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Abstract

The bullwhip effect is a very important issue for supply chains, impacting on costs and effectiveness.

Academic researchers have studied this phenomenon and modelled it analytically, showing that it affects

many real world industries. The analytical models generally assume that the final demand process and

its parameters are known. This paper studies a two-echelon single-product supply chain with final

demand distributed according to a known AR(1) process but with unknown parameters. The results

show that the bullwhip effect is affected by unknown parameters and is influenced by the frequency

with which parameter estimates are updated. For unknown parameters, the strength of the bullwhip

effect is also influenced by the number of demand observations available to estimate the parameters.

Furthermore, a negative autoregressive parameter does not always imply an anti-bullwhip effect when

the parameters are unknown. An analytical approximation is proposed to mitigate the poor accuracy

of existing models when the parameters of an AR(1) process are unknown, forecasts are updated but

parameter estimates remain unchanged.
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1. Introduction

Supply chain effectiveness and costs are usually affected by demand variability, especially in the

upstream echelons. It has been shown that demand variability tends to be amplified moving upstream

in the supply chain (the so called bullwhip effect phenomenon), and that this amplification tends to

increase supply chain costs and to damage the service to the final customers (Lee et al., 1997). Higher

demand variability implies higher uncertainty in inventory processes and, as a consequence, higher

inventory costs.
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Many industrial sectors have been found to be affected by the bullwhip effect: the American auto-

mobile sector (Blanchard, 1983), the machine tool industry (Anderson et al., 2000), the computer and

semi-conductor industry (Terwiesch et al., 2005), to cite a few. Moreover, many cases of supply chains

have been studied in the literature to identify the bullwhip and understand its main drivers. Besides the

seminal case studies of Procter and Gamble (Lee et al., 1997) and Barilla (Hammond, 1994), demand

variability amplification has been found in big retail organisations such as Tesco and Wal-Mart (Disney,

2007; Gill & Abend, 1997). Also, automotive companies suffer from the bullwhip effect when moving

from the final customers to the assemblers and the producers (Bray & Mendelson, 2015; Edgehill et al.,

1987; Pastore et al., 2019).

To reduce bullwhip related costs, companies may address the issues of identifying the set of products

(among their whole assortment) that are affected by the bullwhip (thus the ones to focus on) and of

quantifying the size and the nature of the investment to undertake to reduce this effect. Information

sharing, incentive design, collaboration and integration are some of the main remedial strategies to

reduce variability amplification (Hosoda et al., 2008; Lee & Whang, 2000). Also, by knowing the main

drivers influencing such demand variability amplification, companies may want to invest in adjusting

these drivers to decrease it. The academic literature presents many contributions on the analysis of the

influencing factors of the bullwhip effect (e.g., Chen et al., 2000a; Lee et al., 1997; Rong et al., 2008).

These studies exploit analytical methods to investigate the above mentioned factors and usually make

some assumptions about the inventory characteristics. Even though the assumptions do not always hold

in real contexts, the analytical models may still yield insights for real world companies to understand

the drivers of bullwhip related costs.

Although it is useful to identify bullwhip drivers, it is also necessary to quantify their effect. It is

here that the assumptions made in analytical models may make them misleading. For example, a model

may over-estimate the benefits of information sharing, which could lead to a misguided investment in

implementing new information systems. The analytical models in the literature generally assume that

the final demand process and its parameters are known (e.g., Chen et al., 2000a,b; Lee et al., 2000).

However, in the real world, neither the generating process of final demand nor its parameters are known

with certainty. This paper aims to provide more accurate estimates of the bullwhip effect, for AR(1)

final demand, by breaking one of the assumptions usually made regarding the final demand process.

Specifically, it assumes the parameters of the demand distribution to be unknown. The impact of the

uncertainty of the parameters of the final demand process on the bullwhip effect is investigated, with
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particular attention to its interactions with long lead times and small sets of demand observations to

estimate the parameters.

The paper is organised as follows. Section 2 reviews the literature on the bullwhip effect. Section

3 highlights the contributions of the paper. The inventory system and its processes are described in

Section 4. Section 5 presents a simulation experiment to check whether not knowing the parameters

affects the value of the bullwhip effect. In Section 6, an approximate analytical quantification of the

bullwhip effect is proposed for the case of an AR(1) demand process with unknown parameters. The

accuracy of the analytical approximation is investigated in Section 7. Section 8 summarises the paper’s

conclusions, and includes a discussion on limitations and further research opportunities.

2. Literature Review

The phenomenon of demand variability amplification was first investigated in the late 1950s (For-

rester, 1958). Since then, many researchers have studied the bullwhip effect both from empirical and

analytical standpoints, modelling this phenomenon, understanding its influencing factors and looking

for possible remedies. This paper focuses on the relationship between the bullwhip and demand pa-

rameter uncertainty, taking into account lead times and target Cylcle Service Levels, and develops an

analytical model for the bullwhip. This addresses the issue of demand signal processing, whereby de-

mand variance is amplified as a consequence of the inherent demand properties and inventory rules.

Many authors have studied the relationship between the bullwhip and demand signal processing, by

developing analytical models to quantify demand variability propagation, by investigating the effect of

information sharing, and by modifying the inventory processes to reduce the bullwhip. As this paper

addresses the propagation of demand variability, contributions investigating other approaches are not

reviewed in the following. The same holds for the contributions related to other causes of the bullwhip

such as price fluctuations, order batching and shortage gaming.

Huge efforts have been made to formulate analytical expressions for the bullwhip effect, with the

aim of understanding the behaviour of demand variability propagation in supply chains with various

characteristics. The lead time has been proved to be a critical factor in influencing the bullwhip effect

(Lee et al., 2000).

Usually, when considering the theoretical analyses of the bullwhip, the Order-Up-To (OUT) policy

is used to model the planning process of inventory systems (e.g., Boute et al., 2014; Chen et al., 2000a;

Disney et al., 2006; Lee et al., 2000; Luong, 2007), which has been proved to increase the bullwhip effect
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(Dejonckheere et al., 2003). Some authors have discussed other planning policies that can reduce the

bullwhip effect (e.g., Boute et al., 2008; Dejonckheere et al., 2003; Gaalman, 2006; Gaalman & Disney,

2009; Graves, 1999). With an OUT policy, high target service levels have been proved to increase the

bullwhip (Khosroshahi et al., 2016) and the same happens with long lead times (Agrawal et al., 2009;

Chen et al., 2000a; Lee et al., 2000; Luong, 2007).

Some authors focused on analyses of the bullwhip effect generation when the final demand is identi-

cally and independently distributed (Dejonckheere et al., 2003; Kim et al., 2006). However, as demand

autocorrelation has been proved to influence the bullwhip effect (Babai et al., 2016; Duc et al., 2008),

many researchers have modelled the demand with ARIMA processes. In particular, the relationship be-

tween the bullwhip and an AR(1) final demand process has been widely studied (e.g., Chen et al., 2000a;

Lee et al., 2000; Xu et al., 2001). More complex ARIMA models have also been taken into account:

AR(p) models (Chandra & Grabis, 2005; Luong & Phien, 2007), ARMA(p,q) models (Alwan et al.,

2003), ARIMA(0,1,1) models (Graves, 1999), and general ARIMA(p,d,q) models (Li et al., 2005). In

all these studies, the stochastic process characterising the final demand and its parameters are assumed

to be known. However, in real supply chains, only past demand observations are available and are used

to infer the stochastic process and to estimate the parameters.

