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Abstract

One of the tenets of geostatistical modelling is that close things in space are more similar than
distant things, a principle also known as “the first law of geography”. However, this may be
questionable when unmeasured covariates affect, not only the mean of the underlying process,
but also its covariance structure. In this paper we go beyond the assumption of stationarity
and propose a novel modelling approach which we justify in the context of disease mapping.
More specifically, our goal is to incorporate spatially referenced risk factors into the covariance
function in order to model non-stationary patterns in the health outcome under investigation.
Through a simulation study, we show that ignoring such non-stationary effects can lead to invalid
inferences, yielding prediction intervals whose coverage is well below the nominal confidence
level. We then illustrate two applications of the developed methodology for modelling anaemia in
Ethiopia and Loa loa risk in West Africa. Our results indicate that the non-stationary models give
a better fit than standard geostatistical models yielding a lower value for the Akaike information
criterion. In the last section, we conclude by discussing further extensions of the new methods.
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1. Introduction

Model-based geostatistics (MBG) (Diggle et al., 1998) is a branch of spatial statistics that
provides tools for spatially continuous inference. More specifically, using data (y1, . . . , yn) col-
lected over a spatially discrete set of locations X = {x1, . . . , xn} within a region of interest A,
MBG allows to make predictive inference on a spatially continuous S (x) based on a principled
likelihood-based paradigm. By making use of the first law of geography, whereby “close things
are more related than distant things”, geostatistical models aim to borrow strength of informa-
tion across space in order to infer values of S (x) at any location x within A. MBG has thus
been increasingly used in low-resource settings where, due to the absence of disease registries,
household surveys provide the main source of information for monitoring the burden of infec-
tious diseases. MBG applications in epidemiological studies conducted in developing countries
include mapping of malaria (Arab et al. (2014); Huang et al. (2011); Mokuolu and Adegboye
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(2014); Nkurunziza et al. (2010); Texier et al. (2013); Jackson et al. (2010)), Loa loa (Thomson
et al. (2004)), stunting (Amoah et al., 2017), anaemia (Amerson et al. (2017); Cook et al. (2006);
Ejigu et al. (2018)), lymphatic filariasis (Moraga et al., 2015), visceral leishmaniasis (Galga-
muwa et al. (2018); Yazdanpanah and M. (2013)) and river-blindness (Zoure et al., 2014), to
name a few.

Let us consider a real-valued outcome Yi taken at location xi and a vector of covariates d(xi).
In epidemiolgy, examples of real-valued health outcomes Yi include antibodies concentration
used in serological studies, antroprometric measures (e.g. height and weight) used to monitor
childhood growth and measures of red blood cells loss (e.g. heamoglobin concentration) to
which many infections, including malaria and various neglected tropical diseases, contribute.
The standard linear geostatistical model for Yi takes the form

Yi = d(xi)>β + S (xi) + Zi. (1)

In the equation above, {S (x) : x ∈ R2} is a stationary and isotropic Gaussian process with
zero mean, variance σ2 and correlation function Corr{S (x), S (x′)} = ρ(x, x′). An important
consequence of the assumption of stationarity and isotropy is that the correlation function of
S (x) is purely a function of the Euclidean distance between x and x′, hence we write ρ(x, x′) =

ρ(‖x−x′‖). Finally, the Zi are assumed to be i.i.d. Gaussian variables with mean zero and variance
τ2.

The spatial covariance function ρ(·, ·) is traditionally assumed to belong to a parametric class
of stationary functions (Diggle and Ribeiro (2007); Cressie (1993); Banerjee et al. (2015)). How-
ever, many efforts have been made to go beyond this, often questionable, assumption of station-
arity. The seminal paper by Sampson and Guttorp (1992) introduced an approach through space
deformation. The underlying idea is to transform the geographic region A into a new region G,
such that sationarity and isotropy hold on G. Other approaches used to obtain a non-stationary
covariance function are based on kernel convolution methods Higdon et al. (1999); Paciorek and
Schervish (2006). Based on this approach, a stochastic process Y(·) is constructed by convolving
a white noise process W(·) with a smoothing kernel k(·) to give

Y(x) =

∫
A

kx(u)W(u)du.

