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Abstract 

High phonological neighborhood density has been associated with both advantages 

and disadvantages in early word learning. High density may support the formation and fine-

tuning of new word sound memories; a process termed lexical configuration (e.g. Storkel, 

2004). However, new high-density words are also more likely to be misunderstood as 

instances of known words, and may therefore fail to trigger the learning process (e.g. 

Swingley & Aslin, 2007). To examine these apparently contradictory effects, we trained an 

autoencoder neural network on 587,954 word tokens (5497 types; including mono- and multi-

syllabic words of all grammatical classes) spoken by 279 caregivers to English-speaking 

children aged 18 to 24 months. We then simulated a communicative development inventory 

administration and compared network performance to that of 2292 children aged 18 to 24 

months. We argue that autoencoder performance illustrates concurrent density advantages 

and disadvantages, in contrast to prior behavioural and computational literature treating such 

effects independently. Low network error rates signal a configuration advantage for high-

density words, while high network error rates signal a triggering advantage for low-density 

words. This interpretation is consistent with the application of autoencoders in academic 

research and industry, for simultaneous feature extraction (i.e. configuration) and anomaly 

detection (i.e. triggering). Autoencoder simulation therefore illustrates how apparently 

contradictory density and distinctiveness effects can emerge from a common learning 

mechanism.  
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1. Introduction 

  Words with high phonological neighborhood density (i.e. words that sound similar to 

many other words in the language to which children are exposed) are learned 

developmentally earlier and remembered and produced more accurately than words with low 

phonological neighborhood density (Fourtassi, Bian, & Frank, 2018; Hollich, Jusczyk, & 

Luce, 2002; Stokes, 2014; Storkel, 2004). One way to understand this effect is in terms of 

long-term auditory priming (e.g. Church & Fisher, 1998). In this account, phonological 

representations of words heard in child-directed and overheard speech are formed in the 

child’s long-term memory (Port, 2007). These representations may be perceptual, meaning 

that they are stored without semantic details, or they may be conceptual, meaning that they 

are stored with semantic details. High neighborhood density words are memorized more 

easily than low neighborhood density words because high-density words contain sound 

features that are well represented in existing perceptual and conceptual word memories. The 

novel high-density word coal, for instance, may be acquired through analogy to existing 

memories including coat, pole, cone, hole, code, and mole (Church & Fisher, 1998).  

One challenge for research in early word learning has been to reconcile evidence of a 

high-density word learning advantage with contrasting evidence of a high-density word 

learning disadvantage in specific contexts (e.g. Stager & Werker, 1997; Swingley & Aslin, 

2007). Swingley and Aslin (2007), for instance, found that children aged 1;6 (one year, six 

months) struggled to associate phonologically similar labels (e.g. tog, neighboring the known 

word dog) to novel objects and reported a learning advantage for distinctive stimuli with no 

or very few phonological neighbors (e.g. meb). One interpretation of this finding is that 

children may misidentify a novel high-density word as an instance of a known neighbour, 

particularly in the absence of additional cues to support word leaning, such as a sentence 

frame or speaker gaze. This behavior is generally adaptive because stored word sound 
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memories and related perceptual mechanisms must be flexible enough to support cross-

contextual comprehension on the fly, for instance when a learner encounters a known word in 

an unfamiliar dialect (Church & Fisher, 1998). Furthermore, the number of minimally 

different words that young children know and hear regularly in the speech directed to them is 

limited (Guevara-Rukoz et al., 2018), and this makes it reasonable to classify a novel sound 

sequence that is very similar to a known word as an instance of that known word instead of as 

an instance of an unknown word (Swingley & Aslin, 2007).  

Overall, then, the evidence suggests that phonological density and phonological 

distinctiveness support different aspects of word learning. Phonological distinctiveness 

supports the triggering of word learning, in which potential targets of acquisition are 

identified. Phonological density meanwhile supports lexical configuration, or the formation 

and ongoing fine-tuning of sound memories for these words. These effects have commonly 

been treated separately, as in the aforementioned studies by Storkel (2004) and Swingley and 

Aslin (2007), and in related work by Hoover, Storkel, and Hogan (2010) and McKean, Letts, 

and Howard (2014). Furthermore, there has been a tendency to frame evidence of either a 

high-density or high-distinctiveness learning advantage as evidence against the opposing 

effect (e.g. as in Vitevitch & Storkel’s, 2013, p. 520, reference to Swingley & Aslin, 2007). 