Some studies addressed the forecasting process to predict future demand. Efforts have been made to

assess the impact of different forecasting methods on the bullwhip effect. The majority of the analytical

studies assume an ARIMA framework for the demand process and an OUT policy, as discussed above.

With these assumptions, the demand parameters are assumed to be known, some specific forecasting

process is defined and a formulation for the bullwhip effect is given (Chandra & Grabis, 2005; Duc et al.,

2008; Luong, 2007; Zhang, 2004). These works focus on the analysis of the relationship between the

resulting bullwhip and its influencing factors (for instance, Luong (2007) considers an AR(1) demand

and MMSE forecasts and focuses on the impact of the autoregressive parameter and of the lead time

on the bullwhip effect). Other researchers assume some form of ARIMA demand process and do not

tackle the problem of knowing the demand parameters as they use non-optimal forecasting methods

such as Simple Moving Averages or Single Exponential Smoothing to predict the mean demand and

forecast errors. In this case, the relationship between the bullwhip and the forecasting methods and

their parameters are studied (Chen et al., 2000a; Dejonckheere et al., 2003; Xu et al., 2001). To the

authors’ knowledge, previous studies have not addressed the issue of unknown demand parameters,

except for Hosoda & Disney (2009), which will be discussed later in this section.
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The anti-bullwhip effect phenomenon (i.e., demand variability dampening) has been addressed by

some authors (Alwan et al., 2003; Boute et al., 2008, 2014; Hosoda, 2005; Lee et al., 2000; Zhang, 2004)

to analyse the impact of demand variability dampening in the supply chain. The variability of inventory

has also been studied (Disney & Towill, 2003; Disney et al., 2004, 2006; Hosoda, 2005), as the inventory

dynamics can affect the supply chain too. When considering inventory variability, sometimes demand

bullwhip can be induced to enable inventory reductions (Disney et al., 2006). However, although the

inventory variance issue has been proved to be relevant, it is beyond the scope of this paper.

All the cited papers, as discussed above, make strong assumptions about the final demand process.

The demand process and the parameters of the process are assumed to be known. However, in real

world supply chains, demand processes may be mis-specified (Hosoda & Disney, 2009) and, even if

correctly specified, the parameters of the process are unknown and have to be estimated (Ali & Boylan,

2011). To the authors’ knowledge, Hosoda & Disney (2009) are the only researchers to address the

impact of demand process mis-specification. Their analysis shows that improving forecast accuracy

does not always reduce supply chain costs. Thus, there is a need of further analytical investigations

on the bullwhip effect in inventory systems characterised by uncertainty in the demand parameters.

Consequently, this work focuses on the relationship between the bullwhip effect and uncertainty in the

demand parameters.

3. Contributions of the paper

As discussed in Section 2, most theoretical bullwhip models are characterised by assumptions that

make the models analytically tractable but hardly applicable in real contexts. The supply chains

analysed through analytical models are characterised by a specific stochastic final demand with no

uncertainty about the stochastic process or its parameters. Instead, in the real world, only a set of

observations of the final demand model is available and, with this set, the stochastic process can be

inferred and parameter values can be estimated.

To move towards more realistic analytical models, this work starts from the analytical framework

analysed in the seminal work by Lee et al. (2000) and breaks one of its key assumptions. In Lee et al.

(2000), a two echelon supply chain is investigated, whose inventories are planned through an order-up-to

policy. The final demand follows a stationary autoregressive process AR(1) (no uncertainty about the

process) whose parameters are known (no uncertainty about the parameters). In this work, instead,

the AR(1) process is assumed to be known (no uncertainty about the process), but the parameters of
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the process are assumed to be unknown and are estimated by an approximately unbiased estimator

(uncertainty about the parameters). The demand is predicted through the Minimum Mean Squared

Error forecast. As the results of this paper are compared with the outcomes of Lee et al. (2000), the

impact of the uncertainty in the demand parameters can be appreciated.

The first contribution of this work is to show that not knowing the demand parameters has an

impact on the bullwhip effect. The analysis also aims at understanding what demand and inventory

characteristics amplify this effect. Particular attention is given to demonstrate that a negative (but

unknown) autoregressive parameter can sometimes lead to a positive bullwhip effect for an AR(1)

demand process, contrarily to the case of known demand parameters (Lee et al., 2000). The second

contribution of this research is an investigation of the impact of the frequency of updating parameter

estimates on the bullwhip effect. Results show that the more frequently the parameters are updated, the

larger the bullwhip becomes. The result is consistent with the managerial insights of Hosoda & Disney

(2009), which proved that, in two-stage supply chains, more accurate demand forecasts do not always

lead to improved supply chain performance. However, the analyses in this paper differ from Hosoda

& Disney (2009). They investigated the situation where an ARMA(1,1) process was mis-specified as

an AR(1) process, and the frequency of forecast and parameter estimate updating was fixed. In this

research, an AR(1) process is correctly specified but the parameters are estimated, and the estimates

may be updated. Hosoda & Disney (2009) estimated parameters by minimizing the forecast errors,

whereas this research uses an approximately unbiased estimator. Their analysis focuses on steady state

behavior, whereas this paper investigates transient effects observed when there is limited demand data

available. Hosoda & Disney (2009) focus on total supply chain costs but, in this paper, the bullwhip

effect is evaluated, for direct comparison with the results from Lee et al. (2000). Minimisation of the

bullwhip does not always guarantee minimisation of total supply chain costs (Disney et al., 2006); this

interesting topic will be investigated in the next stage of this research.

The third contribution is to propose an analytical approximation to quantify the bullwhip effect in

the case of unknown parameters of a known AR(1) process, when the demand forecasts are updated but

the parameter estimates are not. A simulation model is used to show that the analytical approximation,

in the case of unknown demand parameters, is able to predict the bullwhip more accurately than the

one proposed in Lee et al. (2000), while in the case of known parameters they lead to the same results.
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4. System Description

The reference system analysed in Lee et al. (2000) (and in this work) is a single-product two-echelon

supply chain composed of one retailer and one manufacturer. The demand faced by the retailer is a

stochastic AR(1) process:

dt = τ + ρdt−1 + εt, (1)

where dt is the demand at time t, τ a constant parameter, ρ the autoregressive parameter, ε the model

error term, and t the time index.

In Lee et al. (2000), the following assumptions are made:

(a) the demand process is known (AR(1) stationary process as in equation (1)),

(b) the parameters τ and ρ of the process are known,

(c) εt is iid normally distributed with mean 0 and (known) variance σ2.

However, in real contexts, the only available information about the final customer demand is the record

of past orders that customers issued to the retailer. Hence, mis-specification in the demand process

or in its parameters should be taken into account, especially when few observations are available. In

this paper, assumption (b) is relaxed. It is assumed that the parameters τ and ρ of the process are

unknown and estimated with an approximately unbiased estimator. The change in assumption (b) is

clearly needed because the parameters of a demand process can never be known with perfect accuracy.

