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The Simplification, Solution and Estimation of a Small Open DSGE

Model:Evidence from the UK and Canada

Abstract

This thesis makes three main contributions to the literature on Dynamic Stochas-

tic General Equilibrium (DSGE) models. The first contribution is to bridge the

gap between a theoretical small open DSGE model provided by Gali and Mona-

celli and an empirical model developed by Lubik and Schorfheide, as no previous

studies have shown their relationship explicitly. Since all the models suffer from

the misspecification problem to some extent, the second contribution is to ap-

ply two methodologies including DSGE-VAR approach and indirect inference to

study the effect of the possibly misspecified equation of the change rate of terms

of trade. The third contribution is to search for the model with the best data fit-

ting in two stages of model comparisons. The thesis assumes that the parameters

of the simplified DSGE model are constant at the first stage, and based on the

constant parameter models with the best performance on data fitting, it assumes

a subset of the parameters including exogenous shock variances and policy param-

eters follow two independent Markov-switching Markov chains at the second stage.

The empirical results are quite different for the UK and Canada within the sample

period covering 1992: Q4 – 2008: Q4. The UK data supports that the movement

of the nominal exchange rate should not enter into the monetary policy reaction

function. Also, the data supports that it is possible for the UK to experience

the two kinds of structural changes, including the economic environment and the

behaviours of policymakers simultaneously. Comparatively, Canadian data is in

favour of the movement of the nominal exchange rate in the policy function. More-

over, the data supports that it is less likely for Canada to experience two kinds of

structural changes simultaneously.

iii



Acknowledgements

It is necessary to thank many people who help me to finish the thesis. First, my

thanks go to my supervisor David Peel and Alina Spiru. Professor David suggests

me to start my research from Gali and Monacelli’s’ model and motivates me to

carry on the research of model comparisons. Alina is very patient to help me to

clarify my research questions and the relevant research methodologies.

Second, I want to appreciate Giorgio Motta and Efthymios Pavlidis. Giorgio give

me the first DSGE lectures since I joined Lancaster University since 2014, and he

also provides much additional help through my research. Efthymios used to be my

PhD director, and he always can offer me much help when something does not go

well.

I also thank Professor Xu Wenli from ANHUI University and PhD Nan Yi in

Harbin Institute of Technology in China, Professor Hirokuni Iiboshi from Tokyo

Metropolitan University in Japan. Professor Xu recommends me to use the tool

RISE to study the Markov-Switching DSGE models, and Nan Yi provides much

help when I have some coding problems with Matlab. Professor Iiboshi is so kind

that he offers me his code resources to solve a standard Markov-Switching New

Keynesian model numerically.

Lastly, I give my deepest thanks to my parents, who never get bored with me

and always share precious moments and memories with me.

iv



Contents

General Introduction 1

Previous literature on the development of DSGE models . . . . . . . . . 1

The Solutions to the DSGE Models . . . . . . . . . . . . . . . . . . . . . 4

The Bayesian Estimation of DSGE Models . . . . . . . . . . . . . . . . . 6

The Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 10

1 The Simplification and Solution of the Model 11

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 A Small Open DSGE Model . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Types of Model Variables . . . . . . . . . . . . . . . . . . . 12

1.2.2 Gali and Monacelli’s framework . . . . . . . . . . . . . . . . 12

1.2.3 From Gali to Lubik . . . . . . . . . . . . . . . . . . . . . . . 31

1.3 Solutions to the Model . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.3.1 Blanchard and Kahn’s Methodology . . . . . . . . . . . . . . 38

1.3.2 Schur Decomposition . . . . . . . . . . . . . . . . . . . . . . 40

1.3.3 Numerical Solutions . . . . . . . . . . . . . . . . . . . . . . 42

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2 Data Sample and Estimation Methodology 50

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2 Data and Model Variables . . . . . . . . . . . . . . . . . . . . . . . 51

2.2.1 Observable and Collected Data for the UK . . . . . . . . . . 52

2.2.2 Observable and Collected Data for Canada . . . . . . . . . . 56

2.2.3 Measurement Equations . . . . . . . . . . . . . . . . . . . . 59

v



2.3 Bayesian Estimation of DSGE model . . . . . . . . . . . . . . . . . 61

2.3.1 Likelihood function . . . . . . . . . . . . . . . . . . . . . . . 63

2.3.2 Choice of Priors . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.3.3 MCMC Approximation of Bayesian Posteriors . . . . . . . . 67

2.4 The Analysis of the Estimation Results . . . . . . . . . . . . . . . . 70

2.4.1 Estimation Results for the UK . . . . . . . . . . . . . . . . . 72

2.4.2 Estimation Results for Canada . . . . . . . . . . . . . . . . 79

2.5 Check for the Model Specification . . . . . . . . . . . . . . . . . . . 86

2.5.1 Model Evaluation by DSGE-VAR . . . . . . . . . . . . . . . 87

2.5.2 Model Evaluation by Indirect Inference . . . . . . . . . . . . 92

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3 Model Comparison One: Constant Parameters Estimation 96

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.2 Model Comparison of Bayesian Methodology . . . . . . . . . . . . . 100

3.3 Bayesian Estimation of the Updated DSGE Models . . . . . . . . . 102

3.3.1 Group One: No Nominal Exchange Depreciation . . . . . . . 105

3.3.2 Group Two: No Nominal Exchange Depreciation and Change

of Output Deviation . . . . . . . . . . . . . . . . . . . . . . 117

3.3.3 Group Three: Nominal Exchange Depreciation and Change

of Output Deviation . . . . . . . . . . . . . . . . . . . . . . 129

3.3.4 An Overall Remark of the Model Comparison at the First

Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4 Model Comparison Two: Markov-Switching Parameters Estima-

tion 146

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.2 Markov-Switching DSGE Models . . . . . . . . . . . . . . . . . . . 148

4.3 Estimated Markov Switching DSGE Models for the UK . . . . . . . 153

4.3.1 UK: the Model One with Switching Variances . . . . . . . . 155

vi



4.3.2 UK: the Model Two with the Switching Taylor Rule . . . . . 166

4.3.3 UK: the Model Three with Switching Variances and Switch-

ing Policy Parameters . . . . . . . . . . . . . . . . . . . . . 177

4.3.4 The Model Comparison and Data Analysis for the UK . . . 195

4.4 Estimated Markov Switching DSGE Models for Canada . . . . . . . 202

4.4.1 Canada: the Model One with Switching Variances . . . . . . 204

4.4.2 Canada: the Model Two with the Switching Taylor Rule . . 215

4.4.3 Canada: the Model Three with Switching Variances and

Switching Policy Parameters . . . . . . . . . . . . . . . . . . 226

4.4.4 Model Comparison and Data Analysis for Canada . . . . . . 244

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

5 General Conclusion 252

5.1 Main Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

5.2 Limitations and Directions of Further Research . . . . . . . . . . . 255

Bibliography 257

Appendix 266

Structure of the DSGE Model . . . . . . . . . . . . . . . . . . . . . . . . 266

Measurement Equations of the Observed Data . . . . . . . . . . . . . . . 267

vii



List of Tables

1.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.2 Numerical Solutions for the Calibrated Parameters . . . . . . . . . 46

2.1 Prior Distributions for the UK and Canada . . . . . . . . . . . . . . 66

2.2 Parameter Estimation Results for the UK and Canada . . . . . . . 71

2.3 Numerical Solutions for the UK (Benchmark Model) . . . . . . . . 77

2.4 Numerical Solutions for Canada (Benchmark Model) . . . . . . . . 84

2.5 The Calibration of DSGE Prior Weights λ . . . . . . . . . . . . . . 90

2.6 Power of the Wald Test at 5% significance level . . . . . . . . . . . 94

3.1 Constant Parameter Estimation Results (Control Group) . . . . . . 104

3.2 Constant Parameter Estimation Results (Group One) . . . . . . . . 106

3.3 Numerical Solutions for the UK in the Group One . . . . . . . . . . 110

3.4 Numerical Solutions for Canada in the Group One . . . . . . . . . . 115

3.5 Constant Parameter Estimation Results (Group Two) . . . . . . . . 118

3.6 Numerical Solutions for the UK in the Group Two . . . . . . . . . . 122

3.7 Numerical Solutions for Canada in the Group Two . . . . . . . . . 127

3.8 Constant Parameter Estimation Results (Group Three) . . . . . . . 130

3.9 Numerical Solutions for the UK in the Group Three . . . . . . . . . 134

3.10 Numerical Solutions for Canada in the Group Three . . . . . . . . . 139

3.11 Numerical Results of the Posterior Odds Ratio . . . . . . . . . . . . 143

3.12 The Rank of the Data Fitting Performance of Each Group . . . . . 143

4.1 Parameter Estimation Results of the Benchmark Models . . . . . . 152

4.2 Prior Distributions of the Structural Parameters for the UK . . . . 154

viii



4.3 Model One with Markov-Switching Variances(UK) . . . . . . . . . . 156

4.4 The Numerical Solution to Regime 1 of the Model One for the UK . 160

4.5 The Numerical Solution to Regime 2 of the Model One for the UK . 161

4.6 Variance Decomposition of the Model One for the UK . . . . . . . . 165

4.7 Model Two with Markov-Switching Policy Parameters(UK) . . . . . 167

4.8 The Numerical Solution to Regime 1 of the Model Two for the UK 171

4.9 The Numerical Solution to Regime 2 of the Model Two for the UK 172

4.10 Variance decomposition of the Model Two for the UK . . . . . . . . 176

4.11 Model Three with 2 Markov Chains(UK) . . . . . . . . . . . . . . . 179

4.12 The Numerical Solution to Regime 1 of the Model Three for the UK 186

4.13 The Numerical Solution to Regime 2 of the Model Three for the UK 187

4.14 The Numerical Solution to Regime 3 of the Model Three for the UK 188

4.15 The Numerical Solution to Regime 4 of the Model Three for the UK 189

4.16 Variance Decomposition of the Model Three for the UK . . . . . . . 194

4.17 Log Marginal Data Densities and Ranks of the Models for the UK . 198

4.18 Prior Distributions of the Structural Parameters for Canada . . . . 203

4.19 Model One with Markov-Switching Variances(Canada) . . . . . . . 205

4.20 The Numerical Solution to Regime 1 of the Model One for Canada 209

4.21 The Numerical Solution to regime 2 of the Model One for Canada . 210

4.22 Variance Decomposition of the Model One for Canada . . . . . . . 214

4.23 Model Two with Markov-Switching Policy Parameters(Canada) . . 216

4.24 The Numerical Solution to Regime 1 of the Model Two for Canada 220

4.25 The Numerical Solution to Regime 2 of the Model Two for Canada 221

4.26 Variance Decomposition of the Model Two for Canada . . . . . . . 225

4.27 Model Three with 2 Markov Chains(Canada) . . . . . . . . . . . . . 228

4.28 The Numerical Solution to Regime 1 of the Model Three for Canada 235

4.29 The Numerical Solution to Regime 2 of the Model Three for Canada 236

4.30 The Numerical Solution to Regime 3 of the Model Three for Canada 237

4.31 The Numerical Solution to Regime 4 of the Model Three for Canada 238

4.32 Variance Decomposition of the Model Three for Canada . . . . . . . 243

ix



4.33 Log Marginal Data Densities and Ranks of the Models for Canada . 246

x



List of Figures

1.1 Impulse response functions for the Calibrated parameters . . . . . . 47

2.1 Data of UK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.2 Data of Canada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.3 Impulse response functions for the benchmark model in the UK . . 78

2.4 Impulse response functions for the benchmark model in Canada . . 85

2.5 Calibrations of DSGE Prior Weights . . . . . . . . . . . . . . . . . 91

3.1 Impulse response functions for Group One in the UK . . . . . . . . 111

3.2 Impulse response functions for Group One in Canada . . . . . . . . 116

3.3 Impulse response functions for Group Two in the UK . . . . . . . . 123

3.4 Impulse response functions for Group Two in Canada . . . . . . . . 128

3.5 Impulse response functions for Group Three in the UK . . . . . . . 135

3.6 Impulse response functions for Group Three in Canada . . . . . . . 140

4.1 Impulse responses,UK(Markov-switching Model One) . . . . . . . . 162

4.2 Impulse responses,UK(Markov-switching Model Two) . . . . . . . . 173

4.3 Impulse responses,UK(Markov-switching Variances of Model Three) 190

4.4 Impulse responses,UK(Markov-switching Policy Parameters of Model

Three) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

4.5 Smoothed Probability of High Volatility from the Model One with

switching variances . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

4.6 Smoothed Probability of More Strict Inflation Targeting from the

Model Two with Switching Policy Parameters . . . . . . . . . . . . 200

4.7 Historical Decomposition Using Model One for the UK . . . . . . . 201

xi



4.8 Impulse responses,Canada(Model One) . . . . . . . . . . . . . . . . 211

4.9 Impulse responses,Canada(Model Two) . . . . . . . . . . . . . . . . 222

4.10 Impulse responses,Canada(Switching Variances of Model Three) . . 239

4.11 Impulse responses,Canada(Switching Taylor Rules of Model Three . 240

4.12 Smoothed probability of high volatility from model one . . . . . . . 247

4.13 Smoothed probability of strict inflation from model two . . . . . . . 248

4.14 Historical Decomposition Using Model One for Canada . . . . . . . 249

xii



General Introduction

The main objective of the thesis is to answer the question that how to improve the

data fitting for a given DSGE model based on different specifications of monetary

policy function and some subsets of parameter space following Markov-Switching

chains. The thesis will prefer the UK and Canada as two sample countries within

the sample period 1992:Q4-2008:Q4. There are mainly three reasons motivating

the preference. First, the DSGE model adopted by the thesis is appropriate for

small open economies, which includes features that the UK and Canada hold to

some extent. Second, the UK and Canada share something in common within the

chosen sample period. They both announce that they adopt inflation targeting

monetary policy after the early 1990s. This thesis does not consider the periods of

the zero lower bound after 2008 when the conventional monetary policy does not

work. Third, the UK and Canadian monetary policy also exhibit some different

features within the chosen sample period. There is a debate about whether the

movement of the nominal exchange rate should enter into the design of the mon-

etary policy. Overall, the thesis will study the two sample countries within the

sample period at the same time and exhibit their similar and different features,

thereby looking for the model offering the best data fitting.

Previous literature on the development of DSGE

models

The Dynamic Stochastic General Equilibrium (DSGE) approach can provide micro-

foundations of households and firms to economic models and inform the policy-
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makers about the impact and feedback of their conduct policy in an economy with

assumptions of the real business cycle or New Keynesian nominal rigidity, which

plays an increasingly key role in the modern macroeconomic analysis. Ramsey

(1927[73],1928[74]) initially mature the framework of this approach. Subsequently,

Cass (1965[13]) and Koopmans(1965[54]) carry on developing this methodology.

The Lucas critique (Lucas, 1976[61]) and the urgent need to set up micro-founded

macroeconomic models lead to a revolution in macroeconomics in the 1980s. It is

Kydland and Prescott (1982[55]) who set up the vital work in modern macroeco-

nomic analysis, which is famous for the starting point of the Real Business Cycle

(RBC) theory. In the combination between the developed economic theory and the

major events in the 20st, the size of DSGE model becomes larger and the struc-

ture of it becomes more complicated, because DSGE models gradually incorpo-

rate a large number of New Keynesian features(Rotemberg,1982[76];Blanchard and

Kiyotaki,1987[9]; Rotemberg and Woodford,1997[77]; Woodford,2011[93];Smet and

Wouters, 2003[82],2007[83]). At the meantime, instead of studying the policy and

the economy isolated from the world, Some individuals including Clarida,Gali and

Gertler (2001[20];2002[21]),Gertler, Gilchrist and Natalucci(2007[38])and Mona-

celli (2005[66]) start extending the DSGE framework to the context of an open

economy in the presence of the trade sector and the currency values in their mod-

els. Gali and Monacelli (2005[37]) develop a critical theoretical DSGE model which

describe a small open economy which is allowed to trade with the rest of the world

and hardly impose a significant impact on the global economy. This model with

calibrated parameters can be regarded as the seminal one to guide the policy mak-

ers to design the optimal monetary policies. Unexpectedly, as pointed by Diebold

(1998[27]), the large scale and the complicated structure of the models may pre-

vent us from measuring the estimates of parameters efficiently and consistently.

Some individuals then simplify Gali and Monacelli’s framework, and among them,

Lubik and Schorfheide (2007[60])’s simplification is applied for practical purpose

in terms of constant parameter model (Zheng and Guo,2013[94].) and Markov-

Switching DSGE model (Chen and MacDonald,2012[16]). However, few of the

2



literature, including Lubik and Schorfheide, clearly explain the relationship be-

tween the theoretical model and the empirical one in terms of the model variables

and the parameters. To use their model directly may confuse others because there

is not a clear transition from the micro-foundations to the simplified model. Ac-

cordingly, the lack of transparency motivates the thesis to set up a bridge between

the theoretical model and the simplified one. Chapter 1 of the thesis replicates the

derivation process of the empirical model and stands out the meaning of the vari-

ables and parameters in the simplified model, thereby identifying whether there are

any changes from the theoretical model based on some other different assumptions.

3



The Solutions to the DSGE Models

The solution to a DSGE model is approximately a VAR model with restricted co-

efficients deriving from the structural parameters. Blanchard and Kahn (1980[8])

develop a solution method which provides an important condition for the existence

and uniqueness of the solutions to the system. That is, the number of explosive

eigenvalues should be exactly equal to the number of jump variables with the ex-

pectation operators. Sims (2002[80]) proposes a solution method, which is a bit

different from Blanchard and Kahn’s work. Although they still decouple the sys-

tem of models into explosive and nonexplosive portions, the expected errors instead

of the expectation operators appear in the system. Besides, the technique of QZ or

Schur decomposition is applied in their methodology to overcome the singularity

of the matrix coefficients. Klein (2000[51]) develops a method which is a hybrid

of those of Blanchard and Kahn (1980[8]) and Sims (2001[80]). Like Blanchard

and Kahn’s method, he distinguishes the predetermined and jump variables of the

system. Also, the QZ technique is applied to solve the system in the absence of

expectation errors. Furthermore, Uhlig (1995[89]) develops an undetermined coef-

ficient approach, which is very different from the other methodologies. Rather than

focusing on solving the system with different portions, he tries to uncover the rela-

tionships among the parameters and solve them once for all. Moreover, Svensson

and Williams (2005[85]), Farmer et al(2011[32]), Cho (2014[17]) introduce Markov

switching to the parameters of the system. They solve the Markov-Switching

DSGE model through solving a constant parameters model with the structural

parameters and the transition probabilities. They have proved that their solu-

tions are unique and stable. In a word, Blanchard and Kahn’s approach is the

fundamental one for this thesis to solve the simplified DSGE model, which also

incorporates the techniques of QZ decomposition as does in Sims and Klein’s work.

It is often difficult to solve the model by hand when the number of the equa-

tions and variables are many even for an already simplified system. Thus, it is

very convenient to solve the complicated DSGE models with numerical algorithms

4



packaged in some powerful software such like Matlab(Judd, 1998[46]; Miranda

and Fackler, 2004[65]; Woodford and Philips, 2011[92]; Brandimarte,2013[10])

and a newly invented software Julia (Caraiani,2018[12]). In this thesis, Dynare

(Adjemian,2011[1]) is the primary tool to solve the constant parameter DSGE

models and Rise (Maih,2015[62])) is a very efficient tool to solve the Markov-

Switching DSGE models. These tools are both attachments of the Matlab.
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The Bayesian Estimation of DSGE Models

The thesis will estimate the DSGE models with the Bayesian methodology and

evaluate their performances of data fitting with the posterior likelihood ratio test.

The combination between a prior probability distribution and the maximum like-

lihood function of the data in the Bayesian approach can construct a posterior

probability distribution which provides a full statistical characterisation of the

observed data. Geweke (1999[39]) and Robert and Casella (2013[75]) provide a

numerical approach to calculate the integration of the posterior probability den-

sities in the Bayesian framework. Bauwens et al. (2000[5]) offer an application of

Bayesian methods to study a wide range of dynamic reduced-form models. More-

over, Koop (2003[53]) writes a textbook which incorporates a general overview of

Bayesian statistical methods with further details regarding computational issues.

It is not very common to estimate DSGE models with Bayesian methodology un-

til Smet and Wouters (2003[82], 2007[83]) use this approach to estimate a closed

DSGE model for the US economy with data covering the period 1966: Q1-2004:

Q4. After that, Adolfson et al. (2007[2]) extend and estimate the model de-

veloped by Christiano (2005[18]) for the Eurozone with data covering the period

1970: Q1-2002: Q4. An and Schorfheide (2007[3]) estimate the DSGE model

developed by Woodford (2011[93]) with artificial data and evaluate the model

with posterior odds ratio and DSGE-VAR approach. In addition to the devel-

oped countries, Gabriel et al. (2010[33]) estimate a DSGE model in the pres-

ence of financial frictions with Indian data covering period 1980: Q1-2006: Q4.