The purpose of the current study is to provide a unified framework for understanding 

apparently contradictory density and distinctiveness effects in early word learning. We use a 

simple autoencoder neural network to illustrate how these effects can emerge from a common 

underlying mechanism. 

  The current study was motivated by Vitevitch and Storkel (2013), who examined 

neighborhood effects in early word learning by training and testing an autoencoder on a small 

number of monosyllabic non-words (N=60), which were dichotomized into high-density and 

low-density groups. One novel contribution of the current study is to determine how the high-
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density advantage reported by Vitevitch and Storkel (2013) scales when using sizeable 

naturalistic data. In order to make the training data representative of young children’s input, 

we trained an autoencoder on 587,954 word tokens (5497 word types) spoken by 279 

caregivers to English-speaking children aged 18 to 24 months. This age range was selected to 

reflect participants in the aforementioned literature on density and distinctiveness effects (e.g. 

Storkel, 2004; Swingley & Aslin, 2007). The training data included mono- and multi-syllabic 

words from all grammatical classes, for instance nouns, verbs, adjectives, and prepositions. 

To test the trained network, we simulated a MacArthur-Bates communicative development 

inventory administration (Fenson et al., 2007). Then, to validate network performance, we 

compared the results of this simulated administration to those from 2292 real administrations 

involving children aged 18 to 24 months. Note that this validation phase was not possible in 

prior work using non-words (Vitevitch & Storkel, 2013). In addition to testing the network’s 

ability to represent and output trained words, we also tested the network’s ability to 

generalize and process new, previously untrained words. In all phases, neighbourhood 

density was modeled continuously, avoiding dichotomization that can reduce statistical 

power and limit the quality of inferences drawn.  

 Our interpretation of network performance is informed by our understanding of the 

application of autoencoders in academic research and industry. Autoencoders are a class of 

neural networks in which – in three-layer instantiations – input is received in the first layer, 

compressed in a second ‘hidden’ layer, and then reconstructed in a third output layer. 

Autoencoders learn through back propagation, updating between-layer connection weights in 

order to reduce input-output error.  
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Figure 1. A simplified autoencoder architecture. 

Autoencoders show large error when there is a big difference between the input data 

representation and the output data representation. Importantly, whether or not high network 

error is undesirable depends on the task at hand. Low error indicates that a given data point 

has features consistent with the well-represented properties of the previous network input, 

such as the dominant features in a set of images or the semantic or phonological features 

common across a set of words. In the context of neighborhood density effects, the low error 

rate reported by Vitevitch and Storkel (2013) represents a configuration advantage for high-

density words. However, high error may be considered advantageous when the purpose of the 

autoencoder is to detect anomalies. For example, in credit card fraud detection, an 

autoencoder may be trained on non-fraudulent transactions only, with both non-fraudulent 

and fraudulent transactions subsequently presented and the latter prompting an increase in 

error rate. Similarly, in a categorization task simulation, the network may habituate to a set of 

similar stimuli and de-habituate on presentation of an anomalous stimulus. In each case, high 

error rates indicate that a novel data point (i.e. a transaction or stimulus) is unlikely to be a 

member of any trained class. In the context of simulating neighborhood density effects in 

early word learning, a spike in error rate indicates that a novel string is unlikely to be an 

instance of any previously trained word. And in this sense, high autoencoder error provides a 

strong analogy to the triggering advantage for distinctive stimuli observed in human 

participants (e.g. Swingley & Aslin, 2007). 

