subset of the extreme observations obtained with a new choice of thresh-

old v > u will follow the same distribution, i.e. the latter will be described

by a NHPP with the same parameters µ, σ, ξ;

• The Poisson point process parameters are strongly dependent, which makes

parameter estimation harder to perform. Wadsworth and Tawn (2012) sug-

gests that introducing an additional factor in the likelihood may help in

reducing the correlation between them, as detailed in Section 3.1.1. In a

similar manner, Sharkey and Tawn (2017) propose the reparameterisation

of NHPP parameters in terms of a tuning parameter for a Bayesian imple-

mentation and introduce a method for choosing this additional term so to

obtain near-orthogonality of the model parameters for stationary processes,

or when a linear trend in one covariate is present in the location parameter

only.

• In the GPD model, φu is orthogonal to the parameters ψu and ξ, which

simplifies their estimation, although ψu and ξ are still correlated. Threshold
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invariance no longer holds, as ψu and φu depend on the threshold. The choice

of this threshold, as we mentioned earlier, is in itself an issue for both the

NHPP and GPD models and may be subjective, which will then have an

effect on model fitting and extrapolation.

• There exists a reformulation of the GPD scale parameter ψu in terms of a

lower threshold u0 < u for which the assumption of GPD distributed ex-

ceedances still holds. This re-parameterisation is often used for threshold

selection methods testing for stability of parameters over a range of thresh-

old candidates. It essentially uses Eq. 2.1.9 to re-parametrise the GPD

scale parameter as ψ∗ = ψu − ξu, which is constant with respect to u. An

alternative re-parameterisation follows the work by Cox and Reid (1987)

and Chavez-Demoulin and Davison (2005) to obtain more computationally

advantageous formulations of the GPD parameters. It consists of moving

from GPD parameters (ψu, ξ) to the asymptotically independent pair (νu, ξ),

where νu = ψu(1 + ξ).

• Although the threshold stability property often leads theoretical statisticians

to prefer the NHPP approach, the GPD formulation is usually preferred by

applied users, as more immediately interpretable.

3.1.1 Non-homogeneous Poisson process interpretation as

yearly maxima

One interesting characteristic of the NHPP parameterisation is that it can be eas-

ily unified with that of the GEV. In particular, given some observed data over
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a number of years Nyears, using the NHPP likelihood function in Eq. 3.1.2, with

corresponding integrated intensity as in Eq. 2.1.6, yields MLE’s for NHPP param-

eters corresponding to the NY maxima. It may, instead, be of interest to know the

GEV parameters corresponding to the yearly maxima, which is in fact the same

time scale that applies to MLE’s for GPD parameters. To obtain such estimates,

one assumes NY independent replications of the Poisson process defined over the

set Bu = [0, 1]× [u,∞) as before, so that the resulting NHPP model has integrated

intensity measure

Λ(Bu) = NY (1 + ξu)
−1/ξ
+ . (3.1.1)

Let us denote the estimates from fitting a NHPP likelihood with integrated inten-

sity from Eq. 2.1.6 as (µ(1), σ(1), ξ(1)), where we use the notation θ(1) to indicate

that we are now referring to the case where we take NY = 1. For the rest of the

chapter, we will also be using the notation (µ, σ, ξ) to refer to the yearly-maxima

parameter estimates computed by setting NY to the actual number of years of data

available. This corresponds to using a NHPP likelihood with adjusted integrated

intensity as in Eq. 3.1.1. Then, the relationship between the parameters in Eq.

2.1.6, denoted as θ(1), and those in Eq. 3.1.1 is given by

ξ(1) = ξ, σ(1) = σ

(
1

NY

)−ξ
, µ(1) = µ− σ(1)

ξ

(
1−

(
1

NY

)ξ)
.

Wadsworth and Tawn (2012) found that it may be possible to improve fitting via a

careful choice of the value of NY . In particular, when we have Nexc in the dataset

given a chosen threshold, setting NY = Nexc in Eq. 3.1.1 improved the mixing

properties when Bayesian methods were used to compute parameter estimates. In
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a maximum likelihood framework, this corresponds to a reduction in the correlation

of parameters. In the stationary case, this change in the value of NY presents no

major difficulties, so that one could transform estimates from any ad hoc time-

scale to, say, estimates for yearly maxima. In particular, the relationship between

the NY -year maxima parameters from Eq. 3.1.1 and estimates resulting from a

different choice of NY , say N∗Y , is given by

ξN
∗
Y = ξ, σN

∗
Y = σ

(
NY

N∗Y

)ξ
, µN

∗
Y = µ− σ

ξ

(
1−

(
NY

N∗Y

)ξ)
.

It is important to be aware of the meaning of the NY term in Eq. 3.1.1, both

during the fitting procedure and when analysing results.

For illustration purposes, we produce a single data set of GPD distributed obser-

vations. We set u = 0 and, given NHPP parameters µ = 3, σ = 2, ξ = 0.1, we

compute the GPD scale ψu = σ+ ξ(u− µ). Hence, we simulate 200 years of data,

which corresponds, using the integrated intensity from Eq. 3.1.1, to Λ(Bu) = 5079

expected threshold exceedances. We then compute the joint conditional NHPP

negative log-likelihood for the scale and shape parameters, by fixing the value for

the location to be the one chosen for the simulation, i.e. µ = 3. Figure 3.1.1

shows the resulting joint conditional negative log-likelihood surfaces, with infea-

sible regions in grey, and using white to indicate parameter combinations leading

to negative log-likelihood values above the 60th percentile of all the values ob-

tained. The plots also show both the original true parameters and the estimates

for parameters σ, ξ which maximise the conditional negative log-likelihood.
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Figure 3.1.1: Scale-shape joint NHPP negative log-likelihood, conditional on µ = 3.
The infeasible region is depicted in grey, and parameter combinations leading to
negative log-likelihood values above the 60th percentile of all the values computed
are shown in white. True parameters and computed estimates leading to the
minima of the conditional negative log-likelihood are also given.

Figure 3.1.1 also provides an example of the impact of different choices for the NY

term. First, we notice how the surface is much narrower for some of the NY values,

and especially for NY = 1. The plot clearly shows a strong correlation between the

shape and the scale parameters, and the narrower optimal ridge, represented by

the darker region, is likely harder to explore for an optimisation routine, which is

less likely to step in the most optimal direction. On the other hand, as suggested

by Wadsworth and Tawn (2012), a choice of NY = Nexc reduces the correlation of

the parameters and yields a wider surface, easier to explore. Furthermore, Figure

3.1.1 also highlights the impact of the choice of NY over the values of the parameter

estimates. Given the visibly large variability of the location (and, partly, scale)

estimates for the different NY values, it is evident that we need to be clear when

reporting results by providing not only the parameter estimates but also the value
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of NY used, given the strong relationship between them.

3.1.2 Peaks over threshold models for non-stationary se-

ries

The theoretical results discussed so far rely on the assumption of independent and

identically distributed observations. In reality, this is rarely the case, and both the

independence and the identically distributed assumptions may fail. In particular,

extreme observations often display signs of a variety of trends. In Section 2.1.3,

we have introduced the approaches for non-stationary series.

Let us consider a process {Yt}, with t = 1, . . . , n and Yt ∈ R, and let {X t},

X t ∈ Rm, be the corresponding m covariates. For example, the response variable

may be significant wave height with m = 2 covariates, some dates xd to account

for seasonality and some wave direction xw.

We have already introduced the modelling and prediction methodology for the

Generalised Pareto model in Section 2.1.3, although a few additional remarks

are necessary. The orthogonality of the parameters is preserved in the non-

homogeneous setting, and may indeed simplify their estimation. Furthermore, the

estimation of the rate exceedance φu and of the shape and scale parameter occur

separately. This simplifies both the fitting and the simulation process, especially

for covariate-dependent models. Nevertheless, as previously explained, the GPD

characterisation does not allow for threshold stability. Given a different threshold,

the scale will in fact change as shown in Eq. 2.1.9. In the non-stationary case,
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this becomes ψv(x) = ψu(x) + (v − u)ξ(x). In other words, ψv(x) no longer has

the same form as ψu(x) and, in fact, it may not even include the same covariates,

since ξ(x) may include covariates not required in ψu(x).

Similar problems arise for all the re-parameterisations mentioned for models of

stationary series in Section 2.1 for both the GPD and the NHPP approach, so

that one may not always be able to easily apply them, and retrace intercept and

covariate coefficients between different formulations.

Using the Poisson point process approach may be a possible way around thresh-

old instability, as, although all parameters may be still assumed to be covariate-

dependent, they are also threshold invariant, assuming we are far enough in the tail

of the distribution. Nevertheless, the non-homogeneous Poisson point process for-

mulation for covariate-dependent cases has added computational complexity. The

following section provides an overview of this approach for covariate-dependent

models, and aims to highlight the complications arising in this case.

Poisson point process fit

Let {Yt}, for t = 1, . . . , n, be a set of n independent identically distributed obser-

vations Yt ∈ R, following a distribution function FY defined over the domain R.

One can use the threshold approach to fit a Poisson point process with a given

intensity λ(t, y) as in Eq. 2.1.5 and parameters (µ, σ, ξ) to the dataset.

For inference using the Poisson process approach, the likelihood can be derived for
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some high threshold u as

L(µ, σ, ξ; y1, . . . , yn) ∝ exp

{
−NY

[
1 + ξ

(
u− µ
σ

)]−1/ξ

+

}
N(Bu)∏
i=1

σ−1

{
1 + ξ

(
yi − µ
σ

)}−1−1/ξ

+

for threshold exceedances y1, . . . , yN(Bu), Bu = [0, 1]× [u,∞) and factor NY , often

set as the number years of observations NYears. Maximum likelihood methods can

hence be used to obtain estimates for the parameters.

Now let {X t}, X t ∈ Rm, be some covariates that characterise a non-stationary

behaviour in the observations, where m is the number of different covariates con-

sidered. The parameters and consequently rate of exceedance now depend on the

covariates X.

This causes a change in the likelihood, as the integrated intensity can no longer

be easily computed. In particular, the intensity to be integrated is now

λ(x, y) = g(x)σ(x)−1

{
1 + ξ(x)

(
y − µ(x)

σ(x)

)}−1/ξ(x)−1

, (3.1.2)

where g(x) is the density function of the covariates. Note that we omit the NY

factor in Eq. 3.1.2, as this is just a constant, hence having no repercussions on the

integration procedure. Now let X be the covariate space, where each covariate xi,j

is in the space denoted as Xj = [min(Xj),max(Xj)] and X =
⊗
j

Xj, the overall

cross-product of the single covariate spaces. Define Bu = X × [u,∞), and denote

the integrated intensity as Λ(Bu). The likelihood function then becomes

L(µ(x), σ(x), ξ(x); y1, . . . , yn) ∝ exp {−Λ(Bu)}
N(Bu)∏
i=1

σ(x)−1

{
1 + ξ(x)

(
yi − µ(x)

σ(x)

)}−1−1/ξ(x)

+
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where the integrated intensity is

Λ(Bu) =

∫
X

∫
Bu

λ(x, y)dy dx

=

∫
X

∫
Bu

g(x)σ(x)−1

{
1 + ξ(x)

(
y − µ(x)

σ(x)

)}−1/ξ(x)−1

+

dy dx

=

∫
Xm
· · ·
∫
X1

g(x)

{
1 + ξ(x)

(
u− µ(x)

σ(x)

)}−1/ξ(x)

+

dx1 . . . dxm (3.1.3)

Estimation of the integrated intensity

Since we do not know the covariate density g(x), the integral over the covariate

space needs to be approximated. The approach described in this section is based

on the theory of Monte Carlo estimation.For a more detailed review on these

methods, the reader can refer for instance to Rubinstein (1981), MacKay (1998),

Kalos and Whitlock (2009) and Hammersley (2013).

In general, the multidimensional definite integral

I =

∫
Ω

h(y)dy,

where Ω is the variable space, may be approximated as

I ≈ V

N

N∑
i=1

h(yi), (3.1.4)

where V :=
∫

Ω
dy = |Ω| is the volume of the variable space we integrate over, and

y1, . . . ,yn are simulated from a uniform distribution on Ω.

Often, the covariates we have in a dataset are not uniformly distributed, so that

Eq. 3.1.4 needs to be adapted. Let p(x) =
{

1 + ξ(x)
(
u−µ(x)
σ(x)

)}−1/ξ(x)

+
, then there
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are now two possible ways to proceed.

Method 1: uniformly spaced covariates.

Take some covariates x∗ uniformly distributed on the covariate space X

according to some distribution HX with density hX . Then, we can write the

integrated intensity in Eq. 3.1.3 as

Λ(Bu) =

∫
X
g(x)p(x)dx (3.1.5)

=

∫
X

g(x)p(x)

hX(x)
hX(x)dx.

We can draw N∗ sample from the density hX , so that the integrated intensity

becomes

Λ(Bu) ≈
1

N∗

N∗∑
i=1

g(x∗i )p(x
∗
i )

hX(x∗i )
.

Now, using the fact that hX was a uniform distribution such that hX(x∗) =

1/|X |, ∀x∗ ∈ X , then we obtain

Λ(Bu) ≈
|X |
N∗

N∗∑
i=1

g(x∗i )

{
1 + ξ(x∗i )

(
u− µ(x∗i )

σ(x∗i )

)}−1/ξ(x∗i )

+

. (3.1.6)

Finally, we can approximate the volume |X | as

|X | ≈
m∏
j=1

|max(Xj)−min(Xj)| ,

assuming the covariate space is bounded by construction, for example wave

directional covariates would be xi ∈ [0, 360), or that reasonable bounds can

be imposed.
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Method 2: observed covariates. Assume we have a dataset with Ñ ob-

served covariates x̃. Then we can compute the integrated intensity in Eq.

3.1.3 by noticing that {x̃} is just a sample from the target distribution g(·),

so that Eq. 3.1.5 becomes

Λ(Bu) =

∫
X
g(x)p(x)dx

≈ 1

Ñ

Ñ∑
i=1

p(x̃i)

=
1

Ñ

Ñ∑
i=1

{
1 + ξ(x̃i)

(
u− µ(x̃i)

σ(x̃i)

)}−1/ξ(x̃i)

+

.

Both methods work well, and have different advantages and drawbacks. Method

2 is, potentially, less computationally intensive, as there is no need to estimate

the covariate density for a given sample. Furthermore, by working on a sample

of realisations from the target density, this may provide better estimates of the

intensity in areas of higher covariate density. On the other hand, method 1, by

selecting selecting an arbitrary number of covariates equally spaced over the co-

variate domain, provides a more uniform coverage of the entire domain, especially

where only a small number of observations is available.

Covariate density approximation Note that method 1 requires knowledge

of the density g(x), which is unknown. Instead, we can use an approximation

ĝ(x), whose values can be obtained via:

1. Closed form assumption, where we propose a parametric distribution for
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the covariates. This should try to capture the relationship between covariates

as closely as possible, by imposing dependence or independence between the

covariates as well as with a careful choice of covariance structures. These

assumptions will clearly affect the performance of the model in capturing

the tail behaviour. A proper understanding of the process investigated, as

well as thorough analysis of the covariates observed, will be fundamental in

reducing such impact.

2. Non-parametric methods, such as kernel density estimation, can be used.

Again, care should be taken to account for the correlation between covariates,

which may be needed to choose an appropriate kernel form. This approach

may not be possible when a high number of covariates is considered, as kernel

density is not only more computationally intensive, but also highly unreli-

able, with increasing dimensions (Parzen, 1962; Rosenblatt et al., 1956).

Both approaches become increasingly complicated when more than one covariate

is considered, i.e. m > 1, and will give rise to additional uncertainty and potential

computational error, which are likely to affect the model fitting.

Return values

For non-stationary processes, there is no straightforward way to make return value

predictions, as the parameters of the model are now conditional on some covariates,

and consequently the same holds for return values. We need to redefine the concept

of return value in the context of non-stationary data. A possible approach is to fix

the return period of interest, and obtain covariate-dependent return values. That
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is, for the covariate space X given by the data, take the n-year conditional return

value to be the value zn,i such that

1− F (zn,i|xi) = 1/n,

for covariate value(s) xi, where F is the distribution of the model considered.

For both the GPD and NHPP models, we use Eq. 2.1.10, where the model pa-

rameters are now replaced by the value of the parameters at the covariates we are

conditioning on. The main difference stands in the computation of the exceedance

probability φu(x), which is itself covariate-dependent.

For GPD models, we can use different approaches to estimating this probability.

Throughout this chapter, we choose logistic regression methods. Essentially, we

define a Bernoulli random variable zi, where

zi =


1 if Yi > u,

0 if Yi 6 u.

Then zi ∼ Bernoulli(φu(xi)), with likelihood

L(z;x) =
n∏
i=1

φu(xi)
zi(1− φu(xi))1−zi (3.1.7)

for zi ∈ (0, 1), and logistic regression can be used to estimate φu(x).

For NHPP models, we follow the same idea presented in Eq. 2.1.12. In partic-

ular, we approximate the covariate-dependent exceedance probability using the
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conditional integrated intensity with respect to Y , denoted as Λ(y|x), given by

Λ(y|x) = g(x)

{
1 + ξ(x)

(
y − µ(x)

σ(x)

)}−1/ξ(x)

+

. (3.1.8)

Then, similarly to Eq. 2.1.12, we have

φu(x) ≈ NY Λ(y|x)

Nobs

,

where it is essential to include the same NY factor that was used during fitting to

obtain the right scaling.

An alternative would be to marginalise the return values, so as to obtain estimates

that include the entire covariate space. This process requires integrating return

values over the covariate space, which often involves numerical methods and is

computationally expensive. An empirical approach to the above is performed via

simulation. In particular, recall that the n-year return level is a value we expect

to be exceeded only once in n years. Then, if we repeatedly simulate N years of

observations (for simulations methodology, see Section 3.2), we can obtain return

values for any n < N as the value zn|x that is exceeded on average N/n times. For

example, if we simulate N = 1000 years of data, the 500 and 100 year return levels

will be the values exceeded, respectively, twice and 10 times (on average). One

can then use bootstrapping or empirical quantiles to obtain confidence bounds for

the values computed.
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3.2 Simulation routine

3.2.1 GPD simulation

Simulating data from a generalised Pareto distribution is fairly straight-forward,

even when one or more of the parameters is a function of covariates: the following

steps summarise the procedure:

1. Given a threshold and scale, shape and rate parameter values, simulate co-

variates x∗
1, . . . ,x

∗
n. This can be done either

i parametrically by sampling from a pre-specified closed form distribu-

tion;

ii non-parametrically by randomly sampling with replacement from a given

dataset, or;

iii non-parametrically with noise, so as to allow for a certain level of “ran-

domness” by adding noise to the sampled values.

Note that when more than one covariate is considered, sampling is from the

full multi-dimensional covariate space. If parametric sampling is used, the

chosen distribution should reproduce the dependence between covariates.

2. Given simulated covariates x∗, evaluate the exceedance rate and use this to

determine whether or not to simulate an exceedance, via an accept-reject

procedure. That is, for each covariate values x∗
i (or x∗i if only one covariate

is modelled),

• Draw a uniform random variable a;
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• Compute the exceedance probability φu,i, by first defining a Bernoulli

random variable zi, as detailed in Section 3.1.2. Then, we use logistic

regression for the resulting likelihood in Eq. 3.1.7.

• If φu,i > a, simulate Yi as an exceedance as described in the following

step, otherwise retain the value for x∗
i and repeat the procedure until

all covariates have been considered.

3. Given that Yi > u, simulate Yi from a GP(ψ(x∗
i ), ξ(x

∗
i )) distribution.

As we saw in the previous section, fitting a NHPP model requires a “complete”

dataset, as the distribution of the covariates below the threshold is used in the in-

tegrated intensity estimation. As detailed in step (3) above, the procedure already

produces observed covariates for non exceedances. It may be of interest to obtain

observations below the threshold as well, particularly if we later want to consider

using a covariate-dependent threshold for the same dataset. This is more compli-

cated, as assumptions need to be made with respect to the distribution of the body

of the observation Yi, and one should be particularly careful with boundary issues

at the threshold. It is, instead, often advisable to simulate using a “minimum”

threshold, with subsequent constant or covariate dependent threshold above it at

all times.

3.2.2 Poisson point process simulation

The aim is to produce datasets whose observations come from a non-homogeneous

Poisson point process. The additional challenge is to include non-stationary be-

haviour. In the stationary case, a NHPP is summarised by:
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• An integrated intensity Λu, which determines the expected number Nu of

exceedances over a high threshold u, so that one can obtain a random number

of exceedances for a sample as Nu ∼ Po(Λu);

• A generalised Pareto distribution with threshold u and parameters σu = σ+

ξ(u−µ) and ξ, which is used to simulate the magnitude of the corresponding

Nu exceedances.

Intensity estimation

In the non-stationary case, the expected number of exceedances and the distri-

bution of their magnitudes changes across covariate values. One way to capture

this is by writing the parameters as functions of the covariates, resulting in the

intensity given in Eq. 3.1.2. The integrated intensity Λu is now allowed to vary

with some covariates and is changing over the space where the points occur. Let

Bu = X × [u,∞), where X is the covariate space, then the calculations required

for the integrated intensity are given in Eq. 3.1.3. Although the integral may be

evaluated using Monte Carlo integration as described in Section 3.1.2, the process

is complicated by the multidimensionality of the covariates.

An alternative approach to obtaining Λu is to approximate the continuous functions

of the parameters in Eq. 3.1.2 by a piecewise constant representation. First, we

divide the covariate domain into small subspaces, S1, . . . ,Ss. The underlying as-

sumption is that, within each Sk, points occur according to a NHPP(µk, σk, ξk) with

corresponding intensity λk, such that we can approximate λ(x) by λ(x) =
s∑

k=1

λk.
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From Eq. 3.1.2, we know that we also need to consider the distribution of the

covariates g(x). Then, for each of the k = 1, . . . , s subspaces, we again employ a

piecewise constant approximation by using the value of the density at the subspace

midpoint xk. Then if we let X =
⋃
k

Sk, since g(xk) is just a constant,

Λk,u = Λ(Sk × (u,∞)) =

∫ ∞
u

g(xk)
1

σk

{
1 + ξk

(
y − µk
σk

)}−1/ξk−1

+

dy

= g(xk)

{
1 + ξk

(
u− µk
σk

)}−1/ξk

+

(3.2.1)

is the integrated intensity for each of the s subspaces.

Note that the procedure above relies on the assumption of stationarity of the

process over each covariate subspace, provided the subspace volume ∆k,u is small

enough. Hence, one should take care in the choice of the number of subspaces

s, which should be large enough to allow for the assumption of stationarity to

hold, whilst still being small enough to limit the effect on the computational cost

required. One may want to investigate different choices for s, either via graphical

methods, by taking into consideration the phenomenon at hand.

Then, in each subregion, the number of exceedances is just Nk,u ∼ Po(Λk,u). Now

recall that the sum of Poisson random variables is, itself, Poisson distributed,

and assume independence between subregions. We can hence approximate the

distribution of the total number of exceedances as Nu ∼ Po(Λu), where

Λu =
∑
k

1

∆k,u

Λk,u

with the integrated intensities in each subspace rescaled by the subspace volume

∆k,u.
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Simulation algorithm

The Poisson point process is represented as the points {(xi, yi) : i = 1, . . . , n},

where xi are the covariate values with corresponding exceedances yi.

Note that, while similar issues to those in the estimation of the intensity term in

the model fit arise, here further complications are present, so that the methodol-

ogy suggested in Section 3.1.2 is no longer sufficient. First, we cannot determine

a priori how many exceedances to simulate, as the number of exceedances is a

Poisson random variable, whose intensity is a function of the model parameters.

Furthermore, simulating the covariates now requires solving for the upper limit of

the integral of the intensity function, as detailed below.

The simulation procedure is as follows:

1. Fix a threshold u, the total number n of observations required, which includes

both exceedances and non-exceedances, and a combination of location, scale

and shape parameters.

2. Consider m covariates and define an overall distribution g(x) for the covari-

ates, as in step (1) for the GPD simulation in Section 3.2.1. Recall that a

multivariate distribution may be needed and issues may arise in estimating

the dependence structure of this distribution, unless independence of covari-

ates is assumed. There are then three possible approaches to proceed, where

in particular the first two aim to simulate covariate values conditional on the

response being an exceedance.

3. Use one of the methods listed below to simulate covariates x∗.
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4. Compute µ(x∗), σ(x∗), ξ(x∗), and hence the GPD parameter σu(x
∗) = σ(x∗)+

ξ(x∗)(u−µ(x∗)). Then, simulate excesses (y1, . . . , yn) as Y ∼ GPD(σu(x
∗), ξ(x∗)).

5. If method 3 was used, covariate values for non-exceedances are already

available. For the others, simulate covariates below the threshold using any

of the methods listed for covariate sampling, considering this time only the

distribution of the covariates below the threshold.

Method 1

• Compute Λu and hence compute the number of exceedances Nexc ∼ Po(Λu);

• Use numerical integration and root finding as follows:

• Simulate z1, . . . , zNexc from an i.i.d. Uniform (0, 1) distribution;

• Define the cumulative distribution function (cdf) as

F (x∗) := P (X 6 x∗|Y > u) =

x∗∫
Xmin

g(W )
{

1 + ξ(W )
(
u−µ(W )
σ(W )

)}−1/ξ(W )

+

Λu

dW

(3.2.2)

• In order to obtain covariate estimates x∗, use the probability integral trans-

form and solve the integral in Eq. 3.2.2. In particular, use root finding

methods to obtain the value of the upper limit x∗ such that F (x∗) = z for

each of Nexc cases.

Method 2

• Perform the first step from Method 1;
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• Proceed with the following empirical approach: define s covariate subspaces,

and take {(xk) : k = 1, . . . , s} to be the midpoints of the subspaces;

• For each subspace, determine µ(xk), σ(xk), ξ(xk) (e.g. µ(xk) = µ0 + µ1 ×

xk,1), and consequently the integrated intensity in the the subspace Λk,u as

in Eq. 3.2.1;

• Compute the empirical cdf CDFΛ, then use the probability integral trans-

form to simulate covariate values x̂ for (x̂1, . . . , x̂s), as shown in Figure 3.2.1;

note that this method essentially provides a discretised or “binned” version

for solving Eq. 3.2.2 in method 1.

Figure 3.2.1: Empirical cdf and covariate subspace selection for wave direction.

In order to account for the fact that covariates are actually continuous, given

that x̂k has been simulated, a value for x∗ is then simulated at random from

Sk.

Method 3

• Simulate n covariates x∗, following any of the methods mentioned in Section

3.2.1.
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• Compute the point-wise integrated intensity

Λx∗i ,u = g(x∗
i)

{
1 + ξ(x∗i )

(
u− µ(x∗i )

σ(x∗i )

)}−1/ξ(x∗i )

+

.

• Proceed as in step (3) of the GPD simulation algorithm in Section 3.2.1

to determine for which of the x∗i to simulate an exceedance, where we as-

sume the conditional integrated intensity can be used to approximate the

exceedance probability, following Eq. 3.1.8.

3.3 Simulation study

The non-homogeneous Poisson point process and the generalised Pareto formula-

tions are known to be equivalent in the case of stationarity, as we have reviewed

in Section 2.1.2. More complications arise where covariates are introduced, and

we wish to consider in more details the case where there is non-stationarity in

the data. The study presented in this section aims to determine if there is any

noticeable difference in performance between the two methods in a simple case.

We consider three models for both the case where a positive shape and a negative

shape is used, which is always assumed to be constant. This should provide enough

insight for the performance of the methods in the case of finite and infinite upper

limits. We then focus on the remaining NHPP parameters, taking µ, σ > 0, or both

to be covariate dependent in the form of a linear trend. We limit the study to the

case where a single positive continuous covariate X ∈ R+ is considered. To avoid

overcomplicating matters, we also do not consider the use of a varying threshold
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neither at the simulation nor at the fitting stage, using instead the constant values

usim > 0 and ufit > usim respectively, where the choice for the latter is motivated

and detailed in Section 3.3.1.

We simulate N = 200 datasets for each of the parameter combinations shown in

Table 3.3.1. We use the notation NHPP
+/−
θ , for a generic model parameter θ, to

denote a NHPP process, where the subscripts shows the parameter(s) chosen to be

covariate-dependent and the superscript refers to the sign of the shape. We follow

the algorithm presented in method 3 in Section 3.2.2 to perform the simulation. As

mentioned there, we cannot pre-determine the number of exceedances to be simu-

lated. Instead, we fix the total number of observations Nobs = Nyears×Npy, where

in our case we account daily data covering Nyears = 200 years, such that Npy = 365

(for simplicity we do not account for leap years). Finally, the covariate X is as-

sumed to be following a Gamma distribution of choice, i.e. X ∼ Gamma(4, 1).

Model Npy NYears NObs E[Λ(Busim
)] Location Scale Shape usim ufit

NHPP−µ 1125 (30,3) 20 23.68

NHPP−σ 365 200 73000 588 30 (20,0.5) -0.1 5 8.91

NHPP−µ,σ 951 (30,3) (20,0.5) 21.05

NHPP+
µ 1688 (30,3) 20 25.68

NHPP+
σ 671 200 73000 690 30 (20,0.5) 0.1 5 10.77

NHPP+
µ,σ 1286 (30,3) (20,0.5) 23.15

Table 3.3.1: Overview of parameter values used during simulation and fitting
procedure.

Given the parameter values chosen (see Table 3.3.1), we can calculate the ex-

pected number of exceedances that are likely to be simulated by the accept-reject

procedure outlined in the algorithm. An approximate value can be obtained by

computing the expected integrated intensity following method 1 in Section 3.1.2.

