
Utilizing Public Blockchains for
Censorship-Circumvention and IoT Communication

Nasser Alsalami
Lancaster University, UK
n.alsalami@lancaster.ac.uk

Bingsheng Zhang
Lancaster University, UK
b.zhang2@lancaster.ac.uk

Abstract—The advancement of blockchain technology and
the Internet of Things (IoT) has presented us with unlimited
possibilities to integrate the physical and the virtual worlds. In
this work, we demonstrate how to override any existing public
blockchain, that has enough redundancy in its transactions, to
covertly broadcast arbitrary information. Besides, we implement
and demonstrate our technique on a real-world cryptocurrency
and show how it can be utilized in two specific applications:
recording IoT data, and circumventing censorship.

Index Terms—blockchains, IoT, censorship circumvention,
broadcast communication.

I. INTRODUCTION

Blockchains have presented a major paradigm shift in
realizing distributed and append-only immutable ledgers. And
ever since the inception of Bitcoin [25], blockchains have
not been used in cryptocurrencies only, but also in smart
contracts [38], medical records [18], identity verification [6],
the insurance sector [13], and other fields. On the other hand,
the Internet of Things (IoT) has been perpetually bridging the
gap between the physical world and the virtual or digital world
by interconnecting and automating all objects around us, from
smart homes [19] to smart cities [32]. However, there remain
some technical challenges that prevent the full realization of
the potential of IoT. Examples of these challenges include
synchronization among IoT devices, access control, security,
and durability.

In this work, we present how any existing public blockchain
application, with enough bandwidth in its transactions, can
be overridden and utilized in many scenarios. We specifically
demonstrate the application of Skywhisper in two use cases:
1) recording IoT data, and 2) circumventing censorship. Also,
we evaluate the security and performance of our construction.
We call our system Skywhisper, and to the best of our
knowledge, it is the world’s first covert broadcast channel that
is unobservable to any third-party auditor.

System overview. The main idea behind Skywhisper is ex-
ploiting public blockchains and using them as a carrier for
arbitrary information. Indeed, with the benefit and promising
future of blockchain technology, most countries, even China,
cannot afford to completely stop the adoption and usage of
blockchains. Furthermore, the absence of a central authority
in decentralized blockchains makes it hard to censor the posted
content. Nevertheless, merely encrypting the message and
attaching the ciphertext as a payload to the transactions is de-

tectable. Hence, to resolve this issue, we have observed that the
uncontrolled randomness used in blockchains’ cryptographic
primitives, such as the signatures attached to the transactions,
can be exploited to hide arbitrary messages. Equally important,
this approach is provably secure in the sense that a transaction
embedded with a hidden message is indistinguishable from
a normal transaction to a computationally bounded auditor.

Since our technique is to modify the cryptographic com-
ponents in the blockchain transactions, the throughput largely
depends on the size of these cryptographic components. Af-
ter a systematic study, we have identified that CryptoNote-
based blockchains [31] are ideal candidates. The CryptoNote
framework uses ring signatures to enhance privacy, and the
random group elements inside the ring signatures can be
easily manipulated to embed arbitrary messages. Therefore,
the Skywhisper prototype is developed on Bytecoin [3] which
is based on the CryptoNote protocol. In addition, to enable
the broadcast feature, we adopted the state-of-the-art collusion-
resistant broadcast encryption scheme by Boneh et al. [2]. No-
tably, Skywhisper does not hinder standard Bytecoin function-
alities; hence, anyone can use Skywhisper for covert broadcast
communication and/or as a cheap hidden persistent storage
along with their normal Bytecoin transactions. For instance,
Skywhisper can be used for uncensorable cyberlockers. At
the time of submission, persistently storing 1MB of data on
Bytecoin and using its P2P network as CDN costs about
$0.05. Furthermore, Skywhisper can establish an unbounded
number of channels, and each channel can support hundreds
of subscribers. This enables Skywhisper to be used in various
scenarios.

II. PRELIMINARIES

Blockchain. The term blockchain encompasses a broad range
of distributed ledger technologies initiated by Bitcoin [25].
There are two types of blockchains; permissioned (private)
and permissionless (public). In this work, we mainly focus
on permissionless blockchains. Typically, a permissionless
blockchain uses a Proof-of-X mechanism, such as Proof-of-
Work (PoW) and Proof-of-Stake (PoS), to randomly nominate
a node which will propose the next block. The valid transac-
tions contained in a block need to be signed by the owner(s) of
the corresponding consumed coins. Most blockchain systems
use randomized signature algorithms, which makes our tech-
nique applicable to a wide range of blockchain applications.

function Sign({Pi}ki=1, ts, s,m):
● Set I ∶= hashg(Ps);

● For i ∈ [k], pick qi
$← Zp ;

● For i ∈ [k], i ≠ s,pick wi
$← Zp ;

● For i ∈ [k]:
– Set Li ∶= gqi if i = s;