Input Output 

Encoder Decoder 

Hidden	layer 
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A broad similarity may be seen between the computational approach used in this 

study and behavioural paradigms such as the naming task, in which participants must 

accurately read a word or verbally label a stimulus, or the non-word repetition task, in which 

participants must accurately repeat a nonsense auditory word stimulus. In each case, lower 

error rates are taken as evidence of better-memorized properties of the input. However, we 

want to emphasize that the focus of this report is a simple model of word sound memory 

configuration and associated triggering effects, rather than an explicit model of word 

comprehension or production. In addition, we remain agnostic regarding the nature of actual 

word sound representations, for instance prototypes, exemplars, or hybrids (see Ambridge, 

2018, for discussion).  

2. Method 

2.1. Network specification 

A full network specification can be retrieved via the R code hosted on the Open 

Science Framework repository associated with this project (https://osf.io/2qk5j/). We used 

the h2o machine learning platform (H2O.ai, 2016) to build an autoencoder with rectified 

linear unit activation functions, a learning rate of .1, one thousand training epochs, and 

randomized initial weights. These parameters make our network broadly comparable to that 

of Vitevitch and Storkel (2013). Our autoencoder had 114 input nodes and 114 output nodes; 

a number determined through the numerical encoding of words from the training corpus (see 

section 2.2., Training). In a basic sensitivity analysis, we compared networks with 10, 20, and 

30 hidden-layer nodes, i.e. with smaller or larger processing resources. Having observed 

equivalent main effects we settled on a hidden-layer size of 20 nodes.  

2.2. Training  

The autoencoder was trained on 587,954 tokens (5497 mono- and multi-syllabic 

unique word types, including all grammatical classes) from child-directed speech from 279 
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caregivers, directed at American English-speaking children aged 18 to 24 months. These data 

were retrieved from the Child Language Data Exchange System (CHILDES) using the 

childesr package in R (MacWhinney, 2000; Sanchez et al., 2018). For each word type we 

extracted a machine-readable phonological encoding (i.e. a string of 0s and 1s; an example 

follows) from the pre-embedded Medical Research Council (MRC) dictionary hosted as part 

of the PyPatPho package (Coltheart, 1981; Grimm & Tulkens, 2015; see 

https://github.com/RobGrimm/PyPatPho). Only words listed in this database were included in 

the training inventory. These numerical encodings were generated using PatPho via PyPatPho 

in Python (Grimm & Tulkens, 2015; Li & MacWhinney, 2002). PatPho converts words into 

114-unit binary value vectors on the basis of a range of articulatory features (e.g., voiced, 

voiceless, front, back, labial, high, lateral, etc.) adopting a syllabic template scheme that 

accommodates input of varying length and therefore enabling us to model mono- and multi-

syllabic words within a parallel architecture. Truncated example PatPho encodings for the 

words cat and hat are shown below. Note that encodings were fronted, meaning that word-

initial features start at the beginning of the 114-digit vector. 

/kæt/ =  [0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0...0144] 

/hæt/ =  [0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0...0144] 

Shading identifies the portion of the vector containing the differences in 0s and 1s that map to 

the difference in the first phonemes of cat and hat (i.e. /k/ versus /h/). The subsequent string 

identity – continuous up to 114 digits – reflects the shared phonemes /æt/ and placeholders 

supporting the encoding of longer, multi-syllabic words. During training, the encoded child-

directed speech corpus was passed to the network defined in section 2.1, Network 

specification. 
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2.3. Test  

After training, we tested the network on a 586-item subset of the trained data that 

appear in the MacArthur-Bates communicative development inventory, words and sentences 

version (MCDI-WS; Fenson et al., 2007). The MCDI-WS contains a list of words and 

phrases and accompanying checkboxes under the response option ‘produces’1. During real-

world administration, caregivers are asked to tick the boxes next to the words that their child 

is able to say. We accessed the MCDI-WS data using the wordbankr package in R (Braginsky, 

Yurovsky, Frank, & Kellier, 2018; Frank, Braginsky, Yurovsky, & Marchman, 2017). The 

test word list was encoded using the process described in section 2.2., Training.  