Zheng and Guo (2013[94]) estimate the DSGE model developed by Lubik and

Schorfheide(2007[60]) with China data covering the period 1992: Q1-2011: Q4.

There are also some useful textbooks regarding the Bayesian estimation of DSGE

models (Dejong and Dave,2011[23]; Hashimzade and Thornton,2013[41]; Herbst

and Schorfheide, 2015[42]). It is exceedingly beneficial to use such textbooks to

address the technical problems occurring in the procedures of estimation.
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Lubik and Schorfheide (2007[60]) offer the primary motivation for my research.

They estimate a small open DSGE model, which is a simplified version of Gali

and Monacelli’s model, with the data of Canada, Britain, New Zealand and Aus-

tralia covering the period 1983: Q1-2002: Q4. They consider two versions of the

model with different specification of Taylor principle rules and conclude that it

offers the best data fitting for the UK and Canada when it considers the move-

ment of the nominal exchange rate in the policy reaction function. However, the

empirical results for the UK are not approved by the Bank of England in their

release. The sample period they choose includes at least one structural change

when the UK is no longer a member of the Exchange Rate Mechanism (ERM)

since 1992. The thesis will adopt a new sample size of the UK and Canada cov-

ering the period 1992: Q4-2008: Q4, which excludes the period when the UK is

a member of ERM and extends the period until the nominal interest rates ex-

perience zero lower bound in the recent financial crisis. Chapter 2 will estimate

the original Lubik and Schorfheide’s model with the new sample size and reserve

the results as a control group in the next chapter. Moreover, it will borrow two

methodologies developed from Le et al. (2013[56]) and Del Nergo et al. (2007[26])

to identify the misspecification problems of the small open DSGE model consid-

ering whether there is a unit process of the rate change of the terms of trade or not.

Taylor rule policy reaction function (1993[86]) is the equation with different specifi-

cations in the estimation. Taylor originally includes the inflation rate and the out-

put gap in the policy reaction function. Gradually, its structure has been changed

a lot in examining the coefficients of monetary policy reaction functions in differ-

ent countries (Judd and Rudebusch, 1998 [45]; Clarida, Gali and Gertler,2000[19];

Nelson,2003[67]; Taylor, 2001[87]). In addition to the nominal exchange rate de-

preciation in the wake of the relationship between the exchange rate and monetary

policy, Walsh (2003)[90] demonstrate that the rate change of output gap should

play a significant role in the design of monetary policy and regard it as a speed-

limit type of Taylor rule. More specifically, Peel et al. (2004)[70] examine this

7



type of monetary policy with the US data covering the period 1982: Q1-2003: Q1.

This type of rule is also applied by Smet and Wouter (2007) in their DSGE model.

Overwhelmingly, the policy reaction function incorporates four kinds of specifica-

tions based on a combination between the existence of the nominal exchange rate

depreciation and the rate change of output. Among them, the original one in Lubik

and Schorfheide’s model is regarded as the control group while others comprise of

the treatment groups. Chapter 3 of the thesis compares the four groups and finds

the model with the best data fitting in using the Bayesian likelihood approach.

The model with the best fitting performance will be the benchmark model for the

next chapter.

Some economies inevitably have experienced structural changes in the past decades.

For instance, Nelson(2003[67]) offers guidance of the regime changes of UK mon-

etary policy covering the period 1972-1997, from the period of floating exchange

rate to the period of independence of the Bank of England. VARs model is

a convenient methodology to study the regime shifts (Catelnuovo and Surico

,2005[14];Benati,2009[6]). Since Davig and Leeper (2006[22]) and Farmer et al.

(2011[32]) can provide a unique solution to the Markov-Switching rational ex-

pectation models, it motivates individuals to identify the regime shifts in differ-

ent countries based on diversified versions of DSGE models. Benati and Surico

(2009[6]) estimate a Markov-Switching New Keynesian model with US data cov-

ering the period of the Great Moderation. Liu and Mumtaz (2011[57]) initially

examine the UK data with a small open Markov-Switching DSGE model developed

from Justiniano and Preston (2010[48]) covering 1970: Q1-2009: Q1. Chen and

MacDonald(2012[16]) estimate a small open DSGE model developed by Lubki and

Schorfheid (2007[60]) covering the period 1975:Q1-2010:Q2. Here is one thing to

mention, the models developed from Justiniano and Preston (2010[48]) and Lubki

and Schorfheid (2007[60]) are both the simplified version of Gali and Monacelli

(2005[37])’s framework. Chapter 4 will introduce two similar kinds of Markov

chains borrowed from Chen and MacDonald(2012[16]) to estimate the small open
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DSGE model which offer the best data fitting in the previous chapter. Chapter 4

tries to find the Markov-switching DSGE model with the best data fitting, and it

mainly has three aspects different from the previous literature. First, the chosen

sample size is shorter and covers the period 1992: Q4-2008: Q4. The chosen period

excludes the potential impacts of the fixed exchange rate regime and the zero lower

bound on the monetary policy reaction function. Second, chapter 4 borrows the

specification of the monetary policy reaction function offering the best data fitting

for each country from the constant parameter estimation in chapter 3. At last,

chapter 4 only considers two kinds of structural changes, including the variance of

the shocks and the policy parameters.
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The Structure of the Thesis

There are five chapters in this thesis. Chapter 1 will derive the core parts of

the theoretical small open DSGE model proposed by Gali and Monacelli. It then

uncovers the simplification process from the theoretical model to the empirical one

provided by Lubik and Schorfheide. At the end of chapter one, it will exhibit a

classical method combined with Dynare to solve the model numerically. Chapter

2 will describe the data sample and then introduces the Bayesian methodology

to estimate the model for the UK and Canada separately. Moreover, it provides

two alternative methodologies linking VARs to DSGE models, thereby checking

the model identification regarding the equation of the change rate of the terms of

trade. Chapter 3 will regard the empirical results from chapter 2 as the control

group and have another three treatment groups based on different specifications of

the monetary policy reaction function. It will search for the model with the best

performance of data fitting for each of the two countries. Chapter 4 will regard

the model with the best performance of data fitting in chapter 3 as the benchmark

model and introduce two types of Markov-Switching parameters in the small open

DSGE model. It will carry on searching for the model with the best performance

of data fitting within the same sample period and tries to answer whether there is a

significant improvement of data fitting between the constant parameter model and

the Markov-Switching DSGE model. Chapter 5 summarises the main findings of

the thesis and offers some implications of the current research with further possible

research directions.
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Chapter 1

The Simplification and Solution

of the Model

1.1 Introduction

The thesis will borrow the small open DSGE model from Lubik and Schorfheide

(2007)[60]’s research. This log-linear model is a simplified version of the model

developed by Gali and Monacelli (2005)[37]. There are two economies in this

model. One is the home country, and the other one is the rest of the world. The

DSGE model comprises of a forward-looking IS equation, a forward-looking Philip

curve, an exchange rate equation derived based on the law of one price and a

Taylor type monetary policy rule and four exogenous stationary processes. In the

log-linear model, the log differences of economic variables express the percentage

deviations of such variables concerning their stable states. There are two sections

in this chapter. The first section will show the derivation process of the log-

linear model. It introduces the types of model variables, replicates the derivation

of the model based on some essential assumptions and draws attention to the

simplification process from the theoretical model to the simplified one. The second

section will display the solution methodology to the model. It presents two general

ways to solve a given DSGE model and then offers the numerical solutions and the

calculated impulse responses functions based on a set of calibrated parameters.
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1.2 A Small Open DSGE Model

This section will present the main components of a small open DSGE model derived

by Gali and Monacelli(2005 [37]). After that, it will uncover the process of how

Lubik and Schorfheide (2007[60]) simplify the model from the previous work. The

simplified version of the model has been used in the empirical research to study the

behaviour of central banks in different countries(Zheng and Guo (2013[94]), Chen

and Macdonald(2012[16])). However, few of them, even Lubik and Schorfheide

themselves, has explicitly revealed the process to generate the simplified model

from Gali and Monacelli’s work. By uncovering the connections between the two

versions of models, this section is helpful to understand the assumptions and the

limitations of the model better.

1.2.1 Types of Model Variables

It is essential to introduce the types of model variables adopted in the DSGE model

in this section. For instance, if Mt is an arbitrary type of economic variable, then

mt is the log value of the economic variable: mt = logMt. m̃t is the log difference

of the economic variable: m̃t = mt − m = logMt − logM = Mt−M
M

,where M is

the steady state of the economic variable. Lubik and Schorfheide opt for m̃t in

their DSGE model and the steady state m̃ is zero, which implies that the economic

variables Mt will converge to their stationary states M in the equilibrium level.

1.2.2 Gali and Monacelli’s framework

Gali and Monacelli’s framework incorporates about eight segments which are rele-

vant to the following simplifying process. The first segment discusses the intertem-

poral optimal condition of the household. The second one brings in the definition

of terms of trade given the steady state of the purchasing power parity. The third

one assumes there is an uncovered interest parity between any two countries in

the bond market. The fourth one shows a retailer firm in the market of perfect

competition and the fifth one demonstrates wholesale firms in the market of mo-

12



nopolistic competition. The sixth one exhibits the optimal pricing strategy of the

wholesale firms when the price is sticky according to the Calvo rule (1983[11]).

The seventh segment displays the relationship between the consumption and out-

put in the given small open economy. The final one obtains the potential output

and natural rate of the interest rate. The equations and the dependent parame-

ters generated from such eight segments will play critical roles in the simplifying

process.

Households

The representative household optimises the following utility function:

E0

∞∑
t=0

βt
(
C1−σ
t

1− σ
− N1+ϕ

t

1 + ϕ

)
, (1.1)

where Nt is hours of labour, Ct is a composite consumption index, β is the in-

tertemporal discount factor, σ is the relative risk aversion coefficient and ϕ is

the marginal disutility with respect to labour supply. In addition, The composite

consumption index Ct can be defined as:

Ct =
[
(1− α)1/η(CH,t)

( η−1
η

) + α1/η(CF,t)
( η−1
η

)
] η
η−1

, (1.2)

where CH,t is an index of consumption of domestic produced goods, CF,t is an

index of imported goods, η measures the elasticity of substitution between such

two kinds of goods, and α is an index of openness. The equation defining CH,t is:

CH,t =

(∫ 1

0

CH,t(j)
ξ
ε−1dj

) ξ
ξ−1

, (1.3)

where CH,t(j) represents the consumption of home product of good j at time t, and

j ∈ [0, 1] denotes that the small economy produces a continuum of differentiated

goods in the unit interval. ε is the elasticity of substitution between these many

infinitely different goods. Likewise, the equation defining CF,t is:

CF,t =

(∫ 1

0

C
γ
γ−1

i,t di

) γ
γ−1

, (1.4)

where Ci,t is the consumption of goods imported from a specified country i at time

t,and γ stands for the elasticity of substitution between different foreign countries
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in the world. Moreover, Ci,t consists of a continuum of differentiated goods in the

unit interval:

Ci,t =

(∫ 1

0

Ci,t(j)
ξ
ε−1dj

) ξ
ξ−1

, (1.5)

where Ci,t(j) represents the consumption of product of good j imported from a

foreign country i at time t.

It assumes that the total consumption from goods market and bond market cannot

exceed the revenue in each period. Thus, the household’s period budget can be

written as∫ 1

0

PH,t(j)CH,t(j)dj +

∫ 1

0

∫ 1

0

Pi,t(j)Ci,t(j)djdi+Et[Qt,t+1Dt+1] ≤ Dt +WtNt + Tt,

(1.6)

where PH,t(j) is the price of home product of good j, Pi,t(j) is the price of good

j imported from country i. Qt,t+1 is the stochastic discount factor for the nomi-

nal payoffs Dt+1 in the period t + 1 of the bond held at the end of period t. Wt

is the nominal wage and Tt is the lump sum transfers (positive) or taxes (negative).

The next task is to take i,j,H and F off from the budget constraint. First, max-

imise equation (1.3) given the constraint:∫ 1

0

PH,t(j)CH,t(j)dj = PH,tCH,t. (1.7)

The maximisation procedures arrive at the demand function of the domestic good

j.

CH,t(j) =

(
PH,t(j)

PH,t

)−ξ
CH,t. (1.8)

Substitute the above equation in the equation (1.7) yields the domestic price index:

PH,t = (

∫ 1

0

PH,t(j)
1−ξdj)

1
1−ξ . (1.9)

Second, maximise equation (1.5) given the constraint:∫ 1

0

Pi,t(j)Ci,t(j)dj = Pi,tCi,t. (1.10)
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The demand function of the imported good j from a foreign country i is

Ci,t(j) =

(
Pi,t(j)

Pi,t

)−ξ
Ci,t. (1.11)

Likewise, the price index(expressed in home currency) for imported goods from

country i can be written in the following way:

Pi,t = (

∫ 1

0

Pi,t(j)
1−ξdj)

1
1−ξ . (1.12)

By far, it is ready to take j away from the period budget constraint (1.6). Third,

maximise equation (1.4) given the constraint∫ 1

0

Pi,tCi,tdi = PF,tCF,t. (1.13)

The demand function of the imported good for a given country i is

Ci,t =

(
Pi,t
PF,t

)−γ
CF,t. (1.14)

The price index (expressed in home currency) for imported goods is

PF,t = (

∫ 1

0

P 1−γ
i,t di)

1
1−γ . (1.15)

Now it is ready to take i away from the period budget constraint (1.6). Fi-

nally,maximise equation (1.2) given the constraint:

PH,tCH,t + PF,tCF,t = PtCt. (1.16)

The demand function of the domestic good CH,t is given by

CH,t = (1− α)

(
PH,t
Pt

)−η
Ct. (1.17)

The demand function of the imported good CF,t is given by

CF,t = α

(
PF,t
Pt

)−η
Ct. (1.18)

The consumer price index is written in the following way:

Pt = [(1− α)(PH,t)
1−η + α(PF,t)

1−η]
1

1−η . (1.19)

After taking H and F away, the period budget constraint (1.6) becomes:

PtCt + Et[Qt,t+1Dt+1] ≤ Dt +WtNt + Tt. (1.20)

15



Turning back to the maximisation of the representative household’s utility (1.1)

given the above budget constraint leads to the intertemporal optimal condition.

βRtEt

[
(
Ct+1

Ct
)−σ(

Pt
Pt+1

)

]
= 1. (1.21)

where Rt = 1
EtQt,t+1

is the gross return on a risk free one period discount bond

paying off one unit of home currency at time t + 1.Rewrite the intertemporal

condition in the log-linear form:

c̃t = Et ˜ct+1 −
1

σ
(rt − Etπt+1 − ρ), (1.22)

where rt = Rt−1 is the net interest rate, πt = log(Pt)− log(Pt−1) is CPI inflation,

and ρ = 1
β
− 1 is the time discount rate.

The derivation process of the household section is the very key component in

the framework of a DSGE model. In addition to Gali and Monacelli (2005[37]),

the famous book written by Gali(2015[35]) and Walsh (2017[91]) offer a very speci-

fied explanation and illustration of the optimal conditions of households in a small

open economy. More specifically,the latter one also includes a two-country model

developed by Obstfeld and Rogoff (1995[68];1996[69]). The two-country model is

useful when someone is interested in examining the impact of national develop-

ment on the international economy. The thesis is consistent with Gali(2015[35])’s

framework, which assumes the domestic economy is tiny and have little impacts

on the world economy.
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Purchasing Power Parity and Law of One Price

Gali and Monacelli (2005[37]) define the effective terms of trade St as the following

equation:

St =
PF,t
PH,t

=

(∫ 1

0

S1−γ
i,t di

) 1
1−γ

, (1.23)

where Si,t =
Pi,t
PH,t

is the bilateral terms of trade between the home economy and a

foreign country i. In addition, the price of country i’s goods Pi,t is expressed in

the domestic currency. Given the assumptions that the steady state satisfying the

purchasing power parity S = 1 and the elasticity of substitution between different

countries γ = 1, rewrite the formula above in the log-linear from:

s̃t = (pF,t − pF )− (pH,t − pH) = pF,t − pH,t =

∫ 1

0

s̃i,tdi. (1.24)

Analogically, under the assumption of purchasing power parity and the elasticity

of substitution between home product and imported goods η = 1, rewrite the CPI

price formula (1.19) in the log-linear expression:

pt = (1− α)pH,t + αpF,t = pH,t + αs̃t. (1.25)

Take one period backward of the above equation and subtract it from the above

equation yield the following relationship between the CPI inflation and domestic

inflation.

πt = πH,t + α4s̃t, (1.26)

where the domestic inflation πH,t = pH,t − pH,t−1 is defined as the rate of change

in the index of domestic goods prices.

Gali and Monacelli (2005[37]) also assume the law of one price holds for goods

j at all times.

Pi,t(j) = εi,tP
i
i,t(j), (1.27)

where j represents the good variety, i represents the countries,εi,t is the bilateral

nominal exchange rate which dimension is homecurrency
foreigncurrency

and P i
i,t(j) is the price

of the same type of good j expressed in the currency of country i. Pi,t can be
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rewritten as the following equation:

Pi,t = εi,tP
i
i,t = εi,t(

∫ 1

0

P i
i,t(j)

1−ξ
dj)

1
1−ξ (1.28)

Substitute the above equation in the equation (1.15) and rewrite PF,t in the fol-

lowing equation:

PF,t =

[∫ 1

0

(
εi,t(

∫ 1

0

P i
i,t(j)

1−ξ
dj)

1
1−ξ

)1−γ

di

] 1
1−γ

. (1.29)

Rewrite the above equation in the log-linear form under the assumptions γ = 1

yields the equation below:

pF,t =

∫ 1

0

(ei,t + pii,t)di = et + p∗t , (1.30)

where et =
∫ 1

0
ei,tdi is the log nominal effective exchange rate, pii,t =

∫ 1

0
pii,t(j)dj

is the log domestic price index for country i expressed in its own currency, and

p∗t =
∫ 1

0
pii,tdi is the log world price index. Combining this formula with the

equation (1.24), the log difference of terms of trade is rewritten as the following

equation:

s̃t = ẽt + p∗t − pH,t. (1.31)

Take one period backward of the above equation and subtract it from the above

equation generates an important relationship between CPI inflation and the rate

change of nominal exchange rate in the equation below:

πt = π∗t +4ẽt − (1− α)4s̃t. (1.32)

The definition of terms of trade in Gali and Monacelli (2005[37])’s framework

is a bit different from the practical side. Chamberlin and Yueh (2006[15]) define

the terms of trade as the ratio of export to import prices, which is just the op-

posite to the definition of Gali and Monacelli (2005[37]). Generally, an exchange

rate depreciation will increase the import price and weaken the terms of trade.

The currency depreciation is good for the export sector while bad for the import
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sector. From the viewpoints of the import sector, the weakened terms of trade

will deteriorate the trade balance if the country does not expand the quantity of

its export. The exchange rate depreciation 4ẽt and the change rate of the terms

of trade 4s̃t should move in the opposite direction, and the simplified model will

correct the equation above for the practical purpose.
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Uncover Interest Parity and Terms of Trade

The intertemporal optimal condition for the representative household in any other

country i is written in the following equation:

βEt

[
(
Ci
t+1

Ci
t

)−σ(
P i
t

P i
t+1

)

]
= Qi

t,t+1. (1.33)

Under the assumption of law of one price and complete security markets, there are

no arbitrage opportunities in the bond market:

Qt,t+1 = Qi
t,t+1

εit
εit+1

, (1.34)

where it implies a potential investor is able to buy the domestic bonds and the

foreign bonds at the same discounted current price expressed in the same currency.

