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Nonhermitian systems provide new avenues to create topological defect states. An unresolved
general question is how much the formation of these states depends on asymmetric backscattering, be
it nonreciprocal as in the nonhermitian skin effect or reciprocal as encountered between the internal
states of asymmetric microresonators. Here, we demonstrate in a concrete, practically accessible
setting of a lossy coupled-resonator optical waveguide that nonhermitian defect states can exist in
open optical systems due to lifetime differences, without the need for asymmetric backscattering
within or between the individual resonators. We apply our findings to a finite system of coupled
circular resonators perturbed by nanoparticles, following the concept of creating an interface by
inverting the position of the nanoparticles in half of the chain. We compare a coupled-mode tight-
binding approximation to full-wave numerical simulations, showing that spectrally isolated defect
states can indeed be implemented in this simple nonhermitian photonic device.

I. INTRODUCTION

Nonhermitian physics has attracted tremendous inte-
rest in the past decade, not least due to the variety of
physical systems that can be captured by nonhermitian
effective Hamiltonians, such as in condensed-matter phy-
sics [1, 2], optomechanics [3] and photonics [4–8]. Of
these, settings in optics and photonics have been recog-
nized as particularly suitable platforms due to the pa-
rallels between the Schrödinger equation and Maxwell’s
theory of light [4, 9]. Nonhermiticity can be introduced
in photonic systems by two distinct routes, where the
first considers gain and loss, while the second considers
asymmetric and potentially nonreciprocal coupling me-
chanisms (asymmetric coupling, AC). These, in addition
to the intrinsic openness of optical systems, lead to the
occurrence of nonhermitian features with a wide range of
applications, especially through the manipulation of ex-
ceptional points [10–13], as they occur generically, e.g.,
in PT-symmetric systems [14].

In recent years, nonhermitian physics has been further
enhanced by the recognition of topological effects, which
are based on the interplay of a wide range of symme-
tries going beyond the PT case, and manifest themselves
in a variety of bulk and boundary phenomena, including
novel interface and defect states [15, 16] and bulk and
boundary Fermi arcs [17–20]. In particular, nonhermi-
tian defect states equipped with a topological mode se-
lection mechanism [15, 21] have already been exploited
for the design of lasers on a variety of platforms [22–26].
In some cases, such defect states can still be characte-
rized by mappings to the hermitian topological setting,
and thereby remain associated with bulk and boundary
invariants that conform with the bulk-boundary principle
[27, 28]. For these simple settings, a paradigmatic exam-
ple is a Su-Schrieffer-Heeger (SSH) chain with a complex
potential as realized by gain, loss, or other dissipative
mechanisms [21, 29]. Remarkably, however, it has also
been established that new classes of topologically robust
interface and defect states can emerge in nonhermitian

settings that would be topologically trivial in their her-
mitian (closed system) limit. Based on the study of a
variety of specific systems, two distinct, well defined me-
chanism have so far been identified.

The first mechanism is the nonhermitian skin effect
(SE), which is intimately related to nonreciprocal AC
and can be understood, alternatively, from the ensuing
nonconserved probability flux, the exponential distortion
of the probability weights in right and left eigenstates
when compared to the symmetric coupling case, and the
proximity to high-order exceptional points when the cou-
pling asymmetry is taken to the extreme. Subject to this
SE mechanism, systems are highly sensitive to the boun-
dary conditions, also entailing that the bulk-boundary
principle has to be revisited [30]. Paradigmatic examples
in this first class of essentially nonhermitian topological
systems are the Hatano-Nelson model [31], as well as va-
riants of the SSH models with nonreciprocal AC [32, 33].