Since the covariance function depends on the choice of the kernel function, a nonstationary
covariance function can be constructed by defining a non-stationary kernel. To overcome the
arbitrary choice of the kernel function, the weighted stationary process approach introduced by
Fuentes (2001) which is an alternative approach of Higdon et al. (1999) varies the stationary
process but not the kernel.

A special case non-stationary spatial processes is given by anisotropic processes, which arise
in the context of directional effects in the covariance structure. For example, wind direction
plays an important role in the spread of air pollutants as illustrated by Vianna Neto et al. (2014)
who propose the inclusion of wind direction in a non-stationary Matérn process. The study
by Schmidt et al Schmidt and Guttorp (2011) demonstrate the use of covariate information to
model the spatial correlation between observations and develop Bayesian methods of inference
based on projection models. Ver Hoef et al. also propose spatial models whose covariance
structures incorporate flow and stream distance through the use of spatial moving averages to
analyse stream networks Ver Hoef et al. (2006).

In this paper, we propose a novel geostatistical approach that allows to overcome the limits
inherent to the assumptions of stationarity and isotropy for handling spatial dependence in health
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outcomes. More specifically, we consider the case of non-stationary patterns that arise when
unobserved risk factors may affect both the mean and the covariance structures of the underlying
spatial process. To pursue this objective, our concern will be to identify parsimonious non-
stationary geostatistical models that are empirically identifiable and supported by the data.

The paper is organized as follows. In Section 2 we describe the proposed modelling approach.
Section 3 presents a simulation study to quantify the effects on spatial prediction when ignoring
non-stationary patterns as defined in Section 2. Section 4 illustrates two applications to anaemia
and Loa loa mapping in Africa. Finally, Section 5 is a discussion on further methodological
extensions.

2. Non-stationary geostatistical models: incorporating risk factors into the covariance func-
tion

The prevalence pattern of environmentally-mediated diseases exhibits strong spatial hetero-
geneity. Hence, in order to aid spatial prediction of disease risk at unobserved locations, spatially
referenced risk factors are often introduced as covariates d(xi) in a geostatistical model, as indi-
cated in (1). However, accurate spatial information on risk factors that directly affect the disease
under investigation are often unavailable, making the use of proxy variables (i.e. variables that
correlate with the unobservable risk factors but do not directly affect disease risk) unavoidable.
For example, in the context of vector-borne diseases, elevation may be used as a proxy for the
spatial distribution of the disease vector. However, the imperfect nature of this approach is ap-
parent because proxy variables may be measured with error or are inadequate to fully capture the
distribution of the disease vector, as this may also be affected by other spatially varying factors
(e.g. temperature and relative humidity). As a result of this non-stationary effects in the spatial
pattern of disease may still be present even after the inclusion of proxy variables into the model.

In this paper, our concern is to model non-stationary covariance structures with domain on a
proxy variable space. In other words, two outcomes Yi and Y j taken at xi and x j, with associated
scalar values ei and e j for a proxy variable, may be correlated because either |ei − e j| or ‖xi − x j‖

are close to zero. For example, a given disease metric taken at different locations may show
similar values as a result of common environmental features (e.g. elevation, temperature, type of
vegetation, etc.), regardless of how close the two observations are in space.

To formally express this concept, we replace the stationary Gaussian process S (xi) in (1) with
another Gaussian process S (xi, ei) which is a function over both space and a proxy domain given
by ei. The model for Yi then takes the form

Yi = d(xi)>β + S (xi, ei) + Zi, i = 1, · · · , n. (2)

We point out that, in the above equation, ei may also be used to model the mean of Yi in addition
its covariance function, by including this as one of the components of the vector d(xi). We then
assume that S (xi, ei) is a Gaussian process with mean zero and covariance function

Cov{S (x, e), S (x′, e′)} = σ2ρ(x, x′; e, e′).

In the remainder part of the paper we will focus our attention on separable covariance functions,
i.e.

ρ(x, x′; e, e′) = ρ1(‖x − x′‖)ρ2(|e − e′|). (3)
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more flexible models that allow for the interaction between x and e may also be considered but
would require a significantly larger amount of data which is often unavailable in the context of
disease mapping applications.