Set Li ∶= gqi ⋅ Pwi
i if i ≠ s;

– Set Ri ∶= (hashg(Pi))qi if i = s;
Set Ri ∶= (hashg(Pi))qi ⋅ Iwi if i ≠ s;

● Set c ∶= hashp(m,L1, . . . , Lk,R1, . . . ,Rk);
● For i ∈ [k]:

– Set ci ∶= wi if i ≠ s;
Set ci ∶= c −∑k

i=1 ci if i = s;
– Set ri ∶= qi if i ≠ s;

Set ri ∶= qs − csts if i = s;
● Return σ ∶= (I, c1, . . . , ck, r1, . . . , rk).

end function

Fig. 1: CryptoNote Signing Algorithm. {Pi}ki=1 are public keys, ts
is the signer’s private key, and s is his index

IoT. The concept of the ‘Internet of Things’ (IoT) was
coined in 1999 by a researcher who was working on radio-
frequency ID (RFID) devices and their interconnection with
the internet [11][1]. In this work, whenever we use the term
IoT, we refer to any object in the physical world that may
be connected to the internet and integrated with the virtual
world.

Brief description of CryptoNote. CryptoNote is a protocol
proposed by Nicolas van Saberhagen [31], and it has been
implemented in many emerging cryptocurrencies, such as
Bytecoin [3], CryptoNoteCoin [8], etc.

As depicted in Fig. 1, for a ring of size k, the format of the
CryptoNote ring signature is σ = (I, c1, . . . , ck, r1, . . . , rk).
Suppose the sender’s public key is Ps, s ∈ [k], then for all
i ∈ [k] and i ≠ s, the components ci and ri are uncontrolled
random group elements in Zp. These random elements are
highlighted in gray, and they are most important to our
work, as they are used to convey arbitrary information. For
more details on CryptoNote’s ring signature, please refer to
CryptoNote’s white-paper [31].

Steganography. Steganography refers to the techniques that
allow a sender to send a message covertly over a commu-
nication channel so that the mere presence of the hidden
message is not detectable by an adversary who monitors the
channel [15][9]. Modern steganography techniques can be
applied to various media, such as images, audios, HTML
files, etc. A stegosystem consists of three PPT algorithms
ST ∶= (KeyGen,Embed,Extract) as follows:

● (ek,dk) ← KeyGen(1λ) is the key generation algorithm
that takes as input the security parameter 1λ, and it
outputs an embedding key ek and an extraction key dk.

● st ← Embedek(m). Given an embedding key ek, and a
hidden message m ∈ {0,1}∗, Embed generates a stegotext
message st ∈ {0,1}∗ that is indistinguishable from the
normal channel distribution D.

Fig. 2: Skywhisper Components.

● m ← Extractdk(st), Extract takes as input a extraction
key dk and the stegotext st ∈ {0,1}∗ and outputs a hidden
message m ∈ {0,1}∗.

For definitions of stegosystems security, correctness, and
reliability, please refer to [15] and [9].

Broadcast Encryption. Broadcast encryption, pioneered by
Fiat and Naor [12], is a type of encryption where one cipher-
text CT is transmitted in a broadcast channel to all n users
in a group U . However, only privileged users S can correctly
decrypt it using their respective private keys. Where S is any
subset of U , i.e. S ⊆ U . More formally, as in [2] which we
use in this work, a broadcast encryption scheme BE is a tuple
of three algorithms BE = (Setup,Enc,Dec) as follows:

● ({d1, .., dn},PK)← Setup(n). The setup algorithm takes
the number of users n as input, and generates one public
key PK and n private keys {d1, .., dn}.

● (Hdr,K)← Enc(S,PK). The encryption algorithm takes
as input a subset of privileged users S ⊆ U and a public
key PK. While it outputs a header Hdr and a symmetric
encryption key K. This key can be used with a secure
encryption algorithm to encrypt any broadcast message.

● K← Dec(Hdr,S, i, di,PK). ∀ i ∈ S, any user with index
i and private key di can compute the broadcast encryption
key K which can be used to decrypt broadcast messages.

For definitions of correctness, collusion-resistance, and se-
mantic security, refer to [2].

III. OUR CONSTRUCTION

System architecture. Skywhisper is a covert broadcast com-
munication system that can be deployed on any existing
blockchain platform with randomized cryptographic primi-
tives. The prototype is developed and tested on the real-
world Bytecoin blockchain. Its general objective is to override
any existing blockchain and use it for the secure and covert
communication of data, and the persistent storage of arbitrary
content. As illustrated in Fig. 2, Skywhisper consists of three
components: i) Skywhisper broadcast encryption, ii) Sky-
whisper Bytecoin wallet, and iii) Bytecoin P2P network.
The third component is responsible for providing anonymous
connectivity among the users. Also, to run a Skywhisper
node, users do not require any extra infrastructure or hard-
ware as long as they have a Skywhisper-enhanced Bytecoin
wallet/client. The following paragraphs describe the first two
components of Skywhisper.