In the second mechanism, defect states appear in re-
ciprocal gain-loss settings at a sufficiently strong level
of nonhermiticity via exceptional points (EP), signifying
that scattering solutions turn into normalizable soluti-
ons. Even though the scattering solutions pertain to the
band structure, the bulk-boundary principle in its ori-
ginal form is again violated, as the band structure it-
self does not drastically change at the EP. In this case
topological protection is understood in terms of the ro-
bustness of the EPs in parameter space, while a gene-
ral theory of bulk and boundary invariants has not yet
been developed. The paradigmatic candidate example
of this second class of essentially nonhermitian topo-
logical systems is a reciprocal lossy resonator chain (a
lossy coupled-resonator optical waveguide, CROW), for
which, the EP mechanism has only been described assu-
ming reciprocity-conserving AC between internal resona-
tor modes [16, 34].

So far, both the SE and EP mechanism have been
mainly explored in coupled-mode tight-binding models,
and have not yet been realized in photonic experiments.
On paper, the most promising route to nonreciprocal AC
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FIG. 1. Design concepts of nonhermitian systems with defect
states. (a) Systems with distributed gain (red) and loss (blue),
as, e.g., realized in topological mode selection [15]. (b,c) Sys-
tems with asymmetric coupling (indicated by arrows), either
external and nonreciprocal (b) as exploited in the nonhermi-
tian skin effect [32] or internal and reciprocal (c) as in open
lossy asymmetric resonator chains [16]. (d) In this paper, we
show that simpler systems with lifetime differences in other-
wise degenerate modes can display similar characteristics as
systems with reciprocal asymmetric coupling. These lifetime
difference can, e.g., be obtained by perturbing symmetric re-
sonator shapes by nanoparticles.

follows the steps of hermitian photonic topological insu-
lators [35], which are based on evanescently coupled ring
resonators with effectively decoupled clockwise (CW) and
counterclockwise (CCW) propagation sectors. The time-
reversal operation maps both sectors onto each other, but
within each sector time-reversal symmetry is effectively
broken. Again focussing on each sector, nonreciprocal
AC can then in principle be induced by lossy elements
placed into auxiliary rings [36], even though this has not
yet been demonstrated in practice. Reciprocal AC, on
the other hand, follows generically in asymmetric, open
resonators [37], and outside the topological setting has
been observed experimentally for a wide range of realis-
tic individual resonator shapes [38].

For the design of experiments and applications, this le-
aves two important open questions. Firstly, from a more
practical perspective, can such realistic resonator shapes
induce defect states via the EP mechanism if placed into
an appropriate resonator chain? Secondly, from a more
fundamental point of view, is reciprocal AC within these
resonators a key ingredient, or can the same effects also
achieved in simpler symmetric shapes, hence based on the
more conventional, manifestly reciprocal standing-wave
combinations of the CW and CCW waves?

In this paper, we demonstrate that even simple reso-
nator chains, based on symmetric individual resonator
shapes without internal or external AC, can indeed lead
to the desired defect states. This requires neither the in-
corporation of material gain or loss as illustrated for the

example of topological mode selection in Fig. 1(a), nor
the asymmetric backscattering employed in the SE and
EP mechanisms as illustrated in Fig. 1(b,c). Rather, we
find that the interface states arise from lifetime differen-
ces due to the leakage of the supported standing-wave
modes, which can be induced by very simple means as
depicted in Fig. 1(d).

The general design of the system, which is based on
the same generic setting as the paradigmatic model in
Ref. [16] and can be realized as a lossy CROW [39], is
presented in Sec. II. Using first the tight-binding ap-
proximation (Sec. III), we show that defect states can
arise even in absence of AC if the system is perturbed
in a way such that the lifetimes of an eigenmode pair
split. Moving towards practical settings (Sec. IV), we
then identify a suitable resonator geometry, obtained by
perturbing a circular resonator with a single nanoparti-
cle, a setting where internal AC is known to be absent
[40]. Furthermore, we compare the results of the tight-
binding approach with numerical simulations of the re-
alistic system, implemented by incorporating the indivi-
dual resonators into a chain with two different positions
of the nanoparticles on two sides of an interface. Our
conclusions are collected in Sec. V.

