Median-Pi artificial neural network for forecasting

Egrioglu, Erol and Yolcu, Ufuk and Bas, Eren and Dalar, Ali Zafer (2019) Median-Pi artificial neural network for forecasting. Neural Computing and Applications, 31 (1). pp. 307-316. ISSN 0941-0643

Full text not available from this repository.

Abstract

Datasets with outliers can be predicted with robust learning methods or robust artificial neural networks. In robust artificial neural networks, the architectures become robust by using robust statistics as aggregation functions. Median neural network and trimmed mean neural network are two robust artificial neural networks used in the literature. In these robust artificial neural networks, median and trimmed mean statistics are used as aggregation functions. In this study, Median-Pi artificial neural network is proposed as a new robust neural network for the purpose of forecasting. In Median-Pi artificial neural network, median and multiplicative functions are used as aggregation functions. Because of using median, the proposed network can produce good results for data with outliers. The Median-Pi artificial neural network is trained by particle swarm optimization. The performance of the neural network is investigated by using datasets from the International Time Series Forecast Competition 2016 (CIF-2016). The performance of the proposed method in case of outlier is compared to some other artificial neural networks. Median neural network, trimmed mean neural network, Pi-Sigma neural network and the proposed robust network are applied to time series with outlier, and the obtained results are compared. According to application results, the proposed Median-Pi artificial neural network can produce better forecast results than the other network types.

Item Type:
Journal Article
Journal or Publication Title:
Neural Computing and Applications
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/1700/1702
Subjects:
ID Code:
139214
Deposited By:
Deposited On:
27 Nov 2019 16:40
Refereed?:
Yes
Published?:
Published
Last Modified:
26 May 2020 08:27