Broadcast Packet: subscription-request
Field Length (Bytes) Description/Value
CMD 1 0x02
Id 1 Id ∈ {1, . . . ,63}
R 32 random string

Hash 2 2 LSB’s of Hash(Hash(di)⊕ R)
Broadcast Packet: new-Hdr

Field Length (Bytes) Description/Value
CMD 1 0x01

Auth 64
Each ith byte is the LSB of the

corresponding Hash(Hdr∣∣di) where
di is the private key of the ith user.

SL 8

This is a binary encoded representation
of the subscribers’ list. If the ith

bit is set, then the corresponding ith
user is a subscriber

Hash 12 12 LSB’s of Hash(K)
Hdr 1152 length = (A + 1) ∗ 128,

and for 64 users, A = 8.
Broadcast Packet: broadcast-msg

Field Length (Bytes) Description/Value
CMD 1 0x04

Encrypted msg ≤ 200
The length of the encrypted message is

arbitrary in principle,but for ease of
implementation it is ≤ 200.

TABLE I: Structure of Skywhisper broadcast packets.

Skywhisper broadcast encryption. This component com-
prises the following three algorithms: (1) Broadcast Key-
Encapsulation Mechanism (BKEM). This is a modified version
of the C-library [14] that implements Boneh et al.’s broadcast
encryption [2]. According to this protocol, let n be the total
number of users in a channel, then the size of the public
key PK and Hdr is O(

√
n), and the size of the private keys

di’s is just a single element. Whenever the subscribers’ list
is modified, a new Hdr is generated, and a new symmetric
encryption key K is derived from the updated Hdr. (2) AES
encryption which is included in the Bytecoin wallet source
code, and used to encrypt broadcast messages under the
symmetric broadcast key K in CBC mode. (3) SHA-3 is
used to hash the different Skywhisper commands to ensure
authenticity and integrity.

The output of the broadcast encryption component is de-
noted as a broadcast packet CT that is either one of three
distinct types: (i) subscription-request, (ii) new-Hdr, and
(iii) broadcast-msg. Detailed syntax of CT packets is shown
in Table I with n = 64 users. After executing Skywhisper’s
broadcast encryption, the generated CT is taken by Skywhisper
Bytecoin wallet and secretly embedded into innocuous-looking
transactions.
Skywhisper wallet. This component consists of a modified
version of the Bytecoin wallet (vr.3.1.1). Bytecoin is an open-
source cryptocurrency project [33], and it uses the ED25519
twisted Edwards curve and CryptoNote (linkable) ring signa-
ture to sign its transactions. As shown in Sec. II, this protocol
has sufficiently many uncontrolled random numbers that could
be exploited to enable covert communication. The embedding
process consists of the following three steps.
Step 1: embedding a broadcast packet CT in a transaction’s
signature. To covertly embed CT in a signature’s random
elements {(ci, ri)}, the modified wallet generates a synthetic
IV ∶= AESz(rand∥CMD∥Length∥s∥0000) where z is a 128-bit

Fig. 3: Embedding a broadcast packet CT. First generate a
synthetic IV ∶= AESz(rand∥CMD∥Length∥s∥0000) and embed it in
c0. Then generate a stegotext st ∶= AESz(CT), and embed up to 31

bytes of st in each random number ci and ri.

channel key shared among all n users, rand is a 64-bit random
string, CMD signifies one of the three packets in Table I,
Length is the length of CT, s is user’s secret index within
the ring signature, and 0000 is a 32-bit string of 0’s. Then
IV is placed in the least significant 16 bytes of c0 and sets
the rest of c0 randomly. After that, using AES-128-CBC, z
and IV, the broadcaster generates a steganographic text st by
encrypting CT; i.e. st ∶= AESz(CT). Then, as illustrated in
Fig. 3, the broadcaster places chunks of up to 31 bytes of st
in all subsequent random numbers until the end of st. Finally,
the transaction that contains st is sent as per normal over the
blockchain.
Step 2: identifying transactions containing stegotext st. To
distinguish and identify transactions containing stegotext st,
receivers check every new transaction added to the ledger
by decrypting the first two pairs of (ci, ri) in the attached
signature. In particular, a receiver uses the channel key z to
decrypt the least significant 16 bytes of ci and check if it
contains 32 bits of zeros. If the receiver detects such a pattern,
he identifies the existence of a stegotext and extracts IV from
the least significant 16 bytes of ci. The receiver also extracts
the broadcast command CMD, the packet’s length Length, and
the secret index s. If, however, no such pattern is detected in
any of the first two pairs of (ci, ri), then the signature is
ignored.
Step 3: extracting broadcast packet CT. After identifying the
existence of st, each receiver extracts st from all random
numbers. In particular, according to Length, the receiver re-
constructs st by reading up to 31 bytes from all random
numbers except when i = s. Finally, the receiver recovers the
broadcast package CT by decrypting st using AEC-128-CBC,
the channel key z and IV; i.e. CT ∶= AES−1z (st).

