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ABSTRACT 
Since its introduction in the early 1990s Material Extrusion (MEX) has become the most 
popular additive manufacturing technology for a variety of applications. One of the reasons of 
its popularity amongst users is the affordability of the equipment, materials and the open source 
software. Given the large variety of combinations optimisation of MEX process parameters can 
be quite elaborate. The paper provides a method for optimisation of mass calculation using  
multivariable regression analysis. Layer thickness, printing temperature and printing speed 
were considered the independent variables for a two level factorial experimental program. DOE 
was used to plan 12 sets of programs, out of which four were found to have  significant models. 
The four models were validated through measured and calculated responses.  
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1. INTRODUCTION 
Material Extrusion (MEX) is the most widespread Additive Manufacturing (AM) technology, 
followed by Selective Laser Sintering (SLS) and Stereolithography (SLA) [1, 2]. MEX 
adoption has known a consistent increase over the last few years, using PLA as the most 
common material, followed by ABS [2]. As MEX application areas expand [1] the need arises 
to optimise printing process parameters in relation to certain goals, amongst which can be 
mentioned: print time, final part quality and costs. Some of the most significant process 
parameters considered as influencing MEX are the layer thickness, printing temperature and 
printing speed [3, 4, 5]. Print orientation, infill and raster angle have also been shown to highly 
influence final part properties [5, 6, 7]. Optimisation of process parameters specific to certain 
goals is quite complex, given the large variety of possible combinations provided by slicing 
software. Using DOE the current research optimises the calculation of mass for natural PLA 
3D printed specimens, considering the variation of three process parameters.  
Most available slicing software offer a rough estimate on the final mass of the 3D printed parts, 
making it hard to use as an input variable into other processes. The results of the paper can be 
useful in AM areas wher material costs are quite high and final part mass is important in overall 
fit and evaluation of the corresponding assemblies.  
Considering the abovementioned, the aim of the paper is to find a more accurate relationship 
between the final mass of a 3D printed product and a selection of printing parameters. Due to 
the nature of the physical process, one identified dependent variable and multiple independent 
variables, multivariable regression analysis (MRA) was proposed as a scientific method of 
statistical calculation. MRA refers to statistical models in which there are multiple independent 
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or response variables [8]. This type of statistical model has been previously used to attempt to 
assess the relationship between a number of variables, especially in the medical field for 
statistical processing of large volume data [9].  

 

2. METHODS AND MATERIALS  
The goal of the present research is to determine a more accurate method for mass calculation 
of MEX 3D printed parts, using multivariable regression analysis (MRA) to establish the 
relation of mass as a function of printing parameters. MRA entails several stages, as follows: 
1. Establish the form of the regression function; 2. Establish the structure of the experimental 
program using design of experiments (DOE); 3. Calculate the regression coefficients; 4. Verify 
the regression functions’ form suitability and the significance of the regression coefficients; 5. 
Determine the statistical errors; 6. Determine the confidence intervals. MRA was undertaken 
using Design-Expert® V11 Software by defining the form of the function and the experimental 
program type. By running the software a mathematical expression was determined, in order to 
define the dependency between the final mass of 3D printed specimens and three process 
parameters: layer thickness (s, mm), printing temperature (t, degrees) and printing speed (v, 
mm/min). In this case, the mass is considered the main dependent variable and the three process 
parameters are the input independent natural variables. Due to the combination between the 
independent variables in relation to the dependent variable, a factorial experimental program 
was defined, with two variation levels (23 type), with the medium values determined as the 
arithmetic average of the minimum and maximum limits. Three control experiments were used, 
leading to a base experimental program of 11 experiments. Four PLA filament type materials 
were considered for DOE, from four different manufacturers. Natural filaments were chosen in 
order to exclude changes in material properties due to various pigments. Three ISO test 
standards were used to print the specimens in one direction, as follows: ISO 527 – tensile test 
specimens printed horizontally; ISO 179 – flexural test specimens printed normal; ISO 178 – 
Charpy impact test specimens printed normal. 
Considering four material types, three specimen test standards, one orientation and a factorial 
experimental program with three controls, the final number of undertaken experiments was set to 
132. The variation levels for the three aforementioned process parameters are listed in Table 1. 
The limit values were set in accordance with the four different manufacturers’ requirements. 
MRA was run by coding the natural variables, as presented in Table 2.  
 