Our choice of either ρ1(·) or ρ2(·) in (3) is to use a Mateŕn function Mateŕn (1960), i.e.

ρ(u) =
1

Γ(κ)2κ−1 (u/φ)κKκ(u/φ), κ > 0, u ≥ 0, (4)

where Kκ(.) denotes the modified Bessel function of the third kind of order κ, and φ is the scale
parameter which controls the rate at which the correlation gets close to zero with increasing sep-
aration distance u. However, Zhang (2004) has shown that σ2, φ and κ cannot be consistently
estimated under in-fill asymptotic which often results in κ being poorly estimated. In the context
of disease mapping, where data are often sparsely sampled over space, this problem is exacer-
bated. Hence, in the remainder of the paper, we make the pragmatic choice of fixing k at 1/2
which gives rise to an exponential correlation function, given by

Cov{S (x, e), S (x′, e′)} = σ2 exp {−us/φs} exp {−ue/φe} , (5)

where us = ‖x − x′‖ and ue = ‖e − e′‖.
We estimate the resulting model for Yi by maximizing the profile likelihood for θ> = (σ2, φs, φe, ν

2),
where ν2 = τ2σ2. Let D be an n by p matrix of covariates, where p stands for number of ex-
planatory variables, and n represents number of observations; and V = Σ + ν2I, with the (i, j)− th
entry of Σ given by σ2 exp

{
−us,i j/φs

}
exp

{
−ue,i j/φe

}
. The resulting expression for the profile

likelihood is

Lp(θ) = exp
{
−

1
2

(
n log{σ̂2(θ)} + log |V(θ)|

)}
, (6)

where
σ̂2(θ) =

1
n

(y − Dβ̂(θ))>V−1(θ)(y − Dβ̂(θ)),

and
β̂(θ) = (D>V−1D)−1D>V−1y.

Maximization of (6) is then carried out using a numerical optimization algorithm imple-
mented in the nliminb function, available in the R software environment.

3. Simulation Study

In this section we carry out a simulation study to quantify the effects on spatial prediction
when ignoring non-stationary effects as defined by the model in (2). To this end, we simulate
1,000 data-sets using the 615 sampled locations in Ethiopia, as shown in Figure 2, under the
following geostatistical model

Yi = β0 + S (xi, ei) + Zi, (7)

where ei corresponds the elevation in meters at location xi. We also set β0 = 0, σ2 = 1, τ2 = 1,
φs = 100 and let φe vary over the set {100, 200, 500, 1000, 2000}. We recall that exponential
correlation functions are used to model both the correlation based on the Euclidean distance and
that based on the difference in elevation. For each of the B = 1, 000 data-sets, we then fit the
three following models.

4



• M1: the true model as specified in (7).

• M2: Yi = β0 + S (xi) + Zi.

• M3: Yi = β0 + β1ei + S (xi) + Zi.

Note thatM2 completely ignores the effect of elevation on Yi, whileM3 uses elevation to model
the mean of Yi but ignores its effects on the covariance structure of Yi.

Our predictive target for each of the three models are the observations Yi at each of the
n = 615 sampled locations. To compare the predictive performance of the three models, we use
the bias, root-mean-square-error (RMSE) and 95% coverage probability (CP) for the predictive
target. More specifically, for a given model Mk, k = 1, 2, 3, these are computed by averaging
over the set of observed locations, as follows

BIAS(Mk) =
1

nB

n∑
i=1

B∑
j=1

(
Ŷ ( j)

i − Y ( j)
i

)

RMSE(Mk) =

√√√
1

nB

n∑
i=1

B∑
j=1

(
Ŷ ( j)

i − Y ( j)
i

)2

CP(Mk) =
1

nB

n∑
i=1

B∑
j=1

I
(
Y ( j)

i ∈ PI95%
( j)

)
,

where: Y ( j)
i and Ŷ ( j)

i are the true and estimated values of the predictive target from the j-th
simulation, respectively; I

(
Y ( j)

i ∈ PI95%
( j)

)
is an indicator function that takes value 1 if Y ( j)

i is
inside the 95% prediction interval denoted by PI95%

( j) and 0 otherwise.
The results are reported in Table 1. We note that the largest differences in terms of bias and

RMSE betweenM1, the true model (7), and the other two models are observed for value of φe

smaller than 1000 meters. This can be explained by the fact that for large values of φe the impact
on the overall spatial structure is less important, since exp{−|e− e′|/φe} is closer to one, whilst in
the other scenarios with a smaller φe the second factor in (3) will have a stronger impact on the
overall correlation between observations.