The changes introduced to the normal Bytecoin wallet affect
mainly four source files: crypto.cpp, BlockchainState.cpp,
oaes lib.c, and random.c. For further clarity, the pseudo-code
of Skywhisper Bytecoin wallet is shown in Fig. 4.1

System operation. Skywhipser offers the following three main
functionalities: 1) user subscription, 2) user revocation, and
3) broadcast communication.
User subscription. As illustrated in Fig. 5a, when a user
wishes to subscribe to a broadcast channel the following
steps occur: (1) a broadcast packet CT is created containing

1For brevity, source code is not given here, but can be made available upon
request.

function KeyGen(1128):
● Pick random z ← {0,1}128;
● Return ek ∶= dk ∶= z;
end function
Embedz(CT):
function generate ring signature():
● counter = 0;
● if(i ≠ s):

– ci ∶= random scalar(s, counter + +);
– ri ∶= random scalar(s, counter + +);

● Else:
– process as per normal;

end function
function random scalar(s, counter):
● rand← Zp;
● if(counter == 0):

– IV ∶= Encryptz(rand[0∶63]∣∣CMD∣∣Length∣∣s∣∣zeros);
– st ∶= Encryptz,IV(CT);
– rand[0∶127] ∶= IV;
– sent = 0;

● if(counter > 0):
– if(sent < Length):

∗ rand[0∶247] ∶= up to 31 bytes of st;
∗ sent ∶= sent + (up to 31);

● Return rand;
end function
Extractz(c, r):
● pattern found ∶= 0;
● for(i = 0; i < 2; i + +)

– IV′ ∶= Encrypt−1z (ci,[0∶127]);
– if(IV′[96∶127] == zeros):

∗ CMD ∶= IV′[64∶71] Length ∶= IV′[72∶87] s ∶= IV′[88∶95] ;
∗ pattern ∶= 1, index ∶= i;

● if(pattern):
– for(i = 0; i ≠ s & i ≠ index & i < ring size; i + +)
– CT ∶= Encrypt−1z,IV(ci, ri);
– Return CT;

● Return 0; % No broadcast message
Fig. 4: Pseudo-code for the implementation of the stegosystem ST

in the Skywhisper’s modified Bytecoin wallet

1 byte indicating subscription-request command, the user’s Id,
a 32-byte random string R, and 2 LSB of Hash(Hash(di)⊕R)
where di is the user’s private key, (2) Skywhisper’s Bytecoin
wallet covertly embeds CT into a transaction along with
a known pattern and broadcasts it through the blockchain,
(3) when the master node’s wallet detects the known pattern,
it extracts the broadcast packet CT, (4) the master node’s
broadcast encryption layer authenticates the subscription re-
quest by xoring the received R with the user’s secret key
di and checking the result hash value with the received
hash. If successfully authenticated, the user is added to the
subscribers’ list and a new Hdr is generated2, (5) the master

2Remark: the size of Hdr is proportional to the number of users n and
contains A + 1 elements, where n = AB. In addition, it is stated in [2] that
setting B = ⌊√n⌋ gives both public key PK and Hdr of size of about

√
n

elements. Also, the algorithm will set up A = ⌈ n
B
⌉. In our implementation

of Skywhisper, we have n = 64, A = 8, and B = 8, which gives Hdr of 9
elements. Since each element is 128 Bytes, the size of Hdr is 1152 Bytes.
After updating the subscribers’ list, Skywhisper does not only broadcast Hdr
to users but sends a broadcast packet CT = (CMD∥Auth∥SL∥H(K)∥Hdr)
which is 1237 Bytes as further illustrated in Table I

(a) User subscription

(b) User revocation

(c) Broadcast communication

Fig. 5: Skywhisper operations: user subscription and revocation,
and broadcast communication. RNTX denotes the random elements

in the ring signature.

node generates a broadcast packet containing 1 byte indicating
new-Hdr command, some authentication data Auth, the new
subscribers’ list SL, 12 bytes of the hash of the new encryption
key K, and the new Hdr, (6) CT is secretly embedded into
a transaction and transmitted through the blockchain, (7) the
user node’s wallet detects a transaction containing a broadcast
packet and extracts CT, and (8) the user node checks the
data contained in the received CT, and if it is successfully
authenticated, the user node generates a new K using the
received Hdr. Finally, the user node checks the correctness
of K by comparing its hash to the received hash value.
User revocation. Fig. 5b shows the process of revoking the
subscription of a given user. The master node initiates this
process by removing the user’s index from the subscribers’
list and generating a new Hdr. After that, the same process
is executed as steps (5)-(7) of the user subscription scenario.
However, in this case, the received hash value of K is different
from the computed hash value for the revoked user; hence, the
user’s client concludes that his subscription has been revoked.
Broadcast communication. As illustrated in Fig. 5c, any
subscriber, including the master node, can send a broadcast
message M to all other subscribers. The following steps are
taken to broadcast M: (1) the broadcaster constructs a message
M, (2) M is encrypted under the broadcast encryption key K,
(3) the sender’s Bytecoin wallet encrypts CT under the channel
key z, embeds it into a transaction’s signatures’ random