II. BACKGROUND AND METHODS

The systems studied in this work are lossy CROWs
composed of planar, almost circular dielectric microreso-
nators. We follow the route of most applications, where
such microresonators are grown with a low aspect ratio,
allowing them to be treated as two-dimensional structu-
res with an effective refractive index n(x, y). In this case
Maxwell’s equations can be reduced to the scalar wave
equation [41]

−∇2ψ = n2(x, y)
ω2

c2
ψ, (1)

where ω = ck is the frequency, c the speed of light in
vacuum and k the wavenumber. For systems with a pie-
cewise constant refractive index, Eq. (1) is valid for both
transversal electric (TE) and transversal magnetic (TM)
polarization, for which the electric or magnetic field vec-
tor lies in the cavity plane; the only difference are the
matching conditions at the boundaries of the regions of
constant refractive index. The nonhermiticity of the sy-
stem arises from its openness, which can be considered
by applying Sommerfeld outgoing wave conditions at in-
finity [42]. The wave equation for the TM modes was
solved numerically using the finite element method soft-
ware Comsol Multiphysics R© 5.3, wave optics module [43],
where perfectly matched layers were used to simulate the
openness of the system [44].

In order to describe these systems more conceptually,
we use a coupled-mode tight-binding Hamiltonian, which
allows to approximate the complex eigenfrequencies of
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the system in the relevant spectral range. This is achie-
ved by extending the two-mode approximation used to
describe the main properties of almost-circular single re-
sonators [37] to a chain of coupled resonators [39].

The two-mode approximation focusses on a pair of
whispering gallery modes (WGMs) with CW and CCW
orientation, which are described by an effective nonher-
mitian two-by-two Hamiltonian

H =

(
Ω0 0
0 Ω0

)
+

(
Ωp A
B Ωp

)
=

(
Ω̄ A
B Ω̄

)
(2)

whose complex eigenvalues correspond to the eigenfre-
quencies of the mode pair. In the perfectly circular sy-
stem, these eigenfrequencies are identical for both modes,
and denoted as Ω0. To account for a small deformation or
perturbation of this situation, we include a perturbation
term to the Hamiltonian, which both shifts the frequency
of both modes by a small, still identical amount Ωp, but
also introduce backscattering coefficients A and B. These
backscattering coefficients can in principle be nonidenti-
cal, corresponding to AC. Importantly, the coefficients
appearing here are constrained by reciprocity as well as
symmetries of the resonator shape, as we will explain in
detail in Sec. III A further below, and forms the basis of
our main results.

This model is sufficient to describe the effects of back-
scattering and openness for the mode pair in a single
resonator. Furthermore, under the assumption that the
WGM mode pair only couples to analogous mode pairs
in the neighboring resonators, this description can be ex-
tended to a system of N coupled resonators. This gives
an N×N block matrix H with blocks Hn in the diagonal
elements and blocks T in the next-to-diagonal elements,
where

Hn =

(
Ω̄ An
Bn Ω̄

)
, T =

(
0 W
W 0

)
. (3)

Here we assume that CCW (CW) modes couple only to
the CW (CCW) modes in the neighboring resonators,
where the coupling constant W is real and equal for all
modes, as can be realized in the weak-coupling regime of
evanescently coupled resonators [39].

The corresponding wave equation is given by

ωψn = Hnψn + T (ψn+1 + ψn−1). (4)

We note that the system obeys a nonhermitian chiral
sublattice symmetry

σz(H− Ω̄11)σz = Ω̄11−H (5)

with the Pauli matrix σz, which dictates that the complex
frequency spectrum is inversion-symmetric about the fre-
quency Ω̄.

For an infinite one-dimensional periodic chain, Hn ≡
H for all n ∈ Z, the solutions of the system are obtai-
ned from a superposition of Bloch waves ψn = Ψeikn,
fulfilling the equation

ω(k)Ψ = (H + 2 cos kT )Ψ. (6)

The dispersion relation is given by ω(k) = Ω̄ ±√
(A+ 2W cos k)(B + 2W cos k), displaying a symmetry

about Ω̄ as dictated by the chiral symmetry (5).
It is useful to specify this dispersion further for the

special case where A = −B are both real, which we will
encounter further below, where

ω(k) = Ω̄±
√
A2 − 4W 2 cos2 k. (7)

For |A| < 2W (and A still real), the square root then
gives rise to a gapless dispersion relation, where two
branches aligned along the real axis are joined up with
two branches aligned along the imaginary axis. For
|A| ≥ 2W , on the other hand, we obtain a gapped disper-
sion with two separate branches aligned along the imagi-
nary axis.