In future work, the relaxation of assumption (a) will be addressed (as in Hosoda & Disney (2009))

but, in the meantime, it shall be retained, to isolate the effect of parameter estimation, even though

process identification may sometimes be in error. The assumption of iid normally distributed demand

in assumption (c) is more reasonable, especially for fast-moving products, and hence it is retained. The

assumption of the approximately unbiased estimator will be discussed later in the paper.

The retailer faces the final customer demand dt and replenishes the inventory each period by issuing

orders to the manufacturer, which is characterised by a lead time l. The planning policy in use at the

retailer echelon is the order-up-to policy with a review every period; thus, the out-of-control period

of the retailer OUT policy is equal to l + 1 periods. The forecasting process must predict the future

out-of-control period demand and the variability of forecast errors. Then, the planning policy uses the

forecasting outputs to issue the replenishment order to the manufacturer.
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4.1. Forecasting process

To predict demand in future periods after time t, information about demand up to time t is available

but some estimates of the parameters of the process are needed. Let pτt and pρt be unbiased estimates

of the parameters τ and ρ, respectively, calculated using the information about the demand up to and

including time t. The forecasts of demand in periods t+1, . . . , t+l+1 are needed as input in the planning

process and they are denoted by the variables pdt+1, . . . , pdt+l+1. These quantities are the estimates of

the expected values of dt+1, . . . , dt+l+1 respectively, using demand data up to and including time t.

Thus, they can be calculated as in the following, exploiting the properties of AR(1) processes:

pdt+k = pE rdt+k|dts = pE rτ + ρdt+k−1 + εt+k|dts = pτt + pρt pdt+k−1 k = 1, . . . , l + 1. (2)

Using these expressions, the forecast of the expected demand in the out-of-control period is:

pmt|dt =

l+1∑
k=1

pdt+k =
pτt

1− pρt
{
l + 1−

l+1∑
k=1

pρkt
}

+
pρt �1− pρl+1

t

�
1− pρt dt. (3)

The forecasts are assumed to be unbiased and the estimate of the variance of the forecast errors is

denoted by pvt|dt and it is defined as the expected squared forecast error:

pvt|dt = E

��� l+1∑
k=1

dt+k −
l+1∑
k=1

pdt+k
�2
∣∣∣∣∣∣ dt
�� . (4)

4.2. Planning process

At the end of period t, the retailer places an order yt to bring the inventory position up to the

order-up-to level St, which is given by:

St = pmt|dt + zα

bpvt|dt , (5)

where pmt|dt is the estimated expected demand during the out-of-control period and zα
apvt|dt is the

safety stock. Specifically, zα is the α-quantile of the forecast error distribution, with α being the target

Cycle Service Level, and pvt|dt the estimated variance of forecast errors. The terms pmt|dt and pvt|dt are

conditioned on dt as they are calculated using all the information about the demand up to and including

time t (equations (3) and (4)). The replenishment order yt issued to the manufacturer at time t is:

yt = dt + pSt − St−1q , (6)

which is composed of the observed final demand dt and the difference between the OUT levels at times

t and t− 1.
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5. The impact of the estimation of unknown parameters on the bullwhip effect

As the difference between Lee et al. (2000) and the system studied in this paper is the uncertainty

in demand parameters, a first analysis must quantify the effect of the parameter estimation on the

bullwhip effect.

In the case of known demand parameters, the bullwhip effect (namely, BE(K)) is derived in Lee

et al. (2000) as:

BE(K) =
1− ρ2

(1− ρ)2

�
ρ2l+4(1− ρ)

1 + ρ
+ (1− ρl+2)2



. (7)

A simulation will be used to assess any differences between the bullwhip effect of an inventory system

with unknown demand parameters and that predicted by equation (7).

5.1. The simulation model

The issue addressed by the simulation is to ascertain whether not knowing the true values of the

demand parameters amplifies the bullwhip. Thus, the simulation is run to check the impact of the

uncertainty in the demand parameters on the bullwhip effect by comparing the two systems previously

described. The bullwhip characterising a system with known demand parameters can be predicted

by the analytical formulation of equation (7), whereas there is currently no formulation available to

characterise the bullwhip affecting a system with unknown parameters. Therefore, a simulation model

is used to represent an inventory system with unknown parameters and to observe the magnitude of the

bullwhip.

The simulation model represents the system with unknown demand parameters, as follows. At

the beginning of the simulation, during the initialisation period (specified later in this section), the

parameters of the demand process are estimated. Thereafter, the forecast and planning processes are

simulated in each time period. Thus, at the end of each time t, the demand is observed, the forecast is

updated and the replenishment order is issued. The parameters of the demand process are re-estimated

with a frequency that varies within the experiments.

The estimator of the demand parameters used in the simulation is the linear-bias-correction (LBC)

of the Ordinary Least Square (OLS) estimator (Kendall, 1954; MacKinnon & Smith, 1998). Given the

Ordinary Least Squares estimator ρ̌, the LBC estimator pρ is calculated as:

pρ =
1

n− 3
(nρ̌+ 1), (8)
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where n is the sample size, i.e., the number of the most recent observations used to compute the OLS

estimator on each occasion the estimates are updated. As discussed later in the paper, this value varies

between 12 and 48 observations in the simulation.

The OLS has been corrected according to equation (8) as the sample sizes used in the simulations

are not large enough to assure the OLS to be unbiased. (It has been proved that with small sample

sizes the OLS estimator is biased (MacKinnon & Smith, 1998)). Moreover, the bias has been proved

to be approximately a linear function of ρ in the range −0.85 ≤ ρ ≤ 0.85 (MacKinnon & Smith, 1998).

Hence, the linear-bias-correction is used as an approximately unbiased estimator.

Within the simulation, the demand is predicted by equation (3) and the variability of forecast errors

is estimated with the Root Mean Square Error (RMSE). The RMSE is calculated considering all the

historical errors available from the end of the initialisation period and, at each time, its value is updated

by including the last error (e.g., when 10 historical forecast errors are available, all of them are used to

calculate the RMSE; the next period, when 11 forecast are available, then all the 11 errors are used).

Finally, the OUT level is calculated according to equation (5) and the replenishment order by using

equation (6). At the end of the simulation, the bullwhip effect is calculated as the ratio of the variances

of the observed demand series and the issued replenishment order series, to make the value directly

comparable with Lee et al. (2000).

5.2. Experimental Design

The simulation experiments have been carried out by varying the values of some of the parame-

ters related to the demand process, to the planning policy and to the estimation procedure. Table 1

summarises the factors investigated in the simulation experiment; all 4725 combinations are analysed.

The first two rows of the table are related to the true demand parameters. At the beginning of

the simulation, the demand is generated according to the given AR(1) distribution. The parameter τ

is set to 200 and never varied (as the bullwhip is independent of this parameter if the upstream and

downstream demands have the same τ value). The autoregressive parameter ρ has been varied between

negative and positive values, as it has been suggested that the variability of demand amplifies in the

case of positive autocorrelation and smooths in the case of negative autocorrelation (Lee et al., 2000).