For each test word we calculated three independent variables: Phonological 

neighborhood density, frequency, and length. Following Luce and Pisoni (1998), 

developmental researchers commonly define phonological neighborhood density as the 

number of words in a given corpus that can be formed by the addition, substitution, or 

elimination of a single phoneme in a target word, e.g. cat neighbours hat, cot, can, and catch. 

A limitation of this approach, however, is that many of the words to which young children 

are exposed are ‘lexical hermits’ with zero plus/minus one-phoneme neighborhood density. 

Accordingly, we used a continuous metric of similarity called phonological Levenshtein 

distance, or PLD20, defined as the mean number of additions, substitutions, or eliminations 

of phonemes required to change a particular word into its nearest twenty phonological 

neighbours (Suárez, Tan, Yap, & Goh, 2011, p. 606). PLD20 values for each test word 

were calculated using all words in the training corpus. A smaller PLD20 indicates greater 

phonological similarity (i.e. high density).  

Frequency and length variables were also included in our statistical model because 

close association with neighborhood density (i.e. high-density words are typically high 

	
1	Note that we only tested MCDI-WS words and that MCDI-WS phrases were excluded from 
our analysis.	
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frequency and short) makes it important to control statistically for these effects. Previous 

studies have also reported interactions between these variables. For instance, Storkel (2004) 

found a significant association between high phonological neighborhood density and early 

age-of-acquisition for low- but not high-frequency words. In the current study, we used log 

token frequencies for each test word in the training inventory, and length was measured in 

number of phonemes. Alternative measures of word length, including number of letters, 

syllables, or morphemes, are highly correlated and may therefore provide similar results 

(Lewis & Frank, 2016). We selected the phoneme-based measure given the central interest in 

this unit of representation in the current study (i.e. as the basis of the PLD20 calculation). 

The statistical analysis of test phase error rates was conducted in R (R Core Team, 

2016) using the brms package (Bayesian regression models using Stan) (Bürkner, 2017). For 

all models, likelihood functions were selected on the basis of response variable distribution. 

In the test phase analysis, we fitted a multiple regression model with a lognormal likelihood, 

in which autoencoder mean squared error was predicted by word frequency, word length, 

phonological distance (PLD20), and interactions between PLD20 and word frequency and 

length (i.e. PLD20*frequency, PLD20*length). We used brms default priors, with each 

predictor centered and scaled prior to model fitting. This model fitted successfully, with a 

good number of effective samples, stationery and well-mixing chains, rhats uniformly at 1, 

and credible posterior predictive checks (see R code for full diagnostics, and the brms 

package documentation for further description of diagnostic terminology; Bürkner, 2017). 

2.4. Validation  

Using real words during training and test made it straightforward to compare network 

performance to data from children. We used the network’s test-phase error rates to predict 

rates of word production among 2292 American English-speaking children aged 18 to 24 

months, i.e. matched in age to the training inventory. That is, we compared the results of our 
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simulated MacArthur-Bates communicative development inventory administration to a large 

database of completed, real-world administrations. This data was retrieved from the 

wordbank database using the wordbankr package in R (Braginsky et al., 2018; Yurovsky, 

Frank, et al., 2018; Frank et al., 2017; R Core Team, 2016). We calculated the proportion of 

children that were able to produce each test word and used this as the dependent variable in a 

Bayesian regression model in which the by-word mean squared error rates from our 

autoencoder was the independent variable. We used a gamma family likelihood and brms 

default priors, and the predictor was centered and scaled for model fitting (see R code for 

diagnostics). 

2.5. Generalization 

In this phase, we exposed the trained network to 500 words it had not been trained on 

and measured the error rates for these items. Generalization-phase words were randomly 

sampled from the Massive Auditory Lexical Decision (MALD) database (Tucker et al., 2018), 

and the degree of phonological similarity between each generalization word and words in the 

training inventory was calculated using the PLD20 metric. The question addressed in this 

analysis was whether error rates were higher or lower for generalization words that sounded 

relatively similar or dissimilar to words that the autoencoder had been trained on. We 

addressed this question using a Bayesian regression model in which generalization word 

mean squared error rate was predicted by PLD20 and word length in phonemes. We used a 

skew-normal family likelihood and brms default priors, with predictors again centered and 

scaled for model fitting (see R code for diagnostics). 