Table 1: Variation levels for the independent natural variables 
No. 
Crt. 

Independent variable Minimum Medium Maximum 

1 Layer thickness – s [mm] 0.10 0.15 0.20 
2 Printing temperature – t [o] 200o 210o 220o 

3 Printing speed – v [mm/min] 40 mm/min 60 mm/min 80 mm/min 
 
The base experimental program is repeated for four PLA material types and three types of 
specimens, namely the standard tensile (ISO 527), flexural (ISO 179) and Charpy impact (ISO 
178) strength test specimens.  For a significant evaluation of the three selected independent 
variables, a series of other process parameters were maintained constant, such as: Diameter of 
filament – 1.75mm; Nozzle size – 0.4 mm; Infill – 100%; Printing platform temperature – 60oC; 
Support structures – none; Build plate adhesion – blue tape; Wall thickness – 2 mm; Top/ 
Bottom thickness – 0.8 mm; Material flow – 100%;  Fan: on. 



 
Table 2: Design of experiments for three variables– Base experimental program 

Experiment 
No. 

Natural variables Coded variables 
s [mm] t [o] v [mm/min] A B C 

E1.  0.15 210 60 0 0 0 
E2.  0.10 200 40 -1 -1 -1 
E3.  0.10 200 80 -1 -1 +1 
E4.  0.10 220 40 -1 +1 -1 
E5.  0.10 220 80 -1 +1 +1 
E6.  0.15 210 60 0 0 0 
E7.  0.20 220 80 +1 +1 +1 
E8.  0.20 220 40 +1 +1 -1 
E9.  0.20 200 80 +1 -1 +1 
E10.  0.20 200 40 +1 -1 -1 
E11.  0.15 210 60 0 0 0 

 
Manufacturing of the 132 specimens needed 12 process data sheets following the encoding 
proposed in Table 3. Each batch of 11 specimens are printed on the same 3D printer in order to 
ensure the repeatability of the process parameters.  
 

Table 3: Coding of 132 PLA specimens 
Program 

no. 
Specimen 
test type Material type Orientation 

type 
Experiment 

no. Specimen Code 

P1 Test 1 – 
ISO 527 

(Code T1) 

Material 1 (CodeM1) Orientation 1 
– Horizontal 
(Code O1) 

E1 ÷ E11 T1M1O1E1 ÷ T1M1O1E11 
P2 Material 2 (CodeM2) E1 ÷ E11 T1M2O1E1 ÷ T1M2O1E11 
P3 Material 3 (CodeM3) E1 ÷ E11 T1M3O1E1 ÷ T1M3O1E11 
P4 Material 4 (CodeM4) E1 ÷ E11 T1M4O1E1 ÷ T1M4O1E11 
P5 Test 2 – 

ISO 179 
(Code T2) 

Material 1 (CodeM1) Orientation 1 
– Normal 
(Code O1) 

E1 ÷ E11 T2M1O1E1 ÷ T2M1O1E11 
P6 Material 2 (CodeM2) E1 ÷ E11 T2M2O1E1 ÷ T2M2O1E11 
P7 Material 3 (CodeM3) E1 ÷ E11 T2M3O1E1 ÷ T2M3O1E11 
P8 Material 4 (CodeM4) E1 ÷ E11 T2M4O1E1 ÷ T2M4O1E11 
P9 Test 3 – 

ISO 178 
(Code T3) 

Material 1 (CodeM1) Orientation 1 
– Normal 
(Code O1) 

E1 ÷ E11 T3M1O1E1 ÷ T3M1O1E11 
P10 Material 2 (CodeM2) E1 ÷ E11 T3M2O1E1 ÷ T3M2O1E11 
P11 Material 3 (CodeM3) E1 ÷ E11 T3M3O1E1 ÷ T3M3O1E11 
P12 Material 4 (CodeM4) E1 ÷ E11 T3M4O1E1 ÷ T3M4O1E11 