The factor ρ has been limited to a minimum value ρ = −0.6 and to a maximum value ρ = 0.6, as

previous empirical studies have shown that in real industries ρ usually does not reach magnitudes of 0.7

or greater (Ali et al., 2012; Erkip et al., 1990; Lee et al., 2000) (the estimator used in the analysis is
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Table 1: The impact of the unknown parameter estimation: Experimental Design

Factor Notation Range

Autoregressive parameter ρ {−0.6,−0.3, 0, 0.3, 0.6}

Variability of the error term σ {1, 2, 5}

Sample size n {12, 24, 48}

Estimate updating interval δ {1, 2, 3, 8, 12, 52,never}

Lead time l {1, 2, 5}

Target Cycle Service Level α {60%, 70%, 80%, 90%, 99%}

approximately unbiased for ρ values within the range −0.85 ≤ ρ ≤ 0.85). The standard deviation σ of

the error term has been varied to check if the bullwhip is σ-independent also in the context of unknown

demand parameters, as it happens in the case of known parameters (see equation (7)).

The third and fourth rows of Table 1 are related to the parameter estimation process. In the

third row, the sample size n corresponds to the number of demand observations used to estimate

the parameters at the beginning of the simulation and on every occasion that the parameters are re-

estimated. According to the experimental design, the sample size n varies between 12 and 48 demand

observations. This wide range has been chosen to encompass a realistic set of possible scenarios. The

shorter sample sizes correspond to less mature products, enabling an examination of the sensitivity of

results to short histories. The longer sample sizes correspond to more mature products.

In the fourth row, the estimate updating interval, δ, relates to how often the parameter estimates are

updated. If δ takes a finite value, then the estimates are updated during the simulation (for instance,

δ = 8 means that the estimates are updated every 8 time periods), whereas if δ = never, then the

parameters of the demand process are estimated at the beginning of the simulation and never updated.

Updating the parameter values every δ time periods is the more realistic choice, as in reality having

new demand observations usually leads to updating the estimates of the demand parameters; however,

as the results of the simulation will show later in the paper, updating the estimates increases the

bullwhip effect. Thus, to avoid the additional effect generated by updating the estimates, the case of

never updating (i.e., δ = never) is included in the experimental design. Moreover, by analysing the

simulations with a small n, it is possible to estimate the consequence on the bullwhip effect of less

accurate estimates, without any possible interference of the effect of updating the estimate itself on the
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bullwhip.

Finally, the last two rows of Table 1 are related to the planning process. The lead time has been

varied between 1 and 5 time periods (further experiments have been made with longer lead times, which

led to similar results in terms of the relationship between the bullwhip and the lead time), and the target

Cycle Service Level has been varied between 60% and 99%, to give an appreciation of the bullwhip effect

over a wide range of realistic Cycle Service Level targets.

The experimental design is composed of 4725 combinations of factors, which have been all evaluated

with simulations. For reasons of conciseness, the results of only some subsets are shown in the paper;

however, exhaustive results are included in the Supplementary Material. For each combination of factors,

K = 1000 replicates are performed. In each replicate, the simulation lasts L = 1000 + n + l + 4 time

periods, where n+ l+ 4 is the initialisation period 1. The bullwhip effect is measured over the last 1000

time periods. For each combination of factors, the single replicate bullwhip effect values are averaged

over the 1000 replicates and the average value is compared to the bullwhip effect found by using equation

(7).

5.3. Simulation results

As previously discussed, the objective of the experiment is to compare the bullwhip effect generated

by an inventory system with unknown demand parameters, namely BE(U), and the one generated by an

inventory system with known demand parameters, namely BE(K), to show the effect of the uncertainty

of the demand parameters.

Before discussing the results, the assumptions made throughout the paper have been checked. First,pρ is assumed to be unbiased. The results showed that, for all the combinations of factors, the mean

error of pρ is included in r−0.07; 0.01s. Also the forecasts are assumed to be unbiased and the results

showed that, for all the combinations of factors, the MPE (mean percentage error) is included in

r−0.03%; 0.03%s. Thus, the main assumptions are proved to hold within the simulations.

The results will show how the bullwhip effect changes when the values of the factors change. As will

be discussed, the bullwhip is influenced by two phenomena: the uncertainty of the parameter values and

1In the initialisation period, the first time period is used to set the first observation of the final demand
�
d1 = τ

1−ρ

	
.

Then, n demand observations are used to estimate pτ and pρ. In the next time period, the first one-step ahead forecast is

derived, after l time periods the first forecast error is calculated, and the last two time periods are used to have at least 2

observations to derive the RMSE of forecast errors.
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the updating of their estimates. In the following, the two phenomena are assessed separately, starting

with the effect of updating.

Figure 1: Influence of update interval (δ): reducing δ magnifies the bullwhip.

The effect of updating parameter estimates

Figure 1 shows how the bullwhip effect varies when the value of δ varies. It refers to the case in

which: ρ = 0.3, σ = 1, l = 1, n = 12, α = 99%; however, similar results are obtained for each combination

of factors, as shown in the Supplementary Material. In systems with known demand parameters, no

estimate has to be made; thus the bullwhip is independent of the value of σ. The orange straight line,

which shows the values of BE(K) calculated by equation (7), is constant. The blue dotted line shows

the bullwhip in inventories with unknown demand parameters, i.e., the BE(U) average values. Each

point of the dotted line is related to a specific value of δ, reported on the horizontal axis. As each

point represents the average value over 1000 replicates, the light blue shadings show the 95%-confidence

intervals for the mean values (the shadings are reported for each point; however, for some of them, the

confidence interval is too small to be appreciated in the figure). The graph shows that the bullwhip

generated in the simulation BE(U) decreases when δ increases. Reading the figure from the right to the

left, if the parameters are never updated, the bullwhip is greater than that given by equation (7). As

the only difference between the two systems is the assumption about the uncertainty in the parameters,

this difference is caused by the effect of the uncertainty of the parameters of the demand distribution,

which will be examined later in the section. If the parameter estimates are updated (δ from 1 to 52),

then the bullwhip increases even more, and this marginal increase is the effect of the updating on the

bullwhip. The more frequent the update is, the larger the bullwhip becomes. Thus, the results show

that updating the parameters increases the bullwhip effect. Moreover, the results are consistent with

the managerial insights of Hosoda & Disney (2009), showing that more accurate forecasts do not always
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imply improved supply chain performance.

The effect of uncertainty of demand estimates

To evaluate the effect of the uncertainty on the bullwhip, experiments with no updating (δ = never)

have been performed (to isolate the impact of uncertainty from the impact of updating the parameters).

The objective is to understand the causes of the difference between the bullwhip predicted by equation

(7) and that measured in the simulations, for a range of sample sizes and for no updating.

Figure 2: Influence of sample size (n) and autoregressive parameter (ρ): increasing n and ρ magnifies the bullwhip.

The effect of the uncertainty of the demand process parameters, and, hence, of the mis-specification

of the model, can be appreciated by varying the sample size. The sample size n counts the number of

observations used to estimate the parameters of the demand process. Figure 2 shows how the bullwhip

varies with different values of n and ρ. The parameter ρ varies in the horizontal axis according to

the experimental design. The range of values of n has been extended to include larger sample sizes

(n = 96, 192). This enables the difference between the blue dotted lines (BE(U)) and the orange

(BE(K)) to be appreciated when more demand observations become available. For all the values of

the autoregressive parameter, the more demand observations are available to estimate the parameters,

the lower the bullwhip. Moreover, with large values of n, there is virtually no difference between

the two lines, meaning that equation (7) is a very good approximation of the bullwhip found in the

simulation. With small values of n, instead, BE(U) and BE(K) are markedly different, and the effect

of the uncertainty can be appreciated. When few demand observations are available, the estimates of

the demand parameters are poor. In this case, the demand parameters cannot be assumed to be known
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and, hence, equation (7) becomes only a rough approximation for the bullwhip; indeed, equation (7)

underestimates the bullwhip by a considerable margin in this case. On the other hand, in the case of

a large sample size, the two lines converge. When a large number of demand observations is available,

the estimates of the demand parameters are more accurate and closer to their true values.