We notice that compared toM1, the other two models yield a slightly larger bias and RMSE,
withM2 generally outperformingM3. However, we also observe that bothM2 andM3 provide
unreliable prediction intervals with an actual coverage well below the 95% nominal coverage
in all five scenarios. Overall, the results indicate that models that ignore non-stationary effects
of the kind investigated in this paper may still provide accurate predictions but fail to reliably
quantify uncertainty around these.
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Table 1: Bias, root-mean-square-error (RMSE) and 95% coverage probability (CP) based on 1,000 data-sets simulated
underM1. See the main text in Section 3 for more details.

Model φe BIAS RMSE 95% CP

M1 100 -0.005 0.620 0.940
M2 100 -0.007 0.709 0.858
M3 100 -0.007 0.712 0.856

M1 200 0.001 0.602 0.948
M2 200 0.002 0.667 0.876
M3 200 0.002 0.674 0.871

M1 500 -0.004 0.593 0.953
M2 500 -0.006 0.615 0.889
M3 500 -0.003 0.626 0.880

M1 1000 -0.006 0.591 0.953
M2 1000 -0.006 0.577 0.897
M3 1000 -0.007 0.590 0.887

M1 2000 -0.009 0.592 0.952
M2 2000 -0.010 0.552 0.902
M3 2000 -0.014 0.566 0.889

4. Applications

4.1. Mapping Anaemia in Ethiopia

The data analysed in this section were obtained from the Demographic and Health Survey
(DHS) conducted in Ethiopia in 2016. DHS are nationally representative household surveys that
are generally repeated every 5 years and provide information on a range of health and population
indicators, including anthropometric information. The DHS methodology is usually based on a
stratified two-stage cluster design. At the first stage, enumeration areas are drawn from census
files. At the second stage, for each enumeration area selected, samples of households are drawn
from an updated list of households to form groups of households known as sampling clusters. The
GPS location of the center of each sampling cluster is taken as the cluster location. Each child
is allocated to a spatially-referenced sampling cluster. In the data-set analysed in this section,
a total of 645 EAs (202 in urban areas and 443 in rural areas) were randomly selected with a
probability proportional to the EA size. For more details on the DHS survey design and anaemia
testing, we refer to (CSA (2016)). In this analysis, our response variable is the concentration of
haemoglobin (Hb), measured in grams per decilitre (g/dl), in blood samples taken from 7,485
children aged below five years.

Figure 1 shows a histogram of Hb and a scatter plot of Hb against altitude. Although the Hb
distribution shows some slight skeweness, we do not find any improvement by transforming the
outcome (e.g. by taking the log), hence we model Hb on its original scale.

The number of children at a cluster ranges from 1 to 39, with an average of 14 children per
cluster. A value of Hb below 11 g/dl leads a child to be diagnosed with anaemia. The mean age of
children was 2.2 years with 59.31% of the children found to be anaemic. Figure 2 below presents
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Figure 1: Histogram of haemoglobin concentration (upper panel) and scatter plot for haemoglobin against altitude (lower
panel). The red curve in upper panel is the density function of a Gaussian distribution with mean and variance estimated
from the raw data. The red line in the lower panel corresponds to a least squares fit.

the prevalence of anaemia at each of the sampled locations (upper panel), and the altitude raster
for Ethiopia (lower panel).

Figure 3 shows the empirical semivariogram and correlogram plots for Hb based on the
Euclidean distance and the altitude difference. The two variograms show evidence of correlation
in the data in both domains considered.