numbers RNTX, and broadcasts the constructed transaction
as per normal through the blockchain P2P network, (4) each
receiver’s client detects a new transaction, and checks if its
randomness contains the known pattern. If the pattern is found,
the client extracts the received broadcast ciphertext CT and
passes it to the broadcast encryption layer, (5) CT is decrypted
using the broadcast encryption key K, and finally (6) the
receiver correctly decrypts the broadcast message M.

IV. EVALUATION OF SKYWHISPER

Before evaluating Skywhisper, it is important to note that
Skywhisper has two advantages. First, by utilizing public
blockchains, Skywhisper eliminates the need for dedicated
private blockchains. It makes use of well-established public
blockchains that are backed by many nodes that participate
in the consensus process incentivized by the already-available
cryptocurrency. Second, Skywhisper delegates computation
outside the blockchain. This approach removes the need for
a Turing-complete programming language for the blockchain
platform, uses well-tested and widely-known programming
languages, and speeds up processing.

Performance. The available bandwidth in a CryptoNote trans-
action is given by: BW = 32(y(k−1)2), where y is the number
of inputs in the transaction, and k is the number of public keys
in each ring signature. Hence, in one transaction of 4 inputs
and 10 public keys, Skywhisper can transmit more than 2KB
of covert data, which, given the current price of Bytecoin
is $0.000931 [7], costs $0.0000931. Therefore, the cost of
transmitting 1MB of data via Skywhisper is ≈ $0.05. This is
much lower compared to similar techniques Tithonous [30]
and R3C3 [24], where transmitting 1MB through Tithonous
costs ≈ $83, and ≈ $6.8 in R3C3. 3

Security and Robustness. The security of Skywhisper de-
pends on the semantic security of the broadcast encryption
scheme BE as defined in Sec. II, and the indistinguishability
of the stegosystem ST implemented in the modified Bytecoin
wallet to covertly embed broadcast packets CT in transactions’
ring signatures. The proof of the former one can be found
in [2]. Whereas, the security of the proposed stegosystem
ST is examined for undetectability under the chosen hidden-
text attacks (CHA) game/experiment. We remark that other
content-insertion techniques that use non-standard Bitcoin
scripts or exchange the public key with an arbitrary string
with printable characters, as mentioned in [23][22], can be
detected. However, Skywhisper’s ST replaces random group
elements in the ring signatures with pseudo-random ciphers
which, by definition of semantic security, are computationally
indistinguishable from truly random strings. More formally,
we model the underlying encryption scheme Encrypt as a
pseudo-random function (PRF), and we have the following
theorem.

3Comparison is based on prices of relevant cryptocurrencies quoted on
20/05/2019 from [7].

Fig. 6: Using Skywhisper for IoT communication.

Theorem 1. If Encrypt is a secure pseudo-random function,
then the stegosystem ST ∶= (KeyGen,Embed,Extract) as
shown in Fig. 4 is CHA secure.

Proof. See App. A.

Moreover, state-of-the-art censors can discover censorship-
resistant proxies, e.g. Tor bridges, and block them. On the
other hand, it is provably secure that no censors can distinguish
steganographically-subverted blockchain transactions; hence,
they can not launch any targeted DoS attack against Sky-
whisper unless they blacklist the whole blockchain network
which might have other financial ramifications. Besides, other
content-insertion approaches that replace segments of the
transactions, as done in Tithonus [30] and Catena [34], are
susceptible to policy changes where certain transactions, or
scripts, become conspicuous or are no longer accepted, forcing
the adoption of alternative techniques.

V. USE CASES

In this section, we explain two of the use cases of Skywhis-
per: IoT communication and censorship-circumvention.

Censorship Circumvention. Assuming users have access to
download Skywhisper, users can use Skywhisper to evade
censorship in any country where the use of the blockchain,
Bytecoin in this case, is not censored.

IoT Communication. Skywhisper presents IoT communica-
tion with the following advantages:1) Skywhisper provides
a ledger with immutability, non-repudiation, and persistence.
2) Skywhisper provides IoT devices with a seamless sub-
scription and revocation process. Moreover, to illustrate the
applicability of Skywhisper in storing IoT data, we apply
it in one specific example; traceability of food products.
According to the WHO, almost 1 in 10 people in the world
fall ill after eating contaminated food [39]; therefore, food
products traceability is a good case for applying Skywhisper
to record IoT-generated supply-chain data in an immutable
ledger [5][10][4]. In this simplified scenario, we have a master
node, who is responsible for adding and revoking IoT devices,
farms, vehicles, stores, and vendors.