The combination between equation (1.33) and (1.34) arrives at an uncovered in-

terest rate parity:

Rt = Ri
t

εit+1

εit
=

1

εit
Ri
tε
i
t+1, (1.35)

where it implies the profit of one unit of the domestic currency invested in the

domestic bond market is same as the profit of one unit of the domestic currency

invested in the foreign bond market. Ri
t = 1

Qit,t+1
is the foreign gross return of

one period bond and the dimension of εit is foreigncurrency
homecurrency

. Combining the equation

(1.33) with equation (1.21), it yields the equation below:

Ct+1

Ct
= (

P it ε
i
t

Pt

P it+1ε
i
t+1

Pt+1

)−σ
Ci
t+1

Ci
t

= (
Qi,t

Qi,t+1

)−σ
Ci
t+1

Ci
t

, (1.36)

where Qi,t =
P it ε

i
t

Pt
is defined as the bilateral real exchange rate for the currency in

the country i. It is important to extract an important relationship between the

domestic and home consumption from the above equation:

Ct = vCi
tQ

1
σ
i,t, (1.37)

where v is a arbitrary constant and can be canceled off when log-linearize the

above equation around the steady state C = Ci = C∗ under the assumption of the

purchasing power parity Qi = Si = 1:

c̃t = c̃∗t +
1

σ
q̃t, (1.38)
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where c∗t =
∫ 1

0
citdi is the index of world consumption and qt =

∫ 1

0
qi,tdi =

∫ 1

0
(ei,t +

pit − pt) is the log effective real exchange rate. Combining equation (1.25) and

(1.31),the log difference of the real effective exchange rate is expressed by:

q̃t = ẽt + p∗t − pt = s̃t + pH,t − pt = (1− α)s̃t. (1.39)

Substitute the real exchange rate in the equation (1.38), it yields a relationship

between the home consumption and the world consumption:

c̃t = c̃∗t + (
1− α
σ

)s̃t. (1.40)

In addition, log-linearize the equation (1.35) will yield a relationship between the

home net interest rate and the world net interest rate r∗t :

rt − r∗t = Et4 ˜et+1. (1.41)

Combining the above equation with the equation (1.32) yields the relationship

between the interest rate and terms of trade:

s̃t = (r∗t − π∗t+1) + (rt − EtπH,t+1) + ˜st+1. (1.42)

Uncovered interest rate parity assumes that the bond investors will hold the bond

with the highest expected return. However, the assumption of the uncovered in-

terest rate parity is too strong for two reasons (Blanchard,2013[7]). On the one

hand, it ignores the transaction cost. For instance, entering in and exists from

the UK bond market requires three contracts with different transaction costs. On

the other hand, it ignores risk. The forward exchange rate in a year is unknown

for a foreigner to decide to buy the domestic bond now. The foreign investor may

feel reluctant to hold the domestic bond because the risk of the volatility of the

exchange rate is not covered compared to a risk-less arbitrage condition. Having

said this, however, the interest parity condition is still a good first approximation

of the reality due to the capital movements among the developed and wealthy

countries in the world (Dornbusch et al.,2003[30]; Blanchard,2013[7]).
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Retailers(Final Goods Firm)

The optimisation problems are a bit complicated in the home production sector,

which require the inclusion of two sections: firms called retailers which produce

the final goods in the market of perfect competition and firms called wholesalers

which produce the intermediate goods in the market of monopolistic competition.

The wholesale firms will produce many infinitely differentiate intermediate goods

and sell them to the retailer firms with a flexible or sticky price. The retailer firms

then aggregate the intermediate goods into the same type of final goods and then

sell them with perfect competition.

The objective of the retailer is to maximise the profit in the below equation:

PH,tYt −
∫ 1

0

PH,t(j)Yt(j)dj, (1.43)

with the constraint below implying that the elasticity of substitution of the many

infinitely intermediate goods is ξ:

Yt =

(∫ 1

0

Yt(j)
ξ−1
ξ

) ξ
ξ−1

. (1.44)

Accordingly, the optimisation procedures arrive at the demand function for the

wholesale good j:

Yt(j) =

(
PH,t(j)

PH,t

)−ξ
Yt. (1.45)

Substitute the above equation and the equation (1.9) in equation (1.43), the max-

imum profit of the retailer firms is zero, which proves that there is perfect compe-

tition in the market of the retailer firms.
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Wholesale Firms with flexible prices strategy

Given the flexible price strategy, the objective of the wholesale firms is to maximize

the profit:

PH,t(j)Yt(j)− (1− τ1)WtNt(j) (1.46)

where τ1 is the subsidy of employment. The objective is constrained by the equa-

tion (1.45) and the production function defined as the below equation:

Yt(j) = AtNt(j). (1.47)

The optimal price of wholesale good j is written in the following equation:

PH,t(j) =
ξ

ξ − 1
MCn

t , (1.48)

where MCn
t = (1− τ1)Wt

At
is the nominal marginal cost. In addition, the marginal

cost is independent of j and identical for all wholesale firms. Rewrite the real

marginal cost MCt =
MCnt
PH,t

in the log-linear form:

mct = log(1− τ1) + wt − pH,t − at. (1.49)

The steady state of log real marginal cost mc = log( ξ−1
ξ

) can be derived from the

equation (1.48).
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Wholesale Firms with sticky prices strategy

Calvo (1983[11]) assumes the wholesale firms has a θ probability of keeping the

price of its good fixed in the following periods and a 1− θ probability of optimally

redefining its price. The objective of the wholesale firm to maximize the profit is

defined in the below equation:

∞∑
k=0

θkEt[Qt,t+k(Yt+k(P
∗
H,t −MCn

t+k))], (1.50)

subjecting to the constraint obtained from equation (1.45):

Yt+k(j) = (
P ∗H,t
PH,t+k

)−εYt+k (1.51)

The discount factor Qt,t+k = βk(Ct+k
Ct

)−σ( Pt
Pt+k

) is derived from the optimal in-

tertemporal condition (1.21). Under the assumptions σ = 1,η = 1 and γ = 1, it

arrives at the optimal redefining price P ∗H,t:

P ∗H,t =
ξ

ξ − 1

X1,t

X2,t

, (1.52)

where X1,t = MCt + θβEtX1,t+1 and X2,t = P−1
H,t + θβEtX2,t+1. The optimal

resetting price is identical for all the wholesale firms. In addition, the above

equation can be represented by the domestic inflation instead of the domestic

price index:

P ∗H,t
PH,t−1

= 1 + π∗H,t =
ξ

ξ − 1

1

PH,t−1

X1,t

X2,t

=
ξ

ξ − 1
(1 + πH,t)

X1,t

X∗2,t
, (1.53)

where X∗2,t = 1+βθ(1+πH,t+1)−1EtX2,t+1. Log-linearize the equation (1.53) around

the zero steady inflation rate yields:

π∗H,t = πH,t + x̃1,t − x̃∗2,t, (1.54)

where x̃1,t = (1− θβ)m̃ct + θβEt ˜x1,t+1 and x̃∗2,t = −θβEtπH,t+1 + θβEt ˜x∗2,t+1. Also,

m̃ct = mct −mc is the log difference of the real marginal cost with respect to its

stationary state. Given the price stickness, the domestic price index function (1.9)

can be rewritten as follows:

P 1−ξ
H,t =

∫ θ

0

P 1−ξ
H,t−1(j)dj +

∫ 1

θ

P ∗H,t
1−ξdj = θP 1−ξ

H,t−1 + (1− θ)P ∗H,t
1−ξ. (1.55)
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The above equation can be rewritten in terms of the inflation by dividing P 1−ξ
t−1

from both sides:

(1 + πH,t)
1−ξ = θ + (1− θ)(1 + π∗H,t)

1−ξ (1.56)

Log-linearize the function above yields the relationship between the optimal infla-

tion and the domestic inflation:

πH,t = (1− θ)π∗H,t (1.57)

Substitute the above equation in the equation (1.54) yields the domestic Philips

curve:

πH,t = βEtπH,t+1 + κm̃ct, (1.58)

where κ = (1−θ)(1−θβ)
θ

.

Monopolistic competition and the sticky prices are two central assumptions for

the supply side in the DSGE model considering the features of the New Keyne-

sian. The prices of goods are normally higher than the marginal cost, which inval-

idates the assumption of the perfect competition in the real business cycle model.

For instance, Hall(1998[40]) finds evidence of a higher price than the marginal

cost in the US economy. Dixit and Stiglitz(1997[28]) mathematically approximate

the central idea of the imperfect competition, and after that, most of the DSGE

models borrow their ideas to assume there is a continues of differentiated goods

locating in the interval from zero to one. More specifically, Torres(2015[88]) offers

an excellent and fundamental book to cover the final goods production sector (re-

tailers) in the perfect competition market and the production of the intermediate

goods sector (wholesale firms) in the monopolistic competition market. The price

stickiness reflects that it is not free for the firms to adjust their market prices

given a new equilibrium of the demand and supply for the quantities of their prod-

ucts. Normally, the DSGE literature borrows the pricing methodology proposed

by Calvo(1983[11])to add the feature of the staggering price, thereby matching the

data better given the derived Philips curve(Gali et al. ,2001[36]; Gali,2002[34]). In

addition to Gali(2015[35])and Walsh(2017[91]), McCandless(2008[63]) and Junior

(2018[47]) also provide the details to derive the New Keynesian Philip curves.
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Consumption and Output

The equilibrium in the goods market for the small open economy requires:

Yt(j) = CH,t(j) +

∫ 1

0

Ci
H,t(j)di, (1.59)

where Ci
H,t(j) represents foreign country i’s consumption for the good j produced

in the home country. The simplification of the above equation needs several steps.

First, rewrite CH,t(j) in the from of Ct through the equations (1.8) and (1.17):

CH,t(j) = (
PH,t(j)

PH,t
)−ξCH,t = (

PH,t(j)

PH,t
)−ξ(1− α)(

PH,t
Pt

)−ηCt. (1.60)

Second, rewrite Ci
H,t(j) in the form of Ci

H,t through equation(1.8) :

Ci
H,t(j) = (

PH,t(j)

PH,t
)−ξCi

H,t, (1.61)

where it implies the foreign country i prefers to consume good j from the home

economy given the price of it PH,t(j) in relation to the whole price index PH,t.

Next, rewrite Ci
H,t in the form of Ci

F,t through equation (1.14):

Ci
H,t = (

PH,t
P i
F,tεi,t

)−γCi
F,t. (1.62)

The home economy export its good to an foreign country i and the foreign country

options to consume the quantity of goods from the home economy Ci
H,t among other

countries in the world given the export price PH,t comparing with the imported

price index P i
F,t for the foreign country in terms of the same currency. Last, rewrite

Ci
F,t in the form of Ci

t through equation (1.18):

Ci
F,t = α(

P i
F,t

P i
t

)−ηCi
t . (1.63)

The foreign country make a choice on the quantity of imported goods given the

imported price index P i
F,t comparing to its own price index P i

t . Gali and Monacelli

assume the preferences are symmetric for consumers, implying the ξ,γ and η are

identical across different countries. Combing equations from (1.61) to (1.63), it

yields a relationship between the consumption of a certain type of good produced

in the home economy Ci
H,t(j) and the foreign consumption index Ci

t :

Ci
H,t(j) = (

PH,t(j)

PH,t
)−ξ(

PH,t
P i
F,tεi,t

)−γα(
P i
F,t

P i
t

)−ηCi
t . (1.64)
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Above all, substituting the equation (1.60) and (1.64) into the equilibrium condi-

tion (1.59) generate the following equation:

Yt(j) = (
PH,t(j)

PH,t
)−ξ

[
(1− α)(

PH,t
Pt

)−ηCt + α

∫ 1

0

(
PH,t
P i
F,tεi,t

)−γ(
P i
F,t

P i
t

)−ηCi
tdi

]
. (1.65)

Plugging the above equation to the aggregate domestic output (1.44) yields:

Yt = (1− α)(
PH,t
Pt

)−ηCt + α

∫ 1

0

(
PH,t
P i
F,tεi,t

)−γ(
P i
F,t

P i
t

)−ηCi
tdi. (1.66)

Notice (
P iF,t
P it

)−η = (
PH,t
Pt

)−η(
P iF,tεi,t

PH,t
)−η( Pt

εi,tP it
)−η = (

PH,t
Pt

)−η(
P iF,tεi,t

PH,t
)−η( 1

Qi,t
)−η. Ac-

cordingly, the above equation is simplified as:

Yt = (
PH,t
Pt

)−η
[
(1− α)Ct + α

∫ 1

0

(
εi,tP

i
F,t

PH,t
)γ−ηQi,tC

i
tdi

]
. (1.67)

Introducing the definition of terms of trade through equation (1.23), it yields

εi,tP
i
F,t

PH,t
=

P iF,t
P iH,t

εi,tP
i
H,t

PH,t
= SitSi,t and then substituting the terms of trade and equation

(1.37) into the above equation:

Yt = (
PH,t
Pt

)−ηCt

[
(1− α) + α

∫ 1

0

(SitSi,t)
γ−ηQ

η− 1
σ

i,t di

]
. (1.68)

Deriving the first order log-linear approximation to the above equation around the

steady state with the assumption of purchasing power parity yields:

ỹt = c̃t + αγs̃t + α(η − 1

σ
)q̃t = c̃t +

αω

σ
s̃t, (1.69)

where ω = σγ + (1 − α)(ση − 1). The equation above will hold for all coun-

tries,implying that:

ỹit = c̃it +
αω

σ
s̃it. (1.70)

Given the assumption
∫ 1

0
sitdi = 0, it can generate a world equilibrium condition

of the good market by aggregating the output over all countries:

ỹ∗t =

∫ 1

0

ỹitdi =

∫ 1

0

c̃itdi = c̃∗t . (1.71)

Combing equation (1.40), (1.69) and (1.71) generates the relationship between the

log difference of domestic output and the log difference of the world output:

ỹt = ỹ∗t +
1

σα
s̃t, (1.72)
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where σα = σ
1−α+αω

. Finally, combing the Euler equation (1.22) with (1.69) and

(1.72) is able to generate the new IS curve in terms of output instead of consump-

tion:

ỹt = Et ˜yt+1 −
1

σα
(rt − EtπH,t+1 − ρ) + αΘEt4 ˜y∗t+1, (1.73)

where Θ = ω − 1.
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Marginal Cost, Potential Output and Natural Rate of Interest

In this subsection, it will generate a relationship between the marginal cost inde-

pendent of the price stickness and then introduce the natural rate of output and

interest rate.

In addition to the intertemporal optimal Euler condition (1.21), the optimization

household utility also yields that the marginal substitution rate of consumption

and leisure equating to the real wage price:

Cσ
t

N−ϕt
=
Wt

Pt
. (1.74)

Rewriting the above formulas in the log form:

σct + ϕnt = wt − pt. (1.75)

Also, Integrating the production function (1.47) over the domain of j ∈ [0, 1]

combing with the demand equation (1.45):∫ 1

0

Yt(j)dj =

∫ 1

0

(
Pt(j)

Pt
)−ξdjYt = At

∫ 1

0

Nt(j)dj = AtNt, (1.76)

where it assumes Nt =
∫ 1

0
Nt(j)dj is the total labor supply for the home economy.

Taking the log form of the both sides yields the equation below:

yt = at + nt, (1.77)

where it assumes the price dispersion (Pt(j)
Pt

)−ξ is a constant number of one in the

first order approximation. Given the equations (1.72),(1.75) and (1.77), rewriting

the marginal cost equation in (1.49) as follows:

mct = −ν + (σα + ϕ)yt + (σ − σα)y∗t − (1 + ϕ)at, (1.78)

where ν = log(1− τ1). The natural rate of output is defined as the output of firms

when the price is flexibly determined each period. Thus, substituting the steady

log marginal cost mc = −µ = log(1−ξ
ξ

) derived from equation (1.48)in the above

equation yields the natural rate of output:

yt,n = Ω + Γat + αΨy∗t , (1.79)
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where Ω = ν−µ
σα+ϕ

,Γ = 1+ϕ
σα+ϕ

and Ψ = − σαΘ
σα+ϕ

. Also, the subtraction of the steady real

marginal cost from the equation (1.78)generates the log deviation of real marginal

cost:

m̃ct = (σα + ϕ)(xt), (1.80)

where xt = yt− yt,n is defined as output gap. Noticing that xt = x̃t because yt and

yt,n share the same steady state of log real output, thus xt = (yt− y)− (yt,n− y) =

ỹt− ˜yt,n = x̃t. Rewriting the domestic Philips curve (1.58) regarding to the output

gap instead of real marginal cost:

πH,t = βEtπH,t+1 + καxt = βEtπH,t+1 + καx̃t, (1.81)

where κα = κ(σα+ϕ). The natural rate of interest is the real interest rate equating

the output and natural output. Thus, adding ˜yt+1,n − ˜yt,n to the both sides of the

IS curve (1.73) generates the equation below:

x̃t = Et ˜xt+1 −
1

σα
(r̃t − EtπH,t+1 − ˜rt,n), (1.82)

where x̃t = ỹt− ˜yt,n is the deviation of output gap from its steady state,r̃t = rt− ρ

is the deviation of nominal interest rate from its zero inflation steady state ρ and

˜rt,n = rt,n − ρ is the deviation of the natural rate of interest rate from the same

zero inflation steady interest rate ρ. The natural rate of interest rate is defined as:

rt,n = ρ+ σαΓEt4at+1 + ασα(Θ + Ψ)Et4y∗t+1. (1.83)

30



1.2.3 From Gali to Lubik

Lubik and Schorfheide (2007[60]) simplify Gali and Monacelli (2005[37])’s model

in several ways. In addition to the initial assumptions including purchasing power

parity, the law of one price, uncovered interest parity and η = γ = 1, Lubik and

Schorfheide (2007[60]) detrend the real economic variables by the non-stationary

technology process At. They set the marginal substitution between labour and

leisure ϕ to zero. The risk aversion σ is no longer assumed to be one in the

simplified model. Moreover, the definition of terms of trade q1 in the simplified

model is the reciprocal of that in Gali and Monacelli (2005[37])’s model. Thus the

signs of the terms of trade in the simplified log-linear DSGE model are all opposite

to those in the previous section.

IS curve

Lubik and Schorfheide (2007[60]) detrend the aggregate real output domestically

and abroad in Gali’s model with the a non-stationary technology process At =

At−1 + zt following Y Yt = Yt
At

= Nt,so the natural rate of the detrended output in

the equation (79) is writing in another way with yt = yyt + at and y∗t = yy∗t + at:

˜yyt,n = αΨ ˜yy∗t = −αΘ ˜yy∗t . (1.84)

where Ψ = − σαΘ
σα+ϕ

= −Θ when Lubik assumes ϕ = 0. The natural rate of interest

rate is still same but it replace at with zt which is defined as the rate of change in

the technological process:

Etzt+1 = Etat+1 − at, (1.85)

thus the natural rate of interest (1.83) is rewritten as:

rt,n = ρ+ σαΓEtzt+1 + ασα(Θ + Ψ)Et4yy∗t+1 = ρ+ Etzt+1, (1.86)

where Γ = 1+ϕ
σα+ϕ

= 1
σα

.Substituting the new form of natural rate of output and

interest rate into the canonical IS equation (1.82) yields:

ỹyt = Et ˜yyt+1 −
1

σα
(r̃t − Etπt+1 − Etzt+1)− α

σα
Et4 ˜st+1 + αΘEt4 ˜yy∗t+1, (1.87)
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where σα = σ
1−α+αω

and Θ = ω − 1 = σγ + (1 − α)(ση − 1) − 1. It implies that

ỹyt = (yt − at) − (y − at) = yt − y = ỹt and ˜yy∗t = ỹ∗t . It defines τ = 1
σ

as the

inverse of risk aversion and substitute τ and the assumptions η = γ = 1 into the

parameters,which yields

σα =
1

τ + α(1− τ)(2− α)
=

1

τ + λ
(1.88)

and

Θ =
(1− τ)(2− α)

τ
=

λ

ατ
, (1.89)

where λ = α(1−τ)(2−α). The definition of terms of trade in the simplified model

is Given by Q∗t =
PH,t
PF,t

, which is the reciprocal of that in the theoretical model.PF,t

is still the import price while PH,t is regarded as the exported price assuming the

law of one price always hold in the goods market. Thus, the log form of the terms

of trade is defined as q∗t = −st. Substituting the new parameters and the new

terms of trade into that IS curve yields:

ỹyt = Et ˜yyt+1−(τ+λ)(r̃t−Etπt+1−Etzt+1)+α(τ+λ)Et4 ˜q∗t+1+
λ

τ
Et4 ˜yy∗t+1, (1.90)

where the change of world output is defined as:

4 ˜yy∗t = ˜yy∗t − ˜yy∗t−1. (1.91)
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Philips curve,Exchange rate and Terms of Trade

Lubik and Schorfheide (2007[60]) rewrites the Philips curve (81) in terms of the

CPI inflation rate with the aid of equation (1.26) as follows:

πt = βEtπt+1 + αβEt4 ˜q∗t+1 − α4q̃∗t +
κ

τ + λ
x̃t, (1.92)

where κα = κ(σα+ϕ) = κ
τ+λ

. The output gap does not change when the aggregate

output is detrendend by the non-stationary technology process due to the fact

xt = yt − yt,n = (yt − at) − (yt,n − at) = yyt − yyt,n and so does the log deviation

of output gap x̃t = xt. The simplified model directly borrows the exchange rate

equation (1.32) and changes the sign of the terms of trade from negative to positive

as follows:

πt = π∗t +4ẽt + (1− α)4q̃∗t . (1.93)

The first difference of equation (1.72) can lead to the change rate of the terms of

trade endogenously:

4q̃∗t = σα(4 ˜yy∗t −4ỹyt) =
1

τ + λ
(4 ˜yy∗t −4ỹyt). (1.94)

However, Lubik and Schorfheide (2007[60]) replace the equation above with an ex-

ogenous process which will be mentioned later. They suggest that the replacement

will yield a higher possibility of data matching in the empirical analysis.
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Monetary Policy and Exogenous Shock Process

Lubik and Schorfheide (2007[60]) sets the nominal interest rate in response to

movements in CPI inflation, output, the nominal exchange rate depreciation with

a smoothing term:

r̃t = ρR ˜rt−1 + (1− ρR)[φππt + φyỹyt + φ4e4ẽt] + ξRt , ξ
R
t ∼ NID(0, σ2

R), (1.95)

where φπ,φy and φ4e are policy coefficients. ρR is the smoothing term and ξR is an

exogenous policy shock.σR is the standard deviation of the monetary policy shock.