 

3. RESULTS AND DISCUSSIONS 
Gcodes for all specimens were prepared using Cura 3.4 software, which gave a mass estimation 
of 10g for the tensile test specimens and 4g for both flexural and Charpy impact test specimens. 
Mass estimations are given by the Cura 3.4 software considering the filament diameter and a 
standard material type density. As, all PLA materials have the same material density input, the 
mass calculation will always be the same, regardless of the chemical composition of each 
material batch. Regardless of the changes in printing parameters, according to Table 2, the same 
two mass values were estimated by the software.  
132 PLA material specimens were 3D printed and weighted individually using an analytical 
scale with a 0,0001 g precision (Figure 1).  
Standard deviation for each set of parameters (E1 ÷ E11) was calculated, regardless the used 
material (Figure 2). Linear trends show that the geometry of the 3D printed part highly 
influences the mass of the final part in specific combinations of the independent variables. From 
Figure 2 we can conclude that the most stable (smallest standard deviation for all tests) 
combination of printing parameters is achieved in experiment no. 2, namely: a layer thickness 
of s = 0.10 mm; a printing temperature of t = 200oC; a printing speed of v = 40 mm/min.  



 

          
Figure 1: Example of coded specimens – a) tensile test specimens printed horizontally from 
M1; b) flexural test specimens printed normal from M2;  c) Charpy impact test specimens 

printed normal from M3; d) weighing of tensile test specimen printed horizontally from M4 
 

 
Figure 2: Average mass for 132 specimens for 11 experiment types 

 
In order to accurately express the dependency of the printed parts’ mass to the three independent 
variables, each of the 12 previously defined programs (Table 3) were subjected to a 
multivariable regression analysis using Design-Expert® V11 Software (Figure 3).  
A natural logarithmic transformation was used to process all 132 responses.  
The final equations in terms of coded factors have the following general form: 
 
𝑙𝑙𝑙𝑙(𝑚𝑚) = 𝑎𝑎0 + 𝑎𝑎1 ∙ 𝐴𝐴 + 𝑎𝑎2 ∙ 𝐵𝐵 + 𝑎𝑎3 ∙ 𝐶𝐶 + 𝑎𝑎12 ∙ 𝐴𝐴 ∙ 𝐵𝐵 + 𝑎𝑎13 ∙ 𝐴𝐴 ∙ 𝐶𝐶 + 𝑎𝑎23 ∙ 𝐵𝐵 ∙ 𝐶𝐶 + 𝑎𝑎123 ∙ 𝐴𝐴 ∙ 𝐵𝐵 ∙ 𝐶𝐶    (1) 
 
All eight regression coefficients for the 12 programs are listed in Table 4.  
 

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11

M
as

s [
g]

No. of experiment (E1 ÷ E11)
Charpy test specimens Flexural test specimens Tensile test specimens
Linear (Charpy test specimens) Linear (Flexural test specimens) Linear (Tensile test specimens)



 
Figure 3: Input data for program P1 using Design-Expert® V11 Software 

 
Table 4: Computation of regression coefficients for coded factors and their probability (p) 
Program 

no. 
a0 a1 a2 a3 a12 a13 a23 a123 Model /  

Confidence 

P1 
2.206358 0.012417 0.016103 0.011853 0.003737 0.012647 0.019519 -0.03893 NS / 

4.88% p 0.7972 0.7406 0.8061 0.9378 0.7936 0.6905 0.4554 
Recommendations: Repeat experiments no.  1 and 11 

P2 
2.175096 -0.00223 0.026592 -0.02037 0.034056 0.003956 -0.00961 0.018891 NS / 

30.05% p 0.9336 0.3792 0.4814 0.2880 0.8830 0.7249 0.5097 
Recommendations: Repeat experiments no.  6 and 11 

P3 
2.20857 -0.01793 0.03210 -0.03028 0.02334 -0.02418 0.03027 0.02851 S / 

99.08% p 0.0205 0.0065 0.0073 0.0123 0.0114 0.0073 0.0083 
All coefficients are significant and model is adequate for further calculations.  