The magnitude of the effect of the uncertainty on the bullwhip will be investigated in the remaining

part of the section. The results are discussed in the following separately for each factor of the experiment

except the updating interval, which is fixed as never.

The effect of n. As previously discussed, Figure 2 shows that the bullwhip generated in a system

with unknown demand parameters can be larger than that generated with known demand parameters.

Specifically, the smaller the sample size used to estimate the parameters, the larger the bullwhip effect.

Also, the smaller the sample size, the larger the confidence interval of the average value of the bullwhip

in the simulations (as shown later in Figure 3).

The effect of σ. In a system with known demand parameters, the bullwhip is invariant with respect to

σ and n. This is demonstrated in the exact result of Lee et al. (2000), listed as equation (7) in this

paper. For unknown demand parameters, it is clear that the bullwhip is not invariant with respect

to n. To assess the effect of σ, an ANOVA test has been performed directly on the single replicate

values of the bullwhip effect with unknown parameters, BE(U). The results showed that there is no

significant difference among the means of BE(U) groups with different values of σ. Therefore, in the

case of unknown parameters and no updating, there is insufficient evidence to reject the null hypothesis

that the bullwhip effect is not influenced by σ.

The effect of l. Figure 3 confirms that the discussed results hold for lead times greater than one. The

two graphs represent the bullwhip effect values for the autoregressive parameter values ρ = 0 and

ρ = 0.6. In each graph, n and l vary, whereas the other two values are fixed at α = 99% and σ = 1.

In the graphs of Figure 3, the distance between the lines reduces when the sample size increases; thus

fewer demand observations increase the bullwhip also for larger values of the lead time. In systems

with known demand parameters, the BE(K) bullwhip increases with the lead time only for positively

autocorrelated final demands (ρ > 0), whereas it is equal to 1 for all lead times when ρ = 0. However,

in the case of unknown parameters, the bullwhip increases with the lead time also in the case of zero

autoregressive parameter (blue dotted lines in Figure 3(a)). The same holds with positive ρ (Figure
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(a) ρ = 0 (b) ρ = 0.6

Figure 3: Influence of lead time (l): increasing the lead time magnifies the bullwhip.

3(b) shows the case ρ = 0.6 as an example). In this case, the orange line increases with lead time, but

with a milder slope than the blue line.

The effect of α. The effect of different target Cycle Service Levels (α) has also been investigated. From

equation (7), it is known that the bullwhip effect does not depend on α when the demand parameters

are known. The same result seems to hold in the case of unknown parameters. The difference among

the means of the BE(U) for different values of α has been found to be non-statistically significant.

Figure 4: Influence of negative autoregressive parameter (ρ): a negative ρ does not always lead to an anti-bullwhip (see

n = 12, ρ = −0.3, l = 5).

The effect of ρ. The last factor to be taken into account is the autoregressive parameter ρ. It is

well established in the literature that, with known AR(1) demand process and known parameters, the
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demand variability is constant for ρ = 0, amplified for ρ > 0 and smoothed for ρ < 0 (Lee et al.,

2000). Figure 3(a) shows a crucial situation: when the unknown demand process is iid (ρ = 0), but it

is assumed to be autocorrelated (the true ρ value is unknown, and the autocorrelation is estimated by

estimating the parameters of an AR(1) process), the bullwhip is larger than 1. Thus, the demand model

mis-specification actually increases the bullwhip. Figure 3 show that the bullwhip BE(U) increases with

ρ increasing also in systems with unknown demand parameters, with a larger magnitude than BE(K).

Figure 4 shows the case of negative ρ (the other factors are set to σ = 1 and α = 99%). When the

points are below 1, then there is an anti-bullwhip effect (i.e., the demand variability is smoothed rather

than amplified). Interestingly, when ρ = −0.3 and n = 12, then BE(U) is greater than 1. This is an

important result, as it shows that the variance of the demand is amplified by the effect of uncertainty of

the parameters, which counterbalances the smoothing effect of having a negative autoregressive demand

parameter. As a result, under unknown demand parameters, it is possible that there is a bullwhip

effect, even when the autoregressive demand parameter is negative (while this never happens in systems

with known demand parameters (Lee et al., 2000). Additional simulation experiments have been run

to understand the ρ break-even value that separates bullwhip from anti-bullwhip (i.e., bullwhip greater

and smaller than 1). For σ = 1, α = 99%, l = 5 and n = 12, the break-even ρ value has been found

to lie between ρ = −0.4 and ρ = −0.35. The break-even value varies for each combination of factors,

and so it must be estimated in each specific situation, when needed. From the managerial standpoint,

this means that the set of the critical SKUs (i.e., the ones affected by bullwhip) is actually larger than

the one that has been identified in the literature. Until now, the investigation of AR(1) process with a

known negative autoregressive parameter has revealed an anti-bullwhip effect. The results in this paper

show that this is not always true when ρ is unknown and needs to be estimated. Thus, SKUs that

present negative autoregressive parameters can present some bullwhip too. Moreover, as for positive

autoregressive parameters, the fewer the historical demand observations, the larger the bullwhip effect.

The skewness of BE(U) is positive for all the combinations of factors, meaning that the bullwhip

values are concentrated within the left tail of the distribution.

In conclusion, the bullwhip affecting an inventory system characterised by unknown demand param-

eters tends to be larger than that affecting the same system but with known parameters. The increase

of the bullwhip is even larger if there is a small sample size available for the estimation process. A new

analytical approximation for BE(U) is proposed in the next section to to address the case of unknown
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demand parameters and to complement equation (7), which was designed for known parameters.

6. An approximate formula for the bullwhip effect with unknown parameters

As the comparison presented in the previous section showed some differences between the bullwhip

effect generated in inventory systems with unknown and with known demand parameters, a new analyti-

cal approximation is here proposed for inventory systems characterised by unknown demand parameters

and unbiased parameter estimators. The analytical approximation assumes that the estimates of the

demand parameters do not change in time (i.e., δ = never).

In the same way as for equation (7), the bullwhip effect is calculated as the ratio of the variances

of the replenishment orders (yt) and the final demands (dt). As dt is an AR(1) process, its variance

var(dt) is given by

var(dt) =
σ2

1− ρ2
. (9)

The variance var(yt) and an approximate formula for BE(U) are derived in the following sub-sections.

6.1. Variance of replenishment orders

The replenishment orders are calculated in the analysed system as in equation (6). Differently from

the final demand, its variance is not known a priori, but must be calculated. The estimates of the

demand parameters are assumed not to be updated over time (from now on, they are identified by pτ , pρ
instead of pτt, pρt).

Recalling equations (5) and (6), yt has the following components:

yt = dt +
�pmt|dt + zα

bpvt|dt	− �pmt−1|dt−1
+ zα

bpvt−1|dt−1

	
.