In the example scenario shown in Fig. 6, the master node
distributes offline two pairs of keys; the broadcast private
key di and steganography channel key z, to all n potential

IoT devices. Later, when any device subscribes, as previously
shown in Fig. 5a, a new broadcast encryption key K is
agreed by all subscribers. In this specific example, the process
begins from a farm which packages a given food product,
assigns it a serial number SN, and broadcasts a message
containing SN along with date and time dt, description text,
and hash of the sender’s key di with a random seed R, i.e.
M = (SN∣∣dt∣∣text∣∣hash(di,R)). For added security, instead of
encrypting the broadcast packet CT under K, it can be en-
crypted under a one-time key sk = hash(K∣∣R∣∣di), where R and
the user’s id are sent as part of the Pattern that is encrypted
under the channel key z, i.e. st = ENCz(Pattern∣∣CT) and
CT = ENCsk(M). In this case, all subscribers can notice the
existence of a broadcast message, but only the master node
can decrypt the content. In a similar fashion to the producing
farm, IoT devices along the supply chain scan the food product
and generate timestamps, until the product is displayed for
sale with a vendor. On the other hand, whenever the master
node detects a broadcast message regarding a given food
product, it updates that product’s record in the cloud. Finally,
a customer/buyer can trace the food product and check its
authenticity/quality by querying the cloud using the serial
number SN on the package.

VI. RELATED WORK

This work is closely related to the following topics. 1) Cen-
sorship circumvention. Most censorship circumvention sys-
tems fall within the following three categories. I) End-to-end
proxy-based systems, like Tor [35], VPNs [27], and Ultra-
surf [36], that establish a secure tunnel between the censored
user and a proxy outside the censored area. As censors
actively scan and block IP addresses, many countermeasures
have been proposed among which is DEFIANCE [20] that
makes it more difficult for censors to scan Tor bridges.
II) Decoy routing in which users generate steganographically
tagged traffic, so that decoy proxies can identify and redirect
their traffic from its overt destinations to its actual covert
destinations [16][26][40]. III) Imitating uncensored protocols
such as StegoTorus, which disguises Tor packets in an in-
nocuous cover protocol to evade protocol analysis of Tor
packets [37], and Skypemorph [21]. 2) Blockchain-based
censorship circumvention. Tithonus [30], for example, offers
a Bitcoin-based censorship-resistant system. Also, Catena [34]
is an application that uses Bitcoin OP RETURN transactions
to establish consensus among users on an application-specific
log. The more recent work of Minaei et al. [24] presented a
Zcash-based censorship-bootstrapping tool called R3C3, and
explored content insertion techniques in other cryptocurren-
cies. 3) Blockchain and IoT. Among the myriads of proposals
to manage IoT devices using blockchain, Novo presented
a blockchain-based architecture for access management in
IoT [28], similarly Pinno et al. proposed the use of blockchain
for access control in IoT [29], while Huh et al. proposed the
use of blockchain to configure and manage IoT devices, and
built a proof-of-concept system on Ethereum [17].

VII. CONCLUSION AND FUTURE WORK

In this work, we presented Skywhisper – the world’s
first covert broadcast communication system. Although we
demonstrated the implementation of Skywhisper on Bytecoin,
the same principles apply to any blockchain platform with
randomized cryptographic primitives. Unlike dedicated and
permissioned blockchain applications, Skywhisper offers the
advantage of using well-established public blockchains that
have many nodes participating in its consensus incentivized
by the already available crypto coins. In short, Skywhis-
per provides a proof-of-concept solution in which a pub-
lic blockchain platform can simultaneously be utilized for
censorship-circumvention, IoT communication, and other ap-
plications. In general, the blockchain platform should provide
enough bandwidth in its transactions to enables these various
applications. In return, the blockchain platform would increase
its user base and potentially increase its coin’s market value.

REFERENCES

[1] Kevin Ashton. That ‘internet of things’ thing. Available Online: https:
//www.rfidjournal.com/articles/view?4986 (Last accessed 02-Aug-2019).

[2] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast
encryption with short ciphertexts and private keys. In Victor Shoup,
editor, Advances in Cryptology – CRYPTO 2005, pages 258–275, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

[3] Bytecoin Org. Bytecoin (BCN). Available Online: https://bytecoin.org/
(Last accessed 23-May-2019).

[4] David Cassel. Walmart’s blockchain program may transform
the way we use data. Available Online: https://thenewstack.io/
walmarts-blockchain-program-may-transform-the-way-we-use-data/
(Last accessed 02-Aug-2019).

[5] Sylvain Charlebois. How blockchain technology could transform
the food industry. Available Online: http://theconversation.com/
how-blockchain-technology-could-transform-the-food-industry-89348
(Last accessed 02-Aug-2019).

[6] Civic Technologies Inc. Civic whitepaper, 2017. Available online: https:
//tokensale.civic.com/CivicTokenSaleWhitePaper.pdf, (Last accessed 03-
Aug-2019).