P4 
2.155832 -0.09201 0.019167 0.008861 0.010399 0.002858 -0.10856 -0.10392 NS / 

66.84% p 0.1711 0.7051 0.8587 0.8348 0.9540 0.1320 0.1416 
Recommendations: Repeat experiments no.  6 

P5 
1.287016 -0.01734 0.041709 -0.04039 0.03788 -0.05098 0.039837 0.019665 NS / 

90.09% p 0.2884 0.0749 0.0793 0.0887 0.0520 0.0812 0.2458 
Recommendations: Repeat experiments no.  1 and 9 

P6 
1.251581 -0.00181 0.020505 -0.00862 0.004962 -0.00195 -0.00241 0.001329 NS / 

74.6% p 0.7439 0.0512 0.2162 0.4122 0.7260 0.6667 0.8089 
Recommendations: Repeat experiments no.  6 

P7 
1.268285 -0.04946 0.069522 -0.06754 0.061136 -0.06347 0.065085 0.063525 S / 

99.7% p 0.0049 0.0025 0.0026 0.0032 0.0030 0.0028 0.0030 
All coefficients are significant and model is adequate for further calculations. 

P8 
1.281646 -0.0267 -0.01791 0.036046 -0.04058 0.071188 0.062779 0.03304 NS / 

40.6% p 0.6165 0.7317 0.5111 0.4664 0.2579 0.3014 0.5430 
Recommendations: Repeat experiments no.  1, 8 and 11 

P9 
1.2454 0.006734 0.011521 0.042989 0.000102 -0.02919 -0.02265 -0.02132 NS / 

2.11% p 0.9237 0.8702 0.5610 0.9988 0.6851 0.7506 0.7645 
Recommendations: Repeat experiments no.  1, 6 and 11 

P10 
1.277278 0.010439 0.010989 -0.0112 0.003879 0.008885 0.003204 0.001534 S / 

99.55% p 0.0027 0.0024 0.0023 0.0190 0.0037 0.0275 0.1058 
Six coefficients are significant and model is adequate for further calculations. 

P11 
1.308415 -0.00988 -0.01759 0.013368 -0.02107 0.01787 0.025013 0.021191 S / 

98.00% p 0.0650 0.0219 0.0371 0.0154 0.0213 0.0110 0.0153 
Six coefficients are significant and model is adequate for further calculations. 

P12 
1.40065 0.015785 0.010959 -0.00522 -0.00388 0.00053 -0.00094 0.000951 NS / 

83.5% p 0.0412 0.0802 0.2549 0.3618 0.8873 0.8026 0.8008 
Recommendations: Repeat experiments no.  2, 3 and 11 

NS – Not significant, S – Significant. 



 
Regression coefficients are significant if they have a probability p < 0.05. The model is 
significant relative to the noise if the majority of the coefficients have a probability value under 
0.05 and the confidence is above the standard value. The analysis was run with a two sided 
interval and a standard confidence of 95%.  Model inadequacies arise from too scattered central 
point values. 
The final equation in terms of actual factors have the general form set by relation (2). Using 
expression (2) and the coefficient values provided in Table 5, the calculated responses are 
summarised in Table 5 for the significant programs. 
𝑙𝑙𝑙𝑙(𝑚𝑚) = 𝑏𝑏0 + 𝑏𝑏1 ∙ 𝑠𝑠 + 𝑏𝑏2 ∙ 𝑡𝑡 + 𝑏𝑏3 ∙ 𝑣𝑣 + 𝑏𝑏12 ∙ 𝑠𝑠 ∙ 𝑡𝑡 + 𝑏𝑏13 ∙ 𝑠𝑠 ∙ 𝑣𝑣 + 𝑏𝑏23 ∙ 𝑡𝑡 ∙ 𝑣𝑣 + 𝑏𝑏123 ∙ 𝑠𝑠 ∙ 𝑡𝑡 ∙ 𝑣𝑣  (2) 