Let Yi j and di j be the Hb concentration and a vector of covariates for the j-th child at location
xi, respectively. Also let ei be the altitude at location xi. We then fit the three following models.
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Figure 2: Anaemia prevalence among under-five children by survey clusters (upper panel), and altitude (lower panel)

• Model A, Yi j = β0 + β>di j + γei + S (xi) + Zi j;

• Model B, Yi j = β0 + β>di j + S (xi, ei) + Zi j;

• Model C, Yi j = β0 + β>di j + γei + S (xi, ei) + Zi j.

8



Figure 3: Empirical semivariogram (upper panel) based on Euclidean distance (left) and altitude difference (right panel),
and correlogram plots (lower panel)

In the equations above di j includes both individual- and EA-level covariates; S (xi) and S (xi, ei)
are Gaussian processes as defined in (1) and (2), respectively. The Zi j are i.i.d. zero-mean
Gaussian variable with variance ω2. More specifically, Model A is a standard geostistical model
that takes account of the altitude effect on the mean of Hb; Model B incorporates the effect of
altitude in the covariance structure only, while Model C also in the mean of the outcome.

Table 2 presents the results of the fitted models to the data. The point and interval estimates
of the explanatory variables in common to all models are all comparable. We note that the 95%
confidence intervals for covariance parameters are narrower in Model A than in Model B and C.
However, Model C has the lowest AIC and we thus consider this to be the best model among the
three considered.

Figure 4 shows the impact for three different values of altitude difference on the spatial cor-
relation based on the Euclidean distance and difference between these clearly indicate that non-
stationary effects play an important role in the stochastic variation of the data.

4.2. Loa loa prevalence mapping in West Africa

We now analyse data collected from 197 villages in Cameroon and southern Nigeria on Loa
loa. Loa loa (also known as African eye worm) is an infectious disease caused by the filar-
ial nematode (roundworm) Loa loa. Although Loa loa is not a life threatening disease, it has
lately increasingly become of public health concern since individuals who are highly co-infected
with Loa loa and lymphatic falariasis, are at risk of developing serious adverse events, such as
encephalopathy, which can lead to permanent brain damage or even death.
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Table 2: Maximum likelihood estimates and 95% confidence intervals for the parameters of Models A, B and C as specified in Section 4.1.
Term Model A Model B Model C

Estimates 95%CI Estimates 95%CI Estimates 95%CI
β0 92.777 (87.577, 97.977) 100.216 (91.190, 109.242) 91.365 (85.267, 97.463)

Age 0.304 (0.282, 0.326) 0.305 (0.283, 0.327) 0.305 (0.283, 0.327)
Altitude 0.006 (0.0058, 0.0062) 0.007 (0.003, 0.011)

Residence(ref:Rural)
Urban 1.613 (-0.116, 3.342) 1.607 (-0.130, 3.344) 1.563 (-0.185, 3.311)

Gender
Male -0.64 (-1.324, 0.044) -0.653 (-1.337, 0.031) -0.656 (-1.338 , 0.026)

Wealth index (ref. Middle)
Poor -2.262 (-3.487, -1.037) -2.201 (-3.416, -0.986) -2.223 (-3.440, -1.006)

poorest -3.723 (-4.954, -2.492) -3.492 (-4.729, -2.255) -3.529 (-4.768, -2.290)
rich -1.336 (-2.669, -0.003) -1.407 (-2.740, -0.074) -1.417 (-2.750 , -0.084)

richest 2.448 (0.729, 4.167) 2.266 (0.547, 3.985) 2.267 (0.544, 3.990)
Education (ref. Higher )

no education -2.759 (-4.964, -0.554) -2.554 (-4.763, -0.345) -2.624 ( -4.833, -0.415)
Primary -1.825 (-4.003, 0.353) -1.672 (-3.850, 0.506) -1.731 (-3.909, 0.447)

Secondary -0.57 (-2.924, 1.784) -0.422 (-2.788, 1.944) -0.443 (-2.809, 1.923)

σ2 62.977 (62.485, 63.473) 104.225 (54.692, 198.620) 54.693 (35.189, 85.007)
φs 1.351 (0.885, 2.063) 3.606 (1.795, 7.245) 1.606 (0.896,2.880)
φe - - 3389.188 (1185.341, 9690.546) 2256.45 (770.830, 6605.302)
ω2 221.22 (219.063,223.398) 220.731 (115.828,420.643) 220.49 (141.862,342.699)

AIC 48275.069 40817.836 40809.321
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Figure 4: The black line corresponds to the function exp(−u/φs)∗exp(−302/φe), the red line corresponds to exp(−u/φs)×
exp(−659/φe) and the green line corresponds to exp(−u/φs)×exp(−2082/φe), where exp(·) is an exponential correlation
function, (302,659,2082) are first, second and third quartiles of altitude, and φs, φe are parameter estimates from Model
C in Table 2.