Lubic and Schorfheide also introduce four stationary processes for the exogenous

variables zt,4qt,y∗t and π∗t in the model:

zt = ρzzt−1 + ξzt , ξ
z
t ∼ NID(0, σ2

z), (1.96)

4q̃∗t = ρq4 ˜q∗t−1 + ξqt , ξ
q
t ∼ NID(0, σ2

q ), (1.97)

˜yy∗t = ρy∗ ˜yy∗t−1 + ξ
y∗t
t , ξ

y∗t
t ∼ NID(0, σ2

y∗), (1.98)

π∗t = ρπ∗π
∗
t−1 + ξ

π∗t
t , ξ

π∗t
t ∼ NID(0, σ2

π∗), (1.99)

where ρz,ρq,ρy∗ and ρπ∗ are autoregressive coefficients of the AR(1) processes,

respectively. ξzt , ξ
q
t ,ξ

y∗t
t and ξ

π∗t
t are innovations of the four AR(1) processes. σz, σq,

σy∗ and σπ∗ are the standard deviation of the corresponding shocks, respectively.

zt is the change rate of the technology process. 4q̃∗t is the change rate of the terms

of trade following an exogenous process instead of the endogenous process (1.93).

˜yy∗t is the log difference of the detrended world output from its steady state. π∗t is

the world inflation.
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1.3 Solutions to the Model

I can solve the model comprising of the equations above using the method devel-

oped by Blanchard and Kahn (1980[8]),Klein (2000[51]) or Sims (2002[80]). The

Lubik and Schorfheide’s model comprise of 10 equations including the IS curve

(1.90),natural rate of output (1.84),change of world output(1.91), Philips curve

(1.92),law of one price (1.93),monetary policy reaction function (1.95) and 4 AR

one processes from (96) to (99). The vector of endogenous variables of the system is

xt = [ ˜yyt,n,4ẽt, r̃t, zt, ˜yy∗t , π
∗
t ,4q̃t, ỹyt, πt,4 ˜yy∗t ]

′. Among the vector, ˜yyt,n and4ẽt

are static variables which are just appear at period of time t. r̃t,zt, ˜yy∗t and π∗t are

backward looking variables which are appear at period of time t−1 and t. 4q̃t is the

mixed variable which appears at period of time t− 1, t and t+ 1. ỹyt,πt and 4 ˜yy∗t

are forward looking variables which appear at time t and t + 1. When handling

the solution of a dynamic system, it is often replace the static variables with other

endogenous variables so the new vector is Xt = [r̃t, zt, ˜yy∗t , π
∗
t ,4q̃t, ỹyt, πt,4 ˜yy∗t ]

′.

The original system of equations becomes

B[X1,t+1,X2,t+1]′ = A[X1,t,X2,t]
′ + Gξt+1, (1.100)

where X1,t is the vector of backward looking variables [r̃t, zt, ˜yy∗t , π
∗
t ]
′ and X2,t

is the vector of mixed and forward looking variables[4q̃t, ỹyt, πt,4 ˜yy∗t ]
′. In fact,

the mixed variable 4q̃t should both enters into the vector of backward looking

and forward looking vectors. However, it is convenient to illustrate the existence

and uniqueness of the solution under the current specification. ξt is the vector of
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exogenous shocks [ξRt , ξ
z
t , ξ

q
t , ξ

y∗t
t , ξ

π∗t
t ]′. B is a parameter matrix with size 8 ∗ 8:

B =



1 0 0 (1− ρR)φ4e (1− ρR)()1− α)φ4e −(1− ρR)φy −(1− ρR)(φπ + φ4e) 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 τ + λ λ
τ

0 0 0 0 αβ 0 β 0

0 0 0 0 0 1 0 −1



,

(1.101)

and A is a matrix with size 8 ∗ 8:

A =



ρR 0 0 0 0 0 0 0

0 ρz 0 0 0 0 0 0

0 0 ρy∗ 0 0 0 0 0

0 0 0 ρπ∗ 0 0 0 0

0 0 0 0 ρq 0 0 0

τ + λ −ρz(τ + λ) 0 0 −α(τ + λ)ρq 1 0 0

0 0 −καΘ
τ+λ

0 α − κ
τ+λ

1 0

0 0 0 0 0 1 0 0



, (1.102)

and G is a matrix with size 8 ∗ 5:

G =



1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



. (1.103)

If the matrix B invertible, it is appropriate for the Blanchard and Kahn’s method-

ology to solve the dynamic system. If the matrix is not invertible, it is appropriate

36



for the methodology of matrix decomposition to solve the system. The goal of the

solution is to find the transition function:

X1,t = PX1,t−1 + Qξt, (1.104)

and the policy function:

X2,t = RX1,t−1 + Sξt. (1.105)

After that, it can obtain the static variables ˜yyt,n and 4ẽt through the equations

(1.84) and (1.93) respectively.
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1.3.1 Blanchard and Kahn’s Methodology

If the inverse of the matrix B exists,the dynamic system (1.100) becomes X1,t+1

X2,t+1

 = B−1A

 X1,t

X2,t

+ B−1Gξt+1. (1.106)

Rewrite B−1A = ΓΛΓ−1.Γ is the eigenvector matrix of the matrix B−1A and Λ

is the eigenvalue matrix. In addition, the eigenvalues follows an increasing order

and the accordingly eigenvectors are also rearranged at the same time. The above

system is rewritten as:

Zt+1 = ΛZt + Γ−1B−1Gξt+1, (1.107)

where Zt = Γ−1Xt. Dividing the eigenvalue matrix in 2 groups based on whether

the absolute value of eigenvalue is smaller or bigger than 1. Z1,t+1

Z2,t+1

 =

 Λ1 0

0 Λ2

 Z1,t

Z2,t

+ Γ−1B−1Gξt+1, (1.108)

where Λ1 is a submatrix with size Q ∗Q and the absolute values of eigenvalues in

it are smaller than 1, while Λ2 is a submatrix with size O ∗ O and the absolute

values of eigenvalues in it are equal or bigger than 1. If the system is stationary,

Z2,t = 0 otherwise it explode after infinity time due to the matrix Λ2. Z2,t is also

a matrix with the size O ∗O. To obtain the X back, rewriting the definition of Zt: Z1,t

Z2,t

 = Γ−1Xt =

 G11 G12

G21 G22

 X1,t

X2,t

 , (1.109)

where the sizes of the sub-matrices in the Γ−1 is [(Q ∗m), (Q ∗n); (O ∗m), (O ∗n)]

and m and n are the number of variables in the vector of X1,t and X2,t respectively.

According to the stationary condition Z2,t = 0,part of the above system becomes:

Z2,t = G21X1,t +G22X2,t = 0. (1.110)

The above equation determines the policy functions of the dynamic system, cap-

turing the relationship between the jump variables and the the predetermined

variables. The Blanchard and Kahn methodology clarifies three conditions of the
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solutions to the dynamic system. First, if the number of explosive eigenvalues O

is larger than the number of the jump variables n, the system has no solutions.

Second, if O < n,the system has free variables and thus have many infinitely solu-

tions. Third, if O = n, there is one and only one solution for this dynamic system.

Overall, if the third condition holds, the unique solution derived from the above

equation is:

X2,t = −G−1
22 G21X1,t. (1.111)

Substitute the unique solution in the rest part of the definition of Zt (1.109),

Z1,t = G11X1,t +G12X2,t, (1.112)

And then substitute it back to the dynamic system (1.108):

G11X1,t+1 +G12X2,t+1 = Λ1(G11X1,t +G12X2,t) + Eξt+1, (1.113)

where E is submatrix of Γ−1B−1G with the size m∗6. Substitute the unique solu-

tion to the above equation and then simplify it to obtain the transition function:

X1,t = RX1,t−1 + Sξt, (1.114)

where R = (−G11G
−1
22 G21 +G12)

−1
Λ1(−G11G

−1
22 G21 +G12) and

S = (−G11G
−1
22 G21 +G12)

−1
E.

Substitute the transition function to the unique solution to finish deriving the

policy function:

X2,t = PX1,t−1 +Qξt, (1.115)

where P = −G−1
22 G21R and Q = −G−1

22 G21S.
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1.3.2 Schur Decomposition

If the inverse of the matrix B does not exist,the dynamic system (1.100) becomes

QTZT

 X1,t+1

X2,t+1

 = QSZT

 X1,t

X2,t

+Gξt+1, (1.116)

where B = QTZT and A = QSZT . The matrix decomposition is called general

Schur decomposition or QZ decomposition. Q and Z are orthogonal unitary ma-

trices and T and S are upper triangular matrices.Following a similar strategy in

Blanchard’s methodology, rearrange the elements of the upper triangular matrices

along the diagonal line based on the increasing order of Sii
Tjj

. Actually, the elements

across the diagonal line are also the eigenvalues of the upper triangular matrices.

After the simplification, the above system becomes T11 T12

0 T22

 Z11 Z12

Z21 Z22

 X1,t+1

X2,t+1


=

 S11 S12

0 S22

 Z11 Z12

Z21 Z22

 X1,t

X2,t

+QTGξt+1.

(1.117)

To extract the lower part of the dynamic system yields

T22(Z21X1,t+1 + Z22X2,t+1) = S22(Z21X1,t + Z22X2,t). (1.118)

The absolute values of eigenvalues in the sub matrix T−1
22 S22 are not smaller than

one. To keep the above equation from generating an explosive path,the condition

below is necessary:

Z21X1,t + Z22X2,t = 0. (1.119)

For this condition to hold, the forward looking variables must be equal to

X2,t = −Z−1
22 Z21X1,t. (1.120)

Substitute the above equation in the upper section of the dynamic system yields

the transition function:

X1,t = RX1,t−1 + Sξt, (1.121)
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where R = (−T11Z11Z
−1
22 Z21 + T12Z12)

−1
(−S11Z11Z

−1
22 Z21 + S12Z12). E is the sub-

matrix of QTG with size m∗6, so S = (−T11Z11Z
−1
22 Z21 + T12Z12)

−1
E. Substituting

the transition function to the stable condition (1.120) yields the policy function:

X2,t = PX1,t−1 +Qξt, (1.122)

where P = −Z−1
22 Z21R and Q = −Z−1

22 Z21S.
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1.3.3 Numerical Solutions

This section adopts the above methodology to compute the policy and transition

functions numerically and then report the impulse response functions of four en-

dogenous variables including ỹyt,πt,r̃t and 4ẽt. It borrows the parameters values

from the table below:

Table 1.1: Calibration

Parameter Names Parameters Values

τ 0.5

κ 0.3

φπ 1.5

φy 0.125

φ4e 0.125

ρR 0.5

ρz 0.2

ρq 0.4

ρπ∗ 0.8

ρy∗ 0.9

α 0.2

r(A) 3.35

πA 1.92

γQ 0.62

σR 0.5

σz 1.5

σy∗ 1.5

σπ∗ 0.55

σq 1.5

Note: The parameter values are borrowed

from the prior means of parameters within

the UK sample in the next chapter.

42



The parameters are independent of each other. Following Lubik and Schorfheide’s

specification, a parameter called annual real natural interest percentage rate rA

take the place of the parameter β based on the relationships ρ = 1
β
− 1 and

rA = 100 ∗ 4 ∗ ρ. The former relationship is present in the previous section. The

second relationship generates from two steps. The first step is to transform the

quarterly real natural interest rate ρ to the annual real natural interest rate by 4∗ρ.

The second step is to report the percentage rate directly without the symbol of

percentage,e.g., from 3.35% to 3.35. Thus, the relationship between the parameter

rA and β is β = e−
rA

400 . Table 1.2 reports that the numerical solution to the DSGE

model. According to the table, the transition function is calculated as:

r̃t

zt

˜yy∗t

π∗t

4q̃t


=



0.30 0.01 0.06 −0.70 −0.33

0 0.2 0 0 0

0 0 0.9 0 0

0 0 0 0.8 0

0 0 0 0 0.4





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

4 ˜qt−1



+



0.60 0.05 −0.06 0.03 −0.04

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 1 0 0





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (1.123)
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and the policy function is calculated as:


ỹyt

πt

4 ˜yy∗t

 =


−0.35 0.02 −0.30 0.06 0.08

−0.22 0.01 0.06 0.10 −0.01

0 0 −0.10 0 0





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

4 ˜qt−1



+


−0.71 0.11 0.20 −0.33 0.08

−0.44 0.05 −0.03 0.06 0.12

0 0 0 1 0





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (1.124)

and the function for the static variables is

 ˜yyt,n

4ẽt

 =

 0 0 −0.32 0 0

−0.22 0.01 0.06 −0.70 −0.33





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

4 ˜qt−1



+

 0 0 0 −0.36 0

−0.44 0.05 −0.83 0.06 −0.88





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


. (1.125)

Table 1.2 provides numerical information to compute the impulse response func-
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tions for the four endogenous variables including ỹyt,πt,r̃t and 4ẽt:


ỹyt

πt

r̃t

4ẽt


=


−0.35 0.02 −0.30 0.06 0.08

−0.22 0.01 0.06 0.10 −0.01

0.30 0.01 0.06 −0.70 −0.33

−0.22 0.01 0.06 −0.70 −0.33





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

4 ˜qt−1



+


−0.71 0.11 0.20 −0.33 0.08

−0.44 0.05 −0.03 0.06 0.12

0.60 0.05 −0.06 0.03 −0.04

−0.44 0.05 −0.83 0.06 −0.88





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


. (1.126)

The coefficients of the second matrix in the above equation determine the impulse

response function for a given size of the structural shock. The impulse response

function measures the temporal deviations of economic variables concerning the

steady states. Figure 1.1 depicts the calculated impulse response function of the

four endogenous variables to the structural shock with the size of one unit of

standard deviation offered in table 1.1. For instance, holding everything else con-

stant, a unit of standard deviation of monetary policy shock σR = 0.5 will exert a

−0.71∗σR = −0.355 impact on the real output, a −0.44∗σR = −0.22 impact on in-

flation,a 0.60∗σR = 0.3 impact on the nominal interest rate, a −0.44∗σR = −0.22

impact on the change rate of nominal exchange rate.
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Figure 1.1: Impulse response functions. Note:The figure depicts the impulse re-

sponse function of real output, inflation rate, nominal interest rate and deprecia-

tion exchange rate to one unit structural shock.
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1.4 Conclusion

This chapter initially replicates the procedure of Gali and Monacelli(2005[37])’s

work to derive a small open DSGE model. In the small open economy, the do-

mestic demand for goods comprises of domestically produced goods and imported

goods from many other countries. It assumes that the elasticity of substitution

between domestic produced and imported goods is 1. Also, the elasticity of sub-

stitution of goods imported from different countries is 1, too. Moreover, when

deriving the optimal pricing strategy in the presence of the sticky price, it as-

sumes that the risk aversion is 1. Besides, the uncovered interest rate parity and

the law of one price guarantee that there is no arbitrage opportunity between do-

mestic and foreign markets. At the steady state of the economy, the purchasing

power parity holds, and the inflation rate is zero. Due to the zero steady inflation

rate, the steady nominal interest rate is also the steady real interest rate.

This chapter then tries to uncover the simplification process from Gali and Mona-

celli’s framework to Lubik and Schorfheide(2007[60])’s model. There are mainly

four changes in the simplified model. First, it detrends the real output by a non-

stationary technology process. Second, the definition of terms of trade is opposite

to the theoretical framework. The imported price is the nominator in the theoret-

ical model while it is the denominator in the simplified model. Third, the change

rate of terms of trade follows an exogenous stationery process in the simplified

model, which will enhance the data fitting of the model. Finally, it ignores the

labour supply and relax the assumption that the risk aversion is 1 in deriving the

Philips curve. Overall, the log-linearization of the DSGE model comprises of model

variables as the percentage deviations with respect to the steady-state values. In

the long run, all the economic variables will converge back to their steady state.

This chapter also offers a general introduction to solve the proposed DSGE model.

Nowadays, the burden of the computational task is mostly relieved by the ad-

vancement of computers. Blanchard and Kahn (1980[8])’s methodology and Schur
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decomposition are two general methodologies considered in Dynare software, which

is one popular tool to solve DSGE models. The core idea of the two methodologies

is to guarantee the number of explosive eigenvalues equating to the number of

forward-looking variables. The matrix decomposition obtains the number of ex-

plosive eigenvalues, and the model assumption determines the number of forward-

looking variables. Under this condition, there is one and only one solution to the

dynamic system. Typically, the solution comprises a transition function and a pol-

icy function. Table 1.2 provides the numerical solutions given a set of calibrated

parameters and also includes quantitative information relevant to the impulse re-

sponse functions depicted in figure 1.1.
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Chapter 2

Data Sample and Estimation

Methodology

2.1 Introduction

The second chapter estimates the parameters of the small open DSGE model pro-

posed by Lubik and Schorfheide (2007[60]) with data from the UK and Canada

covering the period 1992: Q4 -2008: Q4. This chapter aims to introduce a general

methodology to estimate the simplified DSGE model, which will yield a benchmark

result for the next chapter. There are mainly five sections in this chapter. The first

section will introduce the data sample for the UK and Canada and then connect

them to the model variables through measurement equations. The second section

will illustrate how to run a structural estimation of the DSGE model. The third

section will demonstrate, explain and then simulate the empirical results. The

fourth section will check for the model specifications with two popular method-

ologies, including the indirect inference and the DSGE-VAR. The final section

concludes.
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2.2 Data and Model Variables

This section will introduce the data sample comprising of nominal interest rate,

inflation, change of output, change of the nominal exchange rate(foreign cur-

rency/home currency) and change of terms of trade for the UK and Canada

throughout 1992: Q4 -2008: Q4. All the data are seasonally adjusted and at

annually or quarterly frequencies. Apart from the change of terms of trade, it can

collect all the time series data from Federal Reserve Economic Data. The change

of terms of trade is available from IECONOMICS. The main reason for choosing

that sample period 1992: Q4-2008: Q4 is to exclude the periods of non-inflation

targeting and the zero lower bounds. The thesis focuses on the inflation target-

ing regime and also contains the burst of the most recent financial crisis. More

specifically, Britain and Canada both announce inflation targeting regimes since

1992, and more or less they all experience a zero lower bound after 2008. After

introducing the data, the section then constructs the measurement equations to

connect the data to the model variables.
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2.2.1 Observable and Collected Data for the UK

There are five types of observable data. It will operate five simple transformations

to arrive at the observable data from the originally collected data based on their

definitions and frequencies.

Nominal Interest Rate

The observable nominal interest rate robst is the overnight inter-bank rate. The

frequencies of the observable interest rate and the collected data are both annuals.

Also, it quotes collected data as the percentage rate without the symbol %. Thus,

the observable data directly equates to the collected data in terms of the definition

and the frequency.

robst = InterbankRatet. (2.1)

The averaged observable nominal interest rate is 5.27 throughout 1992: Q4 -2008:

Q4 in the UK. The observable nominal interest rate reaches the highest percentage

rate of 7.41 in the first quarter of 1998 after the independence of Bank of England,

and the lowest percentage rate of 1.65 in the fourth quarter of 2008 preceding the

zero lower bound regime.

Inflation Rate

The observable inflation rate πobst is the log difference of the CPI, scaled by 400.

The frequency of the observable inflation rate is annual, while the frequency of the

collected CPI price is quarter. To equate the observable variable and the collected

data, it initially calculates the annualised CPI inflation by multiplying 4 of the log

difference of the quarterly CPI price. Moreover, it multiplies 100 to remove the

symbol %. Thus, it obtains the observable annual inflation rate from the collected

quarterly CPI as follows:

πobst = 400× LN(
CPIreal,t
CPIreal,t−1

). (2.2)

The averaged observable inflation rate is 1.92 over the data sample. The observable

inflation rate arrives at the highest percentage of 5.73 in the third quarter of 2008
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and falls to 0.49 in the next quarter. The lowest observable inflation rate is -0.50

in the first quarter of 2001.