In particular, we cover the covariate space by taking Nobs evenly spaced covari-
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ates x∗ on (0, 15], which provides good coverage for the covariate space, as shown

in Figure 3.3.1. Then, we estimate the densities g(x∗) from a Gamma(4, 1), and

using Eq. 3.1.6 we obtain the expected integrated intensity E[Λ(Busim
)], where

Busim
= (0, 15] × (usim,∞). The resulting values are denoted by E[Λ(Busim

)] in

Table 3.3.1.

3.3.1 Model fitting

We consider the two peaks over threshold approaches presented in Section 2.1.2

for each of the parameter combinations, denoted in the following plots as GPD
+/−
θ

and PP
+/−
θ respectively, following the notation introduced in Section 3.3. For ease

of notation, we choose to use the abbreviation “PP” in the case of the specific

models fitted following the NHPP approach and corresponding estimates and re-

sults, especially in the case of plotting and diagnostics. In order to allow a fair

comparison across different parameter combinations, we select fitting thresholds

that differ from the one chosen at the simulation stage. The aim is to ensure that

each model is fitted, on average, to 500 exceedances. This is achieved by consid-

ering the 200 simulated datasets from each of the six models from Table 3.3.1,

and calculating the median of the 500th largest observation, yielding the values ufit

shown in Table 3.3.1. Note that all the results that are presented here illustrate

the optimal case for fitting, as we assume the “true” form of the covariate–response

relationship has been correctly identified in all cases. That is, the same parameters

are taken to be covariate dependent during fitting as selected at the simulation

stage. It is worth noticing that, in terms of the GPD models being fitted, all of the
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parameters combinations considered result in a covariate-dependent scale. Recall

that we can compute the GPD scale as ψu = σ + ξ(u − µ), so that ψu can be

expected to be covariate dependent when any of the original NHPP parameters

is. Finally, it is worth noticing that no link-function form is imposed on the scale

parameters. Instead, negative values are disregarded by assigning an undesirable

value, e.g. −106. to the resulting log-likelihood being maximised. This prevents

the need to impose link functions, thus helping in general to obtain more directly

interpretable parameter estimates. We also avoid the use of constrained optimisa-

tion by restricting the optimal support for the parameters instead of the feasible

set. That is, an undesirable value is assigned to the log-likelihood being maximised

when an infeasible parameter choice is encountered, e.g. when maximising, setting

the log-likelihood to −106 if σ(xi) < 0 for any observed covariate xi.

Figure 3.3.1: Histogram of a sample of covariates (left) and corresponding covariate
density (right) with 95% confidence bands from kernel density estimation.

The distribution of the covariates plays an important role for the fitting stage,

especially when an NHPP model is considered. In fact, standard kernel density

methods need to be used in order to estimate the covariate distribution needed

to compute the integrated intensity, as we previously discussed in Section 3.1.2.

Figure 3.3.1 shows, on the left, an overview of the covariate sample for one of
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the simulations, while on the right the estimated kernel density is plotted with

95% bootstrap confidence bands. The plots show the density being appropriately

estimated, and hence we can dismiss this potentially affecting in any way the

NHPP fitting procedure.

Maximum likelihood methodology was used for model fitting and inference, and the

Nelder-Mead algorithm (Nelder and Mead, 1965, as implemented by the stats:optim()

function in R) was chosen to perform optimisation, because of its robustness and

derivative-free formulation, and bootstrapping is used to estimate uncertainty.

Parameter estimation

For the fitting procedure, a suggested initial value is provided for the shape pa-

rameter only. This is taken to be ξinit = +/ − 0.01, with the correct sign being

given in each case, although preliminary tests showed no differences when a generic

small non-zero shape (e.g. ξinit = +0.01) was used. For the remaining parameters,

the intercept coefficients are computed using the L-moments methods (Hosking,

1998). In order to not provide any pre-determined guess in terms of the parameter

dependence on the covariate, with, for instance, a positive, negative, strong or

weak trend, any coefficient terms for the covariate were set equal to 0.

Since the probability of exceedance in the GPD model is computed separately, we

first consider the resulting efficiency across the six different models, by considering

a single simulation for each of them.
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Figure 3.3.2: Probability of exceedance for the GPD model with 95% bootstrap
confidence intervals, given simulations from all of the parameter combinations
shown in Table 3.3.1.

The estimates are consistent, in size, across both the finite and infinite upper limit

case. Higher exceedance probabilities are estimated for samples simulated from

the latter case, in agreement with the higher estimates of the expected integrated

intensity in Table 3.3.1. In general, wider confidence bounds are found for larger

covariate values. This is expected, since a Gamma distribution was chosen, so

that fewer large values are observed, providing less information for estimating the

exceedance probability with confidence.

For each of the six models, we then compute mean squared error (MSE) and bias for

the results of the 200 NHPP fits compared to the original simulation parameters.
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Figure 3.3.3: MSE and bias results for maximum likelihood estimates for each of
the models from Table 3.3.1, as compared to the true model parameters.

The results, shown in Figure 3.3.3, show consistently good fits across the different

parameters and models, with marginally larger biases, for all coefficients, detected

when the data considered has been simulated with both location and scale param-

eters depending on covariates, given the added complexity of the model.

Figure 3.3.4: MSE and bias results for maximum likelihood estimates for the shape
parameter for each of the models from Table 3.3.1, as compared to the true value
using during simulation.

We consider the shape again separately in Figure 3.3.4, as this is the only pa-

rameter for which we can directly compare MLE from GPD fits with the original

parameters. MSE and bias results show satisfying results across both models,

with marginally better PP estimates, especially in the cases where only the NHPP

location parameter is covariate-dependent.
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In order to test whether fitting results from either POT approaches could be

improved, we also repeated the investigation providing more informative starting

values for the optimisation. For the GPD fits, we set the scale intercept to the

mean value of the scale vector used at the simulation stage, adjusted for the new

threshold using Eq. 2.1.9. That is

ψinit
ufit

= ψinit
usim

+ ξ(ufit − usim), where ψinit
usim

=
1

n

n∑
i=1

{σ(xi) + ξ(usim − µ(xi)}

where the xi, i = 1, . . . , n are a sample of n = 1000 covariate realisations follow-

ing the covariate distribution chosen for the simulations. The remaining starting

values for the covariate term in the GPD scale and the shape parameter are set,

respectively, to 0 and +/−0.01, the latter respecting the sign of the shape used for

the simulations. To fit a NHPP, we instead use, for each simulated set, the best

parameter combination emerging from a profile likelihood search for the shape

of each specific simulation. That is, for each dataset simulated, we perform 10

optimisations for the shape profile likelihood, where the location and scale initial

values are taken from the corresponding fit from Section 3.3.1. The 10 shape values

considered are taken to be equally spaced, with magnitudes ranging between 0.01

and 0.3, and sign agreeing with the simulation set-up. We again compute mean

squared error and bias for all of the sets of simulations and fits. The results did

not show any consistent improvement for any of the model parameters, which sug-

gests that both models succeed in computing, for most cases, parameter estimates

leading to the optimum of the respective log-likelihood for the sample considered.
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Model prediction

We follow the the methodology summarised in Section 3.1.2 to obtain conditional

and marginal return values.

In this case, we use conditional return levels to investigate whether the fitting

methods have been able to properly capture the covariate-response relationship

imposed. To do so, we use the equations from Section 3.1.2 to compute the point-

wise return value for a specific return period NRP, in this case 200 years, condi-

tionally on the covariate value. These return values are taken equally spaced every

0.1 interval over the space (0, 15], which we showed in Figure 3.3.1 provides a good

coverage of the covariates space. This approach is used to compute both “true”

return values, where each of the six parameter combinations from Table 3.3.1 is

used, and estimated return values, using MLE’s obtained during fitting. For the

latter, given the consistency of results across the 200 datasets and the computa-

tional requirements for simulations, only the MLE’s for 100 of the datasets were

used.

Figure 3.3.5 then shows the median and upper and lower 5% empirical quantiles

for the estimated return levels. Overall, the results obtained from using the NHPP

procedure appear to be superior on two counts. First of all, the median return

values generally agree with the “true” values, and properly capture the trend in

the data. Secondly, narrower confidence intervals are obtained as compared to the

GPD model fits. Both models achieve the best results for the cases where only

the NHPP location parameter was, during simulation, covariate dependent. Wider

confidence intervals are present for the four cases where the scale parameter was
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covariate dependent, especially when this was in addition to a trend in location,

due to the higher complexity in both the underlying process and the fitted model.

In all cases, nevertheless, the “true” return levels always lie within the confidence

bounds.

Figure 3.3.5: Conditional return values for covariates on (0, 15], and using a
covariate-dependent exceedance probability for the GPD model.

It is possible that, as mentioned before in Section 3.3.1, the GPD model struggles to
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identify with certainty the trend because of the simulation set up. As this followed

the NHPP approach, separate location and scale parameter effects were introduced,

yielding an implicit advantage to models fitted under the same structure.

To obtain marginal return levels, we produce 100 sets of NYears = 10000 years

worth of data for each of the 200 fitted models, using the computed MLE’s for

the parameters. Then, recall the NRP-year return value is the value exceeded on

average every NRP years, and let

R =

⌊
NYears

NRP

⌋

Then, the R- largest observation in each dataset can be seen as a realisation

of a sample of NRP return values. Note that we take the floor of the division

NYears

NRP
if the result is not an integer. In that case, we can only have bounds for

what the NRP-year return value, and we take the smallest value for R, by using a

floor function denoted as bRc, since this corresponds to the largest of two return

values known. This is the more conservative choice, in line with usual policy in

many of standard applications of extreme value analysis, where overestimation,

if necessary, is preferred to underestimation for safety purposes. Simulating for

a larger number of years partly reduces the need for this approximation. After

observations for the desired return periods are collected, we can take quantiles to

achieve a better overview. In this case, we calculate 5%, 50% and 95% quantiles,

denoted as q0.05, q0.5, q0.95, to obtain an estimated for the NRP-year return value we

would expect on average (q0.5) with 95% empirical confidence intervals, as shown

in Figure 3.3.6.
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We compare these results to what we take as “true” return values. We compute

these using the same procedure, where this time we produce 1000 repetitions over

the same time period NYears = 10000, for each of the six original parameter com-

binations from Table 3.3.1. We then again compute the median for the resulting

return values, which then shows the “true” average behaviour.

Figure 3.3.6: Marginal return values, where the exceedance probability for the
GPD model is taken to be covariate-dependent.
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Results are shown in Figure 3.3.6. Both models fitted seem to behave similarly,

with the median values proving to be in general very close to the “true” average

behaviour. When a negative shape is considered, 95% confidence intervals from

both models are similar. The issues found for GPD conditional return levels seem

to be less evident in this case, suggesting that both methods achieve similar return

values (on average and for confidence bounds) when we extrapolate beyond the

length of the original dataset. On the other hand, we notice a some differences

when a positive shape is present, especially for the two cases where the location

is covariate-dependent. In fact, it seems that, while the NHPP approach provides

tighter bounds when the location only is taken to depend on the covariates, the

GPD proves to be superior when the scale parameter depends on the covariates as

well.

3.3.2 Discussion

The two models seem to behave similarly, especially within the context of the

extrapolation we are most interested in. For conditional return levels, the fits

obtained using a NHPP approach yield better estimates and tighter confidence in-

tervals, as expected from the MSE and bias detected in Section 3.3.1. For marginal

return levels, while at times one or the other provides marginally better estimates,

neither of them shows to be overall superior given the simulation study provided.

It is worth reflecting on the ability of the study to represent data available in

real-life situations. While the choice of a Gamma distribution is common in many

applications, one may also want to consider different cases, both within and outside
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this family of distributions. Furthermore, although a choice of shape parameter

σ = 20 was made to ensure a discernible trend in the data, we would like to

investigate more realistic cases, to address whether the performance of the NHPP

and GPD formulation changes in the presence of a more subtle trend. Finally, we

chose to simulate 200 years of data to ensure we had enough exceedances for fitting

across all of the six different models considered. Nevertheless, environmental data

is unlikely to cover such a long span of time.

A few possible extensions for the current study, although outside the scope of this

chapter, may provide further ground for investigation and for comparison of the two

models. So far, we have only introduced one covariate with a linear formulation.

It would be interesting to study the case where more than one covariate is present

and potentially correlated. More (e.g. Fourier series) formulations should also be

considered, as well as possible ways to address different behaviours in the data,

such as censoring. This would, for example, allow us to simulate sets of data

which can replicate the land-shadow effect in oceanography applications, such as

for the dataset analysed in Section 3.4. Both extensions will likely complicate the

log-likelihood surface, hence providing a chance to further test the efficiency of the

models and the sensitivity to different starting values. Furthermore, we have so far

preferred restricting the optimal space over introducing link functions. It would

be useful to compare the two approaches, especially in a more complicated setting,

in order to asses whether space restrictions may cause some issues as compared to

a re-formulation via link functions which yields an optimal space without internal

discontinuity regions.

Finally, as we mentioned before, all of the simulations are constructed using a

87



CHAPTER 3. PEAKS OVER THRESHOLD METHODS

NHPP structure. Although the two POT approaches are equivalent for stationary

processes, complications arise when covariates are introduced. Model parame-

ters and results are not as easily transferable across different approaches, so that

constructing the simulated datasets with a NHPP procedure may provide some

implicit advantage to the NHPP fitting approach, both in terms of parameter and

return values estimation. Although this may only be marginal, for completeness

one may want to repeat this study using a GPD procedure for the simulation

stage.

3.4 Hindcast data study

In order to further investigate the performance of the NHPP and GPD models, we

compare them for both fitting and inference given a real-life application. In par-

ticular, we start from a dataset of South China sea wave height observations (Hs),

introduced in the following section. We then proceed to fit a covariate-dependent

model under both approaches. In the case of stationary datasets, diagnostic models

are considered to assess the fit obtained, especially quantile-quantile (QQ) plots,

as they focus on the fit at the tail of the distribution.

Standard diagnostic plots are not as informative in the case of covariate-dependent

models. In fact, it is important to assess whether the model has been able to

capture accurately the relationship between covariate and response variables. We

attempt to investigate this point by considering simulations and return values,

noting that the former can be the basis for the latter, as explained in Section

3.4.2. In particular, using simulated datasets aids in considering model fitting
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under controlled conditions.

3.4.1 South China Sea

The data consists of hourly hindcasts of significant wave hight (Hs) between the

1st January 1957 and the 31st December 2006 in the South China Sea. As we

outlined in Section 2.1, we have reasons to believe the hindcast data would not be

well summarised by a stationary model. In this case, it is important to understand

the phenomena that cause high waves and, hence, the physical characteristics of

the area of interest. These, in fact, may shed light on some key factors and be

helpful in building a more accurate model.

The wave climate in the South China Sea is determined by a contribution of

both waves from local winds and swell, that is waves caused by distant weather

systems. Noticeably, the most severe sea states are wind generated, so that it is

worth considering the overall climate of the area, which is of monsoonal type.

Figure 3.4.1: Overview of the South China Sea location(left), mean residual life
plot for threshold selection (middle), with q0.9 := 90% q0.95 := 95% empirical quan-
tiles of the data shown, and an overview of the directional-seasonal relationship
(right).

In summer, monsoonal winds blow mainly from the South-West, while in winter,
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monsoons occur in the North-East, with the consequent monsoonal surges causing

increased sea states. The South China Sea is also affected by typhoons, which

cause the most extreme conditions in the area.

For the South China sea data, using both Figure 3.4.1 and knowledge of the local

climate, we have identified both seasonal and directional behaviour, so that in

summer, monsoonal winds blow mainly from the South-West, while in winter,

winds blow mainly from the North-East. Borneo also affects wind flows and wave

height, causing what is known as “land-shadow” effect from the South-East.

Hence, we decide to consider wave direction as a covariate for the model. We notice

three distinct behaviour seem to arise, from different wave directional sectors. In

particular, we select the following sector division, shown on the map in Figure

3.4.1, which agree with the climate behaviour described:

• Sector 1: 315o − 60o: capturing north-east winter winds;

• Sector 2: 60o − 200o: south-east quadrant, affected by land-shadow;

• Sector 3: 200o − 315o: capturing south-west summer winds.

This selection is merely for investigation purposes, as the models we are considering

are continuous and should be able to capture this sectoral behaviour through the

covariate-response relationship. It is, nevertheless, interesting to perform model

fitting for the first and third sector only, using the same threshold value as the

one used further on for covariate-dependent models, i.e. taking the 90% quantile

of the entire Hs dataset as threshold. Note that we ignore the second sector as,

due to the land-shadow, there are no exceedances above the threshold chosen.

Then, if indeed there is a difference in behaviour in the two sectors, we will obtain
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different parameter estimates. This is, in fact the case, giving the following NHPP

(henceforth denoted, for ease of notation, as PP when used to indicate a model

fit rather than the general modelling approach) and GPD maximum likelihood

estimates:

Sector 1 : PP with µ = 1.873 (0.097), σ = 0.966 (0.046), ξ = −0.122 (0.046),

and

GPD with ψ(u) = 0.9 (0.071), ξ = −0.122 (0.046), φ(u) = 0.13;

Sector 3 : PP with µ = −2.654(0.138), σ = 1.852(0.135), ξ = −0.241(0.203),

and

GPD with ψ(u) = 0.663 (0.188), ξ = −0.241 (0.203), φ(u) = 0.03,

where the rates φ(u) are approximated following Eq.2.1.11. The results do differ

noticeably, with the confidence intervals not overlapping for either the location or

scale PP estimates, which is suggestive of non-stationarity in the series. Wider

confidence intervals for the third sectors are due to much fewer exceedances (only

24) for fitting, so that there is not enough reliable evidence to believe in a change

in the shape behaviour. Nevertheless, the results support the hypothesis of an un-

derlying directional behaviour, and hence the use of a covariate dependent model.

Note that this, being continuous in nature, will allow us to avoid fitting a specific

model to a reduced number of observations for one of the sectors.

We perform likelihood ratio tests to assess which mathematical form to use to

describe the covariate-dependent behaviour, as well as to determine which param-

eters should be covariate-dependent. We consider Fourier series formulations for
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the parameters, as it is a natural approach given the periodicity of the covariate.

We also test different orders of Fourier series, with the second order description be-

ing the most relevant according to test results. This process leads to the following

two models for observations Y SCS:

(1) YSCS ∼ GPD(ψ(u)(x), ξ),where

ψ(u)(x) = ψ
(u)
0 + ψ

(u)
1 cos(xWavDrc) + ψ

(u)
2 sin(xWavDrc)

+ ψ
(u)
3 cos(2xWavDrc) + ψ

(u)
4 sin(2xWavDrc)

log
(

φ(u)(x)

1−φ(u)(x)

)
= φ

(u)
0 + φ

(u)
1 cos(xWavDrc) + φ

(u)
2 sin(xWavDrc)

+ φ
(u)
3 cos(2xWavDrc) + φ

(u)
4 sin(2xWavDrc)

(2) YSCS ∼ PP (µ(x), σ, ξ),where

µ(x) = µ0 + µ1 cos(xWavDrc) + µ2 sin(xWavDrc)

+ µ3 cos(2xWavDrc) + µ4 sin(2xWavDrc),

where the exceedance probability φ(u)(x) is also dependent on the covariate. This

is obtained by performing logistic regression on the observations (as exceedances

and non-exceedances) given the covariate, and is formulated using a link function

as common in the literature. Note that we do not impose link functions on any

of GPD parameters. Instead, we insure the parameter estimated are feasible by

artificially restricting the optimal space, as previously explained in Section 3.3.1.

Due to the nature of logistic regression, φ(u)(x) ∈ [0, 1] by construction.

A theme that emerges throughout this work is the sensitivity of the Poisson point

process to initial values chosen, especially when a non-stationary model is consid-

ered. This also emerged when we considered introducing covariates in the scale

parameter of the PP model, that is the case PP (µ(x), σ(x), ξ). Here, the strong
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dependence between the location and shape parameter led to terrible fits when

standard starting values were used in numerical optimisation (L-moments). It was

necessary to fine-tune the choice by using the MLE’s from the model PP (µ(x), σ, ξ)

to obtain a suitable fit, although the improvement was still not enough to justify

considering a covariate-dependent scale.

We then proceed to use models (1) and (2) above, using the 90% quantile of the

observations as threshold. Both seem to fit the data adequately, as shown in Figure

3.4.2.

Figure 3.4.2: QQ plot diagnostics for fitting GPD and PP directional models.

As mentioned earlier, quantile-quantile plots are not the only useful tool used to

assess the fit of covariate-dependent models. For the next step, we proceed to use

simulation to see if the model fit captures the underlying behaviour in the data.

3.4.2 Simulation study

The next few sections implement or refer to some of the methods available to

compare the models considered and their ability to properly capture the non-
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homogeneous characteristics of the data.

For the following section, we use simulation. While the original dataset contained

2797 observations, we round up the total number of observations to 2800 data

points for all of the simulations produced, where we would expect the number

of exceedances to be approximately 10% given the choice of threshold from the

previous section. Furthermore, no assumption is made in terms of distributions of

the covariate, which are approximated, both during the fitting and the simulation

stages, via kernel density estimation. The covariate distribution is needed to com-

pute the integrated intensity for the NHPP approach, as we previously discussed

in Section 3.1.2. Figure 3.4.3 shows, on the left, an overview of the covariate sam-

ple for the dataset, while on the right the estimated kernel density is plotted with

95% bootstrap confidence bands. The plots show the density being appropriately

estimated in this case, and hence we can dismiss this potentially affecting in any

way the NHPP fitting procedure.

Figure 3.4.3: Histogram of wave direction covariate (left) and covariate density
with 95% confidence bands from kernel density estimation.

Similarly, it is important to understand how well we can estimate the exceedance

probability φ(u)(x) in the GPD model. In fact, although this will not affect the
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estimate of the remaining GPD parameters, which are orthogonal to it, it will

impact the quality of inference and prediction.

Figure 3.4.4: Probability of exceedance estimated from logistic regression given
the wave direction observations, with 95% confidence intervals. Results are shown
for different choices of threshold, all taken as empirical quantiles of the original
dataset, which will be used further in Section 3.4.2

.

The exceedance probability in Figure 3.4.4 seems to be able to capture the covariate-

response relationship well. As expected, wider confidence intervals arise in the

land-shadow sector, due to the sparsity of information available. Lower threshold

values also lead to higher exceedance probabilities, as is especially visible in sector

3, where we see more clearly the impact of summer climate for the 80% and 85%

quantile thresholds.

We then produce two sets of simulations:

Sets 1 We fit models (1) and (2) from Section 3.4.1 to the observed data, and use

parameter estimates to simulate N=1000 datasets, which we will refer to as
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GPD1 and PP1.

Sets 2 We fit again models (1) and (2) to each simulated dataset, and use the new

parameter estimates to produce a new set of simulations, referred to as GPD2

and PP2 respectively.

All of the sets should highlight similarities and difference with the observed data.

In particular, inconsistencies may be due to:

1. Issues with the models fitted and the functions chosen to represent the de-

pendence of the parameters on the covariate;

2. Computational error from model fitting;

3. Computational error from the simulation stage.

We used two rounds of simulations in order to try and disentangle the effects of

these three main causes of inconsistency. For example, issues with the choice of

functional form for the distribution parameters will mainly affect results in Set

1. The second round of simulation is then an attempt to reduce the potential

model misspecification issues from point 1 and focus on the latter two. In fact,

by using the same structure and assumptions during the simulation and inference

stages, model misspecification is no longer an issue and equal footing is provided

to both the Generalised Pareto and the NHPP approaches. We can then compare

the results from Set 1 and Set 2: any inconsistency in results from the two sets

within each approach are then most likely linked to points 2 and 3 above, and

could highlight a potential superiority of one modelling approach over the other.
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Frequency and size of exceedances

A preliminary way to assess the methods at hand is to investigate the average

ability of reproducing, via simulation, an “observed” set of data. In particular,

both the number and the size of exceedances should be reproduced. Furthermore,

given the interest in non-stationary processes, we want to analyse these traits in

relation to the covariates considered.

We have reviewed both seasonal and directional behaviour for the South China Sea

in Section 3.4.1, where we identified three different directional sectors of interest.

For each sector, we compare exceedance counts and sizes for a series of simulations,

against those from the original dataset.

In particular, we focus on the exceedances above the 90% quantile (also used as

a threshold in the model fitting), as well as the 95% quantile, where the latter is

considered to investigate how well the most extreme behaviour is captured. These

are also shown in Figure 3.4.1, in red and blue respectively

Figure 3.4.5: Overview of the spread of simulated exceedances per sector, with
sector 1 = [315o, 60o), sector 2 = [60o, 200o) and sector 3 = [200o, 315o). The
corresponding number of exceedances of the original dataset over the 90% and
95% empirical quantiles are shown by the red and the blue line respectively.
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Boxplots of exceedance counts show consistent results for both models, although

the second set of simulations using a NHPP model, denoted as PP2, seems to

lead to an overestimate of the number of exceedances in sector 3. The land-

shadow effect in sector 2 seems to be well captured across all sets of simulations.

Hence, we focus on the remaining sectors to analyse sizes of exceedances. In

particular, we want to investigate how well we can reproduce the tail behaviour of

the exceedances distribution in both sectors. Hence, we compare 50%, 90% and

95% empirical quantiles of the simulated exceedances with the observed ones.

Figure 3.4.6: Overview of the size of simulated exceedances per sector, with sector
1 = [315o, 60o), sector 2 = [60o, 200o) and sector 3 = [200o, 315o). The lines show
the 50%, 90% and 95% empirical quantiles of the original exceedances.

Exceedance size in sector 1 is consistent with the original observations, although

slightly overestimated by the GPD fits. Nevertheless, more variability and overes-

timation arise in sector 3, as later confirmed by conditional return values in the

next Section (see Figure 3.4.7). While the GPD fits seem to be capturing the size

of exceedances in this sector better on average, they also yield a much wider range

of values. On the other hand, PP fits show a smaller range of results, although

they overestimate on average the Hs values for the second set of fits. As expected,
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simulated datasets are more consistent under the same model for the GPD, which

suggest that the issue may lie in the model assumed for the covariate-response re-

lationship. We also need to note that a non-parametric approach has been used for

the intensity estimation in the PP model fits. This is, in general, computationally

intensive, especially if simulation is used to estimate return values, and in most

cases we may have to specify a parametric model for the covariates. The stronger

connection to the original dataset, nevertheless, may be the reason for the ability

of the NHPP approach to capture with less uncertainty the behaviour in the third

sector. In fact, a non-parametric model for the covariate distribution could reduce

the impact of a too-rigid model for the response-covariate relationship, which may

be the cause of the overestimate of the size of exceedances for the GPD approach

in sector 1.

To explore these issues further, we proceed to consider return values, as they

summarise the estimates of all parameters. In the next section we also review

some issues that arise for return value estimation for non-stationary processes.

Return values

We follow the the methodology summarised in Section 3.1.2 to obtain conditional

and omni-directional return values. For the latter, we produce 1000 sets ofN = 100

years worth of data, in order to also compute empirical confidence intervals.

Both plots show a tendency of the model to underestimate return values. This can

be noticed by also comparing the 50 year return levels to the maximum observa-

tion in the original 50-year data (6.915m), which lies outside both the confidence
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intervals, with the PP fits yielding a more noticeable underestimate.

The conditional return levels plot shows an interesting feature: the model does

not seem to capture the covariate-response relationship in a satisfactory manner.

In fact, it leads to underestimates in what we defined as the first sector, possibly

due to the occurrences in the third. Vice versa, values for the third sector seem

to be overestimated, especially for the PP fit results, while here the GPD results

seem to impose a behaviour in disagreement with the climate and morphology of

the location.

Figure 3.4.7: 100 year conditional return levels (left) and omnidirectional (right)
return levels with 95% empirical confidence intervals, computed from models (1)
and (2) fitted in Section 3.4.1. The dashed line identifies the maximum observation
recorded in the 50 years of data, namely 6.915 m.

This “balancing out” ultimately leads to lower overall return levels, as the high-

est exceedances, occurring in the first sector, are underestimated. As mentioned

before, this may be due to the rigidity of the covariate function for the model pa-

rameters, with the Fourier series model possibly failing to capture its complexity.
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Threshold choice and model sensitivity

The choice of threshold is a potential source of controversy, with no clean-cut rule

to select a value so that we are far enough in the tail to ensure the limiting theory is

a reasonable approximation. It is then interesting to consider the effect that such a

choice has on model estimates and, hence, extrapolation. The next sections focus

on comparing results from a few selected constant thresholds illustrated in Figure

3.4.8, as well as provide an preliminary attempt to consider a covariate-dependent

threshold.

Multiple thresholds compared A theoretical advantage of the Poisson point

process model is threshold stability. That is, provided that we are considering

extreme enough observations, any subset of those obtained from a higher choice

of threshold should be described by the same distribution, i.e. the location, scale

and shape parameters will remain consistent.

Figure 3.4.8: Overview of empirical quantiles of the original dataset, to be used as
threshold values.