The analysed dataset is freely available from the R package PrevMap Giorgi and Diggle
(2017). Previous studies by Thomson et al. (2004) and Diggle et al. (2007) have reported a
significant association with the maximum normalized difference vegetation index (MNDVI), a
spatial indicator of live green vegetation. NDVI quantifies vegetation by measuring the differ-
ence between near-infrared (which vegetation strongly reflects) and red light (which vegetation
absorbs). The measured NDVI value ranges from -1 to +1, with negative values indicating the
presence of water bodies and positive values corresponding to dense green leaves.

The scatter plot of Figure 5 (lower panel) shows a clear linear relationship between the em-
pirical logit-transformed prevalence against MNDVI.

Figure 6 below presents the semivariogram (upper panel) and correlogram (lower panel)
plot based on the Euclidean distance and MNVDI difference. Each of the four plots suggest
the presence of unexplained correlation in the data which we model using the three following
models.

• Model A, Yi = β0 + S (xi) + Zi;

• Model B, Yi = β0 + β1ei + S (xi) + Zi;

• Model C, Yi = β0 + S (xi, ei) + Zi;

• Model D, Yi = β0 + β1ei + S E(xi, ei) + Zi.

In the equations above, ei denotes the MNDVI at location xi.
The parameter estimate and the 95% confidence intervals are reported in Table 3. We note

that after incorporating MNDVI into the covariance structure, this leads to an increase in the
estimate of the scale parameter. Also, as in the application from the previous section, the model

11



Figure 5: Plot of the locations of sampled villages across Cameroon and Nigieria (upper panel) and scatter plot of the
empirical logit-transformed Loa loa prevalence against the maximum normalized difference vegetation index (MNDVI)
(lower panel). The red line in the lower panel has been obtained via a least squares fit.

with the lowest AIC is the one that uses MNDVI to model both the mean and covariance of the
data, i.e. Model D (Table 3). We observe that the introduction of MNDVI as a covariate in Model
D leads to a reduction both in the variance σ2 and the scale parameters (φs, φe) of the Gaussian
process.

We use the formulation provided by Figure 7 in order to assess the impact of MNDVI on the
fitted correlation structure. Figure 7 shows how the correlation on the Euclidean distance domain
changes for different values of MNDVI difference. Although the non-stationary effects due to
MNDVI are less strong than those observed for altitude in the previous application (Section 4.1),
these are, however, non-negligible.
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Figure 6: Empirical semivariogram (upper panel) based on separation distance (left) and max NDVI difference (right
panel), and respective correlogram plots (lower panel)

Table 3: Maximum likelihood estimates and 95% confidence intervals of the Models A to D as specified in Section 4.2.
Parameter Model A Model B Model C Model D
β0 -2.299 -9.580 -2.488 -10.189

(-3.371, -1.227) (-12.667, -6.493) (-4.507, -0.469) (-14.509, -5.869)
β1 - 9.133 - 9.873

- (5.376, 12.890) - (4.546, 15.200)
σ2 2.451 1.522 3.671 1.443

(1.866, 3.218) (1.036, 2.235) (0.812, 16.604) (0.827,2.517)
φs 0.844 0.616 2.112 0.633

(0.321, 2.218) (0.188, 2.020) (0.403, 11.065) (0.300, 1.336)
φe - - 0.931 0.555

- - (0.113, 7.671) (0.068, 4.528)
τ2 0.369 0.368 0.347 0.331

(0.037, 3.663) (0.038, 3.554) (0.076, 1.588) (0.165,0.665)
AIC 188.681 167.127 -13.093 -19.897

5. Discussion

We have developed a geostatstical modelling approach to model non-stationary effects when
covariates also affect the covariance structure of the data. Our simulation study has shown that
ignoring such effects by using standard stationary geostatsitical models can lead to invalid pre-
dictive inferences on the outcome of interest, with a significantly smaller actual coverage than
the nominal level. Our two applications in the context of disease mapping have shown that the
proposed non-stationary models give better fits to the data.