3. Results 

We begin with the results from the test phase, in which we simulated a MacArthur-

Bates communicative development inventory (MCDI-WS) administration on an autoencoder 

trained on a large corpus of authentic child-directed speech (see Appendix for model 
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summaries). We found main effects for each predictor, which are visualized as posterior 

probability distributions in Fig. 2. High reconstruction error rates were associated with: (i) 

Long word length in phonemes (β =0.04; error=0.02; lower 95% credible interval=-0.00; 

upper 95% credible interval=0.08); (ii) low child-directed speech frequency (β =-0.02; 

error=0.01; lower 95% credible interval=-0.04; upper 95% credible interval=0.00); and (iii) 

high phonological Levenshtein distance (PLD20), i.e. low phonological neighborhood 

density (β =0.18; error=0.02; lower 95% credible interval=0.13; upper 95% credible 

interval=0.22).  

 

Figure 2. Posterior probability distributions for the beta (β) coefficients representing the 
association between autoencoder mean squared error and; (i) word length (in phonemes), (ii) 
log child-directed speech frequency, and (iii) phonological Levenshtein distance (PLD20).  
 

We also found evidence of a higher-order interaction between PLD20 and word frequency (β 

=-0.04; error=0.01; lower 95% credible interval=-0.07; upper 95% credible interval=-0.02). 

This indicates that the association between high neighborhood density and low error rate was 

particularly strong for low frequency words, with high frequency nullifying the PLD20 effect. 

No higher-order interaction was observed between word length and PLD20 (β =-0.01; 

error=0.01; lower 95% credible interval=-0.02; upper 95% credible interval=0.01). 

 During the subsequent validation phase, we used the error rates from our simulated 

MCDI-WS administration to predict proportions of MCDI-WS word production among 2292 

American English-speaking children matched in age to the training inventory (i.e. 18-24 

months). We found a negative trend, with words with higher autoencoder error rates 

Length Frequency PLD20
0.00 0.05 0.10 −0.06 −0.04 −0.02 0.00 0.02 0.08 0.12 0.16 0.20 0.24

Marginal posterior distributions for main effects
Predictor association with autoencoder mean squared error
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produced by a smaller proportion of children (β =-0.03; error=0.03; lower 95% credible 

interval=-0.09; upper 95% credible interval=0.02).  

 Finally, during the generalization phase, we exposed the trained autoencoder to a 

randomly sampled inventory of 500 previously unseen words that varied in phonological 

similarity to words in the training inventory. Higher error rates were observed for high-

PLD20 (i.e. low-density) words when controlling for the effect of word length (β =0.02; 

error=0.00; lower 95% credible interval=0.01; upper 95% credible interval=0.02).  

4. Discussion 

This study used an autoencoder neural network to simulate phonological 

neighborhood density and distinctiveness effects observed in early word learning. One 

contribution of this study was to determine how the results of Vitevitch and Storkel (2013) 

scaled when using sizeable naturalistic training and test data, avoiding data dichotomization, 

and incorporating validation against real world data. We trained a three-layer autoencoder 

using a large corpus of child-directed speech before simulating a communicative 

development inventory administration at test and then comparing network performance to 

that of children who were age-matched to the training data (i.e. 18-24 months). Lower 

reconstruction error rates were observed for words that sounded similar to many other words 

in the child-directed speech on which the autoencoder was trained. This effect was separable 

from the effects of word frequency and word length, which also tended in the expected 

directions given the existing behavioral data. That is, lower error rates were observed for high 

frequency words and for short words (Braginsky, Yurovsky, Marchman, & Frank, 2018). 

Despite the extreme simplicity of our network, we were therefore able to simulate the high 

phonological neighborhood density configuration advantage reported behaviorally (e.g. 

Fourtassi et al., 2018; Hollich, Jusczyk, & Luce, 2002; Stokes, 2014; Storkel, 2004). We also 

reported a higher-order interaction between word frequency and phonological distance. As 
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demonstrated behaviorally by Hollich et al. (2002) and Storkel (2004), we found that high 

frequency nullified the high phonological neighborhood density advantage, with amplified 

error rates for low-frequency, low-density words.  