It is then interesting to see whether, indeed, that is the case, and similarly consider
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what effect the same choice of thresholds has when fitting the GPD model. We fit

PP MODEL GPD MODEL
No.Exc Scale σ Shape ξ Shape ξ

q0.8 559 0.587 (0.54,0.65) -0.146 (-0.19,-0.1) -0.154 (-0.21,-0.06)
q0.85 418 0.607 (0.57,0.66) -0.19 (-0.23,-0.13) -0.207 (-0.29,-0.1)
q0.9 280 0.629 (0.58,0.69) -0.207 (-0.26,-0.14) -0.225 (-0.29,-0.14)

q0.925 210 0.631 (0.58,0.71) -0.197 (-0.25.-0.12) -0.212 (-0.25,-0.19)

Table 3.4.1: Estimates for constant parameters for both GPD model (1) and PP
model (2), together with profile likelihood confidence intervals.

models (1) and (2) for a series of threshold values corresponding to the empirical

quantiles shown in Figure 3.4.8. As shown in Table 3.4.1, constant parameters

have estimates similarly consistent across threshold values for both models. The

same stands for the covariate-dependent parameters shown in Figure 3.4.9, al-

though we notice more variation for the estimates of the PP location parameter.

Both models show similar uncertainty in the land-shadow sector, given the lack

of information available. It is necessary to notice, nevertheless, that part of the

covariate behaviour is captured, for the GPD model, by the exceedance probabil-

ity (see Figure 3.4.4). This shows consistency across different thresholds, while

an increased ability to detect the local behaviour in sector 3 appears for lower

threshold values.

Figure 3.4.9: Covariate-dependent parameter estimates from a repeated
simulation-fitting routine, using empirical quantiles of the original dataset as
thresholds, for both GPD model (1) and PP model (2)
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Then, we want to focus on shape estimates as a source of comparison, since location

and scale parameters are not easily comparable for covariate-dependent GPD and

PP model fits, but both approaches should lead to consistent shape estimates, if the

shape is taken to be constant, as in our case. In order to do so, for both models we

obtain profile likelihood confidence intervals for the parameter estimates, as shown

in Table 3.4.1. Furthermore, we consider the overall result of parameter estimates

for the GPD model by estimating return values given a range of thresholds. In

this case, we produce 100 sets of N = 100 years worth of data, in order to also

compute bootstrap confidence intervals.

Figure 3.4.10: Marginal GPD (right) and PP (left) return values from fitting
model (1) and (2) respectively with empirical quantiles of the original dataset as
thresholds, with 95% empirical confidence intervals.

Both return values in Figure 3.4.10 and parameter estimates in Table 3.4.1 seem

to be consistent amongst different thresholds. Shape estimates, in particular, seem

to follow a similar pattern for changing thresholds under both models. In other

words, the NHPP model does not stand out as superior in terms of threshold

stability. It may nevertheless be worth noticing that the GPD estimates seem to

have wider confidence intervals, especially for higher quantile choices with fewer

observations selected.
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Non-stationary threshold We have noticed the potential consequences of choos-

ing a fixed threshold during the previous stages of our simulation study. In partic-

ular, this may be one of the reasons for a levelling of the predicted behaviour over

the covariate space, with overestimation of the behaviour in the third directional

sector, and underestimation of the wave heights in the first one.

It may also be the case that a constant threshold fails in selecting appropriately

extreme observations, in other words, the threshold should be large enough that,

for any given covariate value, we are far enough in the tail to model the exceedance

magnitudes with a GPD. However, a threshold that is sufficiently large for one

covariate value may be too low for another one. Furthermore, from a statistical

point of view, the estimation of a covariate effect would be more precise if the

exceedances considered are spread as far across the observed values of the covariate

as possible. A constant threshold, instead, will likely reduce the range of covariates

that lead to exceedances.

Hence, we consider using a covariate-dependent threshold in an attempt to improve

the model. In this case, we decide to follow the approach introduced by Northrop

and Jonathan (2011), who promote the use of quantile regression to set a threshold

for which the probability p of threshold exceedance, chosen as p = 0.9 in our case,

is approximately constant across different values of the covariate(s), namely wave

direction.

Some care should be taken in the computation of threshold values. In particular,

we used spline models to perform the quantile regression. These require a choice

of the number of knots, which essentially determines how many curves are used to
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perform the fit and how smooth the final result will be. Figure 3.4.11 shows, on

the left, the 90% quantile threshold selected for a few choices of number of knots.

Also shown in Figure 3.4.11 are the different data points selected by (a) a constant

threshold, taken as the 90% empirical quantile, and (b) a covariate-dependent

threshold, corresponding to 90% quantile regression values obtained using spline

fitting with k=36 knots (see Section 2.3.4 for further details on spline formulation).

Figure 3.4.11: Values of 90% quantile regression over wave direction using different
number of spline knots (left). Exceedances selected only using a constant 90%
quantile threshold (blue), only from a non-homogenous 90% quantile regressed
threshold with k = 36 knots (red), and from both thresholds (purple).

We then proceed to fit both stationary and covariate-dependent models, as sum-

marised in Section 3.4.1.
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Figure 3.4.12: QQ plot diagnostics for fitting GPD model (1) and PP model
(2) with a non-homogenous 90% quantile threshold regressed over wave direction
observations (left). 100 year conditional return values compared for GPD and PP
models for constant (90% quantile) and non-homogeneous thresholds (right).

The PP model does not provide an adequate fit. It is likely that the use of a

covariate-dependent threshold has further complicated the likelihood surface, as

well as the selection of starting values, which rely on the L-moments method. The

return value plot shows a slight improvement compared to the constant threshold

case.

The GPD model seems to lead to a more desirable fit. If we consider conditional

return values in Figure 3.4.12, we see that the model seems to be doing slightly

better than for a constant threshold for GPD fits, although the covariate-dependent

behaviour is still not fully captured. As for constant threshold, we notice there is

a risk for underestimation of the return values in the sector 1, which is especially

evident for in the PP fit.

It is worth considering the parameter estimate and confidence intervals. Table

3.4.2 provides an overview for the constant parameters estimates, which seem

fairly stable across different threshold values. Note that the positive estimate for

the GPD shape shown in Table 3.4.2, and obtained using a covariate-dependent
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PP MODEL GPD MODEL
No.Exc Scale σ Shape ξ Shape ξ

q0.8 578 0.589 (0.46,0.62) -0.011 (-0.13,0.1) -0.062(-0.15,-0.04)
q0.85 420 0.542 (0.5,0.64) -0.085 (-0.15,0.01) -0.113 (-0.2,-0.01)
q0.9 273 0.547 (0.49,0.63) -0.087 (-0.16,0.02) -0.084 (-0.2,0.09)

q0.925 221 0.532 (0.46,0.62) -0.031 (-0.13,0.1) 0.232 (0.12,0.4)

Table 3.4.2: Estimates of constant parameters for both GPD model (1) and PP
model (2), when fitting is performed using a range of covariate-dependent threshold
obtained via quantile regression. Profile likelihood confidence intervals are shown
in brackets.

threshold, should not be considered a contradiction to the previous estimates. In

fact, by using a covariate-dependent threshold, we have selected observations which

will have a slightly different distribution than before. As Figure 3.4.13 shows, the

distribution of threshold excesses exhibits, given a covariate-dependent threshold,

a shorter and heavier tail.

Figure 3.4.13: Overview of threshold excesses for the original South China Sea
wave heights, using a constant 90% quantile threshold (left) and non-homogenous
90% quantile threshold regressed over wave direction observations (right).

We can also consider covariate-dependent parameters in Figure 3.4.14. Again,

they seem to be consistent across thresholds, although it is interesting to notice

the spread of values has reduced in both cases. This shows the choice of a covariate-

dependent threshold has succeeded in capturing part of the covariate-dependence.
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Figure 3.4.14: Covariate-dependent parameter estimates from a repeated
simulation-fitting routine, using quantile regression on the original dataset to ob-
tain thresholds, for both GPD model (1) and PP model (2).

As a result, the covariate-response dependence has been reduced for the resulting

sample of exceedances. In this case, we could not provide empirical confidence

intervals, as a repeated simulation-fitting procedure is complicated by the use of

non-stationary thresholds. In fact, especially in order to use 80% quantile regressed

threshold values, we would need to first use a constant, lower threshold, which may

not lead to informative results given the mean residual life plot in Figure 3.4.1.

3.5 Discussion and further work

We have considered two different approaches to modelling threshold exceedances,

the generalised Pareto and the non-homogeneous Poisson point process model, and

compared them on simulated and hindcast data in Section 3.3 and 3.4 respectively.

We found that neither of the models proves to be consistently superior to the other.

Each has its own advantages and limitations, with both models presenting a more

complicated likelihood space when covariates are introduced, and hence a higher

risk of convergence to a local optima for maximum likelihood parameter estima-
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tion. While results from both simulations studies show wider confidence intervals

for GPD parameter estimates, the extrapolation results from both models seem to

be mostly in agreement, in terms of average behaviour as well as uncertainty. Con-

ditional return levels from both studies show the importance of providing a model

formulation that can capture the covariate-response relationship appropriately.

The NHPP process is often praised because the parameters are threshold invariant.

Nevertheless, although the final results from both models are mostly in agreement,

the PP approach incurs a series of additional issues. It has proved to be more unsta-

ble and sensitive to starting values in the numerical optimisation of the likelihood.

This is likely due to the dependence between model parameters, while both the

scale and shape are orthogonal to the exceedance rate for the GPD. Furthermore,

as discussed in Section 3.1.2, we need to know the distribution of covariates in order

to use the NHPP model. We saw that this can be estimated using a closed form or

non-parametric methods, with both approaches adding additional uncertainty to

the model. Further computational error is also introduced by the use of numerical

methods, which need to be employed to estimate the process integrated intensity,

for which no close form exists in the non-homogeneous framework. All of these

additional issues for the NHPP approach have also an effect on computational

cost, both during the model fitting and the inference stage.

The orthogonality of model parameters and relative simplicity in implementation

of the GPD approach appear to be strong advantages, despite the dependence

of the model on the threshold selected. It is especially worth noticing that, in

this case, no assumption is needed, at the fitting stage, about the distribution of

covariates considered. On the other hand, estimates for NHPP model parameters
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showed to have smaller confidence intervals in both Section 3.3 and 3.4, although

the approach seemed to eventually yield potential underestimates of the return

levels in Section 3.4.

For both approaches, potential improvement could be achieved using a more flexi-

ble formulation to model the link between parameters and covariates. In particular,

the use of higher order Fourier series or semi-parametric models, such as splines,

may better represent this relationship, although both would require the use of pe-

nalised likelihood methods. We consider these and more extensions in Chapters

4 and 5. It would be worth considering the effect of such a parameterisation on

model fitting and inference, as a higher number of parameters would need to be

estimated. For both models, this would likely complicate the likelihood space, so

that there would be a higher probability to converge to local optima. This may be

particularly detrimental for the PP model, the use of which may be discouraged

by the sensitivity to initial parameter solutions and the additional computational

cost.
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Chapter 4

One-dimensional covariate

modelling

4.1 Introduction

Metocean and coastal engineers are often interested in the estimation of design

conditions for offshore facilities. It is a primary concern to understand the ex-

treme conditions marine structures are likely to experience in their lifetime, in

order to prevent structural damage, and hence losses in revenue, environmental

pollution and staff endangerment. This generally involves estimating the extreme

behaviour of meteorological and oceanographic variables that capture the various

environmental loading quantities, that is topographic or weather conditions, such

as waves, winds and currents, that contribute to the maximum load that a struc-

ture can withstand. Of primary interest for these variables is the estimation of

return values corresponding to long return periods. Since data are only available
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for several decades, this requires extrapolation. Extreme value analysis provides

an ideal framework for this type of inference.

Statistical methods for modelling extremes of stationary univariate sequences have

been thoroughly investigated in the literature. As we have seen in Chapter 2, there

are two main modelling strategies: the block maxima and the peaks over threshold

(POT) approaches (Davison and Smith, 1990; Coles, 2001; Beirlant et al., 2004).

In this work, we focus on the latter: observations exceeding a high threshold

are modelled by an asymptotically motivated statistical model for the tail of the

underlying probability distribution. This model is based on the generalised Pareto

distribution, as described in Section 4.2.1, and, in the case of stationary data, it has

two main components, with a total of three parameters: the first component is a

Poisson model that captures the rate at which the threshold is exceeded, and then

a generalised Pareto distribution (GPD) with two further parameters describes the

distribution of the sizes of the threshold exceedances.

In many cases, however, an analysis of the extremes of a series is required where

there is clear non-stationarity in the series. This is especially common for envi-

ronmental datasets where the response variable is affected by a variety of climate

processes, with different fluctuating behaviours. The focus of this chapter will be

on extreme wave heights. Due to the physical process by which they are generated,

wave heights generally have a strong seasonal pattern, with an annual periodic-

ity, as well as, decadal or semi-decadal cycles generated by climate phenomena,

such as the climate variations captured by the ISO and ENSO indices. For a

specific location, we can also detect variability with respect to wave direction;

for example, wind is typically stronger from some directions than others, and,
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together with fetch and water depth, can strongly influence the resulting magni-

tude of the waves. Furthermore, a more exposed location will be associated with

longer fetches, resulting in a more extreme wave climate. These factors are di-

rectly relevant from a design perspective, and it is common for mandated criteria

to account for these physical considerations by stipulating directional requirement.

Metocean engineers are then often required to specify return values for wave or

wind directional sectors, where these directional return value estimates must be

consistent with the estimated omnidirectional return values. Numerous authors

have demonstrated the importance of incorporating these physical features and the

resulting underperformance of models which ignore directional effects. Amongst

others, Jonathan and Ewans (2011) examine this issue through the use of a series

of case studies, while Coles and Walshaw (1994) and Robinson and Tawn (1997)

focus, respectively, on directional modelling of extreme wind speeds and extreme

sea currents.

In this chapter, we investigate different modelling approaches for wave heights ex-

hibiting non-stationarity, such as the one shown in Figure 4.1.1, which is obtained

from hindcast datasets introduced in Chapter 1.
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Figure 4.1.1: Storm peak significant wave heigh Hs hindcast (in meters) for a lo-
cation in the North Sea, with corresponding wave direction (in degrees, with 0
corresponding to waves approaching from the north, and degrees increasing clock-
wise).

In cases with clear variation in wave height depending on covariates, it is essential

to have a statistical model that can appropriately capture the non-stationarity

in the series. Models which incorporate an understanding of underlying physical

process are more likely to yield reliable return level and uncertainty estimates.

This is particularly important in extreme value analysis due to the long-term ex-

trapolation needed and the limited size of datasets. It might also be necessary to

estimate return levels for specific covariates, such as directional sector, which can

only be reliably estimated from a non-stationary model.

Different regression-based models exist to capture non-stationarity by considering

some observed covariates available with the data. In a similar way to generalised

linear models, the standard approach is to build a model where one or more of the

parameters of the statistical distribution considered are described as a function of

the covariates (Smith, 1989). These functions can take different forms; amongst

the parametric approaches, Davison and Smith (1990) introduce the simplest for-
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mulation, where a linear model describes the generalised Pareto (GP) distribution

parameters as functions of covariates, with a log-link function to ensure positivity

of the scale parameter. Other parametric models, such as the Fourier parameteri-

sation, have also been used in the presence of one or more periodic covariates, see

for example Coles and Walshaw (1994) who model extreme wind speeds.

There are some definite advantages to parametric models: they are easy to fit, given

the low number of unknown model parameters, and it is relatively straightforward

to use them for return level prediction. Nonetheless, there are also considerable

limitations. First of all, the choice of an appropriate functional form to capture

the covariate-dependence of a parameter is often not simple and open for debate.

Furthermore, these models might not manage to fully capture more “local” be-

haviour and over-simplify the relationship between the covariate and the response:

a parametric formulation is often smoother than what would be considered rea-

sonable from a visual inspection of the data, and its lack of local flexibility might

provide poorly-fitting models even when large numbers of parameters are used.

One alternative is to use a local likelihood technique, as presented by both Davison

and Ramesh (2000) and Hall and Tajvidi (2000), while Chavez-Demoulin (1999)

and Pauli and Coles (2001) propose penalised semi-parametric formulations for

the POT and the block maxima approach respectively. Another alternative is to

use semi-parametric and non-parametric techniques to model the parameters as

smooth functions of the covariates, potentially capturing local features better than

parametric models. The seminal work by Chavez-Demoulin and Davison (2005)

focuses on the use of spline smoothers to parametrise the relationship between

the covariate and model parameters, while Yee and Stephenson (2007) propose
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vector generalized additive models (VGAM) models. Bottolo et al. (2003) propose

a different non-parametric formulation for NHPP model parameters, capturing

the effect of a categorical covariate through mixture model representation. The

reader is referred to Chavez-Demoulin and Davison (2012) for a general review of

non-stationary methods for extremes.

Penalised splines (P-splines) (Chavez-Demoulin and Davison, 2005) are particu-

larly interesting as they can allow a more flexible representation of the distribution

parameter with respect to the covariate, when compared to fully parametric mod-

els. Jones et al. (2016) compare different parametrizations for the functional form

of a model parameter for extreme value analysis of non-stationary series, follow-

ing the approach we described in Sections 2.1.3 and 2.3. They find the P-spline

description to be at least as good as the Fourier series and Gaussian process for-

mulations (Rasmussen and Williams, 2006). Each of these models has their own

drawbacks, mainly in relation to computational efficiency and ability to obtain an

appropriate level of smoothness. The objective of our work is to develop a flexible

and parsimonious model capable of extending efficiently to instances with multi-

ple covariates. In particular, the model should be capable of fully incorporating

the covariate information with similar local properties and flexibility to the spline

formulations, while also avoiding overfitting. On the other hand, it should have

limited computational costs comparable to simpler and parametric approaches.

A major consideration in the development of our methodology is ease-of-use and

computational efficiency for full-scale oceanographic applications, which may in-

clude data from multiple locations on a grid as well as the inclusion of more than

just one covariate.
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In this chapter, we introduce some novel methodology and new developments of

existing methods with respect to covariate parameterisation and inference. In Sec-

tion 4.2.2 we introduce Bayesian adaptive regression splines (BARS) and propose

a new approach for obtaining updated coefficients. Furthermore, while BARS

were introduced two decades ago, we are not aware of any other work in extreme

value analysis which makes use of this approach. Similarly, in Section 4.2.2, we

propose using radial basis functions to represent model parameters. Inference is

then performed using reversible jump MCMC (RJ-MCMC): while this approach is

based on the work of Green (1995) and Richardson and Green (1997), a series of

innovations were required for the model and application considered, as detailed in

Section 4.3.3. Finally, to our knowledge, the work by Boldi and Davison (2007),

El Adlouni and Ouarda (2009) and Ouarda and El-Adlouni (2011) are the only

implementations of reversible jump methodology in the extreme value analysis lit-

erature, as further detailed in Section 4.3.3. Our approach differs from all of these

papers, as we use RJ-MCMC for the first time to estimate generalised Pareto

distribution parameters as functions of a continuous covariate.

The outline of the chapter is as follows. Section 4.2 outlines the different model

parameterisations, while in Section 2.2 we present the inference schemes used.

Section 4.4 introduces the case studies used, which are selected from the paper

by Jones et al. (2016). We briefly describe underlying model forms used to gen-

erate samples for inference, outline the procedure for estimation of return value

distributions and their comparison, and present results of those comparisons. In

Section 4.5, we apply the methodology tested to the hindcast data from the north-

ern North Sea shown in Figure 4.1.1. Finally, Section 4.6 provides a discussion of
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results, and conclusions of the study. The appendix describes key elements of the

inference schemes in more detail.

4.2 Estimating non-stationary extremes

4.2.1 Extreme value model

Suppose we are interested in a process {Yt} with corresponding covariate {Xt}.

For example, the response variable may be significant wave height, with wave

direction as the covariate. In Section 2.1.3 we reviewed the approach proposed

by Smith (1989) and Davison and Smith (1990) to account for non-stationarity

in the generalised Pareto distribution. This corresponds to formulating the GPD

parameters as functions of the covariate of interest. We also follow the approach

by Chavez-Demoulin and Davison (2005), previously introduced in Chapter 4, and

re-parametrise the GPD parameters (ψ, ξ) as the asymptotically independent pair

(ν, ξ), where ν = ψ(1 + ξ). Note that we will be using this re-parameterisation for

estimation purposes only. The results and analysis are presented in terms of ξ and

ψ, following standard practice in the literature.

As for the stationary case, we need to also model the rate of exceedance. It is

necessary to carefully reconsider how to capture this, since the process now has a

covariate that changes over time. A way to model this dependence on the covariate

is by dividing the covariate domain into kb small subsets, for example through the

process known as “binning”. Then, we can define Nu
i as the number of threshold

exceedances Yt|Yt > u,Xt ∈ Bi, where Bi is the ith bin, and we can describe it
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as Nu
i ∼ Poiss (φ (xt) ) for i = 1, . . . , kb. Note that it is advisable to consider the

model parameters to be modelled as covariate-dependent in order of decreasing ease

of computation. That is, the shape parameter is known to be harder to estimate

than the scale and rate, as we discussed in Chapter 2, and in the literature this is

often modelled as constant. In this chapter, we allow the Poisson parameter and

both the GPD parameters to vary with respect to the covariate.

As mentioned in Section 2.1, threshold selection is also essential to reliable esti-

mates, and Northrop and Jonathan (2011) argue that one should start to account

for non-stationarity by including covariates in the threshold formulation itself.

This concept has been previously explored, at least to some extent, by setting up

different thresholds for specific subsets of the data (see Smith, 1989 and Coles,

2001), or modelling the threshold with the use of trigonometric functions (Coles

et al., 1994). Northrop and Jonathan (2011) propose a quantile regression model

to estimate a covariate-dependent threshold, and show how to parameterise the

full GPD model in order for it to be compatible with this formulation. While for

the case studies in Section 4.4 the threshold is known and constant, we will be

following the covariate-dependent threshold approach for Section 4.5.

4.2.2 Covariate parameterisation

Assume that we want to parameterise the GPD model parameters depending on

a covariate, as presented in Sections 2.1.3 and 2.3. For generality, we use θ (x)

to denote any one of the model parameters as a function of the covariate x, in

order to represent different models in later sections. We can then use a basis
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representation to model θ (x) as shown in Eq. 2.3.2, such that θ (x) = Bθ (x)βθ,

for some generic row vector of basis functions Bθ (x) with p components and a

vector of coefficients βθ ∈ Rp.

In our case, we parametrise φ (x ), ξ (x ) and ν (x ) as linear combinations of un-

known parameters βφ , βξ and βν respectively and some row vectors of basis

functions Bφ (x) , Bν (x) and Bξ (x) are evaluated at x. Note that we can use

this notation even if we want to model the shape parameter as constant, in which

case the basis matrix is reduced to a scalar basis function which is constant across

all of the covariate values, e.g. Bξ(x) = 1. We consider three different forms of

basis function in this chapter, corresponding to an evenly-spaced P-spline (Chavez-

Demoulin and Davison, 2005; Brezger and Lang, 2006; Eilers and Marx, 2010), an

unevenly-spaced P-spline (Denison et al., 1998b; DiMatteo et al., 2001; Eilers and

Marx, 2010; Sriram et al., 2015), and a novel radial basis function (RBF) param-

eterisation. Further details and an overview of each formulation are presented

below.

Splines

In Section 2.3.4, we introduced regression splines. Under this model, the vector of

basis functions for each model parameter is made up of p B-spline functions. For

this work, we use cubic splines, and the first-order smoothness penalty expressed

in Eq. 2.3.4. We use de Boor’s algorithm to construct splines with both evenly and

unevenly spaced knots, and we consider both the case where the number of spline

components p is fixed and where it changes, in which case we follow a method

called Bayesian Adaptive Regression Splines (BARS), introduced by DiMatteo
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et al. (2001).

Recall that the design matrix B is composed by basis spline functions bθ,j, j =

1, 2, ..., p, such that B = (b′(x1) b′(x2) ... b′(xnI )) for some indexed set of nI

covariate values x1, x2, . . . xnI ∈ R. A fundamental property of spline functions is

that they have compact support, that is, they are zero outside of a small specific

interval. This provides computationally efficient and stable inference, since for a

given design matrix B, the corresponding precision matrix B′B is band diagonal,

which reduces the computational costs of inverting this matrix during a MALA

or mMALA MH step, as illustrated in Section 2.2.3. The computational efficiency

and stability of spline inference is in marked contrast with fully parametric models

that do not have compact support.

Bayesian adaptive radial basis functions

We now consider an adaptation of the radial basis function formulation introduced

in Section 2.3.5, where we propose using fewer components and allow the location

and scale of each RBF to change as part of the inference procedure. In fact, a

linear combination of radial basis functions provides an alternative to the spline

description for the model parameters, with the potential of requiring fewer com-

ponents to achieve a similar inference performance. In particular, we can model

the bases for φ (x ), ξ (x ) and ν (x ) as vectors of p kernels. Then we can represent

the parameter θ (x) as the linear combination of these kernel, such that

Bj(x) = f

(
x − m̃j

s̃j

)
, j = 1, . . . , p,

121



CHAPTER 4. ONE-DIMENSIONAL COVARIATES

where, in our case, f denotes the density function for the Normal distribution

with location m̃j ∈ R and standard deviation s̃j > 0 for all j. Under this model,

we need to estimate the coefficient βj, location m̃j and standard deviation s̃j

for each of the p density components. Note that we also introduce a baseline

factor, corresponding to a free, standing coefficient β0, which aims to capture the

average behaviour of interest, with the different RBF components detecting the

local variation.

The number of these components may differ considerably between the P-spline

and the RBF model. For the former, the standard approach consists of using a

high number of components, and controlling the parameter smoothness with the

use of a penalty, as presented in Section 2.3.4. For the proposed RBF model, it

is the number of components that helps control the smoothness of the fit, so we

expect a much lower value for p. This is indeed one of the potential advantages of

this model, as it has the potential to improve computational efficiency, especially

when considering possible extensions to multidimensional covariates, as discussed

in Section 4.6.

In the same manner as for splines, we use this formulation to represent the co-

variate dependence in the Poisson-GPD model, and we use Bayesian inference to

perform model fitting. We call this model Bayesian adaptive radial basis functions

(BARBaR), and we assume that the number of RBF components, as well as the

RBF model parameters, such as their location and variance, are unknown. In par-

ticular, we do not fix the number of basis components in advance, and instead we

estimate this as part of the inference procedure. By allowing movement between

models with different numbers of basis functions, we hope to better control the
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smoothness of the overall fit and produce a more parsimonious model. Inference

is carried out using the reversible jump (RJ) algorithm, as detailed in Section 4.4.

We also consider the simpler case where the number of RBF components is fixed,

which we denote as BARBaR-f.

4.3 Inference procedures

As mentioned in Section 2.2, Bayesian methods are used in the inference process

for the estimation of the unknown parameters. For the proposed extreme value

model, it is not possible to express the posteriors of interest in a simple closed form,

hence MCMC methods are used to sample the desired posterior distribution. In

Section 4.3.1 we illustrate the structure of our Bayesian model and we discuss

the prior and posterior structures for different parameterisation approaches. In

Section 4.3.2 we provide an overview of the MCMC techniques used for inference

in the case of problems with a fixed number of components. Then, in Section

4.3.3, we focus on the case where the number of components is also an unknown,

and in particular we introduce a sampling approach based on reversible jump (RJ)

MCMC.

4.3.1 Bayesian model

Following the approaches and notation from Section 4.2.2, model fitting corre-

sponds to estimating, for each of the distribution parameters, the unknown param-

eters Ωθ = {βθ, ρθ} and Ωθ = {βθ,mθ, sθ, γθ} for the P-spline and the BARBaR
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models respectively. Here γθ is an additional hyperparameter for the variances of

the kernels sθ, following a recommendation by Richardson and Green (1997) to

obtain a higher degree of non-informativeness.

In order to fit the models described in Section 4.2.2, we need the joint posterior

distribution for the Poisson-GPD model parameters. We can express this in terms

of the relevant conditional posterior distributions. For all the above models, we

let Nu
i be the number of threshold exceedances Yt|Yt > u,Xt ∈ Bi, where Bi is the

ith bin and Nu
i ∼ Poiss (φ (xt) ) for i = 1, . . . , kb. The threshold exceedances are

Yi|Yi > u,X = x ∼ GP (ψ (x) , ξ (x) ) ,

where the GPD parameters ψ (x) , ξ (x) vary continuously as functions of the co-

variate x. We use the notation θ (x) to refer, more generally, to the Poisson rate,

GPD scale and shape, as each will have the same basis model structure from Eq.

2.3.2. Then for the P-spline, with model parameter defined as in Section 4.2.2, we

have

βθ|ρθ ≈ ρ
1/2
θ exp

(
−ρθ

2
βθ

TQθβθ

)
, (4.3.1)

ρθ ∼ Gamma(10−3, 10−3),

This is the Bayesian approach to penalised splines, where the coefficients have a

prior density proportional to the improper Gaussian density in Eq. 4.3.1, where

the density is improper as Qθ is rank deficient. Here, the term −ρθ
2
βθ

TQθβθ

can be seen as the roughness penalty in Eq. 2.3.4 with a precision parameter ρθ

controlling the smoothness and a precision matrix Qθ defined as in Eq. 2.3.5. The

precision parameter ρθ is given an uninformative Gamma prior distribution, which
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is conjugate with the prior Gaussian distribution for βθ.

For the BARBaR formulation defined in Section 4.2.2, for each component

j = 1, . . . , k, we suggest the following prior distributions:

βθ,j ∼ N(0, R)

mθ,j ∼ Uniform(dl, dr),

s2
θ,j|γθ ∼ Gamma(a, γθ)

γθ ∼ Gamma(g, h). (4.3.2)

Here, [dl, dr] denotes the range of the domain of the covariate, R denotes the range

of the observations Yt, the coefficients βθ,j are mutually independent of each other

and of the other parameters, and γθ is common across the different kernel compo-

nents. It is worth noticing from Eq. 4.3.2 that, while it seems natural that the

range of the data would be informative about the location of the kernels, this is not

the case for their widths, so we introduce an additional hierarchical level, which

controls the degree of similarity between the kernel widths, without being informa-

tive about their absolute size. This yields better mixing of the chain (Richardson

and Green, 1997). Note that, in the case of the kernel widths estimation, we can

exploit the gamma-gamma conjugacy.