Using the components in a different way, yt can be written as:

yt = dt +
� pmt|dt − pmt−1|dt−1

�
+ zα

�bpvt|dt −bpvt−1|dt−1

	
. (10)

Let ∆m be the difference ∆m = pmt|dt− pmt−1|dt−1
and let ∆v be the difference ∆v =

apvt|dt−apvt−1|dt−1
.

Equation (10) can thus be rewritten as:

yt = dt + ∆m+ zα∆v. (11)

Using the above defined components of yt, its variance can be written as:

18



var(yt) = var(dt) + var(∆m) + z2αvar(∆v) + 2cov(dt,∆m) + 2zαcov(∆m,∆v) + 2zαcov(dt,∆v).

(12)

Equation (12) shows that var(yt) depends on the variance of the final demand dt, the variances of the

differences of estimates ∆m and ∆v and the covariances among those terms, weighted by zα where

appropriate, which is the parameter related to the target Cycle Service Level α of the system. This

equation is valid for all the inventory systems characterised by an order-up-to policy in which equation

(6) holds, independently of the stochastic process of dt. It is particularly relevant as it gives insights on

what influences the variance of the replenishment orders: the final demand itself (dt), the change in the

forecast values that actually depends on the forecasting method (∆m), and the differences generated

by updating the forecast errors (∆v).

All the terms of equation (12), except the ones related to ∆v, can be expressed in compact formulae.

The variance of the final demand var(dt), is already expressed in equation (9).

The variance var(∆m) is given by:

var(∆m) = 2(1− ρ)
pρ2 �1− pρl+1

�2
p1− pρq2 var(dt). (13)

The covariance cov(dt,∆m) is given by:

cov(dt,∆m) = (1− ρ)
pρ �1− pρl+1

�
1− pρ var(dt). (14)

The calculations of var(∆m) and cov(dt,∆m) are provided in the Supplementary Material.

The terms related to ∆v (i.e., var(∆v), cov(∆m,∆v) and cov(dt,∆v)) are difficult to deal with in a

compact formula. In the analytical approximation which follows, they have all been set to zero. This

is equivalent to assuming that ∆v does not affect the variability of the replenishment orders. This

assumption makes the calculation of var(yt) only an approximation.

Summing up all the terms, the approximation of var(yt) becomes:

var(yt) ∼ var(dt)

�
1 + 2(1− ρ)

pρ �1− pρl+1
�

1− pρ
�

1 +
pρ �1− pρl+1

�
1− pρ

��
. (15)

This approximation strictly depends on the assumptions previously made: (i) the parameter estimates

are unbiased; (ii) the parameter estimates are not updated; (iii) updating the mean and variance

estimates does not affect the variability of the replenishment orders (i.e., var(∆v) = 0, cov(∆m,∆v) = 0

and cov(dt,∆v) = 0). The accuracy of this approximation will be assessed by means of a simulation

experiment in Section 7.
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6.2. The bullwhip effect

From equation (15), the bullwhip effect can be approximated by the following formula:

B̃E
(U)

= 1 + 2(1− ρ)
pρ �1− pρl+1

�
1− pρ

�
1 +

pρ �1− pρl+1
�

1− pρ
�
. (16)

Just as equation (15) approximates the true value of the variance of the replenishment demand,

equation (16) approximates the bullwhip effect in the case of unknown demand parameters. Moreover,

in the case of perfect estimation of the autoregressive parameter (i.e., pρ = ρ), equation (16) is equal

to equation (7) (i.e., B̃E
(U)

= BE(K)). The proof of the equivalence is given in the Supplementary

Material.

The form of the proposed approximation has some similarities with equation (7). As in equation (7),

the bullwhip effect of systems with unknown demand parameters does not depend on σ while it does

depend on the true autoregressive parameter ρ and on the lead time l. However, unlike equation (7), it

also depends on the estimate of the autoregressive parameter, pρ. Thus, the bullwhip effect depends not

only on a demand process parameter, but also on its estimate. The more accurate the estimate is, the

closer B̃E
(U)

is to BE(K). This is strictly related to the influence of the sample size on the bullwhip

effect previously discussed, which is not directly captured by the formula. The relationship between the

bullwhip and the sample size will be analysed through simulations in Section 7.

Figure 5: Relationship between the bullwhip and the bias of the estimate pρ: reading the figure from left to right, under-

estimating ρ decreases the bullwhip effect, while over-estimating ρ increases it.

To appreciate the relationship between equations (7) and (16), consider the case of ρ = 0. When

ρ = 0, according to equation (7), there is no bullwhip, i.e., BE(K) = 1. Instead, as already shown in

Section 5 (Figure 3(a)), BE(U) can exceed 1. This difference is explained by the dependence of BE(U) on

the autoregressive parameter estimate pρ. Figure 5 displays the relationship between the bullwhip effect
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and the estimate pρ with l = 1, and for ρ = −0.3, 0, 0.3. The position on the horizontal axis represents

the bias of the estimate pρ, i.e., the value pρ BIAS = E rpρs−ρ, the vertical axis displays the bullwhip effect

value, and each line collects the points for a specific ρ value. Thus, ρ is fixed for each curve, pρ varies

in the horizontal axis according to the pρ BIAS variation, and each point is calculated from equation

(16) according to the ρ of the curve and to the pρ of the position on the horizontal axis. When ρ = 0

(black dotted curve) and the estimator measures it correctly (i.e., the point in the horizontal axis withpρ BIAS = 0), then there is no bullwhip effect, exactly as equation (7) suggests. If the autoregressive

parameter estimate is biased and, hence, different from 0, then the demand variability can be increased

or smoothed, depending on the sign of the bias. According to Figure 5, an over-estimation of ρ (i.e., the

points with pρ BIAS > 0) increases the bullwhip effect, whereas an under-estimation of ρ (i.e., the points

with pρ BIAS < 0) decreases it. Interestingly, the effect of the wrong estimation of ρ on the bullwhip

is not symmetrical, and this is true for all ρ values (see as example the green and yellow dotted curves

in the figure): over-estimating the true value of ρ increases the bullwhip more than under-estimating

ρ decreases it. This is of particular interest in the real world, when the presence of autocorrelation

is not known a priori but must be estimated through data. In this case, for instance, even if the

underlying process has no autocorrelation (hence there should not be any bullwhip), a mistake can

be made in estimating the autoregressive parameter, and this can generate bullwhip (or smooth it).

However, although an intentional under-estimation of ρ could lead to a lower bullwhip effect, it might

have other effects on the inventory (such as, for instance, on the service level, on the investment in

inventory and on the inventory variance). Moreover, particular attention should be paid to the line

referring to a negative ρ value: in systems with known demand parameters, the demand variability

is smoothed when the autoregressive parameter is negative. However, as the figure shows, a negative

estimate of the autoregressive parameter does not automatically result in an anti-bullwhip when the

parameter is unknown: for instance, when ρ = −0.3 and pρ ≥ 0.35 (i.e., with pρ BIAS ≥ 0.65), the final

demand is amplified rather than smoothed.