Change of Real Output

The observable rate change of real output4yobst is the log difference of the collected

real GDP, multiplied by 100. The positive observable variable indicts an output

growth in the next period while the negative one implies an output decline in the

next period. The frequencies of the observable change rate of the real output and

the collected data are both quarters, so it just needs to multiply 100 to remove the

symbol %. It obtains the change of the real output from the collected real GDP

as follows:

4yobst = 100× LN(
GDPreal,t
GDPreal,t−1

). (2.3)

The observable change of the real output is 0.62 on average. The observable

output grows at the fastest percentage rate of 1.74 in the third quarter of 1999,

while declines with the largest percentage rate of 2.2 in the final quarter of 2008

at the wake of the most recent financial crisis.

Change of Nominal Exchange Rate

The observable rate change of nominal exchange rate 4eobst is the log difference

of the nominal effective exchange rate index, multiples by 100. The positive ob-

servable variable suggests the nominal exchange rate appreciate in the next period

while the negative one suggests the nominal exchange rate depreciate in the next

period. The frequencies of the observable data and the nominal effective exchange

rate are both quarters, so it just needs to multiply 100 to remove the symbol %

away. It calculates the observable change rate of the nominal exchange rate from

the collected data as follows:

4eobst = 100× LN(
Enominal,t
Enominal,t−1

). (2.4)

The averaged observable rate change of the nominal exchange rate is -0.25, which

implies the currency in the UK depreciates 0.25 on average across the full sample
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period. The observable nominal exchange rate appreciates with the highest per-

centage rate of 6.26 in the fourth quarter of 1996 and depreciates with the largest

percentage rate of 12.28 in the final quarter of 1992 in the wake of the currency cri-

sis. In the most financial crisis, the nominal exchange rate keeps on depreciating,

and the depreciation rate is 6.66 in the fourth quarter of 2008.

Change of Terms of Trade

The observable rate change of the terms of trade 4qobst is the log difference of

the collected terms of trade, defined as the relative prices of exports in terms of

imports multiplied by 100. The positive observable variable signals that the price

of the exported goods increase faster than the price of the imported goods, which

may reflect increasingly higher demand for the locally produced goods and a trade

surplus with a fixed amount of the exports and imports. On the contrary, the

negative one signals that the price of the exported goods increases slower than

the price of the imported goods, which may reflect gradually lower demand for

the locally produced goods and a trade deficit with a fixed amount of exports and

imports. The frequencies of the observable data and the collected data are both

quarters, so it just needs to multiply 100 to remove the symbol %. It calculated

the observable rate change of the terms of trade from the collected data as follows:

4qobst = 100× LN(
TOTt
TOTt−1

). (2.5)

The observable rate change of the terms of trade is -0.04 on average. That is

to say, the export price of goods from the UK is four percentage rate lower on

average than the import price across the sample. The export price is higher than

the import price with the highest percentage rate of 4.55 in the first quarter of

1993, while lower with the largest percentage rate of 4.38 in the final quarter of

1992 after the speculation attack on the currency. The export price index keeps

decreasing compared to the import price index in the most recent financial crisis

and finally becomes 4.32 % lower than the import price in the final quarter of

2008.
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Figure 2.1: Data of UK. Note:The figure depicts the observable variables including

the rate change of the quarterly output, the annualised inflation rate, the annu-

alised nominal interest rate, the rate change of the quarterly nominal exchange

rate, and the rate change of the quarterly terms of trade covering the period 1992:

Q4-2008: Q4 in the UK.
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2.2.2 Observable and Collected Data for Canada

It also operates the five same transformations to arrive at the observable data for

Canada from the originally collected data based on their definitions and frequen-

cies.

Nominal Interest Rate

The averaged observable nominal interest rate is 4.08 over the data sample in

Canada. The highest observable nominal interest rate is 8.03 in the first quarter

of 1995, while the lowest is 1.44 in the final quarter of 2008.

Inflation Rate

The averaged observable inflation rate is 1.62. The highest observable inflation

rate is 4.54 in the first quarter of 2003 while the lowest is -5.53 in the first quarter

of 1994. In the most recent financial crisis, the inflation rate drops from 3.65 in

the third quarter of 2008 to -3.45 in the final quarter.

Change of Real Output

The observable rate change of the real output is 0.73 on average. The observable

output grows at the highest percentage rate of 1.81 in the first quarter of 1991

and declines with the most significant percentage rate of 1.16 in the final quarter

of 2008.

Change of Nominal Exchange Rate

The observable rate change of the nominal exchange rate is -0.01 on average. That

is to say, the currency for Canada depreciate only one percentage rate on average

across the sample. The observable nominal exchange rate appreciates most with

the percentage rate of 6.44 in the second quarter of 2003, while depreciates most

with the percentage rate of 12.42 in the final quarter of 2008.
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Change of Terms of Trade

The observable rate change of the terms of trade is 0.21 on average. In other

words, the average export price is twenty-one percentage higher than the average

import price across the sample. The export price is higher than the import price

with the most massive percentage rate of 3.76 in the final quarter of 2005 while

lower with the most substantial percentage rate of 10.37 in the final quarter of

2008.
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Figure 2.2: Data of Canada. Note:The figure depicts the observable variables

including the rate change of the quarterly output, the annualised inflation rate,

the annualised nominal interest rate, the rate change of the quarterly nominal

exchange rate, and the rate change of the quarterly terms of trade covering the

period 1992: Q4-2008: Q4 in Canada.
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2.2.3 Measurement Equations

After introducing the five kinds of observable variables for each country, it is then

necessary to describe five measurement equations to connect them to the model

variables as follows: 

robst

πobst

4yobst
4eobst
4qobst


=



rA + πA + 4r̃t

πA + 4πt

γQ +4ỹyt

−4ẽt

4q̃∗t


, (2.6)

where rA is the steady-state real interest rate, πA is the observable inflation rate

on average and γQ is the observable rate change of the real output on average. The

measurement equations exhibit a one to one mapping from the observable vari-

ables to the model variables. According to the discussion in the previous chapter,

the steady-states of the model variables are all zero while the observable variables

contain the non-zero means in the data sample. After considering the non-zero

means, the observable variables equate the model variables based on the definitions

and the adjusted frequencies.

The first measurement equation represents that the observable annual nominal

interest rate equates the sum of the steady real interest rate, the average observ-

able inflation rate and the model variable r̃t with a multiplication of four. The

frequencies of robst , rA, and πA are annuals while the frequency of the model vari-

able is quarter, so it multiplies 4 to transfer the frequency of r̃t from quarter to

annual.

The second measurement equation represents that the observable annual inflation

rate equates the averaged inflation rate plus the model variable with a multipli-

cation of four. Likewise, the frequencies of πobst and πA are annuals while the

frequency of πt is quarter, so it multiplies 4 to transfer the frequency of πt from

quarter to annual.
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The third measurement equation represents that the observable rate change of

the real output equates the averaged rate change of the real output plus the differ-

ence of model variable ỹyt. The frequencies of 4yobst , γQ and ỹyt are all quarters,

so the frequency of each variable in this measurement equation is consistent with

each other.

The fourth and fifth measurement equations are similar. On the one hand, the

observable values of the rate change of the nominal exchange rate and the terms

of trade are minimal on average and thus can be assumed to be zero in the mea-

surement equations. On the other hand, the frequencies of the observable vari-

ables and the model variables are all quarters, so there is no need to transform

the frequency in the two measurement equations. Consequently, it is natural to

connect the observable variables to the model variables directly for the last two

measurement equations. However, it should address the unit of the exchange rate

in the fourth equation, where denotes the dimension of the observable nominal

exchange rate as ForeignCurrency
HomeCurrency

, while denotes the dimension of the model variable

as HomeCurrency
ForeignCurrency

. Thus, the difference in the dimension of the nominal exchange

rate imposes a perfectly negative correlated relationship between the observable

variable and the model variable in the log-linear form.
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2.3 Bayesian Estimation of DSGE model

In the previous chapter,I have shown that if there is one and only one solution, the

solution comprising a transition equation, a policy equation and a static equation

to the small open DSGE model can be transformed to a vector auto-regressive

representation of the model variables xt:

xt = Φ1(Θ)xt−1 + Φξ(Θ)ξt, (2.7)

where x = [ ˜yyt,n,4ẽt, r̃t, zt, ˜yy∗t , π
∗
t ,4q̃t, ỹyt, πt,4 ˜yy∗t ]

′, ξt = [ξRt , ξ
z
t , ξ

q
t , ξ

y∗t
t , ξ

π∗t
t ]′,

the coefficient matrices Φ1(Θ) and Φξ(Θ) are functions of the structural parame-

ters Θ of the DSGE model. In addition, I also introduce measurement equations

(2.6) to connect the observable variables to the model variables. The parameters

rA, πA and γQ are added to the original parameter space. The parameter space Θ

now becomes [τ, κ, α, φπ, φy, φ4e,

ρR, ρz, ρq, ρπ∗ , ρy∗ , σR, σz, σy∗ , σπ∗ , σq, r
A, πA, γQ]′. Moreover, the measurement equa-

tion can be rewritten as the following equation:

dt = Ψ0(Θ) + Ψ1(Θ)t+ Ψ2(Θ)xt + ut, (2.8)

where dt is the vector of the observable variables [robst , πobst ,4yobst ,4eobst ,4qobst ]′

and ut is the vector of measurement errors.

ut ∼ iidN(0,Σu) (2.9)

Equation (2.7) and (2.8) provide a state-space representation of the DSGE model

which offers a joint density for the observable and model variables:

p(D1:T , X1:T |Θ) =
T∏
t=1

p(dt, xt|D1:t−1, X1:t−1,Θ) =
T∏
t=1

p(dt|xt,Θ)p(xt|xt−1,Θ),

(2.10)

where D1:T = d1, d2, ..., dT and X1:T = x1, x2, ..., xT . In addition, p(xt|xt−1,Θ)

represents the state transition equation and p(dt|xt,Θ) represents the measurement

equation. Here we are at the beginning of the Bayesian inference, which is a method

comprising of the likelihood function p(D1:T |Θ) and the prior distribution of the
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relevant parameters p(Θ):

p(Θ|D1:t) =
p(Θ)p(D1:T |Θ)

p(D1:T )
, (2.11)

where p(D1:t) is defined as the marginal likelihood:

p(D1:t) =

∫
p(D1:t|Θ)p(Θ)dΘ. (2.12)
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2.3.1 Likelihood function

The current goal in this section is to construct the likelihood function p(D1:T |Θ)

from the joint density in the equation above, which implies the model variables

X1:T have to be integrated out. The likelihood function is shown in the below

equation:

p(D1:T |Θ) =
T∏
t=1

p(dt|D1:t−1,Θ). (2.13)

A generic filter is applied to generate the densities p(dt|D1:t−1,Θ).There are mainly

four steps in one iteration for this filter. First, at time 0 it assumes the initial state

p(x0|D1:0,Θ) = p(x0|Θ). Second, it forecast the model variables in the next period

through the transition equation given the initial state:

p(x1|D1:0,Θ) =

∫
p(x1|x0, D1:0,Θ)p(x0|D1:0,Θ)dx0. (2.14)

Next, it forecast the observable variables in the next period through the measure-

ment equation given the predicted model variables p(x1|D1:0,Θ):

p(d1|D1:0,Θ) =

∫
p(d1|x1, D1:0,Θ)p(x1|D1:0,Θ)dx1. (2.15)

Finally, the model variables in the next period can be updated with Bayesian

theorem when the observable variables in the next period are available:

p(x1|D1:1,Θ) = p(x1|d1, D1:0,Θ) =
p(d1|x1, D1:0,Θ)p(x1|D1:0,Θ)

p(d1|D1:0,Θ)
. (2.16)

Repeat the procedures above and from the iteration t − 1 it generates the condi-

tional distribution p(xt−1|D1:t−1,Θ). The transition equation at time t is shown

below:

p(xt|D1:t−1,Θ) =

∫
p(xt|xt−1, D1:t−1,Θ)p(xt−1|D1:t−1,Θ)dxt−1. (2.17)

The measurement equation is shown below:

p(dt|D1:t−1,Θ) =

∫
p(dt|xt, D1:t−1,Θ)p(xt|D1:t−1,Θ)dxt. (2.18)

Substitute the above equation in each iteration into the equation 10 will lead to

the desired likelihood function. The model variables at time t can also be updated

with Bayesian theorem in the following equation when dt is available:

p(xt|D1:t,Θ) = p(xt|dt, D1:t−1,Θ) =
p(dt|xt, D1:t−1,Θ)p(xt|D1:t−1,Θ)

p(dt|D1:t−1,Θ)
. (2.19)
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2.3.2 Choice of Priors

The prior distributions of the parameters p(Θ) are also essential to generate an

accurate and reliable estimation results in the framework of Bayes analysis. Table

2.1 provides information about the prior distributions for the UK and Canada

separately. The priors setting is broadly consistent with the previous literature

such as Rotemberg and Woodford (1998[77]) and Lubik and Schorfheide (2007[60]).

In order to guarantee the consistency of the estimation results, it adopts a different

number of initial values to prove that different optimisation routines can converge

to the same values given the same prior distribution before conducting Bayesian

analysis.

Monetary Policy Parameters

The priors for monetary policy parameters are commonly associated with general

Taylor rule for both two countries. The prior mean coefficient of inflation rate φπ is

1.5. Following Smet and Wouter (2007[83])’s research, the prior mean coefficients

of output φy is set at 0.125. The prior mean of the exchange coefficient φ4e is also

0.125. Moreover, the prior for the interest rate smoothing parameter ρR follows a

beta distribution with mean 0.5 and standard deviation 0.25.

Other Structural Parameters

The priors for the other structural parameters are commonly consistent with Lu-

bik and Schorfheide (2007[60]) except for the slope coefficient of Philips curve κ,

which is assumed to be centred around 0.3 instead of 0.5 suggested by Rotemberg

and Woodford (1998[77]) and Chen and MacDonald (2011[16]). The intertempo-

ral elasticity of substitution τ centres at 0.5 for both of the two countries, which

indicates the relative risk aversion in each country is τ−1 = 2. The import share

α centries around 0.2 with a standard deviation of 0.2. The prior means of annu-

alised real interest rate r(A), annualised inflation rate π(A) and output growth γ(A)

are set to be roughly consistent with my data sample for the two different coun-

tries. Moreover, the annualized real interest rate r(A) is linked to the subjective
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discount factor β = (1 + r(A)

400
)−1. r(A) instead of β will enter into the estimation

of the DSGE. The prior mean of real interest rate r(A) is 3.35% in the UK and

2.47% in Canada over the sample period. The prior of annualised inflation rate

π(A) centres at 1.92% in the UK and 1.62% in Canada. The prior of the growth

rate γ(Q) centries around 0.62% in the UK and 0.73% in Canada.

The prior distributions of the parameters in AR(1) processes are majorly con-

sistent with Lubik and Schorfheide (2007[60]). Except for the change rate of the

technology process, the prior distributions of the other stationary processes are

identical for the UK and Canada. The prior means of the autoregression parame-

ters for the change rate of the terms trade process ρq, the world inflation process

ρπ∗, and the world output process ρy∗ centre at 0.4, 0.8 and 0.9 with corresponding

standard deviations 0.2, 0.1 and 0.05, respectively. The priors of the change rate

of the technology process ρz in the UK and Canada both centre at 0.2, but with

higher standard deviations in the UK. Besides, the prior of the innovation shocks

to the change rate of the technology process σz centres at 1.5 in the UK while only

1 in Canada. The priors of the innovation shocks to the other AR(1) processes

σR,σy∗ , σπ∗ and σq are identical in the UK and Canada.
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Table 2.1: Prior Distributions for the UK and Canada

UK Canada

Parameters Domain Density Para(1) Para(2) Para(1) Para(2)

τ [0,1) Beta 0.5 0.2

κ R+ Gamma 0.3 0.2

φπ R+ Gamma 1.5 0.5

φy R+ Gamma 0.125 0.05

φ4e R+ Gamma 0.125 0.05

ρR [0,1) Beta 0.5 0.25

ρz [0,1) Beta 0.2 0.1 0.2 0.05

ρq [0,1) Beta 0.4 0.2

ρπ∗ [0,1) Beta 0.8 0.1

ρy∗ [0,1) Beta 0.9 0.05

α [0,1) Beta 0.2 0.05

r(A) R+ Normal 3.35 1 2.47 1

π(A) R+ Normal 1.92 1 1.62 1

γ(Q) R+ Gamma 0.62 0.2 0.73 0.2

σR R+ Inverse Gamma 0.5 4

σz R+ Inverse Gamma 1.5 4 1 4

σy∗ R+ Inverse Gamma 1.5 4

σπ∗ R+ Inverse Gamma 0.55 4

σq R+ Inverse Gamma 1.5 4

Note: Para(1) and Para(2) are the means and the standard deviations for the relevant

distributions.

66



2.3.3 MCMC Approximation of Bayesian Posteriors

In this section, the goal is to compute the posterior distributions p(Θ|D1:t), which is

a difficult task when there are too many dimensions for integration problems. Thus,

it introduces a numerical algorithm called Markov Chain Monte Carlo (MCMC)

method, including two steps to construct the Bayesian posterior distribution by

forming a Markov chain whose invariant distribution approximately equates the

posterior distribution. First, it replaces the posterior densities with one proposed

density which follows Markov chains. Next, it collects the sample points from the

proposed density and adopts the Monte Carlo method to calculate the moments

of the parameters.

Ljungqvist and Sargent (2018[58]) offered a clear way to illustrate the way to con-

struct such a proposed probability density following Markov chains. The Markov

chain definitely converges to an invariant distribution π(Θ). The invariant distri-

bution equals the posterior one:

π(Θ) = p(Θ|D1:t). (2.20)

It defines the Markov chain as a numerical algorithm called Metropolis-Hastings.

The target density p(Θ|D1:t) and the proposal density q(z|Θ, D1:t) are two impor-

tant components in this algorithm. Here z in the proposal density is just a dummy

variable for parameter Θ.

First, Draw Θ0 = ΘML, j = 0. Normally, a common choice of the initial den-

sity is related to the maximum likelihood estimator.

Second, for j ≥ 0, draw Θ∗ from the proposal density q(Θ∗|Θj, D1:t). Θ∗ is a can-

didate for the draw Θj+1. It is often common to adjust the asymptotic distribution

associate with the maximum likelihood estimator Θ ∼ N(ΘML,ΣΘ) to construct

the proposal density:

q(Θ∗|Θj, D1:t) = N(Θj, cΣΘ), (2.21)
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where c is a scale parameter to give the acceptance rate between 0.2 and 0.4 at

last and ΣΘ is the inverse of Hessian Matrix V :

V =
∂2logp(D1:t|Θ)

∂Θ∂Θ′
|ΘML

. (2.22)

Third, decide whether to accept the candidate by computing the probability of

acceptance:

r =
p(Θ∗|D1:t)

p(Θj|D1:t)
=
k(Θ∗|D1:t)

k(Θj|D1:t)
, (2.23)

where k(Θj|D1:t) is the kernel and defined by:

logk(Θ|D1:t) = logL(D1:t|Θ) + logp(Θ). (2.24)

Consequently, accept Θj+1 = Θ∗ with the probability min (r,1). Otherwise, Θj+1 =

Θj. The Metropolis-Hastings algorithms defines the transition density Π(Θ,Θ∗)

of a Markov Chain mapping Θj into Θj+1:

Π(Θ,Θ∗) = Prob(Θj+1 = Θ∗|Θj = Θ)). (2.25)

The invariant distribution of the chain is the posterior:

p(Θ|D1:t) =

∫
Π(Θ,Θ∗)p(Θ|D1:t)dΘ. (2.26)

To calculate the moments of the parameter space, Monte Carlo methodology will

be applied as follows:

E[f(Θ)] =
1

N −M
ΣN
j=M+1f(Θj), (2.27)

where N is the total number of draws while M is the number of the initial draws

discarded from samples. The above equation can offer a fast and convenient way

to compute the posterior mean and variance.

Overall, it follows Sim’s optimization routine Csmiwel to maximize the log-likelihood
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function logp(Θj|D1:t) numerically and obtain the posterior mode ΘML. Sec-

ondly, it calculate the inverse Hessian matrix ΣΘ at the posterior mode to gen-

erate the covariance matrix ΣΘ of the approximate multi-normal distribution

Θ ∼ N(ΘML,ΣΘ), which is a benchmark of the proposed density q(z|Θ, D1:t).

Thirdly, it applies the Metropolis-Hastings algorithm to generate N = 200, 000

draws from the posterior distribution and the first M = 10, 000 draws are burned.