Full Bayesian inference approach

We can then illustrate the full inference framework as follows. Let us consider

some sequence of i.i.d. random variables Yt, Yt ∼ f(θ1(xt), . . . , θnp(xt)), which are

dependent on some covariate Xt and are modelled by the density f(·) described
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by np density model parameters (e.g. Poisson rate, and GPD scale and shape).

The full Bayesian inference approach is presented in Algorithm 2 for all the mod-

els considered, and Sections 4.3.2 and 4.3.3 provide more details on the specific

inference methods used.
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Algorithm 2 Full Bayesian inference approach

Initialize:

The vector of unknowns Θ as some suitable value Θ0

for iter= 1, . . . , max iterations do

for l = 1, . . . , np do . Loop over model parameters of θl(xt)

Standard MCMC steps for all models . See Section 4.3.2

. Update the basis parameters

if Spline basis model then

Generate a joint mMALA proposal for all the coefficients βθl ;

else if BARBaR model then

Generate a joint mMALA proposal for all the basis parameters, e.g. the

coefficients βθl , locations mθl and variances sθl (see Appendix 4.A);

end if

Calculate the acceptance probability

Accept or reject the proposal;

. Update the basis hyper-parameters

if Spline basis models then

Gibbs sample the hyperparameter ρθ for the coefficients;

else if BARBaR models with Gaussian kernels then

Gibbs sample the hyperparameter γθ for the kernel variances;

end if

Reversible jump moves for dimension-changing models . See Section 4.3.3

Given the current number of basis components k

if BARS model then

Randomly select a between-model move (1)-(4) or a within-model step;

Propose a new basis

else if BARBaR model then

Randomly select a between-model move (1)-(4);

end if

Propose a new basis

Calculate the acceptance probability

Accept or reject the proposal;

end for

end for
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4.3.2 Standard MCMC inference algorithms

Estimates for all the unknown parameters are obtained using a Metropolis-within-

Gibbs MCMC algorithm (e.g. Gamerman and Lopes, 2006). At each iteration of

the MCMC, each of the parameters is sampled in turn conditionally on the values

of others. The full conditional posterior distribution of the precision parameter

ρθ in the spline model, and of the shape γθ for the kernel widths in the BARBaR

models, is Gamma by conjugacy, and is sampled exactly in a Gibbs step. A general

Metropolis-Hastings (MH) scheme is, instead, used to estimate the coefficients βθ

for all models, since full conditional distributions are not available in closed form

for the posterior of these parameters. The sampling is performed according to the

approach presented in Section 2.2.2 and following Algorithm 1. Note that we focus

on the other basis parameters of the BARBaR models later in Section 4.3.2.

A simple random walk MH update yields limited results in this case for all models:

we found it to be inefficient, as mixing was much slower than the more advanced

algorithms presented in Section 2.2.3. This is not surprising for a problematic

function such as the GPD likelihood, for which the negative log likelihood is likely

to be pitted with local minima. As reviewed in Section 2.2.3, gradient based

methods such as the Riemann manifold Metropolis-adjusted Langevin algorithm

(mMALA), have been demonstrated to improve mixing and yield faster conver-

gence. These exploit gradient and curvature information of the log-posterior at

the current state to improve the quality of proposals.

Hence, we decide to use the simplified mMALA algorithm of Girolami and Calder-

head (2011) and Xifara et al. (2014) to estimate the coefficients. This accounts
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for the local curvature of the likelihood surface with proposals that are partly de-

terministic and partly stochastic. For sampling, we follow the approach in Section

2.2.3. Furthermore, for stability and computational reasons, we use the expected

rather than the observed information from the log-posterior (see Appendix 4.C

for further details). It is worth recalling that, while the mMALA scheme is ex-

pected to explore the posterior with considerably higher efficiency than a RWM

algorithm, it requires knowledge of likelihood derivatives, leading to an additional

computational cost. We refer the reader to Appendix 4.C for further details on

the necessary derivatives for the models presented here.

Further adaptations required for the BARBaR model

In the most general BARBaR model, we do not just need to estimate the coefficient

for each component density. Instead, we also need to estimate some additional

model parameters (e.g. location and variance in the case of Gaussian kernels).

While we initially used RWM, and tried updating jointly (i) all kernel parameters

for each single component (i.e. jointly βθ,j,mθ,j, sθ for j = 1, . . . , k), (ii) the same

kernel parameter type across different components (e.g. first βθ, then mθ, then

sθ) and (iii) each element of βθ, mθ and sθ individually. Overall, while it might

be possible to use a random walk Metropolis algorithm, we found all the above

options showed slow convergence and required careful fine-tuning of the stepsize

for the different model parameters, with fitting performance also very sensitive

to the initial values. For a fixed number of kernel components, adaptive MCMC

methods (Roberts et al., 2001) can be used with some success, as evident from

some limited testing we performed. Nevertheless, once reversible jump methods
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are involved, we found that mixing noticeably deteriorated.

Hence, as discussed earlier for the spline models, we investigated the option of ex-

ploiting gradient information to improve the convergence and mixing of the chains.

Recall from Section 2.2.3 that the mMALA algorithm can use the second order

derivative of the posterior to automatically adapt the stepsize for the update. This

property holds even in the dimension-changing case, as this stepsize adaptation

is valid regardless of the number of component densities in the formulation. This

should remove the need for further pre-determined adaptation when jumping to

a domain of different size, and yield better convergence. Hence, we decide to im-

plement an mMALA approach to estimate the density components in both the

BARBaR and BARBaR-f models. This sampling method improves the observed

slow convergence of RWM for the fixed-dimensional BARBaR-f, and considerably

aids parameter estimation for the more general BARBaR model. This approach

is possible because of the closed form formulation of each kernel component, and

we refer the reader to Appendix 4.A for more details and a specific example using

Gaussian kernels.

4.3.3 Moving between dimensions

In some situations, it might be the case that the number of unknown parameters

in a statistical problem is, itself, unknown. “Trans-dimensional” problems can be

formulated as the joint inference of a parameter vector θk and the dimension k

of this parameter, which is allowed to change and produce a corresponding set of

models Mk. Reversible jump Markov chain Monte Carlo (RJ MCMC, Green 1995)
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is a method for simulating from a Markov chain to obtain a posterior distribution

in cases like these, where the state and its space do not have a fixed dimension. In

Section 2.2.4 we introduced the main notation and theory for this method, while

here we review specifically the adaptations used to perform fitting in Sections 4.4

and 4.5.

Reversible jump MCMC inference

As mentioned in Section 2.2.4, the reversible jump algorithm (Green, 1995) is a fur-

ther extension of the Metropolis-algorithm, designed to allow movement between

different dimensional spaces. Of particular interest, among many others, are the

papers by Richardson and Green (1997), Dellaportas and Forster (1999) and Deni-

son et al. (1998b), who applied the reversible jump sampler to mixture models,

variable selection, and curve fitting respectively. We also explore the extensions of

the RJ MCMC algorithm to spline models specifically. Seminal literature for these

methods, known as Bayesian adaptive regression splines (BARS), can be found in

Denison et al. (1998a), DiMatteo et al. (2001), and Wallstrom et al. (2008), while

Brooks (1998) review some essential issues such as output analysis and convergence

assessment.

It is worth considering some previous application of RJ MCMC methods to ex-

treme value data. We mentioned before the representation by Bottolo et al. (2003)

of NHPP model parameters as a mixture depending on some categorical covari-

ate. In this paper, the authors use RJ MCMC to fit the model, in order to find

if any of the categories have similar parameter estimates. Boldi and Davison
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(2007) propose a mixture of Dirichlet distributions to represent multivariate ex-

tremes spectral functions, and use a reversible jump scheme for inference. More

recently, El Adlouni and Ouarda (2009) and Ouarda and El-Adlouni (2011) apply

a RJ MCMC approach for covariate selection in a GEV regression model, fitted

to hydrological data.

Our works focuses on capturing covariate-dependent behaviour by representing

the parameters in an extreme value model as a linear combination of kernel func-

tions. We mentioned in Section 4.1 some commonalities with the work by Bottolo

et al. (2003), although in our work we focus on a Poisson-GPD model rather than

a NHPP one. While they also proceed to use RJ methodology, there are some

key differences both in the implementation and in the aim of their approach. In

our case, we deviate from the set-up in Richardson and Green (1997), where the

mixture model definition imposes that the weights of the components must sum

to one, and these are assigned a Dirichlet prior. On the other hand, as mentioned

in Section 4.2.2, we use a combination of kernel components in a semi-parametric

regression model, and therefore the coefficients are not constrained in size, sign or

sum. The approach in Richardson and Green (1997) also has an additional latent

allocation variable, which is introduced to facilitate the implementation of the RJ

steps by exploiting conjugacy in a Gibbs update. These key differences require

some adaptation of the approach proposed by Richardson and Green (1997). Fur-

thermore, Bottolo et al. (2003) apply the model to a categorical covariate, namely

insurance claim types, in order to detect any commonality in the NHPP loca-

tion, scale or shape parameters across the different categories. In our work we are

interested in continuous covariates, and propose the use of RJ MCMC with the
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aim of obtaining a parsimonious representation of the covariate-dependent model

parameters.

While Section 2.2.4 showed how the RJ MH algorithm works in general, we will

now focus on its implementation for the models introduced in Section 4.2.2. Recall

that, for each iteration i, we have some current state, which includes information

on the state space dimension k, such that θ(i−1) = (k,θ
(i−1)
k ) in model Mk(i−1) .

Markov chain transitions are then performed by first proposing θ∗ = (k∗,θ∗k∗)

in model Mk∗ from a proposal distribution q(θ∗|θ(i−1)). Eq. 2.2.2 shows how to

calculate the corresponding acceptance probability, which ensures the standard

MCMC detailed balance conditions are met. Within this framework, in addition

to the structure shown in Section 4.3.2, we have an additional prior for models

with varying number of basis components for both formulations. In this case,

the number of components is represented by an additional unknown kθ, which is

assumed to follow a Poisson distribution with some chosen rate ηθ > 0, such that

kθ = k|ηθ ∼ Poisson(ηθ). (4.3.3)

In this work, we consider two different pairs of jumps, also known as “between-

models” moves. Each pair consists of one move which increases the dimension of

the state space and one which reduces it. Furthermore, each move in a pair is the

exact reverse of the other one. In our work, we consider two different pairs, with

a visual example shown in Figure 4.3.1 namely:

• birth-death, which introduce and remove, respectively, a new basis compo-

nent at random;
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• split-combine, which respectively divide the effect of a basis component

into two different ones or combine two components into one capturing the

behaviour of both.

Figure 4.3.1: Intuitive representation of RJ moves, where the components shown
in red are the ones modified (split or combined), birthed or killed.

In practice, one can either consider all moves systematically (see Richardson and

Green 1997), or chose independent move types randomly with probabilities rm(θ).

In our case, we proceed with the latter option, using transition probabilities

1. rbm(θ) for the addition of a component (a birth step),

2. rdm(θ) for the deletion of a component (a death step),

3. rsm(θ) for the separation of a component into two (a split step), and

4. rcm(θ) for the merger of a two components into one (a combine step),

where rbm(θ)+rdm(θ)+rsm(θ)+rcm(θ) = 1. Sections 4.3.3 and 4.3.3 provide details on

the implementation of these moves for the BARS and BARBaR model respectively,

as well as the computation of the probability of each of the moves considered in

order to estimate the acceptance probability as shown in Eq. 2.2.6.
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Spline basis

For the spline basis model, we follow the methodology illustrated by Denison et al.

(1998a), DiMatteo et al. (2001) and Wallstrom et al. (2008), and implement one

of the jumps at each of the MCMC sweeps. In addition to the between-models

moves above, we construct the algorithm to incorporate “within-model” moves.

That is, for some iterations, a standard MH update for the spline knots locations

is chosen rather than a reversible-jump on the basis components. This additional

option allows us to consider the relocation of one of the spline basis knots, which

are fixed in standard P-spline models.

For the purpose of illustration, let us denote the current state θ(i−1) as θ, with

corresponding k basis component functions b′i(x), i = 1, . . . , k. Then, let MK

denote the model parameterised by (b′1(x) b′2(x) ... b′k(x), k) and let r∗m(k) be

the probability of move type ∗ when the model has k components. Following

the suggestion from DiMatteo et al. (2001), we set a maximum and a minimum

number of basis components, such that k ∈ [kmin, kmax]. Then, for moves to a

higher dimension we have

rbirth
m (k) = rB

m(k) =
1

2
ωmin

{
1,
p(k + 1)

p(k)

}
, (4.3.4)

rsplit
m (k) = rS

m(k) =
1

2
ωmin

{
1,
p(k + 1)

p(k)

}
,
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and for moves to a lower dimensional state, we have

rdeath
m (k) = rD

m(k) =
1

2
ωmin

{
1,
p(k − 1)

p(k)

}
, (4.3.5)

rcombine
m (k) = rC

m(k) =
1

2
ωmin

{
1,
p(k − 1)

p(k)

}
,

where the probability p(k) for any possible number of components k is given by a

prior distribution, such as that shown in Eq. 4.3.3. Since the probabilities of all the

moves need to sum to 1, then the probability of a (within model) relocation move

is just rrelocation
m (k) = rR

m(k) = 1−{rB
m(k) + rD

m(k) + rS
m(k) + rC

m(k)}. The constant

ω ∈ [0, 1
2
] controls the rate at which dimension changing moves are proposed,

where the upper end of the domain ensures that the sum of the probabilities of

the moves never exceeds 1. Note that the choice for this constant ω, as well as

for the candidate densities (and parameters) for the jump moves are arbitrary. In

this case, after limited testing of different options, we choose ω = 0.4 (Denison

et al., 1998a; DiMatteo et al., 2001; Wallstrom et al., 2008). In comparison with

the proposal by DiMatteo et al. (2001), a factor of 1
2

is added in Eq. 4.3.4 and

4.3.5 to account for the fact that two different pairs of moves are proposed, which

is equivalent to imposing ω ∈ [0, 1
4
].

In terms of candidate densities for proposed knots, Beta densities are often a con-

venient choice for the proposal moves, as they can encompass different behaviours

and have a limited domain by definition, as compared to densities such as the

normal, which might need to be truncated to be applied to a finite covariate do-

main. Nevertheless, since the support of Beta distributions is the interval [0, 1],

we normalise the covariates to this range during the fitting stage, in agreement
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with the set-up by Wallstrom et al. (2008), avoiding the need for rescaling of the

domain at each proposal. Below, we illustrate which specific candidate density is

used for each of the jumps considered.

Birth step Let the current model Mk be described by k spline knots τ1, . . . , τk.

We can then birth a new knot at random anywhere on the domain of the covariate.

That is, we draw a new knot τ ∗k+1 uniformly on the normalised covariate domain.

For consistency with the split step, we use a Beta(1, 1) distribution, such that

τ ∗k+1 ∼ hB(τ ∗k+1), where hB is the density of a Beta(1, 1) distribution. The resulting

probability for the jump is given by

q(Mk+1|Mk) = rB
m(k)

1

k
hB(τ ∗k+1).

Death step One of the existing knots is chosen at random and eliminated, with

resulting jump probability

q(Mk+1|Mk) = rD
m(k)

1

k
.

Split step The split step proceeds in a similar way to the birth one. The main

difference is that in this case, a knot can only be birthed in close proximity to an

existing one. That is, we select a knot τ̃ from the k existing ones, and we generate

a new knot τ ∗k+1 from a narrow symmetric distribution centred around τ̃ . In

particular, we let τ ∗k+1 ∼ hS(τ ∗k+1|τ̃ , d), where hS is the density of a Beta(dτ̃ , d(1−

τ̃)), with spread parameter d, such that E (τ ∗k+1) = dτ̃
dτ̃+d(1−τ̃)

= τ̃ . After some
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testing, we opted for d = 100. The resulting probability for the jump is given by

q(Mk+1|Mk) = rS
m(k)

1

k

∑
j:τj 6=τ̃

hS(τ ∗k+1|τj, d),

where the summation takes into account than any one of the k existing knots could

have been chosen. Hence, one needs to account for the probability of the candidate

knot τ ∗k+1 being created by each of the k distributions hS(·).

Combine step The combine step proceeds in a similar way to the death one,

but it only allows the elimination of a knot that could have been the product of a

split step. First, we select a knot τ̃ from the k existing ones. Then, we consider

the probability that it comes from a narrow density centred around one of the

remaining knots, such that as τ̃ ∗ ∼ hC(τ̃ |τj, d) for all values of j such that τj 6= τ̃ ,

where hC is the density of a Beta(dτj, d(1 − τj)), where the spread parameter d

has the same value as in the split step. The resulting probability for the jump is

given by

q(Mk+1|Mk) = rC
m(k)

1

k

∑
j:τj 6=τ̃

hS(τ ∗k+1|τj, d),

where again the summation accounts for the probability of the candidate knot τ̃∗

merging with any of the remaining knots.

Relocation step This is a standard MCMC within-model update, although it is

not implemented at each step but, instead, selected with probability rR
m(k) which

depends on the current number of spline components as defined earlier in this

section. One of the existing knots, τ̃ , is selected at random, and a new location
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τ̃ ∗ is proposed from a symmetric distribution centred at the current value. We

propose using again a Beta distribution, such that τ̃ ∗ ∼ hR(τ̃ ∗|τ̃ , d(1− τ̃)), where

hR is the density of a Beta(dτ̃ , d(1− τ̃)), and again choose d=100. Then we need

to compute the probability of the move

q(M τ̃∗

k |Mτ
k ) = rR

m(k)
1

k
hR(τ̃ ∗|τ̃ , d),

which is required for Eq. 2.2.2 to accept or reject the MH step.

Coefficients update It is worth noticing that small changes in the spline basis

can have a considerable effect on the curve it generates. In fact, while a knot

can be inserted into a B-spline basis without changing the geometry of the curve

(de Boor, 2001; Ruppert et al., 2003), the reverse is not true as the resulting

system of equations is overdetermined. These changes can affect the acceptance

of jump moves, if they cause the parameter function, and hence the proposed

posterior, to be too different from that of the current state. In order to increase

the acceptance rate and the convergence rate of the algorithm, one can adapt

the coefficients so that the resulting curve is more likely to be accepted. Denison

et al. (1998a) propose using an adjusted least squares approach to improve the

resulting fit, although this might affect the reversibility of the move. DiMatteo

et al. (2001) and Wallstrom et al. (2008) follow a different approach and separate

the inference into two stages: first they focus on obtaining a suitable basis using

reversible jumps, and later they introduce an additional Metropolis update to

optimise the coefficients and fully capture the corresponding uncertainty. Biller

(2000) and Sharef et al. (2010) opt for a different strategy, by exploiting the insight
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from de Boor (2001) to propose curves which are similar, albeit not identical, to

the original one. We decide to follow the same intuition, but propose steps that

slightly differ from both papers above for the following reasons:

• the algorithm proposed by Biller (2000) always edits the same number of

coefficient (three) independently of the original degree of the spline basis.

Although this can produce suitable solutions for quadratic and possibly cubic

splines, which are most common in the literature, ideally one would want the

number of coefficients to be updated to depend on the degree of the basis.

In fact, as we have seen in Section 2.3.4, the degree of the spline basis affects

how many components overlap and, consequently, how many neighbouring

ones are affected by any local change;

• in their work, Sharef et al. (2010) focus on Poisson-distributed observations

and introduce an exponential link inside the spline basis, and hence of any

basis coefficient updates, to ensure the positivity of the resulting parameter

estimates. We are, instead, interested in a general approach which is able to

handle both positive and negative coefficients.

It is also worth noticing that if we were to use purely deterministic rules based

on de Boor (2001), the required symmetry between the birth and the death move

would be destroyed. Instead, we use these as a basis and introduce a uniform

random variable u ∈ (0, 1) to preserve the reversibility of the move as well as the

dimension-matching requirement between different states. One then needs to be

careful in updating the coefficients correctly. To do so, we need to first consider how

a B-spline basis is defined, and need to make a distinction between interior knots
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and end points. In fact, while we are normally interested in the interior knots,

which cover the support domain, some additional points are required to construct

the full basis. Let us consider a B-spline of degree dS and order QS = dS + 1,

and recall that it extends over QS + 1 knots by definition. It is then necessary

to extend the internal knots with QS − 1 = dS end points on each side, to give

full support to the initial and final B-splines in the internal knot intervals. Note

that the values of these endpoints does not matter, and can be assigned the same

values as the initial and final end point, or evenly spaced beyond the two limits of

the support domain.

The coefficient adjustments are then performed as follows.

Knot addition : Given the k knots τ = (τl, ..., τk), in the birth and split moves we add a

new knot τ̃ ∗ lying within some interval (τj, τj+l), with j ∈ 1, . . . , K. The

resulting model is now defined by the new model indicator k + 1, the new

knots τ̃ ∗ = (τ̃ ∗l , . . . , τ̃
∗
K+1), where τ̃ = τi for i 6 j, τ̃j+1 = τ̃ ∗ and τ̃i = τi−1

for i > j + 2. The candidate spline coefficients vector β̃ can be computed as

follows:

β̃i =



βi if i 6 j + 1

βi−1 if i > j +QS + 1

riβi + (1− ri)βi−1 if j + 1 < i < j +QS

uβi + (1− u)βi−1 if i = j +QS

(4.3.6)
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where

ri =
τ̃ ∗ − τi

τi+QS−1 − τi
,

and u ∼ Unif(0, 1). The latter is used, in place of the knot ratio rj+QS , in

updating the corresponding coefficient, to introduce randomness and meet

the dimension-matching requirements. The Jacobian of the corresponding

transformation reduces to

J =

∣∣∣∣∣(βj+QS − βj+QS−1)

j+QS−1∏
i=j+1

ri

∣∣∣∣∣ . (4.3.7)

Knot deletion In the death and combine moves, a knot τj is selected to be removed from

the vector of knots τ . The spline coefficients are the adjusted by the inverse

of the transformation in Eq. 4.3.6, by first deleting βj+QS−1 and adjusting

the remaining coefficients to be

β̃i =



βi if i 6 j + 1

βi+1 if i > j +QS + 1

1
ri
βi + 1−ri

rj
β̃i−1 if j + 1 < i < j +QS

(4.3.8)

Given the symmetricity of reversible jump moves, the Jacobian determinant

for knot deletion is the inverse of Eq. 4.3.7.

From exploratory testing, we noticed these coefficient adjustments increased the

speed of convergence of the algorithm. It is also worth remembering that we are

mainly interested in the case where the covariate is periodic. In order to apply

the above approach to a periodic domain, one needs to implement some specific
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adaptations. In the BARS model, as for the spline model with fixed-dimension,

the spline basis itself needs to be periodic. This is fairly common in the literature,

and we refer the reader to Eilers and Marx (1996) and Ruppert et al. (2003) for

further details on the implementation.

Candidate densities for the split, combine and relocation moves also need to be

periodic, although we prefer having a common approach independent of the nature

of the covariate. Hence, we decide to use a Beta distribution as a candidate for

the periodic covariate case as well. In this case, we introduce a periodic version of

the Beta distribution then compute the density for some transformed values of the

knot locations. In particular, we propose a transformation such that the knot of

interest τ̃ is shifted to 0.5, the middle of the support of a Beta density. Then, for

the chosen spread parameter d, we simulate a new location on the periodic domain

as follows:

t ∼ Beta

(
1

2
d,

1

2
d

)
,

t∗ = τ̃ + range(D)

(
t− 1

2

)
,

τ̃ ∗ = dl + mod (t∗ − dl, range(D)).

Finally, the coefficient update algorithm would work as shown in Eq. 4.3.6 and

4.3.8, with some care taken into considering the correct indices for both the new

and old vectors of coefficients.
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BARBaR basis

For the BARBaR model, we follow the methodology proposed by Richardson and

Green (1997) and Nobile and Green (2000), with some key adaptations. Firstly,

in our models we do not use a categorical variable to allocate observations to

any of the components. The update of such an allocation is, in Richardson and

Green (1997), a separate step, which can be omitted without affecting the way

the remaining parameters are computed. In a similar way to Nobile and Green

(2000) and Bottolo et al. (2003), we use weighted Gaussian kernels for the purpose

of regression, although, as mentioned before, there is no imposition that these

weights have to sum to 1.

For the BARBaR model, we only need to add between-model moves to our infer-

ence approach. In fact, the basis component parameters, such as the location and

variance for Gaussian kernel components, are all updated as part of the standard

MCMC inference in both the BARBaR-f and the BARBaR models. Then, we

can follow the same approach as for the BARS model, and find the probability of

between-model jumps from Eq. 4.3.5 and 4.3.4, where in this case the constant

ω = 1 to ensure that only dimension-jumping moves are considered. For the split-

combine moves, we follow a similar approach to Richardson and Green (1997) to

ensure sensible suggestions, and propose changes that still preserve the moments

of the kernels considered. In particular, for a combine move, the density compo-

nent parameters are assigned by matching the zeroth, first and second moments

of the new component to those of the combination of the two that it replaces,

and vice versa for a split move. While we do allow both positive and negative
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kernel coefficients, we assume that a positively weighted kernel must be split into

two components with positive coefficients, and similarly for a negatively weighted

kernel. This assumption preserves the validity of the original moment matching

proposals.

Combine step First we choose a component at random, with corresponding pa-

rameters {βj1 ,mj1 , sj1}. We can then select an adjacent component with {βj2 ,mj2 , sj2},

where mj1 < mj2 and no other components are located in the interval [mj1 ,mj2 ].

In order for the two kernels to be merged using the moment matching approach,

we need to also ensure that the coefficients wj1 , wj1 have the same sign: if this

is not the case, the jump is rejected without proceeding any further. If the con-

dition is satisfied, we can then combine them into a new kernel with parameters

{wj∗ ,mj∗ , sj∗}, which can be obtained from the following

wj∗ = wj1 + wj2 , (4.3.9)

wj∗mj∗ = wj1mj1 + wj2mj2 ,

wj∗(m
2
j∗ + s2

j∗) = wj1(m2
j1

+ s2
j1

) + wj2(m2
j2

+ s2
j2

).

Note that, once suitable adjacent components are selected, this combine proposal

follows the approach by Richardson and Green (1997) and is deterministic.

Split step The split step needs to be able to reverse the combine approach above,

so it can be deduced from it. In particular, we first need to select a component

j∗ at random, which can be split into adjacent components j1, j2 satisfying Eq.

4.3.9. Since three new parameters need to be chosen, we need a vector u of three
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random variables, as mentioned in Section 2.2.4. We draw each component of u

from a Beta distribution, so that ui ∈ [0, 1], i = 1, 2, 3. In particular, we let

u1 ∼ Beta(a1, b1) u2 ∼ Beta(a2, b2) u3 ∼ Beta(a3, b3), (4.3.10)

where, after some testing, we let a1 = a3 = b3 = 60
k

, b1 = b2 = 120
k

and a2 = 2,

where k is the current number of components. These choice allow the proposals to

change in width and shape depending on the number of kernels already present.

Furthermore, note that these densities will need to be evaluated for the values of

{wj∗ ,mj∗ , sj∗} to obtain the acceptance probability for the combine step. Hence,

we opt for a choice of advantageous parameters for the Beta densities. In particular,

the choices for (a1, b1) yield a slightly negatively skewed density, which favours

smaller coefficients. On the other hand, (a2, b2) yield a more strongly skewed

and narrow density, favouring proposal of components which become closer as the

number of existing components increases. Finally, the choices for (a3, b3) yield a

symmetric density centred at 0.5.

After we draw values for u1, u2, u3, we can set

wj1 = wj∗u1,

wj2 = wj∗(1− u1),

mj1 = mj∗ + u2sj∗

√(
wj2
wj1

)
,

mj2 = mj∗ − u2sj∗

√(
wj1
wj2

)
s2
j1

= u3(1− u2
2)s2

j∗
wj∗

wj1
,

s2
j2

= (1− u3)(1− u2
2)s2

j∗
wj∗

wj2
,
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where again the resulting components j1, j2 will have coefficients with the same

sign as the initial kernel j∗. We also need to check the adjacency condition is

satisfied, otherwise the jump move is rejected before proceeding any further. In

order to compute the acceptance probability from Eq.(2.2.6), we need to obtain

the Jacobian for the moves above, which is

J =
|wj∗(mj1 −mj2)|s2

j1
s2
j2

u2(1− u2
2)u3(1− u2

3)s2
j∗
.

The acceptance probability, denoted as a, for the split move then follows Eq.(2.2.6),

with q(u) being the product of each density function in Eq.(4.3.10) for the respec-

tive entry of u. The reciprocal of acceptance probability a is used for the combine

move.

Birth step Let the current model Mk be described by k kernel components

with corresponding kernel locations and variances mj, sj, j = 1, . . . , k. We can

then birth a new kernel at random anywhere on the domain of the covariate.