In network validation, we used test-phase error to predict word production rates 

among 2292 children. Despite a credible interval including zero – indicating that zero may be 

the true value of the effect – we observed a negative trend in which fewer children produced 

words that the autoencoder had difficulty representing and reconstructing at test (β =-0.03). 

Finally, we examined the network’s ability to generalize to previously unseen data and found 

an advantage for words with low PLD20 (i.e. high density) relative to the training corpus. 

That is, the autoencoder was better able to represent and reconstruct novel words that 

sounded similar to trained words than novel, phonologically anomalous words. Broadly 

similar results have been reported behaviorally by Schwartz and colleagues, who found that 

children were more likely to learn to successfully produce a novel word if that word 

contained IN-sounds – i.e. sounds that the child had previously produced – than if it 

contained previously unattested OUT-sounds (Schwartz & Leonard, 1982; Schwartz, Leonard, 

Frome Loeb, Swanson, & Loeb, 1987; see also Storkel, 2006).  

High neighborhood density is associated with low network error because the 

encodings of phonologically similar words exhibit similar patterns (i.e. comparable series of 

0s and 1s; see the cat and hat example in section 2.2., Training) that are better represented 

across the network during dimensionality reduction, a process sometimes termed a 

conspiracy effect in machine learning (Rumelhart, McClelland, and the PDP Research Group, 

1986). This makes it possible to reconstruct high phonological neighborhood density words 

more accurately, as reflected in low error rates during training, test and generalization. For 

instance, exposure to the words coat, pole, cone, hole, code, and mole prompts changes in the 

connection weights that support the reconstruction of the novel neighbor coal. As the 
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autoencoder is forced through the hidden layer bottleneck (see Fig. 1) to extract dominant 

input properties, generalization to a novel word exhibiting features orthogonal to those 

previously experienced is inhibited, as reflected by high reconstruction error rates for 

phonologically distinctive, high PLD20 words.  

In our view, a real world parallel to the computational mechanism described above is 

the cognitive process of long-term auditory priming (e.g. Church & Fisher, 1998). In this 

account, representations of direct and indirect spoken word exposures are stored in long-term 

memory (Port, 2007). These representations are initially perceptual rather than conceptual in 

nature and may be formed implicitly in the absence of semantic information, much like the 

representations formed by our network. Children are sensitive to the degree of similarity 

between stored perceptual representations and are able to use this sensitivity to identify (e.g. 

in the head-turn preference procedure) word sounds that occur at high-probability in their 

native language (Fourtassi et al., 2018; Jusczyk, Luce, & Charles-Luce, 1994). Novel high-

density target words comprising phonological features consistent with existing perceptual 

memory traces may be held in memory more easily during initial processing (Gathercole, 

Frankish, Pickering, & Peaker, 1999; Hoover et al., 2010), and this supports the formation of 

long-term, perceptual and conceptual memory traces that are well detailed and robust to 

forgetting (Metsala & Walley, 1998; Sosa & Stoel-Gammon, 2012; Storkel, 2004; Walley, 

Metsala, & Garlock, 2003). Learners may increasingly use their awareness of high-

probability word sounds, as well as their related aptitude in producing such sounds, to 

generalize readily to novel though phonologically familiar words, as in the aforementioned 

IN-sound/OUT-sound studies of Schwartz and colleagues (Schwartz & Leonard, 1982; 

Schwartz et al., 1987; see also Storkel, 2006). Low-density words are in general difficult for 

young children to acquire because there exist few similar stored word representations – 

whether perceptual or conceptual – from which to generalize. 
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In the introduction we noted a tendency in the prior literature to treat density and 

distinctiveness effects separately, and to frame evidence of either a high-density or high- 

distinctiveness learning advantage as evidence against the opposing effect (e.g. Storkel, 2004; 

Swingley & Aslin, 2007; Hoover et al., 2010; McKean et al., 2014; Vitevitch & Storkel, 