[7] CoinMarketCap. Cryptocurrency market capitalizations. Available
Online: https://coinmarketcap.com/ (Last accessed 22-May-2019).

[8] CryptoNote Org. CryptoNoteCoin. Available Online: http://
cryptonote-coin.org/ (Last accessed 23-May-2019).

[9] Nenad Dedić, Gene Itkis, Leonid Reyzin, and Scott Russell. Upper
and lower bounds on black-box steganography. Journal of Cryptology,
22(3):365–394, Jul 2009.

[10] Kevin Drum. Blockchain’s latest triumph: Mango tracking.
Available Online: https://www.motherjones.com/kevin-drum/2018/05/
blockchains-latest-triumph-mango-tracking/ (Last accessed 02-Aug-
2019).

[11] Dave Evans. The internet of things how the next evolutio of the
internet is changing everything, April 2011. whitepaper, Available
online: https://www.cisco.com/c/dam/en us/about/ac79/docs/innov/IoT
IBSG 0411FINAL.pdf, (Last accessed 02-Aug-2019).

[12] Amos Fiat and Moni Naor. Broadcast encryption. In Douglas R. Stinson,
editor, Advances in Cryptology — CRYPTO’ 93, pages 480–491, Berlin,
Heidelberg, 1994. Springer Berlin Heidelberg.

[13] V. Gatteschi, F. Lamberti, C. Demartini, C. Pranteda, and V. Santamara.
Blockchain and smart contracts for insurance: Is the technology mature
enough? Future Internet, 10(2), 2018.

[14] Oliver Gnther. Broadcast key encapsulation mechanism github repos-
itory, 2012. Available Online: https://github.com/oliverguenther/PBC
BKEM (Last accessed 08-May-2019).

[15] Nicholas J. Hopper, John Langford, and Luis von Ahn. Provably secure
steganography. In CRYPTO 2002, 2002.

[16] A. Houmansadr, G.T.K. Nguyen, M. Caesar, and N. Borisov. Cirripede:
Circumvention infrastructure using router redirection with plausible
deniability. In Computer and Communications Security, CCS ’11, pages
187–200, New York, NY, USA, 2011. ACM.

[17] S. Huh, S. Cho, and S. Kim. Managing iot devices using blockchain
platform. In 2017 19th International Conference on Advanced Commu-
nication Technology (ICACT), pages 464–467, Feb 2017.

[18] Medicalchain Inc. Medicalchain whitepaper v2.1, 2018. Available on-
line: https://medicalchain.com/Medicalchain-Whitepaper-EN.pdf, (Last
accessed 03-Aug-2019).

[19] Y. Jie, J. Y. Pei, L. Jun, G. Yun, and X. Wei. Smart home system based
on iot technologies. In 2013 International Conference on Computational
and Information Sciences, pages 1789–1791, June 2013.

[20] P. Lincoln, I. Mason, P. Porras, V. Yegneswaran, Z. Weinberg, J. Massar,
W. Simpson, P. Vixie, and D. Boneh. Bootstrapping communications
into an anti-censorship system. In Presented as part of the 2nd USENIX
Workshop on Free and Open Communications on the Internet, 2012.

[21] H. M. Moghaddam, Baiyu Li, M. Derakhshani, and I. Goldberg. Skype-
morph: Protocol obfuscation for tor bridges. In Proceedings of the 2012
ACM Conference on Computer and Communications Security, CCS ’12,
pages 97–108, New York, NY, USA, 2012. ACM.

[22] R. Matzutt, J. Hiller, M. Henze, J. H. Ziegeldor, D. Mullman,
O. Hohlfeld, and K. Wehrle. A quantitative analysis of the impact of
arbitrary blockchain content on bitcoin. In FC 2018, 2018.

[23] R. Matzutt, O. Hohlfeld, M. Henze, R. Rawiel, J. H. Ziegeldorf, and
K. Wehrle. Poster: I don’t want that content! on the risks of exploiting
bitcoin’s blockchain as a content store. In CCS ’16, 2016.

[24] M. Minaei, P. Moreno-Sanchez, and A. Kate. R3c3: Cryptograph-
ically secure censorship resistant rendezvous using cryptocurrencies.
Cryptology ePrint Archive, Report 2018/454, 2018. Available online:
https://eprint.iacr.org/2018/454 (Last accessed 14-Feb-2019).

[25] Satoshi Nakamoto. A Peer-to-Peer Electronic Cash System, 2008.
Available Online: https://bitcoin.org/bitcoin.pdf (Last accessed 23-May-
2019).

[26] M. Nasr, H. Zolfaghari, and A. Houmansadr. The waterfall of liberty:
Decoy routing circumvention that resists routing attacks. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’17, pages 2037–2052, 2017.

[27] D. Nobori and Y. Shinjo. VPN gate: A volunteer-organized public
VPN relay system with blocking resistance for bypassing government
censorship firewalls. In Proceedings of the 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 14), pages
229–241, 2014.