That is, we draw a new kernel location uniformly from the covariate domain. We

then need to assign a weight and width to the new kernel, by drawing at random

from a modified prior density of each kernel parameter. Similarly to the BARS

case, we want to propose a move to a state yielding a similar enough curve to the

existing one, as this will increase the chances of acceptance. In the case of additive

kernels, introducing a new component with zero weight produces no changes in

the resulting curve. Nevertheless, we do not want to assign a zero weight since,

in order to ensure the reversibility of moves, only kernels with weight of exactly

zero could then be removed. Instead, we draw from a normal distribution that is
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narrower than the uninformative coefficient prior, so as to reduce the chance of

selecting a large new coefficient which would result in undesirably large change in

the parameter estimate. Then, the three new parameters are

u1 = w∗ ∼ N(0, t2), u2 = m∗ ∼ Unif(dl, dr) and u3 = s∗ ∼ Gamma(a, b),

(4.3.11)

for x ∈ [dl, dr] and where, after some testing, we set t = 0.1, a = 3.3 and b = 0.3.

Death step For a death, we choose one of the existing components with location

m̃ at random and remove it, while the remaining components remain unchanged.

Given the complete randomness of both the birth and death choices, the Jacobian

is simply J = 1. The acceptance probability for the birth move follows Eq. 2.2.6,

with q(u) being the product of density functions in Eq.(4.3.11) for the respective

entry of u. The reciprocal of this acceptance probability a is used for the death

move.

It is worth noticing again that we are mainly interested in modelling periodic

covariates. For the BARBaR model, the adaptation for a periodic covariate is

very similar to the one necessary for the BARS model, which we summarised

at the end of Section 4.3.3. First, the basis components themselves need to be

periodic, which is achieved in this case by using approximated wrapped normal

kernels. In particular, we write the wrapped normal distribution of x ∈ [0, 2π) as

WN(m, s2) with the probability density function,

F̊
(
x,m, s2

)
=

1

s
√

2π

∞∑
k=−∞

exp

{
−(x −m− 2πk)2

2s2

}
.
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Because the terms of the series converge to zero, it is possible to approximate the

pdf with a truncated series. The number of terms of the series that should be

included depends on the size of s, as narrower densities will have a more limited

support than wider ones (Mardia and Jupp, 2009) and hence require fewer terms.

In our case, we note that wide densities should not be expected, as the baseline

coefficient β0 introduced in Section 4.2.2 should effectively capture the average

behaviour of the parameter being modelled. After some inspection, we opted

to enforce s < π, as that allowed the ability to capture a sufficient range of

density shapes, and the resulting pdf could be approximated by considering 5

terms without loss of information. We denote this pdf as F̊ (·), such that

F̊
(
x,m, s2

)
=

1

s
√

2π

6π∑
k=−4π

exp

{
−(x −m− 2πk)2

s2

}
. (4.3.12)

Note that, in order to model parameters that are dependent on periodic covariates,

further adjustments are required. Similarly to the case where a spline formulation

is used, prior or proposal densities related to the component locations need to

also be periodic. While this is not an issue when a uniform distribution is used,

for Beta densities we use the same shifting approach as proposed for the BARS

models.

4.4 Evaluation of methods

This section introduces the case studies used to evaluate the relative performance

of the models introduced in Section 4.2.2. As previously mentioned in Section
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4.1, the cases studies are selected from the paper by Jones et al. (2016) to allow

comparison with this previous study. To assess performance, we first focus on

estimation of the statistical model parameters. These estimates are then used

to calculate distributions of return values corresponding to long return periods,

which can be directly compared with the corresponding values obtained from the

original parameters used to simulate the datasets. Finally, summary distributions

of return values are compared using appropriate statistical tools, as described in

Section 4.4.1.

4.4.1 Return value distributions and comparison methods

From an engineering perspective, the main inferences from the current analysis are

estimates of marginal and conditional return values corresponding to some long

return period. In their paper, Jones et al. (2016) use Monte Carlo simulation to ob-

tain empirical return level distributions for each case considered. When the return

period is small, say 100 years or less, their simulation approach is computationally

feasible. On the other hand, when longer return periods are required, Monte Carlo

simulation becomes computationally demanding. In these circumstances, numeri-

cal integration schemes yield dramatic reductions in the computational complexity

of return value estimation (Ross et al., 2017). We implement the latter approach.

Return value integration scheme

The inference procedures introduced in Section 4.3 produce samples from the pos-

terior distributions of the model parameters for each dataset. In order to obtain
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estimated return values from these results, one needs to find a way to summarise

the contribution from each iteration of this chain and across the different simulated

datasets for each of the cases introduced in Section 4.4.2. As mentioned above,

while Monte Carlo simulation provides a natural framework, it can also be compu-

tationally intensive. An alternative approach consists of using numerical methods

to obtain a summary distribution of the return levels for each of the cases and

models considered, by extracting the information obtained across MCMC runs for

each data sample and then across all simulated datasets for the same case (Ross

et al., 2017).

Let us first focus on a single MCMC draw from the posterior of the parameters.

First we need to subdivide the covariate domain into small subsets (bins), which

provide a set of binned covariates common to all the samples of each case consid-

ered. Assume we want to divide the covariate domain in nb total bins, and denote

a covariate bin Sj, for j = 1, 2, ..., nb. It is essential to choose a large enough

number of bins such that Sj is sufficiently small and we can assume each model

parameter φ (xi) , ψ (xi) , ξ (xi) is constant within the bin, that is for all observed

covariates xi ∈ Sj. Let us denote the set of Poisson-GPD parameters to be esti-

mated by Θ(x) = {φ (x) , ψ (x) , ξ (x) }. For each specific bin Sj, let Θj indicate

the estimates of these parameters in the bin. For each bin, we can then compute

the cumulative distribution function (cdf) of any storm peak event with such a

covariate value by using the estimates of the distribution parameters Θj in the
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bin. We denote this by F (yp|Θj), which corresponds to the GPD cdf

F (yp|Θj) =


1−

(
1 + ξj

yp−uj
ψj

)−1/ξj
if ξj 6= 0,

1− exp
(
−yp−uj

ψj

)
if ξj = 0.

Furthermore, the parameter φj = φ (xj) can be interpreted as the mean number

of storm peak events in the covariate bin Sj in a year. We can then obtain the

cumulative distribution function FMT
(yp|Θj) of the maximum MT observed in a

period of T years in Sj as

FMT
(yp|Θj) = P (MT < yp) (4.4.1)

=
∞∑
k=0

P (k events in Sj in T years)P k(size of an event in Sj < yp)

=
∞∑
k=0

(Tφj)
k

k!
exp (−Tφj)× F k(yp|Θj)

= exp {−Tφj [1− F (yp|Θj)]} .

Eq. 4.4.1 provides estimates of the cdf of the T − year maxima for each of the nb

bins.

As mentioned before, it is often the case that “omni-covariate” return values, as

well as results for some specific subset of the covariates, are required. In order

to obtain these distributions, we need first to exploit the fact that, given some

covariates, storm peak events are considered to be independent. By the law of

probability, the joint cdf across all covariate values can then be obtained by taking

the product of the individual cdf’s for each of the bins. Mathematically, this is
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obtained by taking the product over all covariate bins, such that

FMT
(yp|Θ) =

nb∏
j=1

FMT
(yp|Θj). (4.4.2)

Practically, this corresponds to computing an “omni-covariate” (e.g. omni-directional)

cumulative distribution function FMT
(yp|Θ) of the overall storm peak maximum

MT over all covariate bins.

We can then repeat the above operations given the posterior samples from each

MCMC iteration, denoting the resulting cdf’s as FMT
(yp|Θi) for i = 1, . . . , niter.

Then, we can obtain the posterior expected “omni-covariate” (e.g. omni-directional)

cumulative distribution function as

F̂MT
(yp) =

1

niter

niter∑
i=1

FMT
(yp|Θi). (4.4.3)

If we have more then one realisation, such as in the case of a simulation study, we

then need to proceed to a second stage of the approach. In this case, we consider

the posterior expected “omni-covariate” (e.g. omni-directional) cdf indexed by

simulated sample l as F̂ l
MT

(yp). Then, we obtain a summary of the behaviour

across the nsim samples as

F̂ sim
MT

(yp) =
1

nsim

nsim∑
l=1

F̂ l
MT

(yp). (4.4.4)

Algorithm 3 summarises the whole approach. Let us apply it to Case 2 as an

example. For each of the 100 data sample realisations available, we can implement

the first stage of this approach on the 20000 MCMC iterations. We then obtain
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Algorithm 3 Posterior expected cdf of return values

Stage 1:

Consider the lth observation sample {yl,xl}, for l = 1, . . . , nsim.

Input:

• The posterior estimates for the GPD and Poisson parameter, denoted as Θi
j

and evaluated at each bin j = 1, . . . , nb and MCMC iteration i = 1 . . . , niter;

• A return period T of interest;

• Some future return level (e.g. Hs) of interest yp;

for each covariate bin j = 1, . . . , nb do

for each MCMC run i = 1 . . . , niter do

Compute FMT
(yp|Θi

j) as in Eq. 4.4.1

end for

Compute FMT
(yp|Θi) as in Eq. 4.4.2

end for

Obtain the posterior expected “omni-covariate” cdf F̂ l
MT

(yp) as in Eq. 4.4.3

Stage 2: . For hindcast datasets, nsim = 1 and Stage 2 is not necessary.

If more the one sample realisation l is available:

1. Repeat Stage one for each sample realisation l = 1, . . . , nsim;

2. Compute the summary (average) mean expected posterior “omni-covariate”

cdf F̂ sim
MT

(yp) as in Eq. 4.4.4
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the corresponding values for Eq. 4.4.3, which give the expected behaviour across

the MCMC draws and are shown in grey in Figure 4.4.1. If we proceed to stage 2

of the algorithm, we can obtain the average posterior expected omnidirectional cdf

F̂ sim
MT

(yp), which is shown for the results of the case study in Figure 4.4.4 in Section

4.4.2. This can then be compared to the true underlying return value distribution

shown by the black line in both Figure 4.4.1 as well as the omni-directional plots

in Figure 4.4.4.

Figure 4.4.1: Posterior expected omnidirectional cdf F̂ l
MT

(yp) (in grey) for each of
the 100 sample realisations of Case 2 shown in Figure 4.4.2, corresponding to a
return period of ten times the period of the original sample, with the true return
value cdf in solid black.

The same two-stage approach can be used to obtain cumulative distribution func-

tions for subsets of the covariates, e.g. for some given directional sector of interest,

by taking the product only across a selection of sectors rather than for all nb sec-

tors. The sectoral plots (right) in Figures 4.4.4 are the sector-specific equivalent

to the omnidirectional F̂ sim
MT

(yp) curves (left).

Distribution divergence tests

In order to quantify the quality of return value inference, one can use different

statistics that compare a sample with a reference probability distribution. In this
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case, for each sample realisation we can compare the empirical cumulative distri-

bution function from the fitted model, obtained following the method described

above, with the ‘true’ one from the known underlying case. The Kolmogorov-

Smirnov (KS) and the Kullback-Leibler (KL) criterion have been used in the lit-

erature to quantify the discrepancy between distributions. Given two distribution

functions, the KS test uses the maximum vertical distance between their cumula-

tive distributions, defined as

Dks (F0, F1) = sup
x
|F1 (x) − F0 (x) |,

to obtain a measure of their discrepancy. In particular, perfect agreement between

F1 (x) and F0 (x) yields a minimum KS criterion value of zero, and the larger the

value, the more the two distributions differ.

The Kullback-Leibler divergence compares distributions using the average ratio of

the logarithms of the density functions

Dkl (F0, F1) =

∫ ∞
−∞

log

(
f0 (x)

f1 (x)

)
f0 (x) dx, (4.4.5)

where there is no upper bound to Dkl (F0, F1) and, similarly to the KS criterion,

perfect agreement yields a minimum KL divergence of zero. In order to compute

the KL criterion values, we approximate the integral in Eq. 4.4.5 following the

approach of Perez-Cruz (2008).

In Section 4.4.3, we illustrate the performance of the different models considered

for both cases introduced in Section 4.4.2. For all the 100 samples in each of these

cases, we obtain a posterior predictive cdf, corresponding to the grey curves shown
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in Figure 4.4.1. Then, we compare it with the ‘true’ underlying cumulative distri-

bution to obtain the corresponding KS and KL divergence, and we use box-plots

to summarise these criterion values across the 100 samples. The same approach is

then repeated for the each of the directional sectors of interest.

4.4.2 Case studies and inference

The samples were the same as those analysed by Jones et al. (2016) and were

obtained directly from the authors. We consider here the first two cases, which we

denote as Case 1 and 2 respectively. The data were obtained by simulating 100

sample realisations of size 1000 from each of the underlying models. Given the

parameter estimates, the previous authors assumed that all sample realisations

correspond to an observational period of T years.

Case 1 : For extreme value threshold u (x) = 0, Jones et al. (2016) simulate 1000

observations with a uniform Poisson rate φ (x) = 1000/360 per degree covariate,

and a low order Fourier parameterisation of GPD shape ξ (x) = sin (x)+cos (2x)+

2 and scale ψ (x) = −0.2 + (sin (x − 30))/10.

Case 2 : For extreme value threshold u (x) = 0 and the same Fourier pa-

rameterisation of GPD shape and scale as in Case 1, a non-uniform Poisson rate

φ (x) = max ( sin (x) + 1.1, 0)×1000/cρ, where cρ =
∫ 360

0
max ( sin (x) + 1.1, 0) dx

is used to simulate 1000 observations.
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Figure 4.4.2: Illustrations of sample realisations from each of Cases 1 (left) and
2 (right). Upper panels show parameter variation of GPD shape ξ (x) , scale
ψ (x) and Poisson rate φ (x) with direction x for each case. Lower panels show a
realisation of the corresponding simulated samples.

Figure 4.4.2 illustrates typical sample realisations of both cases. Note that the

parameter variation of the GPD shape ξ (x) and scale ψ (x) with direction x are

identical in Cases 1 and 2. The main and only difference between them lies in the

Poisson rate φ (x) , which is constant in Case 1 only. Cases 2, instead, allows us

to focus on a more difficult inference problem, since the very small rate φ (x) at

x ≈ 270◦ leads to a sparsity of corresponding observations. It is worth noticing

that the shape ξ (x) is negative throughout, and reaches its largest negative values

at x ≈ 120◦, which yields larger observations.

For each case, the extreme value threshold u was fixed at zero during inference,

while both the GPD shape ξ and scale ψ of exceedance size vary as a function of
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the covariate x. As far as the Poisson rate φ of threshold exceedance is concerned,

we use a constant model in Case 1, while this is covariate dependent in Case 2.

We proceed to perform inference using the methodology described in Section 2.2

for the formulations introduced in Section 4.2.2, denoted as follows:

Model 1 P-spline : penalised spline with 30 equidistant and fixed knots. Note that,

since Model 1 is known in the literature to perform well (Jones et al., 2016),

it is here used as a benchmark.

Model 2 BARBaR-f : Gaussian kernels RBF’s (3 kernels for the exceedance rate

parameter and the GPD shape, 5 for the GPD scale), with kernels initiated

according to the density of observations.

Model 3 BARBaR: Gaussian kernels RBF’s, with kernels initially allocated accord-

ing to the density of observations. During inference, RJ MCMC is used, so

both the number and location of kernels are allowed to vary.

Model 4 P-spline-u: penalised spline with 8 unevenly spaced fixed knots, with the

first half allocated according density of observations, and the remaining po-

sitioned halfway between the initial knots.

Model 5 BARS: penalised spline, where the knots are initiated as for Model 4, but

during inference, RJ MCMC is used, so both the number and location of

knots are allowed to vary.
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Figure 4.4.3: Parameter estimates for rate of occurrence φ (x) of the exceedances
(upper), the GPD shape ξ (x) (middle) and GPD scale ψ (x) (lower) for the
sample realisation of Case 1 (top) and Case 2 (bottom) shown in Figure 4.4.2,
for Models 1-5. Each panel illustrates the true parameter (solid green), posterior
median estimate (solid black) with 95% credible interval (dashed black).
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For both cases we produce plots of parameter estimates based on MCMC run

lengths of 40000 in total, with the first 20000 samples removed as burn-in. Note

that for Case 1, we fit a constant model for the Poisson parameter, with the same

resulting chains being later used to produce posterior expected cdf estimates for

all Models 1-5.

We first inspect the median parameter estimates over the sample realisations for

the three model parameters in both Case 1 and Case 2 across models 1-5, shown in

Figure 4.4.3. Visual inspection suggests that estimates are of similar quality across

models, indicating all models are producing good results. As expected, wider

intervals between the upper and lower quantile suggest that the identification of

ξ (x) is more difficult than ψ (x) and φ (x) . Despite slightly wider interquantile

ranges for the BARBaR and BARS formulations, the models seem to produce

similar fitting results.

We proceed to consider the posterior cumulative distribution functions of return

values, corresponding to a return period of ten times the period of the original

sample. These are shown in Figure 4.4.4. Here we notice that omnidirectionally

there is a similarity in performance by model type (e.g. between splines formula-

tions and similarly between BARBaR models). In Case 1, the wider interquantile

range for the BARBaR models estimates of the GPD shape affect the return val-

ues, which consequently are generally higher than both the truth and the spline

models estimates. On the other hand, all spline based models underestimate the

return value cdf for lower probability values.
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Figure 4.4.4: Average posterior expected return value cdf for the sample realisations of of Case 1 (left) and Case 2 (right) shown in Figure
4.4.2, corresponding to a return period of ten times the period of the original sample. The left hand panel shows the omnidirectional return
value distribution, and right hand panels the corresponding directional estimates. The title for each panel gives the expected percentage
of individuals in that directional sector. The true return value distribution is given in solid black.
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If we inspect the results by directional octant, the spline models show consistently

good results across the different directions, while the BARBaR models yield closest

agreement with the truth model when both the shape and scale have their lowest

values (west and north-west sectors). Nevertheless, none of the models outperform

the others across all sectors. One also needs to remember than, in Case 1, the same

constant model is used to estimate the Poisson rate, such that the latter does not

have any different impact on the return values across different model bases.

Focusing on Case 2, no model seems to consistently outperform the others. The

spline basis with a high number of knots, used as a benchmark, seems to again

underestimate return values for low probability values, as well as having some is-

sues for higher probabilities. If we look back at Figure 4.4.1, we notice that in a

couple of occasions the return levels seem to differ considerably from the truth.

We considered the specific sample realisations, and notice this is a consequent of

an ill-fitting starting solution, which can be difficult and sometimes unstable for

models with a high number of correlated parameters.The BARS model seems to

overestimate return levels and similarly struggle with some of simulated data sam-

ples, which we found to be the result of the model exploring some locally unlikely

value of the GPD parameters for a relatively small number of runs in the respec-

tive MCMC chain. Overall, the BARBaR models and the spline model with a low

fixed number of knots seem to be in agreement the most, both amongst each other

and with respect to the true value. Nevertheless, they still yield marginally higher

estimates for the return levels cdf when compared to the density obtained from

the true underlying parameters used to simulate the data study.

If we consider the results by directional octant, while the models perform similarly
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across most sectors, the highest disagreement is registered in the northern and

southern octant, which correspond to the scale parameter highest values. Further-

more, the most noticeable issues for the BARS model are localised to the western

sector, which has the smallest number of observations available, and might be a

consequence of some instability in the RJ moves proposed in such a situation.

4.4.3 Assessing quality of inference

We then employ the criteria illustrated in Section 4.4.1 to compare the distribu-

tions of return values statistically and consider how they perform across different

realisation samples. In particular, we investigate both the Kolmogorov-Smirnov

and the Kullback-Leibler criterion, for both the omnidirectional and directional

return values distribution shown in Figure 4.4.4.

Figures 4.4.5 and 4.4.6 summarise the characteristics of the distributions for KS

and KL divergence criteria for Cases 1 and 2 respectively. In particular, it is worth

noticing that, given the definitions provided in Section 4.4.1, the KL criterion

captures the maximum divergence between two different distributions, while the

KL test provides a more general summary as it considers all point-wise distances

across the different probability levels.
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Figure 4.4.5: Box-whisker comparison of samples of the Kolmogorov-Smirnov (KS,
top) and Kullback-Leibler (KL, bottom) divergence criteria between omnidirec-
tional posterior expected return value cdf’s (corresponding to a return period of
ten times that the original sample) and by directional sector, estimated under
samples from the true return value distribution and those estimated under mod-
els of each of 100 sample realisations for Case 1. The sample of the KS and KL
divergence criteria are summarised by the median (white disc with black central
dot), the interquartile range (blue rectangular box, with vertical lines showing the
2.5%, 97.5% interval).
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Figure 4.4.6: Same as Figure 4.4.5 but applied to Case 2.

In Case 1, we note that all models perform similarly, in terms of maximum diver-

gence, according to the KS test when looking at the omni-directional distributions.

Most differences are noticeable in the western and north-western sectors, where

both ξ (x) and ψ (x) are near their minimum values and where the two spline

models with fixed number of components achieve the lowest score. If instead we

consider the overall divergence between cdf’s using the KL criterion, the two spline
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models with more parsimonious bases achieve better results omnidirectionally. In

general, the BARBaR models seemed to result in more varied results across dif-

ferent realisations, as shown by wider interquantile ranges in the KL criterion,

and all but the BARBaR-f model match the performance of the benchmark spline

approach for omnidirectional cdf’s.

In Case 2, we notice that all non-stationary parameterisations yield lower KS val-

ues than the benchmark spline model. We can notice a less stable performance

from the BARS model across different sample realisations, as shown by wider in-

terquantile ranges. This is also in agreement with the sample posterior cumulative

distributions shown in Figure 4.4.1. This is visible both in terms of maximum

(KS test) and average (KL test) divergence. Considering the criteria by octant,

the BARBaR models struggle the most for the western sector, where the rate

of occurrence of events is relatively low, and both ξ (x) and ψ (x) are near their

minimum values. Most differences are noticeable in the western and north-western

sectors, where both ξ (x) and ψ (x) are near their minimum values and where the

two spline models with fixed number of components achieve the lowest score. This

is likely due to the fact that, although contributions from observations that far

from the function centre effectively tend to zero, RBF’s have a global support, and

neighbouring areas will have a higher influence on sectors with a small number of

observations, especially when compared to spline based models.
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4.5 Northern North Sea hindcast

In Section 4.4 we tested and assessed the models on some case studies. We now

proceed to apply them to the dataset introduced in Section 4.1, which consid-

ers hindcast significant wave heights in the North Sea. Extreme sea states in the

North Sea are dominated by winter storms originating in the Atlantic Ocean, which

propagate eastwards across the northern part of the North Sea. Different factors

contribute to the directionality of the extreme seas, mainly the land shadows of the

UK, Scandinavia, and the coast of mainland Europe, and the fetches associated

with the Atlantic Ocean, Norwegian Sea, and the North Sea itself.

In particular, in Figure 4.1.1, we can see that the land shadow of Norway (approx-

imately the directional interval 45◦−210◦ has a considerable effect on the rate and

size of occurrences with direction. In fact, there is a dramatic increase in both rate

and size of occurrences with increasing direction at around 210◦, corresponding to

Atlantic storm events from the South-West being able to pass the Norwegian head-

land. We therefore should expect considerable directional variability in the model

parameter estimates for the sample.

4.5.1 Inference

For all models discussed here, the extreme value threshold needs to be estimated.

Given the non-stationarity present, it is advisable to consider covariate-dependent

thresholds. Here we decide to consider thresholds corresponding to a non-exceedance

probability varying between 0.6 and 0.8. Note that higher and lower values were

also considered initially, although these were excluded following the same crite-

168



CHAPTER 4. ONE-DIMENSIONAL COVARIATES

rion illustrated below, and we opt to only show the results for a smaller range

of non-exceedance probability values, reduced to the most interesting, in order to

produce clearer and more informative plots. We aim to choose a threshold that is

low enough to allow as much data to be preserved as possible, while still ensuring

we are only considering extreme data and yielding stable and reliable results.

Figure 4.5.1: GPD shape estimates for the North Sea hindcast HS data shown in
Figure 4.1.1. Here, Model 1 from Section 4.4.2 is used to fit the exceedances of
thresholds obtained from non-exceedance probability ranging between 0.6 and 0.8,
with interquantile ranges shaded for the highest and lowest value.

While different methods are available to diagnose constant thresholds for extreme

data (see Section 2.1.2 and Coles, 2001), such diagnostics are harder to interpret in

the presence of non-stationarity. We found it useful to consider stability of fit by

comparing the estimates for the GPD shape parameter across different thresholds.

For consistency these estimates were all achieved using the same model, namely

the spline Model 1 from Section 4.4.2. Figure 4.5.1 shows these estimates, with

shaded areas corresponding to the interquantile ranges for the lowest (0.6) and
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highest (0.8) non-exceedance probability. One can visibly notice a more erratic

estimate under the highest probability around 180◦, which can be expected given

the marked sparsity of data in this sector. On the other hand, probabilities of 0.65

or lower seem to miss some interesting behaviour in the sector between 220◦−270◦,

which is instead consistently detectable for higher values. Hence, we decide to

proceed using a non-exceedance probability of 0.7.

We consider the same models for parameter formulations as in Section 4.4, using

the methodology described in Section 2.2. We then inspect the parameter esti-

mates for all model parameters across Models 1-5, which are shown in Figure 4.5.2,

based on run lengths of 40000 run lengths, with the first 20000 samples removed as

burn-in. Again we use Model 1 as a benchmark. Estimates seem to be mostly con-

sistent across the different models, with higher discrepancy and wider interquantile

ranges for the shape parameter, as expected. The most interesting performance

perhaps is shown in the exceedance rate estimate (top). Here we notice how both

the benchmark spline model and the BARS formulation better capture the sharp

change shown by the data in the sector between 180◦ − 220◦ , with the latter also

using a more parsimonious model. The superiority of the spline model in this case

can be explained by the nature of the model itself. In fact, a spline formulation can

capture a behaviour similar to a step change in the data with the use of two very

closely located knots, which is possible if a high number of knots is considered, or

by allowing knots to move in the case of a more parsimonious model. For stability

reasons, the priors used in the Bayesian inference discourage very small values

for the kernel widths, and consequently a very sharp step-change in the resulting

parameter function.
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Figure 4.5.2: Parameter estimates for rate of occurrence φ (x) of the exceedances
(upper), the GPD scale ψ (x) (middle) and GPD shape ξ (x) (lower) for the North
Sea hindcast dataset shown in Figure 4.1.1, for different model parameterisations.
Each panel illustrates posterior median estimate (solid) with 95% credible interval
(dashed).

As the scale and shape parameters of the generalise Pareto distribution are nega-

tively correlated, this means that different values of the two parameters can result

in the same return value estimates. Hence, we then proceed to consider the poste-

rior cumulative distribution functions of return values, corresponding to a return

period of ten times the period of the original sample, which corresponds, in this

case, to approximately 500 years. These are shown in Figure 4.5.3.
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Figure 4.5.3: Posterior expected return value cdf for the NNS hindcast dataset
shown in Figure 4.1.1, corresponding to a return period of ten times the period
of the original North Sea sample. The left hand panel shows the omnidirectional
return value distribution, and right hand panels the corresponding directional es-
timates. The title for each panel gives the expected percentage of individuals in
that directional sector.

Similarly to the results in Section 4.4.3, all models seem to produce comparable

estimates both omnidirectionally and when considering specific directional sectors.

A systematic variation of return values with direction is visible for all models, with

clear agreement in the sectors with highest number of observations, namely corre-

sponding to eastern, south-eastern and southern wave direction. Most differences

in the GPD scale and shape parameter estimation seem to unsurprisingly yield

similar return values due to the correlation between the two parameters. We can

also notice that the spline-based models differ slightly from the BARBaR ones in

two of the sectors with lowest occurrence rate (west and north-west). These direc-
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tions correspond to the sectors of the domain where the non-exceedance probability

undergoes a sharp change, which, as we observed from Figure 4.5.2, is captured

differently by models with different basis type. This discrepancy, together with

the added uncertainty in sectors with fewer observations, explains the negligible

difference in the omnidirectional return level.

4.6 Discussion

The aim of this chapter was both to introduce some novel methodology and

compare its performance to existing models. In particular, the focus is on non-

stationary data, where covariate dependence needs to be appropriately captured by

a model to provide realistic environmental extreme value inference: models which

ignore or fail to capture the effects of covariates lead to unreliable and unrealistic

analysis.

Different parameterisations can be used to represent the generalised Pareto model

parameters. As far as existing models are concerned, here we focus on the penalised

spline formulation. We use this in its standard form (with a high number of knots

and smoothing penalty) as a benchmark and consider a further two variations, both

with a lower number of knots. In one of these models, the BARS approach, we

allow the number and location of knots to change using reversible jump MCMC.

We also introduce a novel approach, which uses a combination of radial bases,

in this case Gaussian kernels, to represent the model parameters. We propose

two models (BARBaR-f and BARBaR), both with a lower number of components

when compared to the standard spline approach. Similarly to the spline cases, we
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consider and develop the methodology for both a formulation with a fixed number

of components, and one with an unknown number of components fitted using RJ

MCMC.

We assessed model performance using simulation studies and later applied all ap-

proaches to a hindcast wave height dataset. When applied to hindcast data, all

models seem to perform well in terms of quality of inference, yielding realistic and

consistent estimates of both the omnidirectional return values distribution and

capturing well the directional variation present. Overall, they all match the per-

formance of the benchmark model, and hence generally outperform other standard

alternative formulations from the literature (Jones et al., 2016).