7. A simulation to check the accuracy of the analytical approximation

The approximation proposed in Section 6 has been tested through a set of simulations. Specifically,

the same simulation model described in Section 5.1 has been run. However, the aim here is to check

the accuracy of the proposed analytical approximation, i.e., whether and to what extent it is close to

the bullwhip effect measured in the simulation.
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Within the experiment, BE(K) is evaluated by equation (7) for each combination of factors of the

experimental design, the simulated BE(U) is evaluated from the final demand and the replenishment

orders collected in the simulations, and the proposed analytical approximation B̃E
(U)

is evaluated in

each single replicate by using equation (16) and the single-replicate value of pρ. As for the BE(U), the

single replicate B̃E
(U)

values are averaged over all the replicates for each combination of factors.

7.1. Experimental Design

The experimental design is based on that used in the previous experiment (Section 5.2, Table 1), but

with some differences. In this experiment, the variability of the error term σ has been set equal to 1, as

the analytical approximation of equation (16), as the formulation of BE(K), does not depend on σ. The

estimate updating interval δ has been set to δ = never, as assumed in the analytical approximation.

The final difference is that an additional factor has been included in the experimental design of the

current simulation: the performance collection length CL. The factor CL is the time period in which

the variability of the two series (demand and replenishment orders) are calculated. When CL is set to

24, for instance, then the simulation lasts L = 24 + n + l + 4 time periods (with n + l + 4 considered

as the initialisation period, as in the previous experiment) and the variability of the final demand and

of the replenishment orders is calculated over the last 24 time periods. In the previous experiment,

CL was set to CL = 1000, whereas in this case it takes a value in the set {24, 48, 96, 1000}. The

factor CL has been added to the list of factors to gain a better appreciation of the ∆v component.

Within the simulation, the variability of forecast errors is calculated with the RMSE of the forecast

errors for windows of varying length. Thus, the larger the performance collection length, the more

stable the variability of forecast errors pvt|dt becomes (as a larger number of error observations leads to

a more stable RMSE). Furthermore, the more stable the pvt|dt , the smaller becomes the magnitude of

the difference ∆v =
apvt|dt −apvt−1|dt−1

. Hence, with larger CL, the analytical approximation should

be more accurate (as ∆v should decrease).

The cases of small sample size n and large collection length CL are quite unrealistic, as if a long

period is available to collect the demand, then it can be also available to estimate the demand parameters

(leading, thus, to a large sample size). However, they are considered in the experimental design to gain

a full understanding of the interaction of the factors.

All the other factors and parameters of the simulation are the same as in the previous experiment.
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7.2. Simulation results

The main objectives of the simulation are: (i) to check whether equation (16) is a good approximation

of the simulated bullwhip effect; (ii) to compare the proposed formulation with the one proposed in Lee

et al. (2000) in a system with unknown demand parameters. More specifically, the aim of the section

is (i) to compare BE(U) with B̃E
(U)

to check whether they are close to each other, and (ii) to analyse

the pairwise comparisons BE(U)–BE(K) and BE(U)–B̃E
(U)

to check whether the simulated bullwhip

BE(U) is better approximated by BE(K) (equation (7)) or B̃E
(U)

(equation (16)).

The accuracy of BE(K) and B̃E
(U)

, with respect to BE(U), has been evaluated through error

measures given by:

Error BE(K) =
BE(U) −BE(K)

BE(U)
Error B̃E

(U)
=
BE(U) − B̃E

(U)

BE(U)
. (17)

As in Section 5, the results are presented separately for each factor of the experiment.

(a) ρ = 0 (b) ρ = 0.6

Figure 6: Simulation results (α = 99%, CL = 1000) on accuracy of new approximation: increasing the sample size (n)

improves the accuracy; increasing the lead time (l) reduces the accuracy.

The effect of l. Figure 6 shows the results for α = 99%, CL = 1000, and lead time varying between

1 and 5 time periods. The figure is exactly the same as Figure 3 on which also a red dotted line,

representing the values of equation (16), is reported. In the two graphs (only the cases of ρ = 0

and ρ = 0.6 are reported), the asymptotic bullwhip effect is shown (CL = 1000). In this case, the

analytical approximation B̃E
(U)

is very close to the simulated BE(U). Both BE(U) and B̃E
(U)

increase

when the lead time increases; however, the analytical approximation has a milder slope. Thus, the

approximation is less accurate with larger lead times. Nevertheless, when the demand parameters are
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unknown, the proposed analytical approximation represents the asymptotic bullwip effect better than

BE(K) (equation (7)). For the subset of combination of factors in Figure 6, BE(K) has an average

error of 31%, whereas B̃E
(U)

has an average value of only 4% (the errors are positive as both equations

underestimate the simulate bullwhip, but with a different magnitude). This quantifies the improvement

in bullwhip accuracy achieved by the proposed approximation, which has been designed to catch the

effect of unknown demand parameters. Furthermore, although the investigated lead time values are not

greater than 5, further simulations have been made to check the cases of l > 5, and bullwhip accuracy

improvements are also achieved in these cases.

Table 2: The accuracy of the analytical approximation with different values of CL.

Bullwhip effect CL values

CL = 24 CL = 48 CL = 96 CL = 1000

Error BE(K) 52% 39% 33% 28%

Error B̃E
(U)

38% 24% 14% 5%

The effect of CL. The effect of the factor CL is highlighted in Table 2. The table shows the errors of

BE(K) and B̃E
(U)

for ρ = 0.6, n = 12, l = 1 and α = 99%. As previously mentioned, BE(K) does not

change with different values of CL, but BE(U) decreases for larger CL.

Moreover, the difference between BE(U) and B̃E
(U)

becomes smaller when CL increases. Thus, the

analytical approximation seems to accurately model the asymptotic behaviour of the bullwhip effect

in the case of unknown parameters. However, when the analytical approximation to the bullwhip is

calculated over a shorter collection length, the approximation is much less accurate, since it overlooks

the instability of the estimates of the forecast errors. However, it still approximates the bullwhip better

than equation (7) (the values in the second row of the table are smaller than those in the first row of

Table 2).

The combined effect of the sample size n and the collection length CL is highlighted in Figure 7.

The results confirm that the Lee et al. (2000) formula is a lower-bound for the simulated bullwhip effect

when the parameters are unknown. It is a good lower-bound when the sample size is large but less

accurate when the sample size is small. The analytical approximation is also a good lower-bound for

large sample sizes; for smaller sample sizes it is less accurate, but a better lower-bound than the formula
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Figure 7: Combined effect of the sample size (n) and the collection length (CL): the new approximation is a lower bound

of the simulated bullwhip and its accuracy improves as n and CL increase.

of Lee et al. (2000).

The analysis in Figure 7 shows the separate effects of the sample size and the collection length; in

practical contexts these quantities would be usually the same. In Figure 7 the case of n = CL = 48

shows little benefit in using the analytical approximation, but the case of n = CL = 24 supports the

earlier analysis showing the analytical approximation to be a better lower-bound.

The effect of α. Figure 8 shows the effect of the Cycle Service Level on the analytical approximation. In

the figure, l = 1 and ρ < 0; however similar results are obtained for all the combinations of factors. Also,

only the highest target Cycle Service Levels are shown (α = 90% and α = 99%). From the figure, the

difference of the accuracy of the proposed analytical approximation for different values of target Cycle

Service Level α becomes clear. In Figure 8(a) (i.e., in the case of α = 99%), the red and the blue dotted

lines are distant from one another for low values of n and CL. Instead, in Figure 8(b) (α = 90%), they

are closer. This difference is explained by equation (12). As zα multiplies all the terms of the equation

that are assumed to be zero in the approximation B̃E
(U)

(because of the assumption ∆v = 0), a small

α reduces the effect of any violation of the assumption. As a consequence, with a smaller target Cycle

Service Level α, the difference between BE(U) and B̃E
(U)

decreases. Specifically, in the simulations

with CL = 24, the error of B̃E
(U)

is equal to 29.81% for α = 99%, 11.01% for α = 90%, and 0.35% for
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(a) α = 99%

(b) α = 90%

Figure 8: Influence of the target Cycle Service Level (α): decreasing α (lower part of the figure) improves the accuracy of

the approximation.