Meanwhile, it adjusts the scale of c to have an acceptance rate between 0.2 and

0.4. Finally, it calculate the posterior means of the selected draws by the Monte

Carlo method.
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2.4 The Analysis of the Estimation Results

Table 2.2 reports the Bayesian estimation results for the UK and Canada together.

It will explain the economic intuition of the estimates in each country, and then

combine the estimation results with the policy and transition functions computed

in the previous chapter to offer the numerical simulation. Although chapter 2

updates the value of the parameters with the real data, the model is still not fully

capable of depicting how the real economy runs, because an economic model is

just a simplification of the rather complicated realities and cannot be immune to

the model misspecification problems. Chapter 2 just sets up the foundations of the

bridge linking the simplified model to the real data. The thesis will start struggling

to find better connections between them in the next two chapters. Having said this,

however, this chapter still provides a benchmark result of the estimation, which

has some hints about the different policy specifications and economic structures.
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Table 2.2: Parameter Estimation Results for the UK and Canada

Prior Posterior

UK Canada UK Canada

Parameters Mean Mean Mean 90%interval Mean 90%interval

τ 0.500 0.258 [0.124,0.381] 0.283 [0.155,0.410]

κ 0.300 0.461 [0.194,0.726] 0.839 [0.484,1.186]

φπ 1.500 2.589 [1.801,3.351] 2.139 [1.439,2.799]

φy 0.125 0.121 [0.048,0.191] 0.066 [0.028,0.103]

φ4e 0.125 0.060 [0.025,0.095] 0.128 [0.065,0.187]

ρR 0.500 0.813 [0.749,0.878] 0.760 [0.675,0.843]

ρz 0.200 0.478 [0.339,0.609] 0.367 [0.263,0.469]

ρq 0.400 0.105 [0.010,0.197] 0.544 [0.424,0.661]

ρπ∗ 0.800 0.598 [0.441,0.749] 0.449 [0.312,0.580]

ρy∗ 0.900 0.940 [0.899,0.985] 0.955 [0.923,0.988]

α 0.200 0.117 [0.071,0.164] 0.142 [0.086,0.199]

r(A) 3.350 2.470 3.127 [2.677,3.565] 2.379 [1.847,2.918]

π(A) 1.920 1.620 2.263 [1.703,2.838] 1.839 [1.266,2.420]

γ(Q) 0.620 0.730 0.668 [0.615,0.722] 0.725 [0.670,0.783]

σR 0.500 0.194 [0.150,0.239] 0.299 [0.227,0.371]

σz 1.500 1.000 1.309 [0.521,2.104] 1.939 [0.871,2.962]

σy∗ 1.500 1.003 [0.422,1.609] 0.809 [0.364,1.231]

σπ∗ 0.550 2.510 [2.141,2.860] 2.377 [2.028,2.722]

σq 1.500 1.215 [1.027,1.383] 1.921 [1.641,2.192]

Note:The table reports the parameter estimation results for the UK and Canada.
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2.4.1 Estimation Results for the UK

Estimates of the Monetary Policy Parameters

φπ is the coefficient of the inflation deviation. The prior mean of this parameter is

1.5, while the posterior mean is 2.589. If the actual inflation is one percentage rate

higher than the target inflation, the nominal interest raises by almost 259 base

points. φy is the coefficient of the detrended output deviation. The prior mean

of this parameter (0.125) is not very different from the posterior one (0.121). If

the real output is one percentage rate higher than its potential value, the nominal

interest rate increases by 12.1 basis points. φ4e is the coefficient of nominal ex-

change rate depreciation. The prior mean of the parameter (0.125) is much bigger

than the posterior one (0.06). If the domestic currency depreciates one percentage

rate, the nominal interest rate increases by six basis points. ρR is the smoothing

term of the nominal interest rate. The posterior mean is 0.813, which is much

bigger than the prior one (0.5). Overall, the posterior mean of monetary policy

parameters updated from the data sample supports there is a persistent and ro-

bust anti-inflationary policy action in the UK. Meanwhile, the movement of the

nominal exchange rate only has minimal impact on the policy decision.

Estimates of the Other Structural Parameters

τ is the elasticity of intertemporal substitution and also be the reciprocal of rela-

tive risk aversion. The posterior mean of this parameter is 0.258, which is smaller

than its prior mean of 0.5. If the real interest rate rise by one percentage rate,

the consumption increases by approximately 26 basis points. The elasticity of

intertemporal substitution reflects the net impact of the real interest rate on con-

sumption plan. κ, the slope of the Philips curve, is a decreasing function of the

price stickiness. The posterior mean of the slope is 0.461. Compared to its prior

mean of 0.3, the data support that there is less price stickiness. α is the import

share, which reflects the openness of one country. The posterior mean of this pa-

rameter is 0.117, which is smaller than the prior mean of 0.2. rA is the annualised

steady-state real interest rate. The posterior mean is 3.127, which is not very dif-
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ferent from the prior mean 3.35. π(A) is the average of the annualised observable

inflation rate. The posterior mean is 2.263, which is bigger than the prior mean

of 1.92. γ(Q) is the average of the change of quarterly real output. The posterior

mean is 0.668, which is not very different from the prior mean of 0.62.

For the AR (1) process of the rate change of terms of trade, ρq is the coefficient

of the change of terms of trade. The posterior mean of this parameter is 0.105,

which is quite smaller than the prior mean 0.4. σq is The standard deviation of

the shock to this process. The posterior mean of this parameter is 1.215, which

is smaller than the prior mean 1.5. For the AR (1) process of the change rate of

technology, ρz is the coefficient of the change rate of technology. The posterior

mean of this parameter is 0.478, which is bigger than the prior mean 0.2. σz is

the standard deviation of the shock to this process. The posterior mean of this

parameter is 1.309, which is smaller than the prior mean 1.5. For the AR (1)

process of the world inflation process,ρπ∗ is the coefficient of world inflation. The

posterior mean of this parameter is 0.598, which is smaller than the prior mean

0.8. σπ∗ is the standard deviation of the shock to this process. The posterior mean

is 2.510, which is much bigger than its prior mean of 0.55. For the AR (1) process

of the world output deviation, ρy∗ is the coefficient of the world output deviation.

The posterior mean of the parameter is 0.940, which is more significant than its

prior mean of 0.9. σy∗ is the standard deviation of the shock to this process. The

posterior mean is 1.003, which is smaller than the prior mean of 1.5. In addition

to the volatility in the above four AR(1) processes, the standard deviation of the

shock to the monetary policy is σR. The posterior mean is 0.194, which is smaller

than the prior mean of 0.5.
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Numerical Solutions and Simulation Results for the UK

Table 2.3 reports the numerical solution for the UK. According to the table, it

computes the transition function as follows:

r̃t

zt

˜yy∗t

π∗t

4q̃t


=



0.382 0.055 0.020 0.001 −0.003

0 0.478 0 0 0

0 0 0.940 0 0

0 0 0 0.598 0

0 0 0 0 0.105





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

4 ˜qt−1



+



0.470 0.115 −0.028 0.021 0.002

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 1 0 0





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (2.28)

and the policy function is calculated as:


ỹyt

πt

4 ˜yy∗t

 =


−0.481 0.093 −0.576 0.006 0.005

−0.848 0.106 0.067 0.015 −0.004

0 0 −0.060 0 0





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

4 ˜qt−1



+


−0.592 0.195 0.043 −0.613 0.011

−1.043 0.222 −0.038 0.071 0.026

0 0 0 1 0





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (2.29)
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and the function for the static variables is

 ˜yyt,n

4ẽt

 =

 0 0 −0.596 0 0

−0.848 0.106 0.067 −0.583 −0.097





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

4 ˜qt−1



+

 0 0 0 −0.634 0

−1.043 0.222 −0.921 0.071 −0.974





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


. (2.30)

Table 2.3 also incorporates the numerical information to compute the impulse

response functions for the four endogenous variables including ỹyt,πt,r̃t and 4ẽt:


ỹyt

πt

r̃t

4ẽt


=


−0.481 0.093 −0.576 0.006 0.005

−0.848 0.106 0.067 0.015 −0.004

0.382 0.055 0.020 0.001 −0.003

−0.848 0.106 0.067 −0.583 −0.097





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

4 ˜qt−1



+


−0.592 0.195 0.043 −0.613 0.011

−1.043 0.222 −0.038 0.071 0.026

0.470 0.115 −0.028 0.021 0.002

−1.043 0.222 −0.921 0.071 −0.974





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


. (2.31)

The coefficients of the second matrix in the above equation determine the impulse

response function for a given size of the structural shock. The impulse response

function measures the temporal deviations of economic variables concerning the

steady states. Figure 2.3 depicts the calculated impulse response function of the

four endogenous variables to the structural shock with the size of one unit of stan-

dard deviation offered in table 2.2.
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Holding everything else constant, a unit of standard deviation of monetary policy

shock σR = 0.194 will exert a −0.592 ∗ σR = −0.115 impact on the real output

deviation, a −1.043 ∗ σR = −0.202 impact on inflation,a 0.47 ∗ σR = 0.091 impact

on the nominal interest rate deviation, a −1.043 ∗ σR = −0.202 impact on the

nominal exchange rate depreciation.

Holding everything else constant, a unit of standard deviation of the shock to

the change rate of terms of trade σq = 1.215 will exert a 0.043 ∗ σq = 0.052

impact on the real output deviation, a −0.038 ∗ σq = −0.046 impact on infla-

tion, a −0.028 ∗ σq = −0.034 impact on the nominal interest rate deviation, a

−0.921 ∗ σq = −1.119 impact on the nominal exchange rate depreciation.

Holding everything else constant, a unit of standard deviation of the shock to the

change rate of technology σz = 1.309 will exert a 0.195 ∗ σz = 0.255 impact on the

real output deviation, a 0.222∗σz = 0.291 impact on inflation, a 0.115∗σz = 0.150

impact on the nominal interest rate deviation, a 0.222 ∗ σz = 0.291 impact on the

nominal exchange rate depreciation.

Holding everything else constant, a unit of standard deviation of the shock to

the world output deviation σy∗ = 1.003 will exert a −0.613 ∗ σy∗ = −0.615

impact on the real output deviation, a 0.071 ∗ σy∗ = 0.071 impact on infla-

tion, a 0.021 ∗ σy∗ = 0.021 impact on the nominal interest rate deviation, a

0.071 ∗ σy∗ = 0.071 impact on the nominal exchange rate depreciation.

Holding everything else constant, a unit of standard deviation of the shock to

the world inflation σπ∗ = 2.510 will exert a 0.011 ∗ σπ∗ = 0.027 impact on the real

output deviation, a 0.026 ∗ σπ∗ = 0.064 impact on inflation,a 0.002 ∗ σπ∗ = 0.004

impact on the nominal interest rate deviation, a −0.974 ∗σπ∗ = −2.446 impact on

the nominal exchange rate depreciation.
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Figure 2.3: Impulse response functions in the UK. Note:The figure depicts the

impulse response function of real output, inflation rate, nominal interest rate and

depreciation exchange rate in the UK to one unit structural shock.
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2.4.2 Estimation Results for Canada

Estimates of the Monetary Policy Parameters

The posterior mean of inflation deviation coefficient φπ is 2.139, which is much

higher than the prior mean. If the actual inflation is one percentage rate higher

than the target inflation, the nominal interest rate raises by almost 214 base points.

The posterior mean of output deviation coefficient φy is 0.066, which is only a half

of the prior mean. If the real output is one percentage rate higher than its po-

tential value, the nominal interest rate increases by about seven basis points. The

posterior mean of depreciation rate coefficient φ4e is 0.128. There is no significant

difference between the posterior and the prior mean of this parameter. If the cur-

rency depreciates by one percentage rate, the nominal interest rate increases by

approximately 13 basis points. The posterior mean of the interest rate smoothing

parameter ρR is 0.76, which is bigger than the prior mean. Overall, the posterior

mean of monetary policy parameters updated from the data sample implies a per-

sistent and strong anti-inflationary policy action in Canada. Also, the movement

of the nominal exchange rate plays a crucial part in the Canadian policy decision

compared to the case in the UK.

Estimates of the Other Structural Parameters

The posterior mean of the elasticity of intertemporal substitution τ is 0.283, which

is smaller than the prior mean. If the real interest rate rise by one percentage rate,

the consumption increases by approximately 28 basis points. The posterior mean

of the Philips curve κ is 0.839, which is much higher than the prior. The data

support that there is less price stickiness compared to the prior assumption. The

posterior mean of import share α is 0.142, which is smaller than the prior mean.

The posterior mean of the annualised steady-state real interest rate rA is 2.379,

which is not very different from the prior mean 2.470. The posterior mean of the

average of annualised observable inflation rate π(A) is 1.8379, which is bigger than

the prior mean 1.62. The posterior mean of the average of the change of quar-

terly real output γ(Q) is 0.725, which is not very different from the prior mean 0.73.
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For the AR (1) process of the rate change of terms of trade, the posterior mean of

the coefficient of the change of terms of trade ρq is 0.544, which is bigger than the

prior mean. The posterior mean of the standard deviation of the shock σq to this

process is 1.921, which is bigger than the prior mean. For the AR (1) process of

the change rate of technology, the posterior mean of the coefficient of the change

rate of technology ρz is 0.367, which is bigger than the prior mean. The posterior

mean of the standard deviation of the shock σz to this process is 1.939, which is

quite higher than the prior mean of 1. For the AR (1) process of the world inflation

process, the posterior mean of the coefficient of world inflation ρπ∗ is 0.449, which

is smaller than the prior mean. The posterior mean of the standard deviation of

the shock σπ∗ to this process is 2.377, which is higher than the prior mean. For the

AR (1) process of the world output deviation, the posterior mean of the coefficient

of the world output deviation ρy∗ is 0.955, which is bigger than the prior mean.

The posterior mean of the standard deviation of the shock σy∗ to this process is

0.809, which is smaller than the prior mean. In addition to the volatility in the

above four stationary processes, the posterior mean of the standard deviation of

the shock to the monetary policy σR is 0.299, which is smaller than the prior mean.
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Numerical Solutions and Simulation Results for Canada

Table 2.4 reports the numerical solution for Canada. According to the table, it

calculates the transition function as follows:

r̃t

zt

˜yy∗t

π∗t

4q̃t


=



0.284 0.039 0.019 0.001 0.012

0 0.367 0 0 0

0 0 0.9550 0 0

0 0 0 0.449 0

0 0 0 0 0.544





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

4 ˜qt−1



+



0.374 0.106 0.022 0.020 0.002

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 1 0 0





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (2.32)

and the policy function is calculated as:


ỹyt

πt

4 ˜yy∗t

 =


−0.349 0.044 −0.627 0.009 0.038

−0.865 0.070 0.054 0.026 0.047

0 0 −0.045 0 0





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

4 ˜qt−1



+


−0.460 0.120 0.070 −0.657 0.019

−1.138 0.192 0.087 0.056 0.059

0 0 0 1 0





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (2.33)
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and the function for the static variables is

 ˜yyt,n

4ẽt

 =

 0 0 −0.638 0 0

−0.865 0.070 0.054 −0.423 −0.420





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

4 ˜qt−1



+

 0 0 0 −0.668 0

−1.138 0.192 −0.771 0.056 −0.941





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


. (2.34)

Table 2.4 includes the numerical information to compute the impulse response

functions of the four endogenous variables including ỹyt,πt,r̃t and 4ẽt:


ỹyt

πt

r̃t

4ẽt


=


−0.349 0.044 −0.627 0.009 0.038

−0.865 0.070 0.054 0.026 0.047

0.284 0.039 0.019 0.001 0.012

−0.865 0.070 0.054 −0.423 −0.420





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

4 ˜qt−1



+


−0.460 0.120 0.070 −0.657 0.019

−1.138 0.192 0.087 0.056 0.059

0.374 0.106 0.022 0.020 0.002

−1.138 0.192 −0.771 0.056 −0.941





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


. (2.35)

Figure 2.4 depicts the calculated impulse response function of the four endogenous

variables to the structural shock with the size of one unit of standard deviation

offered in table 2.4.

Holding everything else constant, a unit of standard deviation of monetary policy

shock σR = 0.299 will exert a −0.46 ∗ σR = −0.137 impact on the real output
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deviation, a −1.138∗σR = −0.340 impact on inflation,a 0.374∗σR = 0.112 impact

on the nominal interest rate deviation, a −1.138 ∗ σR = −0.340 impact on the

nominal exchange rate depreciation.

Holding everything else constant, a unit of standard deviation of the shock to the

change rate of terms of trade σq = 1.921 will exert a 0.070∗σq = 0.134 impact on the

real output deviation, a 0.087 ∗σq = 0.167 impact on inflation,a 0.022 ∗σq = 0.042

impact on the nominal interest rate deviation, a −0.771 ∗ σq = −1.482 impact on

the nominal exchange rate depreciation.

Holding everything else constant, a unit of standard deviation of the shock to the

change rate of technology σz = 1.939 will exert a 0.120 ∗ σz = 0.233 impact on the

real output deviation, a 0.192∗σz = 0.372 impact on inflation, a 0.106∗σz = 0.206

impact on the nominal interest rate deviation, a 0.192 ∗ σz = 0.372 impact on the

nominal exchange rate depreciation.

Holding everything else constant, a unit of standard deviation of the shock to

the world output deviation σy∗ = 0.809 will exert a −0.657 ∗ σy∗ = −0.532

impact on the real output deviation, a 0.056 ∗ σy∗ = 0.046 impact on infla-

tion, a 0.020 ∗ σy∗ = 0.016 impact on the nominal interest rate deviation, a

0.056 ∗ σy∗ = 0.046 impact on the nominal exchange rate depreciation.

Holding everything else constant, a unit of standard deviation of the shock to

the world inflation σπ∗ = 2.377 will exert a 0.019 ∗ σπ∗ = 0.045 impact on the real

output deviation, a 0.059 ∗ σπ∗ = 0.140 impact on inflation,a 0.002 ∗ σπ∗ = 0.004

impact on the nominal interest rate deviation, a −0.941 ∗σπ∗ = −2.237 impact on

the nominal exchange rate depreciation.
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Figure 2.4: Impulse response functions in Canada. Note:The figure depicts the

impulse response function of real output, inflation rate, nominal interest rate and

depreciation exchange rate in Canada to one unit structural shock.
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2.5 Check for the Model Specification

The DSGE models are actually as same as VAR models with restricted parameters.

The restrictions of the parameters will impose a negative impact on the fitting of

data when they are wrongly specified. In this section, I will apply two popular

methodologies to compare the DSGE model with two specifications of the same

equation. In the previous chapter, it has learned that the change rate of terms of

trade is represented as follows:

4q̃∗t = σα(4 ˜yy∗t −4ỹyt) =
1

τ + λ
(4 ˜yy∗t −4ỹyt). (2.36)

Lubik and Schorfheid suggest this equation should be replaced by a AR(1) exoge-

nous process:

4q̃∗t = ρq4 ˜q∗t−1 + ξqt , ξ
q
t ∼ NID(0, σ2

q ), (2.37)

which can lead to a better data fitting of the empirical study. Having said this,

however, there is no empirical evidence in favour of their suggestions. Due to this,

it is better to find a way to compare the DSGE model with equation 2.36 and the

model with equation 2.37 in terms of data fitting. Moreover, this section denotes

the DSGE model with equation 2.36 as LStot and the model with equation 2.37 as

LS.
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2.5.1 Model Evaluation by DSGE-VAR

DSGE models have strong micro foundations and seem to provide a good insight

into the business cycle theory. However, all the models are just simplification of the

true world and inevitably suffer from the misspecification in different dimensions.

The misspecifications can impose a potentially negative impact on the data-fitting

performance of DSGE models. Estimating DSGE models is very similar to esti-

mate a vector autoregression (VAR) model with cross-equation restrictions. The

unrestricted vector VAR models introduced by Sims (1980[79]) are quite efficient

in studying the true data generating process, which sometimes guides the theory

through the estimated relationship among the data sets. A Bayesian Var model is

then used to desire a better combination between the prior knowledge and the in-

formation included in the data (Koop and Korobilis, 2009[52]). Smet and Wouters

(2003[82]) also introduce the Bayesian approach in the estimation of the DSGE

model.

Del Nergo et al. (2006[25];2007[26]) provides the DSGE-VAR approach to com-

bine the VAR and DSGE, which allows a certain degree of deviations from the

cross-equation restrictions, thereby avoiding some potential model misspecifica-

tions. They invent a hyper-parameter λ, which is used to gauge the portion of

restrictions arising from the DSGE models imposing on the priors of VAR models.