Nevertheless, some variation in performance was captured during the simulation

study, which needs to be considered together with some observations on ease of im-

plementation. The BARBaR formulations we proposed have then performed well,

especially in the most commonly available case where the rate of occurrence is

covariate dependent. It is worth noticing that this novel approach can sometimes

become computationally intense. In fact, 3 parameters are needed to represent

each kernel, with all kernel parameters being proposed jointly by the mMALA

algorithm. This yields a model where the total number of parameters to be es-

timated is soon similar to the spline formulations, especially when considering

parsimonious models with fewer knots. This partly contradicts our original aim

to produce a more parsimonious model, at least when a one-dimensional covariate

is considered. Furthermore, the BARBaR models proved to be more unstable and

required careful fine-tuning and more informative priors. A possible extension of

these models would introduce a hyperparameter for the coefficients prior, similar
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to ρθ in Eq.(4.3.1), which could allow us to impose a varying level of smoothness

through, for example, a lasso or, more simply, a ridge penalty term. We have

also observed spline inference computations being often faster, potentially outper-

forming the BARBaR models in computational efficiency. The BARS formulation,

having fewer knots and using reversible jump inference, has the potential of com-

bining the advantages of spline models with a more parsimonious representation.

In fact, it allows a lower correlation between the basis formulation parameter, as

well as faster inference due to the low number of total unknowns to be estimated.

The variability of results across different sample realisations shows, nonetheless,

that there is scope for refining the BARS methods, especially with respect to

approach to update coefficients introduced in Section 4.3.3.

It is important to remember that environmental data is often more complicated

than the cases we considered in this work. In particular, it is often the case that

multiple covariates are present in the data considered. Carefully and efficiently

capturing the non-stationarity is equally important with multiple covariates, while

presenting additional challenges. We believe that formulations with a lower num-

ber of components would match the less parsimonious models in accuracy, while

potentially outperforming them in speed and efficiency. As an example, a standard

spline model is normally extended to two dimensions by spacing knots on a grid

with n1 and n2 knots to capture the marginal behaviour of each covariate, so that

the total number of unknown model parameters is now n1×n2. Most of the time,

this will be considerably larger than the number of formulation parameters from a

RBF parameterisation. Hence, this approach has the potential to be considerably

more efficient in higher dimensions when compared to competing ones.
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4.A Gaussian kernels BARBaR model and deriva-

tives with respect to the basis parameters

Let Y ∼ GPD(ν (x ), ξ (x )). For the sake of illustration, let us focus on the GPD

parameter ν (x ), and assume that ν (x ) has a BARBaR form with only one kernel

component as a basis, that is:

ν (x ) = β F̂

(
x−m
s

)

for a Gaussian kernel density F̂ with location m and standard deviation s, and

coefficient β. We will refer to each of these three BARBaR basis component

parameters as θc to generalise the results.

In essence, this process exploits the chain rule to obtain first and second order

derivatives of the kernel density with respect to both remaining basis parameters,

location and width. More precisely, by the chain rule, the first order derivative of
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the log-likelihood with respect to a formulation parameter will be:

∂l

∂θc
=
∂l

∂ν

∂ν

∂θc
,

the second order will be:

∂2l

∂θc2
=
∂2l

∂ν2

(
∂ν

∂θc

)2

+
∂l

∂ν

∂2ν

∂θc2
, (4.A.1)

and the second order cross derivative with respect to the parameters θc1, θ
c
2 will be:

∂2l

∂θc1∂θ
c
2

=
∂2l

∂ν2

∂ν

∂θc1

∂ν

∂θc2
+
∂l

∂ν

∂2ν

∂θc1∂θ
c
2

. (4.A.2)

Let us focus on the coefficient β as an example, and use the standard notation

with the basis form ν(x) = βB, then:

∂ν

∂β
= B

∂2ν

∂β2
= 0

∂l

∂ν
= BT ∂l

∂ν

∂2l

∂ν2
= BT ∂

2l

∂ν2
B

For the remaining BARBaR basis parameter, we have to compute the different

components from eq. 4.A.1.
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Then, let A = 1√
2πs
e
−(x−m)2

2s2 , and we have:

∂ν

∂β
= A

∂2ν

∂β2
= 0

∂ν

∂m
= β A

x−m
s2

∂2ν

∂m2
= β A

(
(x−m)2

s4
− 1

s2

)
∂ν

∂s
= β A

(
(x−m)2

s3
− 1

s

)
∂2ν

∂s2
= β A

(
2

s2
− 5(x−m)2

s4
+

(x−m)4

s6

)

Note that for second order derivatives of the log-likelihood, we are normally inter-

ested in the expected derivatives, as by integrating out the data, we can ensure

more stability when the Hessian matrix needs to be inverted in the sampling algo-

rithm (see Eq. 4.B.1). If we then take the expectation of Eq. 4.A.1 with respect

to the data y and conditioned on the covariate x, we get

E

[
∂2l

∂θc2

∣∣∣∣ x]
y

= E

[
∂2l

∂ν2

(
∂ν

∂θc

)2
∣∣∣∣∣ x
]
y

+ E

[
∂l

∂ν

∂2ν

∂θc2

∣∣∣∣ x]
y

.

The derivatives of the distribution parameters ν with respect to the model param-

eters θc are not directly dependent on the data y, yielding

E

[
∂2l

∂θc2

∣∣∣∣ x]
y

= E

[
∂2l

∂ν2

∣∣∣∣ x]
y

(
∂ν

∂θc

)2

+ E

[
∂l

∂ν

∣∣∣∣ x]
y

∂2ν

∂θc2

= E

[
∂2l

∂ν2

∣∣∣∣ x]
y

(
∂ν

∂θc

)2

,

178



CHAPTER 4. ONE-DIMENSIONAL COVARIATES

as by definition E
[
∂l
∂ν

∣∣∣ x]
y

= 0.

The same principle applies to Eq.4.A.2, where the second term cancels out, hence

avoiding the need to compute the second order cross derivatives ∂2ν
∂θc1∂θ

c
2
.

Note that despite this simplification, none of the cross-derivatives are zero, mean-

ing that the formulation parameters θc are not orthogonal to each other.

4.B Simplified mMALA approach for the Gaus-

sian kernel BARBaR models

Let us look at the simplified mMALA as a type of MH algorithm, and assume

the standard implementation and the acceptance probability calculations for non-

symmetric proposals hold.

To implement mMALA, proposals p are generated from a Normal distribution.

Once we have specified a metric tensor matrix G, given a current state θc we can

sample a proposal θc∗ from N(a(θc∗),Σ(θc∗)), where

a(θc∗) = θc − ε2

2
G−1(θc)

∂

∂θc
(L+ Lprior)

Σ(θc∗) = ε2G−1(θc).

There are different options for the tensor matrix G, and we choose to use the

expectation of the Hessian, denoted as H̄, which allows to include stable second

order derivative information.

Now, as noted at the end of section 4.A, the formulation parameters are not or-

thogonal. To fully account for the correlation amongst them, we then should make
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a full joint proposal for all the parameters together.

Let us use a case with two different kernels, denoted as 1 and 2, to fully expand

the algorithm above. Take a model parameter ν(x) and assume a BARBaR for-

mulation with two components with unknown parameters be β1, β2,m1,m2, s1, s2.

Then, to obtain a joint update, Eq. 4.B.1 becomes

a(θc∗) =



β1

β2

m1

m2

s1

s2



− ε2

2
G−1(θc)∇ (L+ Lprior)

Σ(θc∗) = ε2G−1(θc),

where

∇(·) =



∂
∂β1

(·)
∂
∂β2

(·)
∂

∂m1
(·)

∂
∂m2

(·)
∂
∂s1

(·)
∂
∂s2

(·)


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and

G =



H̄β2 H̄β,m H̄βs

H̄T
β,m H̄m2 H̄ms

H̄T
βs H̄T

ms H̄s2


=



∂2ν
∂β2

1

∂2ν
∂β1∂β2

∂2ν
∂β1∂m1

∂2ν
∂β1∂m2

∂2ν
∂β1∂s1

∂2ν
∂β1∂s2

∂2ν
∂β2∂β1

∂2ν
∂β2

2

∂2ν
∂β2∂m1

∂2ν
∂β2∂m2

∂2ν
∂β2∂s1

∂2ν
∂β2∂s2

∂2ν
∂m1∂β1

∂2ν
∂m1∂β2

∂2ν
∂m2

1

∂2ν
∂m1∂m2

∂2ν
∂m1∂s1

∂2ν
∂m1∂s2

∂2ν
∂m2∂β1

∂2ν
∂m2∂β2

∂2ν
∂m2∂m1

∂2ν
∂m2

2

∂2ν
∂m2∂s1

∂2ν
∂m2∂s2

∂2ν
∂s1∂β1

∂2ν
∂s1∂β2

∂2ν
∂s1∂m1

∂2ν
∂s1∂m2

∂2ν
∂s21

∂2ν
∂s1∂s2

∂2ν
∂s2∂β1

∂2ν
∂s2∂β2

∂2ν
∂s2∂m1

∂2ν
∂s2∂m2

∂2ν
∂s2∂s1

∂2ν
∂s22



4.C Derivatives of the generalised Pareto distri-

bution

The log likelihood of the observed data under the generalised Pareto distribution

is

π (y|ν, ξ) =


∑N

i=1

[
− log

(
νi

1+ξi

)
−
(

1
ξi

+ 1
)

log
(

1 + ξi
νi

(1 + ξi)yi

) ]
for ξi 6= 0

∑N
i=1

[
− log

(
νi

1+ξi

)
− (1+ξi)yi

νi

]
for ξi = 0 .

Using the chain rule, the likelihood gradient can be computed as

∇βθπ (y|ν, ξ) = (∇βθ(Bθβθ))
T (∇θπ (y|ν, ξ) )

= BT
θ (∇θπ (y|ν, ξ) ) .
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The components of ∇ξπ (y|ν, ξ) are computed as

∂

∂ξi
π (y) =


− 1
ξ2
iGi

(1− 2ξi)(Gi − 1) + 1
1+ξi

+ 1
ξi

log (Gi) for ξi 6= 0

−yi
νi

+ 1
1+ξi

for ξi = 0

where Gi = 1 + ξi
νi

(1 + ξi)yi, and the components of ∇νπ (y|ν, ξ) are

∂

∂νi
π (y) =


1
νi

(
1−

(
1
ξi

+ 1
)
Gi−1
Gi

)
for ξi 6= 0

1
νi

(
1− Gi−1

ξi

)
for ξi = 0 .

Differentiating ∇βθπ (βθ) (θ = ξ, ν) again gives the Hessian matrix

∇βθ∇T
βθ
π (βθ) = ∇βθ∇T

βθ
π (y|ν, ξ) .

Applying the chain rule

∇βθ∇T
βθ
π (y|ν, ξ) = BT

θ

(
∇θ∇T

θ π (y|ν, ξ)
)
Bθ .

Note that the components of ∇θπ (y|ν, ξ) and (∇θ∇T
θ π (y|ν, ξ) ) are computed

separately for θ = ξ and θ = ν. Further, the expected values of the second

derivatives of the likelihood with respect to ξ and ν are

−EY
[

∂2

∂ξi∂ξj
π (y|ν, ξ)

]
=


1

(1+ξi)2 for i = j

0 for i 6= j
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and

−EY
[

∂2

∂νi∂νj
π (y|ν, ξ)

]
=


1

ν2(1+2ξi)
for i = j

0 for i 6= j

such that Hessian matrices are diagonal. Moreover, the expectations of all of the

cross derivatives ∂2

∂ξi∂νj
π (y|ν, ξ) are zero, since estimates of ξ and ν are asymptot-

ically independent by construction (e.g. Chavez-Demoulin and Davison, 2005).
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Chapter 5

Two-dimensional covariate

modelling

5.1 Introduction

Metocean and coastal engineers are often tasked with the estimation of the ex-

treme conditions that marine structures are likely to experience in their lifetime,

which need to be considered for both design and maintenance purposes. Extreme

value analysis provides an ideal framework for this type of inference. However, the

characteristics of extreme ocean environments tend to vary systematically with

known covariates such as storm direction, location and water depth. Then, cap-

turing the effects of underlying physical phenomena is essential to obtain a reliable

and trustworthy analysis. This requires building models which can include such

covariates, as well as statistical tools for analysis and extrapolation.

In Chapter 4, we focused on modelling non-stationary series by including a single
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Figure 5.1.1: Storm peak significant wave heigh Hs hindcast (in meters) for a
location in the North Sea, with corresponding wave direction (in degrees, with
0 corresponding to waves approaching from the North, and degrees increasing
clockwise) and season (in day of the year, for a year consisting of 360 seasonal
days).

covariate in the analysis. Nevertheless, it is often the case that multiple covariates

simultaneously contribute to the characteristics of extreme observations. This is

especially common for environmental datasets where a variety of climate processes

are present. For example, Figure 5.1.1 shows how the hindcast dataset used in

Chapter 4 exhibits both a directional and a seasonal pattern. Given the importance

of having a statistical model that can appropriately capture the non-stationarity

in a series, especially for extreme observations, clearly multiple covariates should

be included in the analysis if more than one covariate has a significant effect on

the response variable. For the remainder of this chapter, we focus on extreme

significant wave heights, which, as mentioned in Section 4.1, usually exhibit a va-

riety of covariate effects. We concentrate here on the observed variability with
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respect to season and wave direction, although some remarks on extensions to

higher dimensions can be found in Section 5.6.

The presence of a second additional covariate introduces considerable complica-

tions, from a modelling, computational and prediction perspective. If one was

to use a simple linear regression model, the introduction of additional covariates

would be straightforward, with a single extra term and corresponding unknown re-

gression coefficient. Nevertheless, this approach assumes the covariate effects mod-

elled are independent and of a linear nature, and this model, which was already

inadequate for one-dimensional covariates, is incapable of capturing nonlineari-

ties and interaction between multiple ones. As reviewed in Section 4.1, a variety

of parametric and non-parametric formulations provide more flexible approaches,

each with their own advantages and disadvantages. Generalised additive mod-

els would allow the introduction of multiple covariates with nonlinear behaviours,

although they would neglect to model the interaction between them. Hence, ex-

tending the models from Section 4.1 to a two-dimensional covariate domain is not

straightforward.

First of all, one needs to produce a model which is able to properly capture the

effect of one or more covariate on the response. Scalability of the model becomes

an essential factor, as the computational cost involved increases considerably when

a new covariate is included.

Let us, for example, consider the P-spline formulation. As detailed further in Sec-

tion 5.2.2, a standard approach consists of obtaining the model basis matrix as a

tensor product of bases in each covariate dimension. The resulting basis has now

n1 × n2 knots, with corresponding unknown coefficients, where n1 and n2 refer to
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the number of knots for the basis of the first and the second covariate respectively.

The total number of unknown parameters, then, increases rapidly, as each knot

added, say, for the first covariate, involves the addition of n2 knots in the total

joint basis. This effect can be seen in Figure 5.1.2. Then, even starting from

two fairly low dimensional bases, say with 10 knots for each covariate space, the

resulting joint basis would have 100 knots with corresponding highly correlated

unknown coefficients to be estimated.

Figure 5.1.2: Example of a knots locations for a 2-D P-spline basis obtained with
the approach from Section 5.2.2. The knot locations for each individual covariate
domain are shown as •, while ∗ indicates the resulting knots on the 2-D domain.
Here we show the effect of adding a knot, denoted as a blue • in the first covariate
domain, requiring the addition of all the knots denoted by blue ∗ in the final 2-D
basis.

This issue affects both smoothing and regression analysis, and arises even when

only one covariate is present. Let us consider a one-dimensional smoothing appli-

cation on the motorcycle crash helmet impact data from Silverman (1985), as this

has often been used in the spline literature for illustration purposes (Eilers and
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Marx, 1996). Smoothing consists in finding an estimate of some smooth function

f(x) modelled such that

Y |X = x ∼ f(x) + ε = B(x)β + ε,

for some response Y1, . . . , Yn with corresponding covariates X1, . . . , Xn, some basis

matrix B(x) and some random noise ε ∼ N(0, σ2). This corresponds, for penalised

splines, to finding explicit solutions β to the linear system (B′B + ρQ)β = B′y,

for the spline basis B = B(x), penalty matrix Q and roughness coefficient ρ. In

practice, the model covariance

(B′B + ρQ)−1 (5.1.1)

then needs to be computed. Inverting large matrices is complicated and can

incur numerical instabilities especially if the matrix for inversion is rank defi-

cient. To assess this stability, one can compute the condition number for a ma-

trix inverse to measure the worst-case sensitivity to small perturbations (Higham,

2002). Larger condition numbers indicate “ill-conditioned” matrices, where rela-

tively small changes in the input matrix can cause large changes in the solution

to the system of equations. It is often the case that ill-conditioned matrices stem

from overdetermined systems with highly correlated components. Hence, a differ-

ent way to investigate this issue consists of considering the correlation between

terms in the inverse matrix.

We then decide to examine both of these factors for a series of basis with an in-

creasing number of spline components p: for each we compute the conditioning
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number as well as correlation matrix, visualised using the imagesc function in

Matlab, for the inverse in Eq. 5.1.1. In all cases, a value for the roughness

coefficient term ρ was obtained using cross-validation to maximise the predictive

performance of the model. We can then proceed to consider the inverse matrices,

defined as in Eq.5.1.1, for a range of basis components, where in each case we con-

sider the inverse from the optimum smoothing fit. As we can see in Figure 5.1.3,

bases with more components require higher values of roughness penalty in order

to contain overfitting. As a roughness penalty controls the influence that adjacent

components have on each other, we notice that when a stronger smoothness is

imposed, more components have high correlation values.

Figure 5.1.3: Smoothing was performed for the motorcycle crash helmet impact
data from Silverman (1985). Correlation values and conditioning numbers are
shown for the inverse matrix, defined as in Eq.5.1.1, for bases with (left to right,
top to bottom) p = 20, 40, 80, 500 spline components.
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For example, by simple visual inspection, a correlation value larger than 0.8 can

be noticed between any component and at most two adjacent ones for the basis

with 20 knots. This number increases to at least 4 in a basis with 80 components,

and over 30 in the basis with 500 components. Similarly, the conditioning number

for the inverse matrix increases noticeable with the number of knots. These issues

only become more marked when more than one covariate dimension is considered,

in part due to the increased number of knots required. For example, to produce a

directional-seasonal analysis, Randell et al. (2015a) use 32 knots in direction (one

every 11.25◦) and 24 in season (approximately one per fortnight), for a total of 768

components. Furthermore, the correlation and instability issues highlighted above

only worsen when we move from smoothing to regression. For example, inference

for the generalised Pareto distributions is affected by inherent difficulties, such as

the sparsity of the data and its complicated likelihood surface. In fact, since the

latter is not convex, it is difficult for methods to converge to the global optimum

solution rather than to a local one, with high correlation and instability further

hindering the process. In the case of MCMC methods, these factors result in

poor mixing and convergence of the chain, and are further complicated by the

computation of the roughness parameters as part of the Bayesian approach.

These issues are potentially more marked as we are using a gridded approach to a

two-dimensional covariate domain. In fact, while gridded representations are easy

to codify, they might be an inefficient way of describing the underlying surface.

Other models, which are constructed to work specifically on 2-D spaces, might

be more efficient and stable. These include, for example, the use of 2-D radial

basis functions to extend the models from Chapter 4 or a partition approach such
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as a Voronoi tessellation. Partition models have become increasingly popular for

function estimation given their ability to detect spatial discontinuity (Knorr-Held

and Raßer, 2000) and their inherent parsimony. This nonlinear approach makes

very few assumptions about the underlying covariate structure and allows the data

to dictate the nature of the partition, by providing enough flexibility to capture

features of the data produced by the observed covariates. This flexibility might

provide a further advantage with respect to a different important issue: the ability

of any of these models to fully capture more “local” behaviour and avoid over-

simplifying the relationship between the covariates and the response. It is clear

from an oceanographic perspective that partition models for covariates are likely

to provide parsimonious representations of covariate effects in some cases. Such

an advantage might become even more marked for higher-dimensional covariates.

Although these are beyond the scope of the work developed in this thesis, scala-

bility of models to higher dimensions is one of the issues motivating this research

and is worth considering even in the case of 2-D covariates.

Partition models have been used in a variety of applications, including image

analysis (Green, 1995), cluster detection (Knorr-Held and Raßer, 2000), disease

mapping (Denison and Holmes, 2001), and modelling of spatial NHPP intensities

using a Voronoi tessellation (Heikkinen and Arjas, 1998, 1999). In general, these

models have found a natural application in the modelling of spatial behaviour,

and we refer the reader to the monograph by Okabe et al. (2009) for further

details and application examples of Voronoi tessellation. In this work, we propose

using a partition based on Voronoi tesselation to capture the covariate-dependent

behaviour in the parameters of the statistical distributions fitted.
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Each of these models has their own limitations, often in relation to computational

efficiency and ability to obtain an appropriate level of smoothness. The objective of

our work is to propose a flexible and parsimonious approach for a two-dimensional

covariate. With this aim, we propose extensions of the models from Chapter 4,

as well as introduce new ones. In particular, we extend the use of radial basis

functions to periodic covariates in a 2-D domain. Relevant adaptations required

for this application are detailed in Section 5.2. Following the same approach as

for RBFs in Chapter 4, we also consider a Voronoi partition model to obtain

piecewise constant estimates for the parameters of the Poisson and generalised

Pareto distribution (GPD) fitted. These techniques are used to propose some new

formulations and relevant implementations, as detailed in Section 5.2. To our

knowledge, there have been no previous studies applying Voronoi tessellation to

extreme value analysis and the characterisation of model parameters.

The outline of the chapter is as follows. Section 5.2 introduces the different model

parameterisations, while in Section 5.3 we present the final models built upon

them and summarise the inference approach and settings. Section 5.4 introduces

the case studies used, which were created with the aim of reproducing realistic

covariate-dependent behaviour. We briefly describe underlying model forms used

to generate samples for inference and we analyse model performance by considering

parameter estimates, return value distributions and statistical tests that compare

the latter to the known “true” values. In Section 5.5, we apply the methodology

to the hindcast data from the Northern North Sea analysed in Chapter 4 as well

as from a location in the South China Sea neighbouring the site considered in

Chapter 3. Finally, Section 5.6 provides a discussion of results, with conclusions
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of the study and prospects for further research.

5.2 Non-stationary extremes

Suppose we are interested in a process {Yt} with two-dimensional covariate vector

X t ∈ R2. For example, the response variable may be significant wave height, with

wave direction and day of the year to account for seasonality as the covariates. We

can then proceed to incorporate the covariates in the same manner as in Section

4.2.1, by formulating the Poisson rate and the GPD parameters as functions of the

covariate of interest, when in this case the covariate is two-dimensional. Note that

for the rate of exceedance, we can use the same “binning” approach as in Section

4.2.1. In this case, we focus on the joint covariate domain and divide it into kb

small subsets, such that each covariate pair {x1,t, x2,t} ∈ Bi if x1,t ∈ B1,i, x2,t ∈ B2,i,

where B1,i and B2,i are individual bins for x1,t and x2,t respectively and Bi = B1,i×

B2,i. Then, we can define Nu
i as the number of threshold exceedances Yt|Yt >

u,Xt ∈ Bi, where Bi is the ith bin, and we can model it as Nu
i ∼ Poiss (φ (xt) ) for

i = 1, . . . , kb and kb is the total number of combined bins Bi.

5.2.1 Covariate parameterisation

We consider three different forms of basis function in this chapter, corresponding

to P-spline (Brezger and Lang, 2006; Eilers and Marx, 2010), and two novel ap-

proaches, a Voronoi tessellation formulation, and a 2-D BARBaR-f model using

bivariate Von-Mises kernels. Further details and an overview of each formulation
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are presented below.

5.2.2 Spline basis

There are different spline formulations one could use to represent a bivariate co-

variate space (Ruppert et al., 2003). The most natural extension of the models

presented in Section 4.2.2 involves expressing the parameter θ(x) in terms of an

appropriate basis for the joint domain D of the covariates, where D = D1 × D2,

and hence creating an appropriate P-spline basis for each of the covariates consid-

ered. In our case, since we are interested in a seasonal covariate (day of the year)

and a directional one (wave direction), we adopt two bases of periodic B-splines.

These are evaluated at each of the n observations, yielding an n× pi basis matrix,

where p1 and p2 represent the number of basis functions in the respective basis.

Note that one could choose to first divide the covariate domain into kb bins so as

to reduce the dimension of the spline basis. Then we can define a basis matrix

for the two-dimensional domain D as a Kronecker product, denoted as ⊗, of the

marginal basis matrices (Eilers and Marx, 1996), such that

Bθ(x) = Bθ(x1)⊗Bθ(x2),

where Bθ(x) is an kb × p matrix, p = p1p2. Alternatively, one can use the original

undivided domain, and obtain the combined basis as

Bθ(x) = (Bθ(x2)⊗ 1p1)� (1p2 ⊗Bθ(x2)) ,
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where Bθ(x) is an n × p matrix, p = p1p2, � denotes the element-by-element

multiplication of two matrices and 1p̃ = (1, . . . , 1) is a 1 × p̃ vector of ones, for

p̃ = {p1, p2} (Eilers et al., 2006). In both cases, the model parameter θ(x) can

then be expressed as in Eq. 2.3.2 for some p× 1 vector of basis coefficients βθ. As

in previous chapters, we opt to use the original undivided domain in order to avoid

potential information loss as well as issues with the arbitrariness of the binning

procedure.

In order to implement the P-spline approach, we also need a roughness penalty

matrix. Recall from Section 2.3.4 that, in the case of a one dimensional covariate,

we can use a difference matrix Dθ to define a penalty matrix Qθ = D′θDθ. For

higher dimensions, we proceed by first obtaining the difference matrix for each of

the marginal bases, in this case Dθ,1 for Bθ(x1) and Dθ,2 for Bθ(x2), where Dθ,1

and Dθ,2 are n× p1 and n× p2 matrices respectively. We can then construct each

penalty matrix as

Pθ,1 = Dθ,1 ⊗ Ip1 ,

Pθ,2 = Ip2 ⊗Dθ,2,

where Ip denotes the p × p identity matrix, and the joint smoothness penalty is

the Kronecker sum

Pθ = ρθ,1Pθ,1 + ρθ,2Pθ,2 = ρθ,1 (Dθ,1 ⊗ Ip1) + ρθ,2 (Ip2 ⊗Dθ,2) , (5.2.1)

for some roughness coefficients ρθ,1, ρθ,2 > 0. It is worth noticing that this approach

assumes a constant smoothness across each covariate domain, while the models
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we propose allow varied degrees of smoothness to arise in different parts of the

covariates domain.

5.2.3 Voronoi basis

We consider using a Voronoi tessellation of the covariate space as a basis. This

approach results in a partitioning of the covariate space by selecting some points

known as sites, so that for each site there is a corresponding sub-region consisting

of all covariates that are closer to that site than to any other (Berg et al., 2008).

Let x ∈ D, where D is some metric space where we can define some distance metric

R. We can then select K sites vj , j = 1, . . . , K, and define the corresponding K

regions Dj such that the region Dk is the set of all points x ∈ D whose distance

to vk is not greater than their distance to any of the other sites vj , where j 6= k.

In practice, we first need to define some distance metric R(x, D̃) = inf{R(x,v) |

v ∈ D̃} between the point x and the subset D̃. Then, the Voronoi cell Dk of vk is

Dk = {x ∈ D | Rx,Dk) 6 R(x,Dj) for all j 6= k},

where all the regions Dj are assumed to be disjoint.
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Figure 5.2.1: Example of a Voronoi tessellation of a [0, 1] covariate space, with cell
edges shown by the dashed line and sites by the red ∗.

Figure 5.2.1 shows an example of such a partition , where for illustration purposes

we choose [0, 1] as a covariate space. Here, we consider the case where D is a

Euclidean plane, and we have a finite set of sites v1, . . . ,vK . In this case each site

vk is simply a point, and its corresponding Voronoi cell Dk consists of every point

in the Euclidean plane whose distance to vk is less than or equal to its distance

to any other vj , j 6= k. Each such cell is a convex polygon, the line segments of

the Voronoi diagram are all the points in the plane that are equidistant to the two

nearest sites and the Voronoi vertices (nodes) are the points equidistant to three

(or more) sites (Okabe et al., 2009).

Different choices for the distance metric R are possible, with a common example

being the Euclidean distance, such that R(x,Dk) =
√

(x1 − v1,k)
2 + (x2 − v2,k)

2.

In case like ours, where one is interested in periodic covariates, a periodic distance

formulation should be chosen. To do so, we can find the distance between two

points on a plane in terms of their respective angle, since x1, x2 ∈ [0, 2π], such
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that

R∗(x,Dk) = arctan

{
sin(x1 − vk,1)

(x1 − vk,1)

}
+ arctan

{
sin(x2 − vk,2)

cos(x2 − vk,2)

}
.

Following the same intuition as for the radial basis functions in Chapter 4, one

can use a Voronoi tessellations to form a basis matrix Bθ(x), where each entry bi,j

is just the distance contribution for component j given some observation x such

that

bi,j = R(xi,Dj),

and a model parameter θ(x) can be expressed as in Eq. 2.3.2. Then, for some

p × 1 vector of basis coefficients βθ, the resulting θ(x) is a piece-wise constant

function on the covariates plane. We call this approach Voronoi tessellation basis

regression (VTBR).