Table 5: Regression coefficients for non-coded factors 
Program 

no. 
b0 b1 b2 b3 b12 b13 b23 b123 

P3 -0.5488632 27.2089437 0.01278318 0.06012228 -0.124367 -0.62281845 -0.000276 0.00285067 
P7 -4.4661735 57.1830074 0.02625820 0.13790691 -0.258876 -1.39748544 -0.000627 0.00635246 

P10 1.28515438 -0.02101646 0.00035423 -0.0004268 -0.001444 -0.02332026 -6.9820·10-6 0.00015336 
P11 -1.9284124 34.2801101 0.01612945 0.03847543 -0.169285 -0.42713707 -0.0001928 0.00211908 

 
Table 6: Function validation for significant models 

Exp. 
No. 

Program P3 Program P7 Program P10 Program P11 
m [g] ln (m) 

[g] 
mc [g] m [g] ln (m) 

[g] 
mc [g] m [g] ln (m) 

[g] 
mc [g] m [g] ln (m) 

[g] 
mc [g] 

E1 9.3904 2.2086 9.1027 3.7767 1.2683 3.5547 3.6688 1.2773 3.5869 3.7665 1.3084 3.7003 
E2 9.2591 2.2256 9.2591 3.7247 1.3150 3.7247 3.602 1.2815 3.602 3.7552 1.3231 3.7552 
E3 9.1146 2.2099 9.1146 3.683 1.3037 3.683 3.4486 1.2380 3.4486 3.6932 1.3065 3.6932 
E4 9.3896 2.2396 9.3896 3.7759 1.3286 3.7759 3.6414 1.2924 3.6414 3.7526 1.3225 3.7526 
E5 9.3086 2.2309 9.3086 3.757 1.3236 3.757 3.5097 1.2555 3.5097 3.7475 1.3211 3.7475 
E6 9.4463 2.2086 9.1027 3.7847 1.2683 3.5547 3.6576 1.2773 3.5869 3.8003 1.3084 3.7003 
E7 9.4916 2.2504 9.4916 3.8462 1.3471 3.8462 3.6877 1.3050 3.6877 3.8088 1.3373 3.8088 
E8 9.4098 2.2418 9.4098 3.8647 1.3519 3.8647 3.6699 1.3002 3.6699 3.2623 1.1824 3.2623 
E9 7.5532 2.0220 7.5532 2.29 0.8286 2.29 3.5459 1.2658 3.5459 3.7518 1.3222 3.7518 
E10 9.4729 2.2484 9.4729 3.8489 1.3478 3.8489 3.5963 1.2799 3.5963 3.8658 1.3522 3.8658 
E11 9.3088 2.2086 9.1027 3.8452 1.2683 3.5547 3.6641 1.2773 3.5869 3.823 1.3084 3.7003 

m – measured response, mc – calculated response 

The proposed models have been validated with a precision of 0,0001g in relation to the 
measured response values.   

 

4. CONCLUSIONS 
 
The paper presented an accurate method for mass calculation of PLA 3D printed parts, using 
multivariable regression analysis. Dependency between the final mass of 3D printed specimens 
and three process parameters was expressed through a series of mathematical equations, based 
on a factorial type DOE. A set of 132 specimens were 3D printed using PLA materials from 
four different manufacturers. Four programs were validated as their equation models resulted 
significant. Eight programs still need further improvements in order to be relevant to the 
measured responses, as follows: P1 – repeat experiments no. 1 and 11; P2 - experiments no.  6 
and 11 must be repeated; P4 - repeat experiment no. 6; P5 - repeat experiments no.  1 and 9; P6 
- repeat experiment no.  6; P8 - repeat experiments no.  1, 8 and 11; P9 - repeat experiments no.  
1, 6 and 11; P12 - repeat experiments no.  2, 3 and 11. 



The applicability of the method includes medium to large scale production of parts, especially 
in industries where materials are quite expensive and mass variation has an important influence 
on final costs. Jewellery and medical/ dental applications are some of the most appropriate for 
further development of the optimisation method, due to relatively reduced overall weight of the 
finished parts and high costs of the materials.  
Further research includes validation of the method by manufacturing parts with various 
geometries using printing parameter values set in the significant programs.  
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