2013). In contrast to this approach, the second contribution of this study is to provide a 

unified framework for understanding density and distinctiveness effects in early word 

learning. To do this, we want to emphasize that autoencoder neural networks perform both 

feature extraction and anomaly detection in parallel. In this sense would be inaccurate to 

suggest that high autoencoder error rates for low-density words provide an analogy to 

learning deficits in children (Vitevitch & Storkel, 2013). Whereas low network error rates 

may indeed be understood as exposure to high-density words prompting a conspiracy effect 

supporting lexical configuration, high autoencoder error signals the detection of an 

anomalous target word comprising phonological features inconsistent with those previously 

trained. This latter effect – i.e. computational anomaly detection – parallels the triggering 

advantage observed for low-density words in children (e.g. Stager & Werker, 1997; Swingley 

& Aslin, 2007), which itself may be decomposed into attention- or curiosity-based learning 

advantages (Twomey & Westermann, 2017; we note that additional learning mechanisms 

conceivably dependent on the fundamental triggering mechanism simulated form no part of 

our model). Autoencoder neural networks therefore provide a neat computational analogy to 

both the density advantages and the distinctiveness advantages observed in behavioral studies 

of early word learning. Triggering effects may be seen as the advantageous by-product of 

long-term auditory priming (or a conspiracy effect), which itself supports lexical 

configuration. These effects can be simulated in parallel within a single autoencoder 

employing common algorithms and parameter values. In this way, autoencoder simulation 
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illustrates how apparently contradictory density and distinctiveness advantages emerge from 

a common cognitive mechanism. 

The current study demonstrates neighbourhood density and distinctiveness effects 

similar to those observed in young children in the absence of semantic and pragmatic 

information. This illustrates the crucial role that raw auditory word similarity plays in the 

formation of the early lexicon. It is important to emphasize, however, that high phonological 

neighborhood density is just one of many factors supporting early word learning, including 

high exposure frequency, high concreteness, high relevance to babies and infants, and 

alternative sound variables including phonotactic probability, i.e. the probability of phoneme 

co-occurrence (Braginsky, Yurovsky, Marchman, et al., 2018; Jones & Brandt, 2018; see 

section 4.1, Limitations, for discussion of phonotactic probability). The current study, for 

instance, accorded with prior behavioral work in reporting that the high neighborhood density 

effect was nullified by high exposure frequency (e.g. Hollich et al., 2002; Storkel, 2004); a 

finding that suggests an apparent primacy of word-level frequency effects relative to word 

sound characteristics. It is therefore expected that if a child hears a target word frequently 

enough, or if that target word is, for instance, highly concrete or highly relevant to the child, 

then the implicit generalization preference for words with familiar phonological properties 

may be nullified.  

4.1 Limitations 

Computational cognitive modeling requires researchers to make numerous decisions, 

from the overall model type used (e.g. a neural network or Bayesian network) to fine-grained 

details regarding parameters (e.g. priors, network learning algorithm and rate, number of 

training epochs, etc.). Inevitably, then, some readers may question particular choices we 

made. One particular point of concern may be our decision to use an autoencoder rather than 

a recurrent neural network or long short-term memory network, given that recurrent 
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architectures are so commonly used in natural language processing research. The rationale for 

our choice of architecture was twofold. First, an autoencoder was used in the work by 

Vitevitch and Storkel (2013) that inspired this study, and replication with naturalistic data 

necessitated the use of the same architecture. Second, autoencoders are a somewhat 

distinctive branch of architecture in the sense of performing parallel feature extraction and 

anomaly detection. This choice of architecture was therefore essential to our aim of 

illustrating how apparently contradictory behavioural evidence of both density and 

distinctiveness advantages can be explained in terms of a common mechanism. We have 

made all of our data and code fully available online, and researchers are welcome to access 

this material to test alternative configurations of network or encoding approaches.  