There are many algorithms to implement a Voronoi tessellation of the space, al-

though they can be slow in implementation: we refer the reader to the monograph

by Berg et al. (2008) for more details, as well as the surveys by Aurenhammer

(1991) and Okabe et al. (2009). Many of these can be difficult to implement and

hard to extend to higher dimensions (Reem, 2009). While boundaries may be dif-

ficult to compute, we are mostly interested in determining what cells a covariate

value belong to. In our case, we aimed to find an approximation to the Voronoi

partition that could be easily adapted to any desired combination of periodic and

non-periodic domains, extendible to higher dimensions, easily computed and dif-

ferentiable, in case we were interested in using derivative-based MCMC methods

during inference. Hence we looked for a formulation that was similar, in mathe-
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matical expression, to some known kernel densities, and whose behaviour similarly

captured the symmetrical decay of the density as points further from the site of

interest are considered. We also aimed to preserve the shape of the cells as well

as the option of having, as in an original Voronoi tessellation, each observation

contribute to a single cell only. First, we note that, by using an exponential func-

tion of a symmetrical distance metric, we can ensure the positivity of the resulting

outcome as well as obtain a function that is easily differentiable. Furthermore,

given that all points x ∈ [0, 2π) and the covariate domains are periodic, we note

that the distances R∗(x,Dk) ∈ [0, d∗], where d∗ =
√

(π2 + π2) is the maximum

distance between any two points on the space. Then, if we compute

R̃(x,Dk) = exp

{
−R

∗(x,Dk)
s

}
, (5.2.2)

for a small s > 0, e.g. s = 10−4, R̃(x,Dk)→ 0 for larger values of R∗(x,Dk) and

R̃∗(x,Dk)→ 1 for smaller distances R∗(x,Dk). If for each point x we compute the

distance to each of the sites vj, j = 1, . . . , p, we can then normalise each distance

by the sum of all the distances, that is

R(x,Dk) =
R̃(x,Dk)∑p
j=1 R̃(x,Dj)

. (5.2.3)

Then, provided s is small, e.g. s < 10−3, all but the smallest distance will yield a

value R(x,Dk) = 0, while for the closest site vk∗, R(x,Dk∗) = 1. Note that larger

values for s produce a smoother transition between subregions, where the metric

R(x,Dk) no longer yields binary 0-1 contributions. Instead, observations close to

the edges of a region will be the result of contributions of neighbouring regions,
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yielding to smoother fuzzy edges.

We illustrate the effect of varying values of the decay parameter in Figure 5.2.2.

Here we consider a random partition of a periodic domain into 6 cells, each with

randomly chosen coefficients. While location and coefficients for each cell compo-

nent remain unaltered, we investigate increasing values of the decay parameter.

Figure 5.2.2: Partition of a periodic domain into 6 cells with fixed random
locations and coefficients, and decay parameter (left to right, top to bottom)
s = 0.0001, 0.1, 1, π.

For the work presented in this chapter, we obtain the tessellation for the VTBR

model using the metric from Eq. 5.2.2, with a fixed very small value for the decay

parameter. We also consider two further variations. For the first one, denoted as

VTBR-smooth (VTBR-s), we let parameter estimates change smoothly between

adjoining cell by allowing larger decay parameters. Finally, we consider the case
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where contributions from all cells sum to one at all points by using the metric from

Eq. 5.2.3: we denote the resulting model as VTBR-smooth-rescaled (VTBR-sr).

The specific details for the models considered are presented in Section 5.3.1.

5.2.4 Bayesian adaptive radial basis functions in 2-D

We now consider an extension of the BARBaR-f formulation introduced in Section

4.2.2 for a two-dimensional covariate. As we have seen in Section 2.3.5, radial

basis functions can be defined for spaces of dimensions higher than one when an

appropriate symmetric distance function is used. We can model the bases for φ (x) ,

ξ (x) and ν (x) as vectors of p kernels, where each of these kernels is defined on

the two-dimensional covariate space, and represent a general parameter θ (x) as

the linear combination of these kernels. For the case with two periodic covariates,

we could have used an approximation to the bivariate wrapped normal, which

would have been constructed similarly to Eq. 4.3.12. Nevertheless, following the

same approach, 5 terms in each of the dimensions would have to be considered, for

a total of 25 terms in the final computation. Due to the considerable increase in

computational cost, we propose using the cosine variant of the bivariate Von-Mises

kernels with density proportional to

f(x1, x2) ∝ exp{κ1(x1 −m1) + κ2 cos(x2 −m2)− κ3 cos(x1 −m1 − x2 +m2)}

for covariates x1, x2 ∈ [0, 2π], where m1, κ1 > 0 and m2, κ2 > 0 are the means

and concentration for x1 and x2 respectively and κ3 <
κ1.∗κ2

κ1+κ2
is related to their

correlation. Figure 5.2.3 shows the effect of different values of the parameters
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κ1, κ2, κ3 for a single Von-Mises component with a fixed β coefficient.

Figure 5.2.3: Single Von-Mises component, for x1, x2 ∈ [0, 2π], with a fixed coeffi-
cient, for different values of the κ1, κ2, κ3 parameters.

We refer the reader to the work by Mardia (2013) for a discussion on different

variants of the bivariate Von Mises distribution.

5.3 Inference procedures and methods evalua-

tion

In a similar way to Chapter 4, we use the generalised Pareto distribution (GPD)

peaks over threshold (POT) model, as described in Section 4.2.1, and implement

Bayesian methods for the estimation of the unknown parameters, following an

approach broadly similar to Algorithm 2. In Section 5.3.1 we describe all the for-

mulations used to represent the Poisson-GPD model parameters, while in Section

5.3.2 we illustrate the structure of our Bayesian model and we discuss the prior

and posterior structures for different parameterisation approaches.
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5.3.1 Investigated models

We used the formulations introduced in Section 5.2 to obtain the following models

for inference:

Model 1 P-spline : penalised spline with 20 fixed knots in each covariate domain,

for a total of 400 basis components. The knot locations were spaced evenly

on the two-dimensional covariate domain. Note that this approach is used

as a benchmark;

Model 2 P-spline-l: penalised spline with only 5 fixed knots unevenly spaced fixed

knots in each covariate domain, assigned depending on the density of obser-

vations, with a total of 16 basis components;

Model 3 VTBR: Voronoi tessellation with 8 cells and sites initiated depending on

the density of observations and updates as part of the inference;

Model 4 VTBR-s: Version of the Voronoi tessellation where the edge between cells

is allowed to change smoothly, with the rate of this change depends on the

unknown “decay” parameter s in Eq. 5.2.2, and where each cell has a cor-

responding decay parameter sj. The model is fitted using 6 cells, with sites

initiated depending on the density of observations and the decay parameters

initiated to some very small value, e.g. sj = 10−4 for all cells;
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Model 5 VTBR-sr : similar to Model 4, we consider a tessellation with unknown

decay parameters. Each basis component is also rescaled by the sum of the

contributions from the other components: this insures that, at each given

observations, the contributions of all cells sum to 1, in a similar manner to

spline formulations,in an attempt to ensure stability in the computations.

The model is fitted using 6 cells, sites are initiated depending on the density

of observations and the decay parameters are initiated to some very small

value, e.g. sj = 10−4 for all cells;

Model 6 BARBaR-f : Bivariate Von Mises RBFs with 4 kernels, with locations initi-

ate again via a k-means algorithm and using Σθ =
[

1 0

0 1

]
as initial covariance

matrix for all model parameters;

Model 7 BARBaR-fr: Bivariate Von Mises RBFs with 4 kernels, with locations

initiated depending on the density of observations and using Σθ =
[

1 0

0 1

]
as

initial covariance matrix for all model parameters. Similarly to Model 5,

each basis component is also rescaled by the sum of the contributions from

the other components. Given the additional rescaling step, which provides

a formulation similar to a B-spline basis, we decide to omit the baseline

coefficient.

Each approach scales differently with the number of components used for the

analysis. Table 5.3.1 summarises the total number of unknown parameters that

need to be estimated during inference, hence providing some insight in model
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Model
Basis

param.
per comp.

No.
hyperparam.

Tot. no.
param.

Tot. no.
param.

in studies
P-spline 1 2 p1p2 + 2 402, for p1 = p2 = 20

P-spline-l 1 2 p1p2 + 2 27, for p = 5
VTBR 1 + 2 1 3p + 1 25, for p = 8

VTBR-s 1 + 2 + 1 1 4p + 1 25, for p = 6
VTBR-sr 1 + 2 + 1 1 4p + 1 25, for p = 6

BARBaR-f 1 + 2 + 3 2 6p + 2 26, for p = 4
BARBaR-fr 1 + 2 + 3 1 6p + 1 25, for p = 4

Table 5.3.1: Summary of the total number of unknown parameters for the mod-
els fitted in Sections 5.4 and 5.5. P-spline bases have p1 and p2 components for
the two covariates domain respectively, and the other models have p total compo-
nents. The second column considers the basis formulation parameters required for
each component listed by type, e.g. each BARBaR-f component is defined by 1
coefficient, 2 locations and 3 κ parameters.

complexity. For both the simulation study and the hindcast analysis, we opted

to choose the number of components for each approach in order to have a similar

number of unknowns and model complexity. As we have pointed out in Section

5.1, the P-spline benchmark model requires a much larger number of parameters

to be estimated.

5.3.2 Bayesian inference

Given the results obtained from one-dimensional models, in order to improve mix-

ing we decide to introduce a hyperparameter λθ for the prior of the coefficients

for all the non-spline based models, including a separate hyperparameter λ0,θ for

the baseline coefficient in the BARBaR-f models. Spline models, as before, benefit

from the use of roughness coefficients ρθ,1, ρθ,2. Hence, following the approaches

and notation from Sections 4.2.2 and 5.2, model fitting corresponds to estimating,

for each of the distribution parameters, the unknown parameters:
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• Ωθ = {βθ, ρθ,1, ρθ,2} for both P-spline models;

• Ωθ = {βθ,vθ,1,vθ,2, } for the Voronoi tessellation VTBR model;

• Ωθ = {βθ,vθ,1,vθ,2, s, λθ} for the adapted Voronoi tessellation models VTBR-

s and VTBR-sr;

• Ωθ = {βθ,mθ,1,mθ,1,κθ,1,κθ,2,κθ,3, λ0,θ, λθ} for both the Von-Mises BARBaR-

f models.

Recall from Section 4.3.1, we can express the joint posterior distribution for the

Poisson-GPD model parameters in terms of the relevant conditional posterior dis-

tributions. For all the above models, we let Nu
i be the number of threshold

exceedances Yt|Yt > u,Xt ∈ Bi, where Bi is the ith two-dimensional bin, and

Nu
i ∼ Poiss (φ (xt) ) for i = 1, . . . , kb. These resulting independent threshold ex-

ceedances are

Yt|Yt > u ∼ GP (ψ (xt) , ξ (xt) ) ,

and we use the notation θ (x) to refer, more generally, to the Poisson rate, GPD

scale and shape, as both will have the same basis model structure from Eq. 2.3.2.

Then for the P-spline models, we have

βθ|ρθ,1, ρθ,2 ≈ ρ
1/2
θ exp

(
−ρθ

2
βθ

TQθβθ

)
, (5.3.1)

ρθ,1, ρθ,2 ∼ Gamma(10−3, 10−3),

where in this case Qθ correspond to the matrix Pθ as defined in Eq. 5.2.1. This

set up is similar to the case with a one-dimensional covariate, where now the
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coefficients have a prior density proportional to the improper Gaussian density in

Eq. 5.3.1, where Qθ depends on penalty matrices on both covariates P1,θ, P2,θ with

corresponding roughness parameters ρθ,1, ρθ,2. These are given an uninformative

Gamma prior distribution, which is conjugate with the prior Gaussian distribution

for βθ.

For the Voronoi tessellation model, for each cell component j = 1, . . . , k, we suggest

the following prior distributions:

βθ,j|λθ ∼ MVN(0, λθI)

mθ,j ∼ Uniform(dl, dr),

γλ ∼ Gamma(g, h),

λθ ∼ Gamma(10−3, 10−3).

Here, [dl, dr] denotes the range of the domain of the covariate and the coefficients

βθ,j are mutually independent of each other and of the other parameters, with a

ridge-type penalty imposed by the normal prior and the corresponding smoothness

hyperparameter is common across all the cell components. For the VTBR-s and

VTBR-sr models, obtained from an adaptation of the Voronoi tessellation, we

impose that the decay parameter s ∼ Gamma(g, h) to guarantee its positivity.

For the Von Mises BARBaR formulations, for each component j = 1, . . . , k, we
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suggest the following prior distributions:

βθ,j|λθ ∼ MVN(0, λθI)

mθ,j ∼ Uniform(dl, dr),

κθ,1,j, κθ,2,j ∼ Gamma(g, h),

κθ,3,j ∼ N(0, t),

λθ ∼ Gamma(10−3, 10−3).

Additionally, the BARBaR-f model formulation includes a baseline coefficient,

for which we assume βθ,j|λ0,θl ∼ N(0, λ0,θ). In this case, a separate prior, and

corresponding hyperparameter, are proposed for the baseline term, such that λ0,θ ∼

Gamma(10−3, 10−3). In fact, we expect the other coefficients to capture local

variations, and the baseline to represent the average behaviour of the parameter

being modelled. Hence, we can assume baseline and components’ coefficients might

have considerably different behaviours, so that separate priors would ensure better

mixing of the MCMC and faster convergence.

5.3.3 MCMC inference algorithms

For inference, we follow the same general approach presented in Section 4.3.2 using

a Metropolis-within-Gibbs MCMC algorithm. At each iteration of the MCMC,

each of the parameters is sampled in turn conditionally on the values of others.

The full conditional posterior distribution is Gamma by conjugacy for both the

precision parameters ρθ,1, ρθ,2, in the spline models, and the penalty parameters
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λ0,θ, λθ, for the other models, and these parameters are sampled exactly in a Gibbs

step. All the other parameters are estimated using a general Metropolis-Hastings

(MH) scheme, since full conditional distributions are not available in closed form

for their posteriors. Sampling is performed using the methods presented in Section

2.2.2, where the specific method depends on the basis model type. Here we consider

the approaches for one of the statistical model parameters, which are applied to

all model parameters in turns for each MCMC sweep.

P-spline models Similarly to the work in Chapter 4, the coefficients of the spline

basis are updated with a single Riemann manifold Metropolis-adjusted Langevin

algorithm (mMALA) step. Then, a Gibbs step is used to update the two preci-

sion parameters ρθ,1, ρθ,2 given the current MCMC state. All knots locations are

assumed to be fixed and remain unchanged during the inference.

VTBR models For the Voronoi tessellation based model, we first update all the

coefficient parameters using an mMALA step. Then, all sites locations, in each

dimension, are considered one by one and updated using a simple RWMH, as this

performed well in test in terms of mixing of the chain and convergence. Finally,

the penalty parameter λθ is updated via Gibbs sampling. The same set up is used

for the VTBR-s and the VTBR-sr models, although these include an additional

stage before the update of the penalty parameter. This involves a joint RWMH

step for all the decay parameters of the different cells. Again, the RW algorithm

was preferred as it yielded good convergence and mixing, while resulting in lower

computational costs than the mMALA.
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BARBaR models The two models based on Von Mises kernels both follow the

same approach. As for all other models, all the basis coefficient are updated via

an mMALA step, while all location parameters are later updated, one at a time,

with a RWMH step. Then, a single joint mMALA update is performed on the

three covariance parameters for all the components. In this case, we opt for a

gradient based method to reduce the number of MH steps to be performed and

improve the MCMC mixing and convergence, as a RW approach tested poorly in

this case. Then, using Gibbs sampling, the penalty parameters are updated. Note

only one penalty parameter is updated for the BARBaR-fr model, which does not

have a baseline term, while two penalty parameters are present and updated for

the BARBaR-f formulation.

5.3.4 Return value distributions and comparison methods

To assess performance we first focus on comparison of the posterior estimates of the

statistical model parameters. We then follow the same methodology introduced in

Section 4.4.1 to obtain distributions of return values corresponding to long return

periods. To apply the procedure summarised in Algorithm 3 when two covariates

are present, it is sufficient to adapt the way we define bins, by dividing the joint

covariate domain into nb small subsets Sj, j = 1, . . . , nb. Then each covariate pair

{x1,t, x2,t} ∈ Sj if x1,t ∈ S1,J , x2,t ∈ S2,j, where S1,J and S2,j are individual bins

for x1,t and x2,t respectively and Sj = S1,j × S2,j.

We consider estimates of “omni-covariates” values, which in this case means con-

currently omni-directional and omni-seasonal. We also inspect the model perfor-
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mance by directional octant as well as for 12 seasonal sectors corresponding to

30-day periods.

For the case study in Section 5.4, we then compare all these estimated distribu-

tions with the corresponding values obtained from the original parameters used to

simulate the datasets. As part of this final assessment, we also use the statistical

tools described in Section 4.4.1, namely the Kolmogorov-Smirnov (KS) and the

Kullback-Leibler (KL) criterion, to quantify the discrepancy between estimated

and the “true” underlying distributions.

5.4 Case studies

We follow the same approach to simulate data as the one used by Jones et al.

(2016) for the samples used in Chapter 4. We consider three cases, each with

100 samples of approximately 2000 observations, and assume they correspond to

an observational period of T years. All the samples were constructed to reflect

some features that we are likely to observe in hindcast data from various ocean

basins (Randell et al., 2014). Furthermore, they cover a range of behaviours with

increasingly complicated underlying models for the Poisson-GPD parameters. For

example, in Case 1 the Poisson parameter is assumed to be constant, while in Case

2 and Case 3, we define φ (x) = φ̃(x)× 2000/cρ, where φ̃(x) is defined below and

we let cρ =
∫ 360

0
φ̃(x)dx in order to simulate 2000 observations.

Case 1: For extreme value threshold u (x) = 0, we simulate 2000 observations

with a uniform Poisson rate φ (x) = 2000/360 per degree covariate, and a low order
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Fourier parameterisation of GPD shape ξ (x) = −0.2 + 1
10

sin (x1− π
6
) sin (x2) and

scale ψ (x) = 2.5 + 1
2
(sin (x1) + cos(x1 − 0.5) + cos(x1)).

Case 2: For extreme value threshold u (x) = 0 and the same Fourier param-

eterisation of GPD shape and scale as in Case 1, a non-uniform Poisson rate

φ (x) = 1
2

max (1.3 + 2 sin(x1) + sin(x2) + 1.6, 0)× 2000/cρ.

Case 3: For extreme value threshold u (x) = 0, a non-uniform Poisson rate

φ (x) = 0.1 + 5F̊2

x,
0.5π

1.6π

 ,Σρ,1

+ 30F̊2

x,
0.7π

3.5

 ,Σρ,2



+ 10F̊2

x,
1.5π

0.3π

 ,Σρ,3

× 2000

cρ
,

where

Σρ,1 =

 0.3 −0.15

−0.15 0.35

 , Σρ,2 =

2.5 0

0 0.7

 , Σρ,3 =

1.5 0.3

0.3 0.4

 ,

ξ (x) = −0.3 + 1.2F̊2

x,
0.6π

3.5

 ,Σξ,1

+ 2.2F̊2

x,
1.4π

0.2π

 ,Σξ,2


where

Σξ,1 =

0.7 0

0 0.5

 , Σξ,2 =

 2 0.3

0.3 2.2

 ,
and
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ψ (x) = 1.8 + 1.2F̊2

x,
0.3π

1.4π

 ,Σψ,1

 , where Σψ,1 =

1.5 0

0 1

 .
Here, we define F̊2(·) to an approximation of a bivariate wrapped normal density,

such that

F̊2 (x,m,Σ) = 1

2π
√
|Σ|

6π∑
j=−4π

6π∑
k=−4π

exp

−1
2

x −m−
2πj

2πk


Σ−1

x −m−
2πj

2πk



′ .

Figure 5.4.1: Parameter values used to simulate datasets for Case 1 (top), Case 2
(middle) and Case 3 (bottom). From left to right, panels show parameter variation
of GPD shape ξ (x) , scale ψ (x) and Poisson rate φ (x) with direction and season
for each case.

Note that, for plotting and analysis purposes, we will refer to the response as sig-

nificant wave height Hs, and to the two covariate as “wave direction” (or direction)
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and “season” for x1 and x2 respectively.

Figure 5.4.1 shows the resulting parameter variations with respect to the two co-

variates for all 3 cases. Note that the parameter variation of the GPD shape ξ (x)

and scale ψ (x) with direction x are identical in Cases 1 and 2. The main and

only difference between them lies in the Poisson rate φ (x) , which is constant in

Case 1 only. In Cases 2, the Poisson rate is assumed to vary with respect to both

covariates, has lowest values in the same directional sector where the scale param-

eter is also low. It is worth noticing that the shape ξ (x) is negative throughout.

Case 3 exhibits more complicated behaviour in the Poisson rate, while the shape

parameter includes some positive values in a small part of the covariates domain.

Figure 5.4.2: Illustrations of a sample realisation from each of Cases 1 (top), Case
2 (middle) and Case 3 (bottom). From left to right, panels show the response Hs
values against direction, season and with respect to both covariates.

Figure 5.4.2 illustrates a typical sample realisations for each of the three cases.

It is possible to notice the difference in size and variation of the exceedances, as
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well as the subsets of the domain with very few observations, corresponding to the

lowest values of the Poisson rate parameter.

5.4.1 Inference and tests

For each case, the extreme value threshold u was fixed at zero during inference,

while both the GPD shape ξ and scale ψ of exceedance size vary as a function of the

covariate x. As before in Chapter 4, we use a constant model for the Poisson rate

φ of threshold exceedance Case 1, while this is covariate dependent in Cases 2 and

3. We proceed to perform inference using the methodology and models described

in Section 5.3. For all cases, we obtain parameter estimates based on MCMC run

lengths of 60000 in total, with the first 30000 samples removed as burn-in. Only

1000 draws, one every 30, are stored, in order to circumvent issues with memory

storage and the internal memory available for computations in Matlab.

After a first inspection, we notice a similar performance for models across the dif-

ferent cases. This is especially true for Case 1 and 2, where the GPD parameters,

used for simulation, have the same form. Furthermore, although we move from

a constant threshold exceedance rate in Case 1 to a covariate-dependent one in

Case 2, we opted to propose a functional form which produced a limited difference

in magnitude between the larger and smaller rate observed across the covariate

domain. Hence, we decide to focus on Case 3 specifically, as this is the one char-

acterised by the most complicated combined behaviour for all three underlying

model parameters. We include results and a brief analysis for the first two cases

in Appendix 5.A for completeness.
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Figure 5.4.3: Parameter estimates for rate of occurrence φ (x) of the exceedances (upper), the GPD scale ψ (x) (middle) and GPD shape
ξ (x) (lower) for simulated samples from Case 3, for Models 1-7. Each panel illustrates the posterior median estimate, while the leftmost
panels show the true parameters used during the simulation.
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Figure 5.4.4: 95% interquantile ranges for the posterior estimates of the rate of occurrence φ (x) of the exceedances (upper), the GPD
scale ψ (x) (middle) and GPD shape ξ (x) (lower) for simulated samples from Case 3, for Models 1-7.
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We first inspect the median parameter estimates over the sample realisations for

the three model parameters across models 1-7, shown in Figure 5.4.3. It is also

essential to consider the uncertainty that characterises each of the models, so we

produce plots showing the range between the upper and lower 0.25 quantile, which

are shown in Figure 5.4.4.

Overall, the models seem to be able to detect the underlying patters present in

the three model parameters. It is worth noticing a couple of factors. First, despite

detecting the correct shape for the function of the Poisson rate on the covariate

space, all models obtain lower median estimates than the true values. A similar

performance can be noticed across most models for the GPD shape parameter,

while both the VTBR-s and the BARBaR-fr model struggle more and yield median

estimates that are higher than the truth. These models also required more careful

tuning and additional testing, although they all eventually showed good mixing of

the chain.

When we consider the interquantile ranges for the estimates, all models seem to

show similar pattern, although the models based on the Voronoi formulations show

more uncertainty and overall wider interquantile ranges for both the shape and the

scale parameter, as well as some localised potential overestimates in the Poisson

rate. It is also worth noticing that the P-spline-l model yields the narrowest

interquantile ranges out of all the formulations.
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Figure 5.4.5: Average posterior expected return value cdf for simulated samples from Case 3, corresponding to a return period of ten times
the period of the original sample. The panel show, from left to right, the omnidirectional return value distribution (left), the corresponding
directional estimates (middle) and the seasonal estimates split by month (right). The title for each panel gives the expected percentage
of individuals in that directional sector. The true return value distribution is given in solid black.
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Since the scale and shape parameter of the GPD are negatively correlated, it

is necessary to consider return values in order to properly assess inference perfor-

mance of the models. We proceed to consider the posterior cumulative distribution

functions (cdf) of return values for a return period of ten times the period of the

original sample. These are shown in Figure 5.4.5. In terms of the omni-covariate

cdf, all models yield lower return levels as compared to the estimates from the

true underlying parameters. The Voronoi based models incur in some issues for

higher probabilities, which are likely due to the wider interquantile ranges visible

in the parameter estimates. The benchmark and the BARBaR-f model yield an

almost identical omni-covariate cdf, although some small differences are noticeable

in sectoral cdf’s.

When considering directional and seasonal results, again we notice return levels

lower than the truth are obtained, and all models seems to perform similarly,

showing seasonal and directional variability.

We then employ the Kolmogorov-Smirnov (KS) and the Kullback-Leibler (KL)

criterion, as defined in Section 4.4.3, to compare the distributions of return values

statistically and consider how they perform across different realisation samples.

Figures 5.4.6 and 5.4.7 summarise the characteristics of the distributions for KS

and KL divergence criteria respectively. We note that all models perform similarly,

especially in terms of maximum divergence, as shown by the KS test values. The

results are consistent across models both for the omni-covariate estimates and in

each of the directional and seasonal sub-sectors, with higher median values and

wider ranges for sectors with fewer observations.
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Figure 5.4.6: Box-whisker comparison of samples of the Kolmogorov-Smirnov (KS) divergence criterion between omnidirectional (left)
posterior expected return value cdf’s (corresponding to a return period of ten times that the original sample), by directional sector (middle)
and seasonal monthly sector (right), estimated under samples from the true return value distribution and those estimated under models
of each of 100 sample realisations for Case 3. The sample of the KS divergence criterion are summarised by the median (white disc with
black central dot), the interquartile range (blue rectangular box, with vertical lines showing the 2.5%, 97.5% interval).
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Figure 5.4.7: Same as Figure 5.4.6, here for the Kullback-Leibler (KL) criterion for Case 3.
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Overall, no model seems to be performing consistently better than the others, and

performance seems to match the one of the benchmark P-spline model. Some

additional variation can be seen in the KL criterion estimates, which consider the

total distance of the posterior expected cdf’s from the true one. Here the VTBR-sr

model yields the highest median omnidirectional divergence values and widest 75%

interquantile ranges, with similar results from the directional and seasonal sectors.

This is in agreement with the average expected posterior cdf results. No other

model seems to show consistently better better performance for all directional,

seasonal and omni-covariate tests.

5.5 Hindcast data study

While in Section 5.4 we tested and assessed the models on some simulated case

studies, we now proceed to apply them to the datasets introduced in Section

4.1. In both cases, we apply the models to storm peak significant wave heights

Hs, and include corresponding wave direction and season (given by day of the

year) as covariates. Note that, unlike previous chapters, we decided to consider

both datasets in this case. In fact, due to the distinct physical conditions that

affect these distant ocean basins, observations exhibit different covariate dependent

behaviours in these two locations. For both hindcasts, we consider the same models

for parameter formulations as in Section 5.4 and apply the methodology described

in Section 5.3 for inference. As for the case studies in Section 5.4, results are

based on run lengths of 60000 run lengths, with the first 30000 samples removed

as burn-in and a total of 1000 draws, one every 30, being stored after that.
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5.5.1 Northern North Sea hindcast

Figure 5.5.1: Storm peak significant wave height Hs hindcast (in meters) for a
location in the Northern North Sea, with corresponding wave direction (in degrees,
with 0 corresponding to waves approaching from the North) and season (in day of
the year), both increasing clockwise.

We know from Section 4.5, we know that extreme sea states have a directional com-

ponent, and waves are affected by different factors, such as land shadows from land

masses and sea surface fetches. In the North Sea in particular, the longest available

fetches correspond to the Norwegian Sea to the North, the Atlantic Ocean to the

West, and the North Sea to the South. Extreme sea states are also partly shielded

by Scandinavia to the East and the British Isles to the South-West. Extreme sea

states also exhibit seasonal variation, and are dominated by winter storms, which

are more intense and numerous, originate in the Atlantic Ocean and propagate

eastwards across the northern part of the North Sea. It is worth noticing that, in

contrast with the high variability from directional values we observed in Chapter
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4, the seasonal variation present in the North Sea is less marked. For both the

frequency of threshold exceedances and their size, the magnitude of changes with

respect to season is lower, which should be reflected in the Poisson-GPD model

parameters.

Before we can proceed to the inference stage for all the models discussed, the

extreme value threshold needs to be estimated. Given the non-stationarity present,

it is advisable to consider covariate-dependent thresholds, and we perform some

exploratory analysis, which can be found in Appendix 5.B.1, to aid our choice. We

decide to proceed with a threshold obtained from an non-exceedance probability of

0.7, which yields 978 threshold exceedances. Figure 5.5.1 shows the corresponding

threshold exceedances and entire dataset, and by visual inspection we can recognise

the directional-seasonal behaviour described above.

We first inspect the parameter estimates for all model parameters across Models

1-7, which are shown in Figure 5.5.2. All models seem to detect the same un-

derlying patterns across all the model parameters, with only minimal differences

in the range of values of the median estimates. When we consider the threshold

exceedance rate, the Voronoi based models yield median estimates with a wider

range of value, while the VTBR-sr and the BARBaR-fr seem to capture some

inconsistent patterns which might be indicative of unreliable model fitting.

225



C
H

A
P

T
E

R
5.