The specific variant of this system analyzed in the pre-
sent paper consists of a chain of perturbed resonators
with an interface, created by inverting the orientation of
the resonators in half of the system. The interface can
be implemented in the Hamiltonian by using Hn ≡ H
for the diagonal elements with n > N/2 and Hn ≡ HT

for the diagonal elements with n ≤ N/2. Overall, the
system is then described by a 2N × 2N matrix, with its
eigenvalues corresponding to the eigenfrequencies of the
system arising for a chosen pair of WGMs.

Assuming real A and B to observe an effective PT
symmetry, but without considering geometric symmetry
constraints on the couplings, it is known that defect sta-
tes can form by the EP mechanism at sufficiently strong
nonhermiticity (A − B)/W , which generically embodies
reciprocal AC. The symmetry protection of the states
arises already if the general Hamiltonian in equation (2)
displays PT and CT symmetry. [16]

By revisiting these conditions in detail, we identify a
simplified situation without AC that achieves a formally
equivalent effect (Sec. III), and then show how this situ-
ation can be realized in practice (Sec. IV).

III. LIFETIME BACKSCATTERING IN THE
TIGHT-BINDING APPROXIMATION

A. Symmetry constraints

To understand the emergence and role of reciprocal
AC, we first investigate a number of relevant symmetry
constraints in the tight-binding model. We both adopt
the WGM basis of CCW modes |+〉 and CW modes |−〉
(with the symbols denoting the mathematical orientation
of the propagation direction in these modes, which have a
general angular mode dependence e±imϕ with azimuthal
mode-pair index m), as well as their properly normalized
standing-wave (SW) counterparts |c〉 = 1√

2
(|+〉 + |−〉)

(essentially, a cosine wave in the angular dependence)
and |s〉 = 1√

2i
(|+〉 − |−〉) (essentially, a sine wave).

As the first constraint we consider reciprocity, which
arises due to the scalar wave nature of the underlying
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wave equation (1). This constraint is most easily imple-
mented in the standing-wave basis, where the effective
Hamiltonian must be symmetric,

H(SW ) =

(
Ωc ∆
∆ Ωs

)
. (8)

The diagonal terms can differ, and are conveniently writ-
ten as

Ωc = Ω̄ + δ, (9)

Ωs = Ω̄− δ, (10)

where

Ω̄ =
1

2
(Ωc + Ωs), (11)

δ =
1

2
(Ωc − Ωs). (12)

Translated into the WGM basis we obtain the form

H(WGM) =

(
Ω̄ A0

B0 Ω̄

)
, (13)

with the diagonal elements Ω̄ identical as anticipated in
Eq. (2), while the coupling coefficients

A0 = δ − i∆,
B0 = δ + i∆ (14)

are general complex numbers, even in the given reciprocal
case. This is the sought-after manifestation of reciprocal
internal AC.

We note that symmetric coupling occurs as soon as
|A0| = |B0| in any WGM basis, since it remains pre-
served in all WGM basises. A0 and B0 become iden-
tical (and hence AC is absent) when ∆ = 0. This
situation is readily achieved in resonators with a re-
flection symmetry, placed suitably to preserve the SW
modes |c〉 and |s〉. As both modes have a different pa-
rity under the reflection, the symmetry of the system
prevents their mixing, which directly entails ∆ = 0 in
the SW basis. Formally, this constraint is born out by
the relation H(SW ) = σzH

(SW )σz. Furthermore, this
constraint is consistent with the oberservation that the
reflection interchanges the WGM modes, meaning that
H(WGM) = σxH