We also notice that the best models in the two applications incorporated the environmental
factors - i.e. altitude for the analysis on anaemia (Section 4.1) and the maximum normalized
difference vegetation index (MNDV) (Section 4.2) for the Loa loa analysis - both in the mean
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Figure 7: The black line corresponds to the function exp(−u/φs)∗exp(−0.03/φe), the red line corresponds to exp(−u/φs)∗
exp(−0.06/φe) and green line corresponds to exp(−u/φs) ∗ exp(−0.18/φe), where exp(·) is an exponential correlation
function, (0.03,0.06,0.18) are first, second and third quartiles of maximum NDVI, and φs, φe are parameter estimates
from Model D.

and the covariance function of the model. More specifically, the introduction of environmental
factors in the mean component of the outcome leads to a reduction of the variance and scale
parameters of the non-stationary correlation function in both applications. This suggests that
these two contributions from disease risk factors into the spatial variation of health outcomes
are equally important and neither should be ignored. Our recommendation is thus to assess both
the regression relationship of health outcomes with risk factors and how the latter affects the
covariance structure of the former using the proposed approach in this paper.

Future extensions of the presented methodology should focus on the incorporation of multiple
covariates e1, . . . , em into the covariance functions to re-write (3) as

ρ(x, x′, e1, e′1, . . . , em, e′m) = ρ(‖x − x′‖)
m∏

j=1

ρ(|e j − e′j|). (8)

This approach could be especially useful to model unexplained correlation in the data that is
not spatially structured or that occurs at a small spatial scale. For example, some of the e j

(8) might include individual traits (e.g. ethnicity, employment, education, etc.) and household
characteristics (e.g. socio-economic status, material of the house, etc.). However, robust methods
for model selections should also be developed for such complex models in order to avoid over-
fitting of the data.

One of the limitations of our modelling approach is the assumption of separable correla-
tion functions ρ1(·) and ρ2(·), as given by (3). Classes of non-separable correlation functions
could then be used to relax this assumption; see, for example, Gneiting (2002) in the context of
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space-time covariance functions. However, this would require a larger amount of data than that
available in the two applications presented in this paper. To show this, we have also fitted the
following non-separable model belonging to the Gneiting (2002) family of correlations to the
Loa loa data

Cov{S (x, e), S (x′, e′)} = σ2 1
(1 + ue/φe)γ+1 exp

{
−

us/φs

(1 + ue/φe)δ/2

}
, γ > 0, δ ∈ [0, 1] (9)

where δ is the parameter regulating the strength of the interaction between x and e, with δ = 1
being the case of strongest interaction and δ = 0 yielding a separable correlation function with
no interaction. Figure 8 shows the profile deviance for the parameter δ, given by

D(δ) = −2
(
lp(δ) − lp(δ̂)

)
where lp(δ) is the profile log-likelihood for δ and δ̂ is its maximum likelihood estimate. Note that
the whole of D(δ) lies below the quantile 0.95 of a chi-square distribution with one degree of
freedom, which is approximately 3.84. This indicates that the data carry very little information
about the interaction parameter δ.
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Figure 8: Profile deviance (solid line) for the parameter of interaction using the Gneiting (2002) family given by (9).
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6. Conclusion

Our proposed model-based geostatistical framework provides a parsimonious approach for
handling nonstationarity patterns in disease risk through the introduction of risk factors into the
covariance structure of the model. Our study has shown that this approach is empirically feasible
even with moderate sized data-sets. Ignoring non-sationarity using standard geostatistical models
can deliver invalid predictive inferences on the health outcome of interest. Future research should
be focused on developing model selections criteria in order to identify the optimal set of variables
that should be used to model non-stationarity.
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