T
W

O
-D

IM
E

N
S
IO

N
A

L
C

O
V

A
R

IA
T

E
S

Figure 5.5.2: Parameter estimates for rate of occurrence φ (x) of the exceedances (upper), the GPD scale ψ (x) (middle) and GPD shape
ξ (x) (lower) for the North Sea hindcast dataset shown in Figure 4.1.1, for Models 1-7. Each panel illustrates the posterior median
estimate. Different color scales are used depending on the model, in order to show both the pattern detected and the range of values
estimated.
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Figure 5.5.3: 95% interquantile ranges for the posterior estimates of the rate of occurrence φ (x) of the exceedances (upper), the GPD
scale ψ (x) (middle) and GPD shape ξ (x) (lower) for the North Sea hindcast dataset shown in Figure 4.1.1, for Models 1-7. Different
color scales are used depending on the model, in order to show both the pattern detected and the range of values estimated.
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Again similar patterns emerge across all models when we consider the 95% in-

terquartile range for the estimates, although the Voronoi based formulations yield,

as before, wider intervals. Visually, we can immediately notice that the estimates

from the P-spline model with the high number of component are less smooth, as

could be expected. It is also possible to notice the fragmented nature of the esti-

mates from the Voronoi based models. This was not noticeable in the case studies

as results from the chains of 100 simulated samples were pulled together to obtain

the final median estimate, hence producing a much smoother surface, while in this

case only 1000 posterior estimates from the MCMC chain contribute to the final

plots.

If we inspect the patterns detected across models, we can see how the rate of

threshold exceedance is largest for winter storms from approximately a southern

(180◦) or northern (360◦) direction. The estimates for the GPD scale show a

considerable degree of variation, with the largest values corresponding to winter

storms from a West-North West direction (250◦−360◦). In term of the GPD shape,

while we notice that this shows considerably large uncertainty, we can also detect

some directional variability, again mainly concentrated in the winter months.

We proceed to consider the posterior expected cdf’s of return values, corresponding

to a return period of ten times the period of the original sample, which corresponds

to approximately 500 years. These are shown in Figure 5.5.4. All models seem

to produce very similar estimates both as omni-covariate and when focusing on

specific directional and seasonal sectors. In fact, due to the scale and shape param-

eters of the generalised Pareto distribution being negatively correlated, different

values of the two parameters can yield the same return value estimates.
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Figure 5.5.4: Posterior expected return value cdf for the North Sea hindcast dataset shown in Figure 4.1.1, corresponding to a return
period of ten times the period of the original NNS sample. The panel show, from left to right, the omnidirectional return value distribution
(left), the corresponding directional estimates (middle) and the seasonal estimates split by month (right). The title for each panel gives
the expected percentage of individuals in that directional sector.
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When considering estimates by sectors, we can notice some clear seasonal and

directional variation, and can see that the most severe storms come from the

North-West in winter months. Models seem to yield very similar estimates, with

higher agreement in the sectors with highest number of observations, corresponding

to waves coming from the South-West and North.

5.5.2 South China Sea hindcast

Figure 5.5.5: Storm peak significant wave height Hs hindcast (in meters) for a
location in the South China Sea, with corresponding wave direction (in degrees,
with 0 corresponding to waves approaching from the North) and season (in day of
the year), both increasing clockwise.

The sample consists of hindcast observations between July 1956 and June 2007 for

a location in the Makassar Strait between the islands of Borneo and Sulawesi in

Indonesia. As mentioned in Section 3.4 when hindcast from a neighbouring site

was considered, the main climatic features for the whole region are monsoonal,
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with occasional typhoons passing through it. Southwest monsoons occur between

July and September and northeast monsoons between December and March.

It is worth noticing some differences with the Northern North Sea data from Section

5.5.1. First, here the sea states present are less severe, with the largest value of

Hs in the sample falling just over 4m high, compared to some Hs observations

exceeding 7m in the North Sea. Secondly, the seasonality of the sea states is

more marked here, and strongly correlated to the directional component of the

waves considered, as visible from Figure 5.5.5. We can expect this variability to

affect the rate and size of exceedances, and hence affect the Poisson-GPD model

parameters.

As before for the North Sea hindcast, we perform some exploratory analysis to

choose a suitable threshold (see Appendix 5.B.1 for further details). We decide

to proceed with a threshold obtained from an non-exceedance probability of 0.65,

which yields 1469 threshold exceedances. These exceedances, as well as the entire

dataset, are shown in Figure 5.5.5.

It is worth noticing the South China Sea hindcast is the most complicated dataset

we consider in this Chapter, due to the observations being sparse over the covariate

domain and the underlying physical process showing a strong correlation between

the two covariates. It is then unsurprising that here the models show the most

disparity in performance that we have observed so far.
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Figure 5.5.6: Parameter estimates for rate of occurrence φ (x) of the exceedances (upper), the GPD scale ψ (x) (middle) and GPD shape
ξ (x) (lower) for the South China Sea hindcast dataset shown in Figure 5.5.5, for Models 1-7. Each panel illustrates the posterior median
estimate. Different color scales are used depending on the model, in order to show both the pattern detected and the range of values
estimated.
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Figure 5.5.7: 95% interquantile ranges for the posterior estimates of the rate of occurrence φ (x) of the exceedances (upper), the GPD
scale ψ (x) (middle) and GPD shape ξ (x) (lower) for the South China Sea hindcast dataset, for Models 1-7. Different color scales are
used depending on the model, in order to show both the pattern detected and the range of values estimated.
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First, we inspect the parameter estimates for all model parameters across Models

1-7, which are shown in Figure 5.5.2. All models seem to detect the some underly-

ing patterns across all the model parameters, although these patterns seem to be

perceived slightly differently across formulations, as some highlight local behaviour

more, as for example the P-spline model assume constant smoothness. This is es-

pecially visible for the threshold exceedance rate, where the Voronoi based models

yield median estimates with the largest range.

Again similar patterns emerge across all models when we consider the 95% in-

terquartile range for the estimates, with the spline models exhibiting the smallest

variation. As for previous cases, Voronoi based formulations yield wider intervals,

with some very localised areas of wider uncertainty in the VTBR estimate, lo-

calised along what looks like cell edges, for the Poisson rate. As for the Northern

North Sea hindcast,the P-spline and the VTBR model produce, respectively, “wig-

gly” and fragmented estimates.

We can compare what we know about the physical processes affecting the hindcast

location with the patterns detected in the fitted models. The exceedance rate de-

tects the areas with little to no observations, while the GPD scale shows localised

behaviour, with maxima corresponding to the north-east monsoon.

We proceed to consider the posterior cumulative distribution functions of return

values, corresponding to a return period of ten times the period of the original

sample. This is, again, approximately 500 years. These are shown in Figure

5.5.4. Let us first consider the omni-directional omni-seasonal cdf estimates. Here

most models seem to produce broadly similar estimates, which seem to agree with

the results from the P-spline benchmark model. The spline based models yield
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generally lower estimates than the others, which agrees with lower median values

observed for the GPD scale. The BARBaR-fr model deviates considerably from the

others, and shows overestimates of the return levels, likely due to a combination of

high rate, scale and positive shape for large areas of the domain. While the effect

in the single directional and seasonal sectors is limited, this issue is inflated by the

joint contributions in the omni-directional omni-seasonal estimates. Models differ

in estimates across most sectors, but they show higher agreement in the sectors

with highest number of observations. Despite these differences, we can notice for

all of them some clear seasonal and directional variation, yielding higher estimates

for the monsoonal directional-seasonal sectors.
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Figure 5.5.8: Posterior expected return value cdf for the South China Sea hindcast dataset shown in Figure 5.5.5, corresponding to a return
period of ten times the period of the original sample. The panel show, from left to right, the omnidirectional return value distribution
(left), the corresponding directional estimates (middle) and the seasonal estimates split by month (right). The title for each panel gives
the expected percentage of individuals in that directional sector.
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5.6 Discussion and concluding remarks

Extreme occurrences of environmental phenomena have potentially devastating

consequences associated with heavy costs, pollution and risk to human lives. Ex-

treme value analysis provides the ideal framework for modelling and predicting

rare phenomena with very low probabilities of occurrence, although various issues

arise from a requirement to produce such long-range extrapolations based on data

that is, by definition, sparse. Environmental processes are often very complex and

observations tend to be non-homogeneous in space, time and with respect to co-

variates. It then becomes essential to build models that adequately include these

factors, as ignoring or failing to capture the effects of covariates adequately leads

to unreliable and unrealistic analysis.

The need for approaches that yield reliable and efficient analysis for non-homogeneous

extreme data has been the driving theme for this thesis. We have used peaks over

threshold methods, which examine observations above an arbitrary large value to

characterise the behaviour at the tail of the distribution. In Chapter 3, we focused

on two models from the literature, namely the generalised Pareto distribution and

the non-homogeneous Poisson point process formulation. These models are theo-

retically equivalent and both require adaptations to account for covariate effects.

We have then considered the implementation and consequences of adaptations to

include covariate effects, and showed how each method has advantages and limi-

tations.

The rest of the thesis has focused on issues that arise once a suitable extreme value

model has been chosen. We have concentrated specifically on extreme character-
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istics of the ocean environment, which are often characterised by multiple sources

of non-stationarity (such as wave or wind direction, season, fetch, longitude and

latitude). Amongst the available methods, we have opted to capture sample non-

homogeneity by representing the parameters of the statistical model as functions

of covariates. One then has to consider a variety of issues, as different parameteri-

sations are available from the literature. In oceanographic applications, it is often

necessary to consider models that are complex enough to be practically useful,

such as semi-parametric and non-parametric models, without being too complex.

Furthermore, the framework for covariate-dependent modelling should be, in gen-

eral, flexible and scalable, while producing reliable results. More specifically, we

are ideally interested in an approach which can be applied to samples from neigh-

bouring or distant locations without requiring extensive ad hoc changes. A model

should also be computational efficient and stable, characteristics that become even

more important when multiple covariates are included in the analysis.

We first started to investigate these issues in Chapter 4, where we have focused

on modelling non-stationary series with one-dimensional covariates. We have in-

troduced novel methodology based on radial basis functions and compared its per-

formance to existing models, in particular the standard P-spline approach, which

was used as a benchmark. We assessed model performance using case studies and

later applied the models to a hindcast significant wave height dataset. The case

study highlighted important observations on ease of implementation, stability and

potential for further refinements. When applied to the hindcast data, the models

have shown promising results, at least matching the performance of the benchmark

model for both omnidirectional and directional summary results.
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In this chapter, we have considered the case where two covariates are present,

as it introduces considerable complications, from a modelling, computational and

prediction perspective, and provides a stepping stone towards higher-dimensional

models. In order to yield reliable results, the formulation needs to appropriately

capture not only the behaviour associated with each covariate, but also any poten-

tial interaction between them. While a variety of parametric and non-parametric

formulations provide flexible approaches in 1-D, extending these models to a two-

dimensional covariate domain is not straightforward.

The computational cost involved also increases considerably when a new covari-

ate is included, so efficiently and scalability are essential. For example, while

non-parametric regression can already lead to a large number of correlated pa-

rameters when one covariate is considered, this issue is exacerbated for multiple

covariates and is more marked when a gridded approach to a two-dimensional co-

variate domain is used, such as for P-splines. We introduced novel methodology,

by extending the approach based on radial basis functions from Chapter 4 as well

as considering partition models to represent the interaction with the covariates

domain. The aim was to obtain some models with the potential of being more

efficient and stable than the P-spline gridded approach.

We have again used a simulation study to test and assess the performance of the

models considered, and later applied them to two hindcast significant wave height

datasets with different characteristics. From the simulation study, we see that

some of the models perform similarly to the benchmark P-spline model. The ba-

sic versions of the new models, the VTBR and the BARBaR-f, seem particularly

promising, although some issues with uncertainty and stability emerged which can
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provide interesting avenues for further investigation. We also found it necessary to

introduce, for all models, an additional hyperparameter for the coefficients prior

to imposing a varying level of smoothness, in a similar way as for the spline formu-

lations. The P-spline approach with a low number of components often performed

better than the benchmark, which is likely a consequence of the aforementioned

issues with parameter correlation in bases with high numbers of components.

Applying the models to hindcast data shed valuable insight on their performance

and opportunities for improvement. The characteristics of the first dataset from

the Northern North Sea are relatively well described by the models. While data

are sparse for a small portion of the directional domain, changes in season are

much smoother. Here all models yield good and consistent estimates, and perform

well in terms of quality of inference. The South China Sea hindcast provided a

more challenging application. In this case, large portions of the covariates domain

have little to no observations, and the underlying oceanographic phenomena have

strong joint directional-seasonal characteristics. These issues proved challenging

for all models, and careful tuning was necessary.

Furthermore, since the scale and shape of the GPD are negatively correlated,

problems with approaches yielding over- and under-estimates can only be properly

detected when we start to consider return values. In particular, despite differences

in the parameter estimates, most models still provided similar summary results.

All model formulations were able to capture the directional and seasonal variation

present in both the simulated and hindcast data, with good agreement also for

different directional-seasonal sectors.
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In conclusion, the inspection of extreme value models for non-stationary series and

the deployment of different formulations to capture the underlying non-homogeneity

has yielded some interesting results and provided clear areas for further research.

The models considered show promising results and manage to represent the covariate-

dependent features in one- and two-dimensions. However, model implementation

showed some additional issues when compared to the penalised spline approach.

This is to be expected as the latter is a well-established framework which has been

widely researched in the literature and developed over a number of years. How-

ever, the novel formulations for two-dimensional covariates are considerably more

parsimonious, as clearly shown by Table 5.3.1.

In this chapter, we implemented the standard penalised spline model with a

medium-sided basis (with approximately half the total components used, for ex-

ample, by Randell et al. (2015a)), which already required noticeably longer com-

putational time for inference in comparison to other approaches. Overall, although

the results were not as stable as one would hope, their encouraging performance

in modelling non-homogeneity indicates that there is scope of improvement and

the prospects of computational saving warrant further study.
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5.A Inference and tests for Cases 1 and 2

While we decided to focus on the results from Case 3, we consider here the results

and performances from the first two cases. As mentioned in Section 5.4.1, we use

an extreme value threshold u fixed at zero during inference, which corresponds

to the value used to simulate the cases realisations. The results show below are

obtained via Bayesian inference, with MCMC run lengths of 60000 in total,the first

30000 samples removed of which were discarded as burn-in. As before in Chapter

4, we use a constant model for the Poisson rate φ of threshold exceedance Case 1,

with the same resulting chains being later used to produce posterior expected cdf

estimates for all Models 1-7, while the rate is modelled as covariate dependent in

Cases 2, although the changes are limited in range.

We first inspect the median parameter estimates, as well as interquantile ranges,

over the sample realisations for the three model parameters in Case 1 across models

1-7, shown in Figure 5.A.2. Visual inspection suggests that estimates are of similar

quality across models: most differences emerge in the estimation of the GPD shape

parameter. As far as the latter is concerned, the VTBR-s and the BARBaR-fr
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seem to struggle the most with the estimation, albeit producing estimates which

seem to capture a similar pattern to the one detected by the other models. These

issues are confirmed by the range between the upper and lower quantile for the

shape parameter ξ (x) for most models. Purely in terms of parameter estimates,

the Voronoi-based formulations seem to show more uncertainty and overall wider

interquantile ranges for both the shape and the scale parameter.

It is worth remembering that, for Case 2, the scale and shape parameters were

chosen to have the same form as in Case 1. The main distinguishing feature lies in

the threshold exceedance rate, and consequently in the fact that the observations

are no longer uniformly scattered on the covariates domain. Nevertheless, the

presence of areas of the domain with sparser data seems to have little to no effect

on the estimation of the GPD parameters, which yield remarkably similar results

to case one in both median and uncertainty estimates. This is probably due to

the fact that, although the rate changes over the domain, we proposed here a case

where the difference in magnitude between the larger and smaller rate observed is

fairly contained. As far as the Poisson rate is concerned, again all models seem

to obtain consistent median estimates. Nevertheless, it is worth noticing that the

spline formulations yield narrower interquantile ranges, while the BARBaR models

shows the highest level of uncertainty with estimates of over a unit higher than

the ones from other models in part of the domain.
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(a) Case 1, median posterior estimates.
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(a) Case 1, posterior estimates 95%interquantile ranges.

Figure 5.A.2: Parameter estimates (Figure 5.A.1a) and 95% interquantile ranges (Figure 5.A.2a) for rate of occurrence φ (x) of the
exceedances (upper), the GPD scale ψ (x) (middle) and GPD shape ξ (x) (lower) for Case 1, for Models 1-7. Each panel illustrates the
posterior median estimate.
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(a) Case 2, median posterior estimates.
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(a) Case 2, posterior estimates 95% interquantile ranges.

Figure 5.A.4: Same as Figure 5.A.2, here for Case 2.
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We proceed to consider the posterior cumulative distribution functions of return

values, corresponding to a return period of ten times the period of the original

sample. These are shown in Figure 5.A.6 for Case 1 and 2. Here we notice that

omnidirectionally, the benchmark P-spline model produces the closest estimates

to the ones from the true underlying model. The additional uncertainty detected

for the Voronoi-based models, as well as in the BARBaR-fr estimates for the shape

parameter, result in overestimates of the return values.

Overall, the standard BARBaR-f model and the low-dimensional spline approach

produce the closest estimates to both the benchmark and the truth. Similar pat-

terns are visible if we consider the results by directional octant or seasonal interval,

as can be expected by the uniform distribution of data over the covariate domain

and the corresponding constant rate of exceedance.

For Case 2, again the two spline models, as well as the BARBaR-f approach,

yield the closest estimates to the cdf obtained from the underlying true param-

eters. Similar results can be observed for Case 2, which is consistent with the

findings about the parameter estimates. Again, the limited range of values of the

covariate-dependent rate of exceedance ensures that little difference is noticeable

across directional and seasonal sectors. The most noteworthy difference lies in

the performance of the VTBR-s and VTBR-sr models, which show some issues

for higher probabilities, which can be explained as the result of wider confidence

intervals across all three parameter estimates, as well as a consequence of some

ill-fitting results for a limited number of realisations.
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(a) Case 1
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(a) Case 2

Figure 5.A.6: Average posterior expected return value cdf for simulated samples from Case 1 (Figure 5.A.5a) and 2 (Figure 5.A.6a),
corresponding to a return period of ten times the period of the original sample. The panel show, from left to right, the omnidirectional
return value distribution (left), the corresponding directional estimates (middle) and the seasonal estimates split by month (right). The
title for each panel gives the expected percentage of individuals in that directional sector. The true return value distribution is given in
solid black.
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Figures 5.A.8 and 5.A.10 summarise, for both Case 1 and Case 2, the character-

istics of the distributions for KS and KL divergence criteria respectively. In both

cases, we note that all models perform similarly, especially in terms of maximum

divergence, as shown by the KS test values. The results are consistent across

models both for the omni-covariate estimates and in each of the directional and

seasonal sub-sector. Some variation can be detected in the KL criterion estimates,

which consider the total distance of the posterior expected cdf’s from the true one.

In Case 1, the Voronoi-based models show, both in the omni-covariate and sectoral

values, marginally wider interquantile ranges and hence seem to yield in more

varied results across different realisations, which is consistent with the uncertainty

previously detected in the parameter estimates. Nevertheless, in Case 2, none of

the models seems to show consistently better or worse KL criterion values across

all directional, seasonal or omni-covariate cdf estimates.
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(a) Case 1
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(a) Case 2

Figure 5.A.8: Box-whisker comparison of samples of the Kolmogorov-Smirnov (KS) divergence criterion between omnidirectional (left)
posterior expected return value cdf’s (corresponding to a return period of ten times that the original sample), by directional sector
(middle) and seasonal monthly sector (right), estimated under samples from the true return value distribution and those estimated under
models of each of 100 sample realisations for Case 1 (Figure 5.A.7a) and 2 (Figure 5.A.8a). The sample of the KS divergence criterion are
summarised by the median (white disc with black central dot), the interquartile range (blue rectangular box, with vertical lines showing
the 2.5%, 97.5% interval)
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(a) Case 2

Figure 5.A.10: Same as Figure 5.A.8, here for the Kullback-Leibler (KL) criterion.
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5.B Threshold diagnostics for hindcast datasets

Given the presence of strong non-stationarity, it is again advisable to consider

covariate-dependent thresholds for the two hindcast datasets. Here we decide to

show results corresponding to a non-exceedance probability varying between 0.6

and 0.8. Higher and lower values were also considered initially, although these

were excluded following the same criterion illustrated below. The smaller range

of non-exceedance probabilities extracted allows us to produce clearer and more

informative plots, which can focus on the most interesting values.

We proceed with the same aim as for previous chapters, looking for a threshold

that is low enough to allow as much data to be preserved as possible, while still

ensuring we are only considering extreme data and yielding stable and reliable

results. Nevertheless, the more covariates are considered, the harder to visualise

diagnostic plot becomes. Furthermore, multiple covariates affect both the efficacy

and the interpretability of the methods used in previous chapters. Here, we then

found it useful to consider stability of fit by comparing the median of the posterior

expected return value cdf across different return periods for the desired thresholds.

For consistency, these estimates were all achieved using the same model, namely

the spline Model 1 from Section 5.2.2. Figure 5.B.1 shows these cdf estimates,

with shaded areas corresponding to the interquantile ranges for the lowest (0.6)

and highest (0.8) non-exceedance probability.

For both datasets, we can notice that the lowest threshold shown (0.5 exceedance

probability) yields considerably different results from the remaining ones. This is

indicative of a value that is too low, such that data that is not extreme is included
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Figure 5.B.1: Omnidirectional posterior expected return median return value es-
timates for the North Sea hindcast HS (top) and South China Sea (bottom) in-
troduced in Section 1.2 across increasing return periods (pictured in log-scale for
readability). Here, Model 1 from Section 5.3.1 is used to fit the exceedances of
thresholds obtained from non-exceedance probability ranging between 0.6 and 0.8,
with 95% interquantile ranges shaded for the highest and lowest value.
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in the inference. On the other hand, the highest values of non-exceedance proba-

bility yield more uncertainty, characterised by wider interquantile ranges. We then

proceed to consider the remaining values. As expected, results are more similar

for these and a choice is not as obvious and remains arbitrary (see Section 2.1.2

and Coles, 2001). We decide to focus on values that yield the closest estimates,

while still preserving as much of the original data as possible. Hence, we proceed

to use thresholds obtained with non-exceedance probabilities of 0.7 and 0.65 for

the Northern North Sea and the South China Sea datasets respectively.
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Chapter 6

Further work

In this section, we present a few possible areas where the models proposed could

be improved and extended, along with some suggestions on ways this could be

achieved.

6.1 Bayesian inference and dimension-jumping

models

Efficiency of prior and proposal distributions for MCMC algorithms are essential.

First, one could consider different choices of prior distributions for the parameters

of the models considered in Chapter 5. In a similar approach to the one used

for P-spline models, we have already introduced some hyperparameters for the

prior of coefficients in two-dimensional covariate models. In our case, this has

allowed the imposition of a varying level of smoothness through a ridge penalty
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term. Alternative formulations for this term are possible, for example based on a

LASSO penalty or the approach proposed by Denison et al. (1998b).

Similar considerations are possible for the remaining formulation parameters. For

example, we could consider adapting the approach recommended by Richardson

and Green (1997) and introduce a hyperprior for the κ parameters in the bivariate

Von-Mises densities for the BARBaR models, as well as the decay parameter in

the adapted Voronoi-based models.

Further studies could also investigate other aspects of the inferece. For example,

one might want to systematically investigate the sensitivity of each of the models

to the choice of starting values for the MCMC, as well as assess whether any

differences emerge in the way sample size affects the various formulations.

A second extension would consider dimension-jumping models. In Chapter 4, we

applied reversible-jump techniques for a one-dimensional covariate, both for spline

and BARBaR based models. A first area for further development would focus

on the BARS reversible-jump proposals, especially the approach used to update

coefficients introduced in Section 4.3.3. It is worth remembering that, given the

application to a complicated likelihood surface such as the generalised Pareto one,

it is particularly important to propose candidate parameter values which aid the

convergence of the MCMC to its stationary distribution. In our study, the pres-

ence of considerable variability between results for different sample realisations

suggests that there is scope for refining the methodology.

The application of reversible-jump methodology to two-dimensional covariate do-

mains would be natural. The challenge with adaptive spline methods lies in stable

and efficient implementation of the RJ MCMC scheme and would require care-
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ful adaptations of the proposals used for models with a single covariate. The

work of Denison et al. (1998b) and Zhou and Shen (2001) would provide a useful

starting point for multi-dimensional BARS formulations, while the approaches by

Heikkinen and Arjas (1998) and Bodin and Sambridge (2009) would be helpful

for adaptive Voronoi tessellation models. In order to implement reversible jump

for BARBaR models in two dimensions, one could start from the work by Zhang

et al. (2004) and Dellaportas and Papageorgiou (2006) on dimension changing ap-

proaches for multivariate mixtures of Gaussian densities.

For all the formulations considered, one would hope that the ability of model com-

ponents to adjust location and extent and increase or decrease in number would

regulate the smoothness of the curve estimated, allowing varying levels of rough-

ness in different areas of the covariate domain and reducing the need for global

penalty procedures.

6.2 Study of computational efficiency

In order to shine further light on the performance of the models proposed, one

could develop a study to test and compare model efficiency. As a way to evaluate

this, we could examine the effective sample size (ESS, Geyer 1992), which provides

a measure of the equivalent number of independent iterations that an MCMC

represents, defined as

ESS =
niter

1 + 2
∑∞

k=1 ck
,

where ck is the autocorrelation of the MCMC chain at lag k, and niter is the actual

chain length. Note that, in practice, the sum of the autocorrelations is truncated
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when the autocorrelation ck drops beneath a certain level. The comparison of

effective sample sizes for different models, given the same samples and inference

methods, can provide some indication of relative computational efficiency. A dif-

ferent approach would consider computational run-times, although this requires

the use of the same hardware resources for all chains.

While the work in this thesis focused on quality of inference for the proposed mod-

els, a study of this type for the approaches presented in Chapters 4 and 5 could

provide useful information on their computational efficiency and ideas for possible

improvements.

6.3 Model extension and threshold selection

The methodology proposed in Chapters 4 and 5 could be used for estimation of

other parameters. For example, typical results of an extreme value analysis on a

sample of data are generally not invariant to measurement scale. Introducing a

measurement scale parameter may provide better estimation of return values (e.g.

Wadsworth et al. 2010, Reeve et al. 2012). Let Y ∈ Ω be a random variable,

independent and identically distributed according to a distribution function FY

defined over the domain Ω. When measurement scale is taken into consideration,

Y is rescaled to Y ∗ ∈ Ω using the Box-Cox transformation with parameter ζ ∈ R,

such that the transformed variable becomes

Y ∗ =
Y ζ − 1

ζ
,
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Y ∗ = log(Y ) for the case ζ = 0, with the latter case being defined only for positive

domains Ω+ for which Y > 0. Extending this to a continuous covariate-dependent

model may provide additional benefits. It is worth noticing that, even in a station-

ary framework, there is confounding between the GEV shape parameter and the

Box-Cox parameter ζ. It is therefore possible that some simplifying assumption

would be needed in order to perform inference for a covariate-dependent parame-

terisation (Wadsworth et al. 2010).

We acknowledged that using covariates in the threshold is essential to fitting

covariate-dependent extreme value models. For this thesis, we opted to use the

same covariate-dependent threshold for all models, in order to focus on the Poisson-

GPD parameters estimation. While this was obtained using a P-spline formulation,

one could investigate proposing a threshold using, in each case, the same formula-

tion as for the other model parameters.

Since applications have shown that threshold specification in extreme value analy-

sis is problematic, there is also scope for different approaches to threshold selection.

Some authors prefer whole-sample models in which an extreme value tail model

for threshold exceedances is combined with a model for non-exceedances. Since

likelihood for such a model is defined for the whole sample, the threshold can be

estimated as part of inference. Recent work in Shell (Randell et al. 2015b) and

elsewhere has shown that piecewise models and mixture models provide a useful

and computationally tractable approach to whole-sample inference. It is therefore

desirable to consider whole-sample inference in the current research. Due to the

considerable uncertainty in the choice of threshold, it is also often important to

perform model estimation over multiple plausible thresholds (Randell et al. 2015a).

263



CHAPTER 6. FURTHER WORK

6.4 Models for multi-dimensional covariates

Extreme characteristics of the ocean environment vary with covariates such as

direction, season and location. Incorporating this variation effectively and sys-

tematically within extreme value models is essential for methods to be useful.

Raghupathi et al. (2016) show how spatial effects, captured by the longitude and

latitude of a hindcast location, affect storm severity. It is then natural to con-

sider 3-dimensional spatio-seasonal and 4-dimensional spatio-directional-seasonal

covariate models. Hence one could investigate possible extensions of the models

introduced to higher-dimensional domains.

Extending the models proposed to higher dimension can be relatively straightfor-

ward in form. For P-splines, one can easily use the approach from Section 5.2.2

to obtain a overall basis which is a linear combination of suitable bases over the

domain of each covariate. As far as the BARBaR- and the Voronoi-based mod-

els are concerned, the adaptation requires the use of distance metrics defined on

higher-dimensional domains. Although obtaining a suitable basis might be simple,

computational efficiency and stability becomes even more essential with the intro-

duction of additional covariates. It is then necessary to consider parameterisations

that are complex enough to be practically useful, while still being computation-

ally sustainable and yielding stable results. In order to implement analysis with

higher-dimensional covariates, one should explore and resolve some of the statis-

tical and computational issues that have emerged. The studies outlined in this

section could provide useful insight and guidance for the development and imple-

mentation of such models.
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