[28] O. Novo. Blockchain meets iot: An architecture for scalable access
management in iot. IEEE Internet of Things Journal, 5(2):1184–1195,
April 2018.

[29] O. J. A. Pinno, A. R. A. Gregio, and L. C. E. De Bona. Controlchain:
Blockchain as a central enabler for access control authorizations in
the iot. In GLOBECOM 2017 - 2017 IEEE Global Communications
Conference, pages 1–6, Dec 2017.

[30] Ruben Recabarren and Bogdan Carbunar. Tithonus: A bitcoin based
censorship resilient system. Proceedings on Privacy Enhancing Tech-
nologies, 2019(1):68 – 86, 2019.

[31] Nicolas Van Saberhagen. Cryptonote v 2.0, 2013. whitepaper, Available
online: https://cryptonote.org/whitepaper.pdf, (Last accessed 23-May-
2019).

[32] L. Sanchez, L. Muñoz, J. A. Galache, P. Sotres, J. R. Santana, V. Gutier-
rez, R. Ramdhany, A. Gluhak, S. Krco, E. Theodoridis, and D. Pfisterer.
Smartsantander: Iot experimentation over a smart city testbed. Computer
Networks, 61:217 – 238, 2014.

[33] Bytecoin Developers Team. Bytecoin project github repository, 2018.
Available Online: https://github.com/bcndev (Last accessed 26-Nov-
2018).

[34] A. Tomescu and S. Devadas. Catena: Efficient non-equivocation via
bitcoin. In 2017 IEEE Symposium on Security and Privacy (SP),
volume 00, pages 393–409, May 2017.

[35] Tor Project Inc. Tor. Available Online: https://www.torproject.org/ (Last
accessed 22-May-2019).

[36] Ultrareach Internet Corp. Ultrasurf. Available Online: https://ultrasurf.
us/ (Last accessed 22-May-2019).

[37] Z. Weinberg, J. Wang, V. Yegneswaran, L. Briesemeister, S. Cheung,
F. Wang, and D. Boneh. Stegotorus: A camouflage proxy for the
tor anonymity system. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security, CCS ’12, pages 109–120,
2012.

[38] Gavin Wood. Ethereum: A secure decentralised generalised transaction
ledger, 2017. Available online: https://gavwood.com/paper.pdf, (Last
accessed 03-Aug-2019).

[39] World Health Organization. Food safety, 2019. Available online:
https://www.who.int/en/news-room/fact-sheets/detail/food-safety, (Last
accessed 05-Aug-2019).

[40] E. Wustrow, C. M. Swanson, and J. A. Halderman. Tapdance: End-to-
middle anticensorship without flow blocking. In 23rd USENIX Security
Symposium (USENIX Security 14), pages 159–174, 2014.

APPENDIX A
STEGOSYSTEM SECURITY PROOF

Proof. We prove Theorem 1 by reduction. Assume there exists
a PPT adversary A who can break ST with an non-negligible
AdvCHAA,ST (1

λ) advantage w.r.t. the CHA game. We need to
construct a PPT adversary B who can break the PRF game for
Encrypt. During the reduction game, B plays as a challenger
for A in the CHA game. Upon receiving m from A, B
picks random rand ← {0,1}64 and sets x ∶= rand∥00 . . .0.
B then queries x to the PRF game challenger and obtains
IV. Subsequently, B queries CT to the PRF game challenger,
and obtains rand. B then compute (c, r) according to the
description shown in Fig. 4. B flips a coin b ← {0,1}. If
b = 0, B computes a ring signature using (c, r); otherwise, B
computes a ring signature normally. B then sends the resulting
signature to A. Finally, A outputs a guess b′. Assume the
challenge bit in the PRF game is β, i.e. β = 0 is in the PRF
mode; β = 1 is in the random function mode. If b = b′, B
outputs β∗ = 0; otherwise, B outputs β∗ = 1.

Pr[B win] = Pr[β∗ = 0∣β = 0] ⋅Pr[β = 0]+

+Pr[β∗ = 1∣β = 1] ⋅Pr[β = 1]

= Pr [ExptCHAA (1λ)] ⋅
1

2
+
1

2
⋅
1

2

= (AdvCHAA,ST (1
λ
) +

1

2
) ⋅

1

2
+
1

4

=
1

2
⋅AdvCHAA,ST (1

λ
) +

1

2

Hence, the advtantage of B w.r.t to the PRF game is

AdvPRFB = ∣Pr[B] win −
1

2
∣ =

1

2
⋅AdvCHAA,ST (1

λ
) .

Since AdvCHAA,ST (1
λ) is non-negligible, we have AdvPRFB is

also non-negligible, which concludes the proof.

	Introduction
	Preliminaries
	Our Construction
	Evaluation of Skywhisper
	Use Cases
	Related Work
	Conclusion and Future Work
	References
	Appendix A: Stegosystem Security Proof