Another potential limitation of this report is the exclusion of alternative predictor 

variables, perhaps most importantly phonotactic probability. High positive correlation 

between neighborhood density and phonotactic probability may cause multicolinearity 

(Storkel, 2004; Storkel & Lee, 2011), which distorts results by changing the magnitude or the 

direction of estimates, or by inflating estimate errors. While it is possible to tease apart the 

effects of neighborhood density and phonotactic probability in controlled experimental 

settings (e.g. Storkel & Lee, 2011), this is usually not possible when working with 

naturalistic data or communicative development inventory data (see Storkel, 2004, with 

respect to MacArthur-Bates data). In this case, the safest way to address multicolinearity risk 

is to exclude the variable of least interest from the regression model. For us, given our central 

interest in neighborhood density effects, this meant omitting phonotactic probability. 

However, as one anonymous reviewer commented, this makes it impossible to determine the 

contribution of phonotactic probability to the results presented. We would like to re-

emphasize that all our code and data can be accessed via the project repository accompanying 

this paper, and that researchers with a primary interest in sub-lexical phonotactic probability 
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effects rather than the word-level neighborhood density effects covered in this study are 

welcome to modify these materials.  

5. Conclusion 

 High phonological neighborhood density has been associated with both advantages 

(Storkel, 2004) and disadvantages (Swingley & Aslin, 2007) in behavioral studies of early 

word learning. We explored these effects using an autoencoder neural network in conjunction 

with corpus and communicative development inventory data. We suggested that the widely 

reported high-density advantage is explicable in terms of exposure to a phonological 

neighborhood prompting a natural conspiracy effect; a process termed long-term auditory 

priming in the behavioural literature (e.g. Church & Fisher, 1998). We then noted that high 

phonological distinctiveness supports word learning by reducing the risk of mis-processing 

novel words as known words in competitive learning environments. Autoencoder modeling 

encourages us to think of these apparently contradictory effects as emerging from a common 

mechanism. 
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Appendix 

Model summaries. 

 

Table A1 

 

Test phase model summary showing term (main effects, interactions, and family specific 

parameters), estimate, standard error (Std. error), and lower (L) and upper (U) 95% 

confidence intervals (CI). Model formula: Mean reconstruction error ~ Length + Frequency 

+ PLD20 + PLD20 * Length + PLD20 * Frequency. 

Term (main effects) Estimate Std. error L-95% CI U-95% CI 

Intercept -3.38 0.01 -3.4 -3.36 

PLD20 0.18 0.02 0.14 0.22 

Length 0.04 0.02 0 0.07 

Frequency -0.02 0.01 -0.04 0 

Term (interactions) Estimate Std. error L-95% CI U-95% CI 

PLD20: Length -0.01 0.01 -0.02 0 

PLD20: Frequency -0.04 0.01 -0.06 -0.02 

Term (family specific parameters) Estimate Std. error L-95% CI U-95% CI 

Sigma 0.23 0.01 0.22 0.24 

 

 

Table A2 

 

Validation phase model summary showing term (main effects and family specific 

parameters), estimate, standard error (Std. error), and lower (L) and upper (U) 95% 

confidence intervals (CI). Model formula: Produces (%) ~ Mean squared error. 

Term (main effects)  Estimate Std. error L-95% CI U-95% CI 

Intercept -1.21 0.03 -1.25 -1.16 

Mean squared error -0.03 0.03 -0.08 0.02 

Term (family specific parameters) Estimate Std. error L-95% CI U-95% CI 

Shape 1.98 0.11 1.8 2.16 
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Appendix continued. 

Model summaries. 

 

Table A3 

 

Generalization phase model summary showing term (main effects and family specific 

parameters), estimate, standard error (Std. error), and lower (L) and upper (U) 95% 

confidence intervals (CI). Model formula: Mean reconstruction error ~ PLD20 + Length. 

Term (main effects)  Estimate Std. error L-95% CI U-95% CI 

Intercept -0.01 0 -0.01 0 

PLD20 0.02 0 0.01 0.02 

Length 0 0 0 0.01 

Term (family specific parameters) Estimate Std. error L-95% CI U-95% CI 

Sigma 0.02 0 0.02 0.02 

Alpha 1.83 0.4 1.19 2.45 

 