(WGM)σx, which again implies A0 = B0.
In order to obtain a nonhermitian system in the ab-

sence of reciprocal AC, we require that A0 = B0 is com-
plex. The largest level of nonhermiticity is then achieved
when

Re Ωc = Re Ωs, (15)

so that

A0 = B0 =
i

2
Im (Ωc − Ωs) ≡ i Im δ (16)

is purely imaginary. Within the two-mode model, we re-
adily see from Eq. (14) that this corresponds to a setting

where Ωc and Ωs agree in their real parts, hence scatter
resonantly at the same real frequency, but differ in their
imaginary parts, hence their lifetimes (or, equivalently,
display different linewidths). Summarizing these consi-
derations, to achieve strong nonhermiticity in absence of
internal reciprocal AC we should therefore aim at sym-
metric resonator geometries in which a WGM mode pair
is split only in lifetime, but not in the real frequency.

B. Nonhermitian defect states

In order to see whether nonhermitian defect states can
arise form these lifetime differences, we make use of one
more freedom in the extended two-mode model for the
chain, namely, the orientation axis of the resonator’s
reflection symmetry with respect to the coupling axis.
Upon rotation of the symmetry axis by an angle β, the
WGMs transform as |±〉 → exp(±imβ)|±〉, so that the
effective resonator Hamiltonian takes the more general
form

H(WGM) =

(
Ω̄ i (Im δ)e−2imβ

i (Im δ)e2imβ Ω̄

)
(17)

where δ and Ω̄ remain defined as in the previous section.
It follows that the offdiagonal elements of the Hamil-

tonian in (2) will be real and opposite,

A = −B = (−1)nIm δ, (18)

if the following condition is met:

2mβ =
π

2
+ nπ n ∈ Z. (19)

These symmetry considerations demonstrate that it is
possible to obtain an effective internal Hamiltonian with
the desirable properties A = −B and A,B ∈ R by exploi-
ting the lifetime differences of the modes. In principle,
this should allow us to meet the conditions for the obser-
vation of defect states by the EP mechanism when the
nonhermiticity is sufficiently large.

IV. LIFETIME BACKSCATTERING WITH
REALISTIC RESONATOR SHAPES

We now explore how these defect states can be reali-
zed in realistic systems, where we set out to induce the
lifetime-induced backscattering via small perturbations
into almost-circular resonator geometries. As we will see,
this allows us to design a simple optical system with the
desired effective Hamiltonian.

A. Single resonator design

In circular resonator geometries, the WGMs in a mode
pair |±〉 have degenerate eigenfrequencies Ω0, which also
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FIG. 2. (a) Circular microresonator of radius R and refractive
index n with a local perturbation caused by a nanoparticle
with the same refractive index as the disk. The position and
size of the nanoparticle are described by the effective radius
r/R, distance d/R, and angular position β. (b,c) Complex re-
lative resonance shift δ for the almost-degenerate WGM mode
pair with azimuthal mode number m = 16, as a function of
the relative radius r/R and distance d/R. We aim to ope-
rate at conditions where Re δ = 0, which can be achieved by
tuning the single parameter r/R at fixed d/R.

carry over to their standing-wave combinations |c〉 and
|s〉. Consider now a local perturbation at the angular
position φ = β [cf. Fig. 2(a)]. This naturally affects
the even and odd eigenmodes |c〉 and |s〉 differently, as
only |c〉 has a large weight at the perturbation position
while |s〉 has a node. Furthermore, as discussed before,
both modes do not hybridize as long as the perturbation
respects the symmetry about the reflection axis with an-
gle β. Applying standard perturbation theory [37], the
system is described by the SW Hamiltonian (8) with dis-
tinct eigenfrequencies Ωc and Ωsand ∆ = 0. The real
part of the complex frequency splitting Ωc − Ωs = 2δ
corresponds to a relative frequency shift, while the ima-

