Legumes increase grassland productivity with no effect on nitrous oxide emissions

Barneze, A.S. and Whitaker, J. and McNamara, N.P. and Ostle, N.J. (2019) Legumes increase grassland productivity with no effect on nitrous oxide emissions. Plant and Soil. ISSN 0032-079X

Full text not available from this repository.

Abstract

Aims: Grasslands are important agricultural production systems, where ecosystem functioning is affected by land management practices. Grass-legume mixtures are commonly cultivated to increase grassland productivity while reducing the need for nitrogen (N) fertiliser. However, little is known about the effect of this increase in productivity on greenhouse gas (GHG) emissions in grass-legume mixtures. The aim of this study was to investigate interactions between the proportion of legumes in grass-legume mixtures and N-fertiliser addition on productivity and GHG emissions. We tested the hypotheses that an increase in the relative proportion of legumes would increase plant productivity and decrease GHG emissions, and the magnitude of these effects would be reduced by N-fertiliser addition. Methods: This was tested in a controlled environment mesocosm experiment with one grass and one legume species grown in mixtures in different proportions, with or without N-fertiliser. The effects on N cycling processes were assessed by measurement of above- and below-ground biomass, shoot N uptake, soil physico-chemical properties and GHG emissions. Results: Above-ground productivity and shoot N uptake were greater in legume-grass mixtures compared to grass or legume monocultures, in fertilised and unfertilised soils. However, we found no effect of legume proportion on N 2O emissions, total soil N or mineral-N in fertilised or unfertilised soils. Conclusions: This study shows that the inclusion of legumes in grass-legume mixtures positively affected productivity, however N cycle were in the short-term unaffected and mainly affected by nitrogen fertilisation. Legumes can be used in grassland management strategies to mitigate climate change by reducing crop demand for N-fertilisers.

Item Type:
Journal Article
Journal or Publication Title:
Plant and Soil
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1100/1111
Subjects:
ID Code:
139444
Deposited By:
Deposited On:
17 Dec 2019 16:25
Refereed?:
Yes
Published?:
Published
Last Modified:
05 Aug 2020 08:23