This hyper-parameters is also called the weight of the DSGE prior of the VAR

model, which represents the ratio of dummy over actual observables. λ ≥ k+n
T

,

where k is the number of estimated parameters, n is the total number of observ-

ables, and T is the actual number of observations.

In summary, if the structural parameters restrict the priors of VARs model com-

pletely, then λ converges to infinity. Here is just the case of the pure DSGE

models. If the structural parameters no longer restrict the priors of VARs model,

then λ converges to zero. Here is the case of the pure VAR models.Del Negro

and Schorfheide(2004[24]) propose that an estimated λ through the real data can
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evaluate how severe a possible misspecification problem can exist in a DSGE. If

the estimated λ is very high, the priors of the VARS will concentrate on the model

restrictions, and it reflects that the misspecification is not a serious problem for

the estimated DSGE model. If the estimated λ is very low, the priors of the VARs

will deviate from the model specifications, and it reflects that the misspecification

is very significant for the estimated DSGE model. Due to these, the calibration

and estimation of the hyperparameter λ can clarify which version of the simplified

model suffer less from the misspecification problems.

The first panel of table 2.5 offers the calibration of λ from 0.4 to infinity for

the UK. 0.4 is the minimum DSGE prior-weights imposing on the VAR model in

Dynare. The log-marginal densities for both of the two models then carry on in-

creasing until the prior weights reach 1 for LS and 0.75 for LStot, which implies the

model restriction exerts a positive impact on the performance of data fitting. After

that, the log marginal data density falls as the DSGE prior weights increases and

converges to infinity, which implies the model misspecifications dominates now and

affect the performance of data fitting negatively. When it enforces the restriction

completely, the log marginal data densities for the two models are both very low.

Thus, these two models inevitably suffer from model misspecification problems.

The first panel of figure 2.5 shows that there is an inverse U relationship between

the prior weights and the log-marginal density for each of the two models. More-

over, the log-marginal data density calculated from LS is always higher than LStot

at the same DSGE prior weights. Also, the estimated λ for the UK from the LS

model is 1.09, while the estimated hyperparameter from the LStot is 0.85. Overall,

the LStot suffers more from the model misspecification problem in the case of the

UK.

The second panel of table 2.5 offers the calibration of λ from 0.4 to infinity for

Canada. Similarly, the log marginal data densities for both of the two models

initially increases until the DSGE prior weight reaches 1. After that, there is a
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negative relationship between the calibrated λ and the log marginal data density.

When it enforces the model restrictions completely for the two models, the log

marginal data densities are very low. The second panel of figure 2.5 shows that

there is an inverse U relationship between the prior weights and the log-marginal

density for each of the two models. Moreover, the log marginal data density cal-

culated from LS is still always higher than LStot at the same DSGE prior weights.

In addition, the estimated λ for Canada from the LS model is 1.16 while from the

LStot is 0.94. The LStot suffers more from the model misspecification problem in

the case of Canada.

The empirical evidence from the UK and Canada are in favour of Lubik and

Schefheide’ suggestions. That is to say, although the two models are both exposed

to a certain level of model misspecification, LStot suffers more, and the introduction

of an exogenous stationary process can relieve the degree of this misspecification

to some extent.
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Figure 2.5: Calibrations of DSGE Prior Weights. Note:The figure depicts the

calibrated DSGE prior weights and the corresponding log marginal data from two

models for the UK and Canada.
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2.5.2 Model Evaluation by Indirect Inference

Le et al. (2016[56]) provide a clear explanation of the application of Indirect

inference methodology in the model evaluation. This method aims to compare

the parameters of the auxiliary model estimated on the simulated data with the

parameters of the same model estimated on the actual data. A Wald test measures

the difference between the coefficients estimated on the actual data and those on

the simulated data. It is often natural to choose VARs model as the auxiliary

model.

W = (βa − β)′Ω−1(βa − β), (2.38)

where β = 1
N

∑N
i=1 β

i and Ω = 1
N

∑N
i=1(βi− β)((βi− β)′. βa is the VAR estimates

on the actual data and βi is the VAR estimates on the simulated data. N is the

total number of simulations. Overall, the Wald statistic measures the distance

between the actual VAR parameters βa and the average of the simulated VAR

parameters β.

The implement of the Wald test requires the DSGE model in a standard form

as follows:

A0Etxt+1 = A1xt + ξt (2.39)

and

ξt = Dξt−1 + Eεt, (2.40)

where xt is the vector of endogenous variables including [ ˜yyt,n,4ẽt, r̃t, zt, ˜yy∗t , π
∗
t ,4q̃t, ỹyt,

πt,4 ˜yy∗t ] . ξt is the vector of exogenous variables and also called the model residu-

als including [ξRt , ξ
z
t , ξ

q
t , ξ

y∗t
t , ξ

π∗t
t ]. εt is the vector of the innovations. Equation 2.40

contains all the auxiliary models estimated on the actual and the simulated data.

There are mainly three steps to calculate the Wald test. First, calculate the model

residuals and innovations based on the estimation of the actual data. Second,

simulate the data by bootstrapping the innovations. Third, estimate the auxiliary

model using the N samples of simulated data and calculate the Wald statistic with

equation 2.38. Normally it is convenient to transform the Wald statistic into a
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t-statistic as follows:

T = 1.645

√
2W a −

√
2k − 1√

2W 0.95 −
√

2k − 1
, (2.41)

where W a is the Wald statistic on the actual data and W 0.95 is the Wald statistic

for the 95th percentile of the simulated data. k is the number of parameters in

the AR(1) model. If W a = W 0.95, the t statistic is 1.645.

It is appropriate to use Monte Carlo experiments to examine the power of the

indirect inference Wald test. It initially creates 1000 samples for LS and LStot

with a sample size of 200. It then bootstraps the innovations 500 times to create

the distributions of the Wald statistic across the samples. After that, It gener-

ates the falseness by introducing an increasingly positive and negative degree of

misspecification for the parameters, alternatively. Likewise, it bootstraps the in-

novations 500 times again to create the distributions of the Wald statistic with

the false parameters. The incorporation of the misspecified parameters can tell us

how efficient the Wald test is to use the simulated data to reject a false model at

a certain degree. It yields the rejection power as below:

power =
#(T > 1.645)

#(samples)
, (2.42)

where #(T > 1.645) is the number of the samples rejecting the model at the sig-

nificance level of 5% and #(samples) is the total number of samples which is 1000.

In this way, it can tell us how many times the test rejects the model with 95%

confidence. Table 2.6 reports the rejection power of the test under different degrees

of the falseness. The size of the test is 6.30% and 5.70% for each model when there

are no mistakes in the parameters, which are both above 5%. The two models are

both rejected at 5% significance level in the Monte Carlo experiment. Moreover,

the power of the test reaches nearly 100% when the parameters are only 3% inac-

curate for LS and 5% inaccurate for LStot. Here is another thing to mention in

the relationship between the two models. Minford et al. (2019 [64]) test a part of

a DSGE model by indirect inference. They augment a subset of the DSGE model

with unrestricted VAR equations, which forms a new limited information model.

Likewise, the LS is a limited information model and LStot is a full information
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Table 2.6: Power of the Wald Test at 5% significance level

Falseness 0% 1% 3% 5% 7% 10% 15% 20%

LS 6.30% 20.70% 99.30% 100.00% 100.00% 100.00% 100.00% 100.00%

LS tot 5.70% 14.20% 81.40% 99.40% 100.00% 100.00% 100.00% 100.00%

Note:The table reports the rejection rates under different degrees of parameter falsification. It adds

falseness to the parameters by +/- x% alternation. LS denotes the DSGE model with the equation

(2.37) and LStot denotes the DSGE model with the equation (2.36).

model which incorporates the restricted equation of the change rate of terms of

trade. Table 2.6 implies that the power of the limited information subset test is

much stronger than full information subset tests. Overall, the Indirect Inference

Wald test is a little too conservative for both of the two models, while the LS is

more intolerant to the degree of falseness ranging from 0% to 3%.

Although the Monte Carlo test shows that the rejection rate of a correct LS

is a bit higher than LStot, it is still too early to judge LS suffers more model

misspecification. The implementation of the indirect inference Wald test requires

a canonical form of the DSGE model, which assumes the model residuals directly

follow the AR processes in equation 2.40. However, the model residuals in LS and

LStot are assumed to be white noise following an identical and independent nor-

mal distribution. Instead, the variables in LS and LStot following AR processes

are endogenous backwards-looking variables, which are not the model residuals

required by the indirect inference test. The current stage of the implementation

of the indirect inference methodology requires changing the assumptions of the

shocks to the model LS and LStot, which may change the original assumptions of

the model residuals. It needs some techniques to update the indirect methodology

to fit DSGE models with model residuals equating white noise, which is beyond

the scope of this thesis.
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2.6 Conclusion

Chapter 2 estimates a small open DSGE model developed by Lubik and Schorfheide

(2007[60]) using Bayesian methodology with the data collected from the UK and

Canada covering period 1992: Q4 to 2008: Q4. This chapter offers benchmark

results of Bayesian estimation, which sets up the foundation for the model com-

parison in the next chapter. In addition to the estimation of the benchmark model,

chapter 2 also introduces two methodologies regarding VAR models to check for the

problem of model misspecification proposed by Lubik and Schorfheide (2007[60]).

The DSGE-VAR approach supports their suggestions of improving data fitting by

replacing the restricted equation regarding the change rate of terms of trade of a

simple AR(1) process. The indirect inference approach is a bit conservative and

rejects both of the two in terms of data fitting. However, the latter approach

cannot fit the simplified model very well in the assumptions of the model residuals

and innovations at the current stage.

As we can see from the table 2.2, although the posterior mean of the monetary

policy coefficients support that UK and Canada both employ a specific type of

inflation targeting policy, the weights on output deviation and nominal exchange

rate depreciation are quite different between the two countries. More specifically,

the nominal exchange rate depreciation plays a more crucial role in the monetary

policy reaction function in Canada than in the UK, if the model can fit the data

very well. However, it is still too early to evaluate the performance of data fitting

in only one model. Although it is impossible to spot the entirely correct model

for a specified economy, one still can measure the marginal improvement of the

model compared to its benchmark form step by step. The posterior odds ratio

embodied in Bayesian techniques is a natural way to compare the performance of

different models in terms of data fitting. Next chapter will adjust the monetary

policy reaction function several times to compare the updated DSGE models with

the benchmark one in this chapter.
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Chapter 3

Model Comparison One:

Constant Parameters Estimation

3.1 Introduction

Chapter 3 will offer model comparisons at the first stage for one control group and

three treatment groups based on different specifications of monetary policy. It will

regard the original DSGE model in the previous chapter as the control group and

apply the same Bayesian methodology to estimate the updated DSGE models in

each of the treatment group. The goal of this chapter is to find the model with

the best performance of data fitting for the UK and Canada given the calculated

posterior odds ratio.

One resource of the specifications of monetary policy comes from the Taylor rule

suggested by Lubik and Schorfheide (2007)[60] in the control group. As mentioned

in the earlier chapter, the deviation of nominal interest rate from its steady real

interest rate responds to the deviations of inflation, real output and the nominal

exchange rate depreciation from their corresponding steady states. More specifi-

cally, inflation, real output and the change rate of the nominal exchange rate are

assumed to be the important factors for the central bank to make the policy deci-

sion.
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The other source of the specifications should come from the real world, which

is not covered by the original model. For instance, the estimation of the DSGE

model with the same monetary policy reaction function may not reflect the differ-

ence between the Bank of England and the Central Bank of Canada. For instance,

the Central bank of England gets independence since 1997, while the central bank

of Canda gets independence since 1992. Besides, the relationship between the

monetary policy and the nominal exchange rate is connected closely for Canada,

since it can benefit from controlling the volatility of the exchange rate to trade

with foreign countries such like America.

The central bank of England, through the monetary policy committee, announces

that its main task is to meet the inflation target 2%. Apart from fighting the pos-

sible high inflation rate, it also intends to stabilise the output. However, the UK

stop committing to a particular exchange rate since the exchange crisis happened

in 1992-1993 make the UK leave the European Monetary System (Blanchard,2013

[7]). Nelson(2003)[67] offers an explicit introduction of the monetary policy in the

UK, which examines the applications of Taylor rules from 1972 to 1997. He does

not consider the exchange rate in the monetary policy reaction function after 1992.

The central bank of Canada also announces that its primary objective is to provide

a low and steady inflation rate, which targets 2%. The stabilisation of output is

also another important factor in the policy decision. Moreover, as David Dodge,

the former governor of the central bank of Canada (2001-2008) said, the exchange

rate movements are crucial in the determination of the Canadian monetary policy

(Dodge,2005,[29]). Besides, Eichenbaum (2017,[31]) points out that the nominal

exchange rate movements instead of the real exchange rate movements should enter

into the monetary policy. One study shows that a 1-percentage depreciation in the

Canadian dollar leads to a 0.2% rise in the interest rate on average(Ball,2011[4]).

Having said this, however, it is necessary to distinguish the exchange rate from the
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movements of the exchange rate in the policy specifications. The central bank of

Canada does not set a target for the exchange rate, but it instead should consider

the movements of the exchange rate when the market shocks that change the ex-

change rate also has a substantial impact on the Canadian economy (Ragan,2005

[71])).

Apart from discussing whether the central bank should incorporate the movements

of the exchange rate, some individuals also suggest that it can be helpful to con-

sider the movements of output. Walsh (2003)[90] demonstrate that the change of

output gap should play a significant role in the design of monetary policy and call

it a speed-limit type of Taylor rule. Likewise, Ragon (2006, [72]) demonstrates

that another goal for the Canadian central bank is to offer the stability of the

change rate of output.

Based on the discussion above, there will be three treatment groups. The first

treatment group will remove the movement of the nominal exchange rates (nomi-

nal exchange rate depreciation) away from the monetary policy reaction function.

The second treatment group will incorporate the change rate of real output in

the policy reaction function but remove the nominal exchange rate depreciation

away. The third treatment group will both incorporate the nominal exchange rate

depreciation and the rate change of real output. From the estimation of and the

comparisons among the control and treatment groups, it can reveal something

hidden in the real data. On the one hand, it can tell us which of the adjusted

monetary policy can enhance the performance of data fitting most significantly.

On the other hand, it can tell us the difference of the monetary policy decisions

between the UK and Canada.

Section 3.2 will introduce a methodology to calculate the posterior odds ratio,

which is the major way to compare the models using the Bayesian techniques.

Section 3.3 will estimate and simulate the DSGE models in each of the three treat-
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ment groups. It then compares their estimation results with the control group to

find the model with the bests data fitting. Section 3.4 concludes.
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3.2 Model Comparison of Bayesian Methodol-

ogy

This section will introduce a general method to compare the posterior model prob-

abilities of DSGE models with different specifications of monetary policy reaction

function in the context of Bayesian estimation.

Chapter 2 offers a way to calculate the marginal data density p(D1:t):

p(D1:t) =

∫
p(D1:t|Θ)p(Θ)dΘ. (3.1)

In addition, the marginal data density above is an abbreviation for the marginal

density associated with DSGE models Mi:

p(D1:t|Mi) =

∫
p(D1:t|Θi,Mi)p(Θi|Mi)dΘi. (3.2)

Having known the marginal data density associate with a a given DSGE model,

the posterior model probability γi,t updated by the data sample D1:t are calculated

by:

γi,t =
γi,0p(D1:t|Mi)∑I
i=1 γi,0p(D1:t|Mi)

, (3.3)

where γi,0 is the prior model probability and I is the total number of the compared

DSGE models.

To compare the performance of different DSGE models in terms of data fitting, it

needs to compute the posterior odds ratios γi,j:

γi,j =
γi,0p(D1:t|Mi)

γj,0p(D1:t|Mj)
. (3.4)

where the factor
γi,0
γj,0

is called prior odds ratio in favor of Mi, which is generally

assumed to be one when we are indifferent to the model specifications. The fac-

tor p(D1:t|Mi)
p(D1:t|Mj)

is the Bayes factor which denotes the sample evidence in favor of

Mi. Moreover, the marginal data density p(D1:t|Mi) is usually represented in the

natural log form:

lnp(D1:t|Mi) =
T∑
t=1

ln

∫
p(dt|Θi, D1:t−1,Mi)p(Θi|D1:t−1,Mi)dΘi. (3.5)
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As mentioned above, after the prior odds ratio is assumed to be one, the posterior

odds ratio γi,j is updated as:

γi,j =
elnp(D1:t|Mi)

elnp(D1:t|Mj)
= e(lnp(D1:t|Mi)−lnp(D1:t|Mj)) (3.6)

According to Kass and Raftery (1995 [50]), if the posterior odds ratio is between 1

and 3, there is no significant difference between the DSGE model Mi and Mj.If the

value is bigger than 3, there is a positive evidence in favor of model Mi. Likewise,

if the value is smaller than 1
3
, there is a positive evidence in favor of model Mj.

The calculation of the posterior odds ratio leads to a specific type of monetary

policy reaction function, which improves the performance of data fitting the most

significantly. Aside from enhancing the performance of the model in terms of data

fitting, it is helpful to identify whether the simplified DSGE model can capture

the distinctive behaviours of central banks in the UK and Canada to some extent.
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3.3 Bayesian Estimation of the Updated DSGE

Models

This section compares the DSGE models with different specifications of monetary

policy reaction function. Table 3.1 reports the estimation results of the original

DSGE model used in the previous chapter. The original DSGE model is regarded

as the control group. The log marginal density of the control group for the UK

is −522.528 and for Canada is −586.176. As mentioned earlier, the control group

defines the monetary policy reaction function as the following equation:

r̃t = ρR ˜rt−1 + (1− ρR)[φππt + φyỹyt + φ4e4ẽt] + ξRt , ξ
R
t ∼ NID(0, σ2

R), (3.7)

where it assumes the deviation of the nominal interest rate from its steady real

interest rate depends on the deviations of inflation rate, real output and nominal

exchange rate depreciation from their corresponding steady states. There are three

treatment groups totally for each country. The first treatment group assumes

that the monetary policy reaction function ignores the nominal exchange rate

depreciation:

r̃t = ρR ˜rt−1 + (1− ρR)[φππt + φyỹyt] + ξRt , ξ
R
t ∼ NID(0, σ2

R). (3.8)

The second treatment group assumes that the monetary policy reaction function

ignores the nominal exchange rate depreciation while incorporate the change rate

of the real output:

r̃t = ρR ˜rt−1+(1−ρR)[φππt+φyỹyt]+φ4y(ỹyt− ˜yyt−1)+ξRt , ξ
R
t ∼ NID(0, σ2

R). (3.9)

The third treatment group assumes the monetary policy reaction function incor-

porate the nominal exchange rate depreciation and the change rate of the real

output:

r̃t = ρR ˜rt−1 + (1− ρR)[φππt + φyỹyt + φ4e4ẽt] + φ4y(ỹyt − ˜yyt−1) + ξRt ,

ξRt ∼ NID(0, σ2
R).

(3.10)

The following subsections initially report the estimation results of the three treat-

ment groups and then calculate the relative posterior odds ratio given the log
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marginal data density of the control group. Moreover, those subsections incorpo-

rate solutions and simulations of each treatment group. Subsequently, the model

comparison leads to finding the model with the best performance of data fitting

for the UK and Canada.

103



Table 3.1: Constant Parameter Estimation Results (Control Group)

Prior Posterior

UK Canada UK Canada

Parameters Mean Mean Mean 90%interval Mean 90%interval

τ 0.500 0.258 [0.124,0.381] 0.283 [0.155,0.410]

κ 0.300 0.461 [0.194,0.726] 0.839 [0.484,1.186]

φπ 1.500 2.589 [1.801,3.351] 2.139 [1.439,2.799]

φy 0.125 0.121 [0.048,0.191] 0.066 [0.028,0.103]

φ4e 0.125 0.060 [0.025,0.095] 0.128 [0.065,0.187]

ρR 0.500 0.813 [0.749,0.878] 0.760 [0.675,0.843]

ρz 0.200 0.478 [0.339,0.609] 0.367 [0.263,0.469]

ρq 0.400 0.105 [0.010,0.197] 0.544 [0.424,0.661]

ρπ∗ 0.800 0.598 [0.441,0.749] 0.449 [0.312,0.580]

ρy∗ 0.900 0.940 [0.899,0.985] 0.955 [0.923,0.988]

α 0.200 0.117 [0.071,0.164] 0.142 [0.086,0.199]

r(A) 3.350 2.470 3.127 [2.677,3.565] 2.379 [1.847,2.918]

π(A) 1.920 1.620 2.263 [1.703,2.838] 1.839 [1.266,2.420]

γ(Q) 0.620 0.730 0.668 [0.615,0.722] 0.725 [0.670,0.783]

σR 0.500 0.194 [0.150,0.239] 0.299 [0.227,0.371]

σz 1.500 1.000 1.309 [0.521,2.104] 1.939 [0.871,2.962]

σy∗ 1.500 1.003 [0.422,1.609] 0.809 [0.364,1.231]

σπ∗ 0.550 2.510 [2.141,2.860] 2.377 [2.028,2.722]

σq 1.500 1.215 [1.027,1.383] 1.921 [1.641,2.192]

Log MDD -522.528 -586.176

Note:The table reports the parameter estimation results of UK and Canada considering

the original monetary policy rule.
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3.3.1 Group One: No Nominal Exchange Depreciation

Table 3.2 reports the estimation results of the first treatment group. The prior dis-

tributions for the treatment group are identical to the control group, except that

there is no prior setting for the coefficient of the nominal exchange depreciation.