FIG. 3. Calculated electric-field intensity distribution for the
almost-degenerate WGM mode pair in the geometry of Fig. 2,
for r/R = 0.089, d/R = 0.013 and β = 0.933 [corresponding
to m = 16, n = 9 in Eq. (19)]. Both modes have similar
frequencies but different lifetimes: Ωs = 9.87973 − 0.00088 i
(left) and Ωc = 9.87977 − 0.00495 i (right). This can be ex-
plained by the fact that the perturbation is broad enough to
overlap with the field distribution of both modes, changing
the frequency of both by a similar amount, but induces more
scattering to the outside for the mode on the right, whose
mode profile is symmetric with respect to the nanoparticle
position.

ginary part corresponds to the lifetime differences of the
perturbed modes. According to the considerations in the
previous section, our goal is now to find a perturbation
for which δ is purely imaginary—the lifetimes of the mo-
des are different yet their frequencies are equal.

This perturbative perspective is useful due to several
reasons. Firstly, it concretely connects the features of re-
alistic microresonators with the effective two-mode Ha-
miltonians such as given in Eqs. (2), (8) and (13). Se-
condly, it shifts the problem from finding a resonator
with the appropriate effective Hamiltonian to the pro-
blem of finding an adequate local perturbation, which
has already been studied extensively [45, 46]. Finally,
the resulting conditions are very general and apply to all
perturbations that only detune the imaginary parts of
the eigenfrequencies.

We focus on a particularly versatile geometry, that
of a circular resonator perturbed by a nanoparticle [see
Fig. 2(a)], which has been studied extensively both the-
oretically [40] as well as in the context of sensing appli-
cations [12, 47]. The resonator is modelled as a circular
dielectric disk of radius R and representative refractive
index n = 2. The nanoparticle is of the same refractive
index, has a radius r and is placed at a distance d from
the disk. For the following discussion it is useful to in-
troduce the dimensionless values r/R and d/R as well as
the dimensionless frequency Ω = ωR/c.

In order to find a value where the relative shift δ is
purely imaginary, we performed a parameter sweep for
different values of d/R and r/R using full numerical si-
mulations of the individual resonators with the methods
described in Sec. II, and compared the resulting eigenfre-
quencies with the unperturbed system, see Fig. 2 (b,c).
Based on these results, we find that we generically can
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(a)

FIG. 4. (a) Geometry of the designed CROW system, consis-
ting of N = 12 circular microresonators perturbed by nano-
particles that are placed at opposite positions on both sides
of the central interface. The parameters for the individual
parameters to the right of the interface are r/R = 0.089,
d/R = 0.013 and βr = 0.933, corresponding to those used in
Fig. 3, while to the left of the interface βl = π − βr. The
inter-resonator spacing is set to a/R = 0.43, resulting in a
sufficiently weak coupling so that the effective nonhermiticity
is large. (b-f) Electric-field intensity distribution for selected
eigenmodes. The first four states (b-e) correspond to the desi-
red quadruplet of defect states, and can be interpreted as bon-
ding and antibonding combinations that furthermore either
have a minimum or a maximum at the position of the per-
turbing nanoparticles. The bottom panel (f) contrasts these
with a representative extended state, for which the intensity
is not localized around the central resonators.

identify suitable conditions by tuning the single parame-
ter r/R at fixed d/R. For example, for the azimuthal
mode number m = 16 and fixed β = 19π/64 ≈ 0.933,
d/R = 0.013, this occurs for r/R = 0.089. These condi-
tions meet the constraint (19), where we chose n = 9 to
achieve a situation where the perturbing nanoparticle is
located far away from the inter-resonator coupling regi-
ons in the chain configuration. The field distributions of
the two eigenmodes for this parameter combination are
shown in Fig. 3.