α = 60% (the graph related to α = 60% is not reported in the paper for reasons of conciseness). This

confirms that the difference between the red and the blue lines is due to the assumption made for the

analytical approximation.

The effect of ρ. Figures 6(a) and 7 show that, when ρ = 0, B̃E
(U)

is always greater than 1, meaning

that the approximation is able to capture the effect that, in a system with unknown demand parameters,

the bullwhip is amplified. Moreover, the accuracy of the analytical approximation does not change with

negative autoregressive parameters. However, it is worth mentioning that although there are cases with

ρ < 0 and BE(U) > 1 (as previously discussed), the analytical approximation is not able to spot them.
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For instance, Figure 8(a) shows that, when l = 1, ρ = −0.3, n = 12 and CL = 24, the approximation (red

line) is less than 1 whereas the simulated bullwhip (blue line) is greater than 1. Regarding the bullwhip

formulae, both BE(K) and B̃E
(U)

are below 1, without reaching the bullwhip region BE(U) > 1. The

same performance is shown in Figure 8(b), in the case of α = 90%. However, when comparing the

accuracy of B̃E
(U)

and BE(K), B̃E
(U)

was found to be more accurate than BE(K).

In summary, when the bullwhip effect is calculated over long time periods, then the proposed ana-

lytical formulation B̃E
(U)

is a good approximation of the demand variability amplification. Moreover,

comparing B̃E
(U)

and BE(K) as approximations for the bullwhip BE(U) in the case of unknown demand

parameters, B̃E
(U)

was found to be more accurate than BE(K). This is always true in the investigated

cases, even when there are only few demand observations available to calculate the bullwhip effect (i.e.,

when CL takes small values). To conclude, as both B̃E
(U)

and BE(K) always underestimate BE(U)

and B̃E
(U)

is always the closer approximation to the BE(U), then B̃E
(U)

can be identified as the bet-

ter approximation for the bullwhip effect in systems with known AR(1) demand process and unknown

demand parameters.

8. Conclusions, limitations and future research

The bullwhip effect is a very important issue for supply chains. For this reason, it has been widely

studied in the literature. Specifically, this problem has been tackled both from a theoretical and an em-

pirical point of view. From a theoretical standpoint, analytical models are usually proposed to identify

the magnitude and the possible causes of the bullwhip effect. To reach this objective, various assump-

tions are made about the inventory system or the demand process. This generally makes analytical

frameworks very far from being realistic and applicable in the real world.

The aim of this paper is to take a step forward in bridging the gap between the existing analytical

models of the bullwhip effect and its effect on real supply chains. The proposed analytical framework

starts from the seminal contribution of Lee et al. (2000), which considered a two-echelon supply chain

with final demand following an autoregressive AR(1) process with known demand parameters. In the real

world, organisations do not know the demand process or its parameters, and so the analytical expression

for the bullwhip effect could be quite inaccurate. To partially address this issue, the assumption of

knowing the parameters of the demand process is relaxed in the paper. Hence, differently from Lee
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et al. (2000), the final demand of the inventory system studied in the paper is characterised by unknown

parameters, which are estimated to predict future demand.

There are three main contributions of this work, all of which relate to known AR(1) demand processes

and Order-Up-To (OUT) inventory systems: 1) an evaluation of the effect of parameters being unknown

on the bullwhip; 2) an evaluation of the effect of updating the parameter estimates; 3) the proposal

of a new analytical approximation of the bullwhip effect in inventory systems with unknown demand

parameters.

Regarding the first contribution, not knowing the parameters of the demand process has an effect

on the bullwhip. Moreover, the difference is even more sizeable when few demand observations are

available for the estimation process (and the uncertainty in the parameters is larger). Also, a negative

autoregressive parameter does not always imply an anti-bullwhip effect, when it is unknown and, hence,

estimated.

About the second contribution, the results show that updating the estimates more frequently (thus

having more accurate forecasts) increases the bullwhip effect (and the related costs). This confirms the

managerial insight of Hosoda & Disney (2009) that improved forecast accuracy does not necessarily

imply improved supply chain performance.

In terms of the third contribution, the proposed formula is valid for the cases of no update of the

demand parameters. It still depends on the true autocorrelation of the demand and on the lead time, as

in the formula by Lee et al. (2000); however, it is also a function of the estimates of the autoregressive

parameter. With this formulation, (i) the influence of not knowing the parameters has been analytically

demonstrated and (ii) this influence has been quantified. The accuracy of the approximation has been

evaluated through a simulation experiment. The results showed that both the proposed analytical

approximation and the one proposed in Lee et al. (2000) underestimate the bullwhip effect in systems

with unknown demand parameters. However, the proposed approximation is always more accurate

than the one in Lee et al. (2000), as it also depends on the autoregressive parameter estimate. This is

particularly true when few demand observations are available to estimate the demand parameters, and

when the target Cycle Service Level is low.

The paper focuses on the impact of uncertainty of the demand parameter values on the bullwhip.

Thus, this work has shown that in the real world, where the demand parameters are unknown, the

generated bullwhip effect is higher than the one identified for inventory systems with known demand

parameters. These results can give some insights from a managerial standpoint. Companies should be
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aware that the uncertainty has a tangible effect in the upstream demand process generation and, thus,

it should be managed. Usually, companies do not check whether the fitted process or its parameters

keep well fitting the observed demand over time. An implication of the work presented in this paper

is that using the same estimates for the parameters while their values are changing can increase the

bullwhip effect. However, frequent updating of the estimates can also increase the bullwhip if the

true demand parameters are unchanging. This work has also addressed some practical issues. First,

by showing that in some cases a negative autoregressive parameter does not always imply demand

variability dampening, this work suggests to practitioners that the set of SKUs affected by bullwhip is

broader than that suggested so far in the literature. The approximation can be considered a lower-bound

of the real bullwhip affecting inventory systems.

The current research still has some limitations. In this paper, only the effect on the uncertainty of the

parameters on the bullwhip effect was investigated and, to this aim, the demand process was assumed

to be known. Although this assumption was convenient for analytical derivations, this limitation must

be overcome in future research. Also, the effect of updating the estimates and of the frequency of

the updates still has to be understood more deeply and quantified from an analytical perspective.

The results of the paper have already shown that updating the parameter estimates can increase the

bullwhip if the parameters are unchanging. However, further research is needed on how to choose the

frequency of updating when the (true) parameters are changing over time. Furthermore, as the current

analytical formula is an approximation, future research will be devoted to the search of an exact (or

less approximate) formulation. To reach this goal, also the variability of the forecast errors must be

analytically investigated and included. Although this work is able to give some insights to practitioners,

further research will be devoted to empirically testing the proposed approximation.
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