B. System of coupled resonators

Whether the obtained lifetime difference is enough
to induce the desired defect states should now depend
on how it compares with the inter-resonator coupling
strength W . We determined this value by comparing the
eigenfrequencies of the isolated resonator to the eigenfre-
quencies of a dimer of two coupled resonators for different
inter-resonator distances a. This delivers an essentially
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FIG. 5. Electric field norm integrated over each resonator
for the defect state in panel (c) and the extended state in
panel (f) of Fig. 4. The connecting lines are used only as a
visual aid. The defect state is characterized by an exponential
decay away from the interface, as expected from tight-binding
calculations [16, 19] for infinte chains. The slight deviations
can be linked to the finite size of the chain.
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FIG. 6. Complex resonance eigenfrequencies of the reso-
nator chain shown in Fig. 4, where we compare the result
of the full wave calculations (red) to those of the tight-
binding approximation (blue). In the tight-binding model,
δ = 0.00203 i and W = 0.00076, resulting in the effective pa-
rameters A/W = −B/W = −2.67 (given that n in Eq. (18) is
odd). The full wave solution confirms the expected spectral
isolation for the defect states (non-circular symbols), as well
as a good resemblance of a fourfold symmetry. The discre-
pancy with the results from the tight-binding model (where
the defect states are denoted by corresponding unfilled sym-
bols) can be attributed to the two-mode approximation.

exponential dependence of W on a, as expected from the
evanescent-mode nature of the coupling, which therefore
can be adjusted easily over a large range of values by
selecting a convenient resonator spacing.

Based on these preparations, we finally turn to the
coupled-resonator geometry with the interface, which
corresponds to a chain of circular resonators decorated
by nanoparticles at position β to the right of the inter-
face, and position π − β to the left of the interface. We
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use the parameters β = 19π/64 ≈ 0.933, r/R = 0.089,
and d/R = 0.013 determined above, so that the nanopar-
ticles remain placed far away from the coupling regions
of the adjacent resonators. The resulting geometry of the
system can be seen in the upper panel of Fig. 4.

The remaining panels in Fig. 4 show representative ei-
genmodes obtained by solving the full wave equation by
the method described in Sec. II. The four modes cor-
responding to defect states are localized at the interface
and decay exponentially, whereas the rest of the states
have wavefunctions which extend over the whole system,
as shown for one example in the bottom panel.

For a more quantitative view we plot in Fig. 5 the
integrated field norm of each single resonator, where we
compare the second defect state depicted in Fig. 4(c) with
the extended state in Fig. 4(f). This clearly demonstrates
the strong confinement of the defect state around the
interface region.

To further analyze these results, we compare in Fig. 6
the numerically determined resonance eigenvalues of the
full wave calculations with the corresponding result from
the tight-binding approximation. In both approaches,
the four defect states are clearly separated from the ex-
tended states, and have lifetimes competing with the
most long-lived extended states (for the two defect states
in the upper region of the complex plane) and the most
short-lived extended states (for the defect states further
down in the complex plane). The remaining discrepan-
cies between the results can be linked to the two-mode
approximation. With help of this close correspondence,
we can classify the four states as either bonding or anti-
bonding, as well as either displaying a maximal or mini-

mal intensity in the region of the nanoparticle perturba-
tion. The two long-living defect states are then revealed
as the bonding and antibonding combinations of states
with a small amplitude around the nanoparticle location.

V. CONCLUSION

In this work we have shown that defect states in open
coupled resonator systems are not necessarily tied to
asymmetric backscattering, but can be present in a sy-
stem with lifetime differences between the resonator mo-
des. This situation can be achieved by suitable pertur-
bations of simple symmetric resonator geometries, which
change the lifetime of the modes while keeping their real
frequencies aligned. This simple design concept promises
to be easier to implement than finding resonators with
a good quality factor and asymmetric backscattering.
More generally, this shows that genuinely nonhermitian
defect states can be obtained by very simple means. We
implemented this concept for a system of coupled reso-
nators perturbed by nanoparticles. The eigenfrequencies
determined in full wave computations match well with
the ones calculated in a tight-binding approximation fo-
cussing on a single whispering-gallery mode pair, reali-
zing a quadruplet of defect states that have the expected
localization at the interface. By their perturbative na-
ture, these results transfer to a wide range of different
geometries and platforms, and thereby significantly bro-
aden the scope of using defect states for photonic appli-
cations.
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Reports 7, 3386 (2017).

[4] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and
Z. H. Musslimani, Phys. Rev. Lett. 100, 103904 (2008).
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