The posterior distributions of the first treatment group are not very different from

those of the control group.

The log marginal data density of the first treatment group in the UK is -518.651.

Thus, the posterior odds ratio is:

γUK1,0 = e(lnp(DUK1:t |M1)−lnp(DUK1:t |M0)), (3.11)

where M0 represents the DSGE model in the control group and M1 represents the

DSGE model in the first treatment group. The numerical results of the posterior

odds ratio in the UK, γUK1,0 , is 48.279, which is much bigger than 3. This ratio

supports that the DSGE model in the first treatment group fit the UK data much

better than it in the control group. More specifically, the UK data is in favour

of the monetary policy reaction function without the movement of the nominal

exchange rate.

The log marginal data density of the first treatment group in Canada is -590.343.

Likewise, the posterior odds ratio is:

γCanada1,0 = elnp(D
Canada
1:t |M1)−lnp(DCanada1:t |M0). (3.12)

The numerical results of the posterior odds ratio in Canada, γCanada1,0 , is 0.015,

which is smaller than 1
3
. This ratio supports that the DSGE model in the first

treatment group fit Canada data worse than it in the control group. More specif-

ically, the data from Canada is in favour of the policy reaction function with

nominal exchange rate depreciation.
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Table 3.2: Constant Parameter Estimation Results (Group One)

Prior Posterior

UK Canada UK Canada

Parameters Mean Mean Mean 90%interval Mean 90%interval

τ 0.500 0.258 [0.126,0.381] 0.308 [0.176,0.439]

κ 0.300 0.455 [0.188,0.715] 0.923 [0.572,1.274]

φπ 1.500 2.388 [1.635,3.076] 2.198 [1.473,2.876]

φy 0.125 0.108 [0.039,0.170] 0.060 [0.023,0.096]

ρR 0.500 0.795 [0.728,0.866] 0.760 [0.676,0.844]

ρz 0.200 0.476 [0.332,0.619] 0.373 [0.273,0.468]

ρq 0.400 0.097 [0.010,0.185] 0.587 [0.464,0.710]

ρπ∗ 0.800 0.604 [0.448,0.778] 0.517 [0.361,0.687]

ρy∗ 0.900 0.937 [0.892,0.983] 0.953 [0.920,0.987]

α 0.200 0.120 [0.069,0.167] 0.156 [0.099,0.210]

r(A) 3.350 2.470 3.163 [2.737,3.606] 2.384 [1.847,2.935]

π(A) 1.920 1.620 2.231 [1.711,2.794] 1.815 [1.250,2.366]

γ(Q) 0.620 0.730 0.670 [0.616,0.722] 0.729 [0.674,0.784]

σR 0.500 0.185 [0.144,0.227] 0.311 [0.236,0.384]

σz 1.500 1.000 1.335 [0.508,2.171] 1.775 [0.891,2.673]

σy∗ 1.500 1.005 [0.428,1.617] 0.838 [0.383,1.315]

σπ∗ 0.550 2.504 [2.132,2.853] 2.414 [2.051,2.769]

σq 1.500 1.216 [1.035,1.394] 1.925 [1.648,2.198]

Log MDD -518.651 -590.343

Note:The table reports the parameter estimation results of the UK and Canada consid-

ering the monetary policy without the nominal exchange rate depreciation.
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Numerical Solution and Simulation Results for the UK in the Group

One

Table 3.3 reports the numerical solutions for the UK in the first treatment group.

The table yields the transition function as follows:

r̃t

zt

˜yy∗t

π∗t

4q̃t


=



0.381 0.055 0.021 0 −0.002

0 0.476 0 0 0

0 0 0.937 0 0

0 0 0 0.604 0

0 0 0 0 0.097





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

4 ˜qt−1



+



0.480 0.115 −0.025 0.022 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 1 0 0





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (3.13)

and it computes the policy function as follows:


ỹyt

πt

4 ˜yy∗t

 =


−0.478 0.095 −0.585 0 0.004

−0.823 0.107 0.069 0 −0.005

0 0 −0.063 0 0





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

4 ˜qt−1



+


−0.601 0.199 0.038 −0.625 0

−1.035 0.225 −0.053 0.074 0

0 0 0 1 0





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (3.14)
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and the function for the static variables is

 ˜yyt,n

4ẽt

 =

 0 0 −0.606 0 0

−0.823 0.107 0.069 −0.604 −0.090





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

4 ˜qt−1



+

 0 0 0 −0.647 0

−1.035 0.225 −0.933 0.074 −1.000





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


. (3.15)

Table 3.3 also incorporates information to compute the impulse response functions

for the four endogenous variables including ỹyt,πt,r̃t and 4ẽt:


ỹyt

πt

r̃t

4ẽt


=


−0.478 0.095 −0.585 0 0.004

−0.823 0.107 0.069 0 −0.005

0.381 0.055 0.021 0 −0.002

−0.823 0.107 0.069 −0.604 −0.090





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

4 ˜qt−1



+


−0.601 0.199 0.038 −0.625 0

−1.035 0.225 −0.053 0.074 0

0.480 0.115 −0.025 0.022 0

−1.035 0.225 −0.933 0.074 −1.000





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


. (3.16)

The coefficients of the second matrix in the above equation determine the impulse

response function for a given size of the structural shock. The impulse response

function measures the temporal deviations of economic variables from their stable

states. Figure 3.1 depicts the calculated impulse response function of the four

endogenous variables to the structural shock with the size of one unit of standard

deviation offered in table 3.2.
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Holding everything else constant, a unit of the standard deviation of the monetary

policy shock σR = 0.185 will exert a −0.601∗σR = −0.111 impact on the real out-

put deviation, a −1.035∗σR = −0.192 impact on the inflation, a 0.48∗σR = 0.089

impact on the nominal interest rate deviation, a −1.035 ∗ σR = −0.192 impact on

the nominal exchange rate depreciation.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of terms of trade σq = 1.216 will exert a 0.038 ∗ σq = 0.046

impact on the real output deviation, a −0.053 ∗ σq = −0.064 impact on the in-

flation, a −0.025 ∗ σq = −0.030 impact on the nominal interest rate deviation, a

−0.993 ∗ σq = −1.134 impact on the nominal exchange rate depreciation.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of the technology σz = 1.335 will exert a 0.199 ∗ σz = 0.265

impact on the real output deviation, a 0.225∗σz = 0.301 impact on the inflation, a

0.115∗σz = 0.153 impact on the nominal interest rate deviation, a 0.225∗σz = 0.301

impact on the nominal exchange rate depreciation.

Holding everything else constant, a unit of the standard deviation of the shock

to the world output deviation σy∗ = 1.005 will exert a −0.625 ∗ σy∗ = −0.628

impact on the real output deviation, a 0.074 ∗ σy∗ = 0.075 impact on the in-

flation, a 0.022 ∗ σy∗ = 0.023 impact on the nominal interest rate deviation, a

0.074 ∗ σy∗ = 0.075 impact on the nominal exchange rate depreciation.

Holding everything else constant, a unit of the standard deviation of the shock

to the world inflation σπ∗ = 2.504 will exert no impact on the real output devia-

tion, the inflation and the nominal interest rate. It only exerts −1 ∗ σπ∗ = −2.504

impact on the nominal exchange rate depreciation.
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Figure 3.1: Impulse response functions for Group One in the UK. Note:The figure

depicts the impulse response functions of the real output, the inflation rate, the

nominal interest rate and the depreciation exchange rate in the UK to one unit of

the structural shocks.
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Numerical Solution and Simulation Results for Canada in the Group

One

Table 3.4 reports that the numerical solution for Canada in the first treatment

group. According to the table, the computed transition function is:

r̃t

zt

˜yy∗t

π∗t

4q̃t


=



0.273 0.042 0.018 0 0.016

0 0.373 0 0 0

0 0 0.953 0 0

0 0 0 0.517 0

0 0 0 0 0.587





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

4 ˜qt−1



+



0.360 0.111 0.027 0.019 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 1 0 0





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (3.17)

and the calculated policy function is:


ỹyt

πt

4 ˜yy∗t

 =


−0.365 0.047 −0.606 0 0.036

−0.912 0.077 0.050 0 0.029

0 0 −0.047 0 0





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

4 ˜qt−1



+


−0.480 0.127 0.061 −0.635 0

−1.200 0.208 0.050 0.053 0

0 0 0 1 0





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (3.18)

112



and the function for the static variables is:

 ˜yyt,n

4ẽt

 =

 0 0 −0.616 0 0

−0.912 0.077 0.050 −0.517 −0.466





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

4 ˜qt−1



+

 0 0 0 −0.646 0

−1.200 0.208 −0.794 0.053 −1.000





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


. (3.19)

Likewise,table 3.4 provides the information to compute the impulse response func-

tions of the four endogenous variables including ỹyt,πt,r̃t and 4ẽt:


ỹyt

πt

r̃t

4ẽt


=


−0.365 0.047 −0.606 0 0.036

−0.912 0.077 0.050 0 0.029

0.273 0.042 0.018 0 0.016

−0.912 0.077 0.050 −0.517 −0.466





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

4 ˜qt−1



+


−0.480 0.127 0.061 −0.635 0

−1.200 0.208 0.050 0.053 0

0.360 0.111 0.027 0.019 0

−1.200 0.208 −0.794 0.053 −1.000





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


. (3.20)

Figure 3.2 depicts the calculated impulse response function of the four endogenous

variables to the structural shock with the size of one unit of the standard deviation

offered in the table 3.2.

Holding everything else constant, a unit of the standard deviation of the mon-

etary policy shock σR = 0.311 will exert a −0.48∗σR = −0.149 impact on the real
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output deviation, a −1.2∗σR = −0.373 impact on the inflation,a 0.36∗σR = 0.112

impact on the nominal interest rate deviation, a −1.2 ∗ σR = −0.373 impact on

the nominal exchange rate depreciation.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of the terms of trade σq = 1.925 will exert a 0.061 ∗ σq = 0.117

impact on the real output deviation, a 0.05 ∗ σq = 0.096 impact on the in-

flation,a 0.027 ∗ σq = 0.052 impact on the nominal interest rate deviation, a

−0.794 ∗ σq = −1.529 impact on the nominal exchange rate depreciation.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of the technology σz = 1.775 will exert a 0.127 ∗ σz = 0.226

impact on the real output deviation, a 0.208∗σz = 0.369 impact on the inflation,a

0.111∗σz = 0.198 impact on the nominal interest rate deviation, a 0.208∗σz = 0.369

impact on the nominal exchange rate depreciation.

Holding everything else constant, a unit of the standard deviation of the shock

to the world output deviation σy∗ = 0.838 will exert a −0.635 ∗ σy∗ = −0.532

impact on the real output deviation, a 0.053 ∗ σy∗ = 0.044 impact on the in-

flation,a 0.019 ∗ σy∗ = 0.016 impact on the nominal interest rate deviation, a

0.053 ∗ σy∗ = 0.044 impact on the nominal exchange rate depreciation.

Holding everything else constant, a unit of the standard deviation of the shock

to the world inflation σπ∗ = 2.414 will only exert a −1 ∗ σπ∗ = −2.414 impact on

the nominal exchange rate depreciation.
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Figure 3.2: Impulse response functions for Group One in Canada. Note:The figure

depicts the impulse response function of the real output,the inflation rate, the

nominal interest rate and the depreciation exchange rate in Canada to one unit of

the structural shocks.
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3.3.2 Group Two: No Nominal Exchange Depreciation and

Change of Output Deviation

Table 3.5 reports the estimation results of the second treatment group. The prior

distributions for the treatment group are identical to the first treatment group,

except there is one more prior setting for the coefficient of the change rate of the

real output φ4y, which centres at 0.125 with a gamma distribution. The posterior

distributions between the second treatment group and the control group are not

very different.

The log marginal data density of the second treatment group in the UK is -501.064.

Thus, the posterior odds ratio is:

γUK2,0 = e(lnp(DUK1:t |M2)−lnp(DUK1:t |M0)), (3.21)

where M2 represents the DSGE model in the second treatment group. The nu-

merical results of the posterior odds ratio in the UK, γUK2,0 , is almost 1.22 billion,

which is a huge number. This ratio supports that the DSGE model in the second

treatment group fit the UK data much better than it in the control group. More

specifically, the UK data is significantly in favour of the monetary policy reaction

function without nominal exchange rate depreciation and with the change rate of

real output.

The log marginal data density of the second treatment group in Canada is -585.955.

Likewise, the posterior odds ratio is:

γCanada2,0 = elnp(D
Canada
1:t |M2)−lnp(DCanada1:t |M0). (3.22)

The numerical results of the posterior odds ratio in Canada, γCanada2,0 , is 1.247, which

is just between 1
3

and 3. This odds ratio supports that there is no major difference

between the second treatment group and the control group in the performance of

data fitting. More specifically, to put more weights on the stabilisation of the rate

change of the output cannot offset the loss fitting arising from the ignorance of

the movement of the nominal exchange rates for Canada.
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Table 3.5: Constant Parameter Estimation Results (Group Two)

Prior Posterior

UK Canada UK Canada

Parameters Mean Mean Mean 90%interval Mean 90%interval

τ 0.500 0.308 [0.151,0.451] 0.306 [0.173,0.437]

κ 0.300 0.366 [0.174,0.547] 0.735 [0.416,1.042]

φπ 1.500 2.249 [1.516,2.946] 2.020 [1.314,2.736]

φy 0.125 0.097 [0.043,0.147] 0.069 [0.028,0.109]

φ4y 0.125 0.183 [0.133,0.234] 0.157 [0.081,0.233]

ρR 0.500 0.812 [0.749,0.875] 0.762 [0.677,0.853]

ρz 0.200 0.536 [0.411,0.663] 0.385 [0.284,0.487]

ρq 0.400 0.103 [0.010,0.193] 0.579 [0.452,0.717]

ρπ∗ 0.800 0.604 [0.448,0.775] 0.513 [0.353,0.667]

ρy∗ 0.900 0.949 [0.916,0.986] 0.952 [0.918,0.988]

α 0.200 0.128 [0.082,0.175] 0.153 [0.098,0.204]

r(A) 3.350 2.470 3.127 [2.674,3.594] 2.353 [1.780,2.898]

π(A) 1.920 1.620 2.182 [1.633,2.753] 1.798 [1.202,2.394]

γ(Q) 0.620 0.730 0.660 [0.595,0.722] 0.741 [0.674,0.810]

σR 0.500 0.149 [0.120,0.178] 0.299 [0.223,0.370]

σz 1.500 1.000 0.914 [0.433,1.409] 1.673 [0.814,2.561]

σy∗ 1.500 1.262 [0.463,2.112] 0.859 [0.381,1.340]

σπ∗ 0.550 2.507 [2.132,2.858] 2.413 [2.040,2.765]

σq 1.500 1.212 [1.033,1.393] 1.920 [1.636,2.191]

Log MDD -501.064 -585.955

Note:The table reports the parameter estimation results of UK and Canada considering

the monetary policy without the nominal exchange rate depreciation and with the change

of the output deviation.
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Numerical Solution and Simulation Results for the UK in the Group

Two

Table 3.6 reports the numerical solutions for the UK in the second treatment

group. According to the table, the transition function is:

r̃t

zt

˜yy∗t

π∗t

ỹyt

4q̃t


=



0.315 0.091 −0.029 0 −0.071 −0.002

0 0.536 0 0 0 0

0 0 0.949 0 0 0

0 0 0 0.604 0 0

−0.621 0.151 −0.427 0 0.140 0.005

0 0 0 0 0 0.103





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+



0.388 0.171 −0.018 −0.030 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

−0.766 0.282 0.045 −0.450 0

0 0 1 0 0





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (3.23)

and the policy function is calculated as:

 πt

4 ˜yy∗t

 =

 −0.876 0.144 0.135 0 0.198 −0.006

0 0 −0.051 0 0 0





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+

 −1.079 0.268 −0.063 0.142 0

0 0 0 1 0





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (3.24)
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and the function for the static variables is:

 ˜yyt,n

4ẽt

 =

 0 0 −0.513 0 0 0

−0.876 0.144 0.135 −0.604 0.198 −0.096





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+

 0 0 0 −0.540 0

−1.079 0.268 −0.934 0.142 −1.000





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


. (3.25)

Table 3.6 also computes the impulse response functions of the four endogenous

variables including ỹyt,πt,r̃t and 4ẽt:


ỹyt

πt

r̃t

4ẽt


=


−0.621 0.151 −0.427 0 0.140 0.005

−0.876 0.144 0.135 0 0.198 −0.006

0.315 0.091 −0.029 0 −0.071 −0.002

−0.876 0.144 0.135 −0.604 0.198 −0.096





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+


−0.766 0.282 0.045 −0.450 0

−1.079 0.268 −0.063 0.142 0

0.388 0.171 −0.018 −0.030 0

−1.079 0.268 −0.934 0.142 −1.000





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


. (3.26)

Figure 3.3 depicts the calculated impulse response functions of the four endoge-

nous variables to the structural shock with the size of one unit of the standard

deviation offered in the table 3.5.
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Holding everything else constant, a unit of the standard deviation of the monetary

policy shock σR = 0.149 will exert a −0.766∗σR = −0.114 impact on the real out-

put deviation, a −1.079∗σR = −0.161 impact on the inflation,a 0.388∗σR = 0.058

impact on the nominal interest rate deviation, a −1.079 ∗ σR = −0.161 impact on

the nominal exchange rate depreciation.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of the terms of trade σq = 1.212 will exert a 0.045 ∗ σq = 0.054

impact on the real output deviation, a −0.063 ∗ σq = −0.076 impact on the in-

flation,a −0.018 ∗ σq = −0.021 impact on the nominal interest rate deviation, a

−0.934 ∗ σq = −1.133 impact on the nominal exchange rate depreciation.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of the technology σz = 0.914 will exert a 0.282 ∗ σz = 0.258

impact on the real output deviation, a 0.268∗σz = 0.245 impact on the inflation,a

0.171∗σz = 0.156 impact on the nominal interest rate deviation, a 0.268∗σz = 0.245

impact on the nominal exchange rate depreciation.

Holding everything else constant, a unit of the standard deviation of the shock

to the world output deviation σy∗ = 1.262 will exert a −0.450 ∗ σy∗ = −0.568

impact on the real output deviation, a 0.142 ∗ σy∗ = 0.179 impact on the in-

flation,a −0.03 ∗ σy∗ = −0.038 impact on the nominal interest rate deviation, a

0.142 ∗ σy∗ = 0.179 impact on the nominal exchange rate depreciation.

Holding everything else constant, a unit of the standard deviation of the shock

to the world inflation σπ∗ = 2.507 will only exert a −1 ∗ σπ∗ = −2.507 impact on

the nominal exchange rate depreciation.
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Figure 3.3: Impulse response functions for Group Two in the UK. Note:The fig-

ure depicts the impulse response function of the real output,the inflation rate,the

nominal interest rate and the depreciation exchange rate in the UK to one unit of

the structural shocks.
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Numerical Solution and Simulation Results for Canada in the Group

Two

Table 3.7 reports the numerical solutions for Canada in the second treatment

group. According to the table, the computed transition function is:

r̃t

zt

˜yy∗t

π∗t

ỹyt

4q̃t


=



0.248 0.047 −0.020 0 −0.051 0.017

0 0.385 0 0 0 0

0 0 0.952 0 0 0

0 0 0 0.513 0 0

−0.419 0.056 −0.547 0 0.086 0.037

0 0 0 0 0 0.579





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+



0.326 0.123 0.029 −0.021 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

−0.549 0.144 0.064 −0.574 0

0 0 1 0 0





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (3.27)

and the policy function is:

 πt

4 ˜yy∗t

 =

 −0.918 0.079 0.155 0 0.189 0.021

0 0 −0.048 0 0 0





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+

 −1.205 0.204 0.036 0.163 0

0 0 0 1 0





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (3.28)
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and the function for the static variables is

 ˜yyt,n

4ẽt

 =

 0 0 −0.610 0 0 0

−0.918 0.079 0.155 −0.513 0.189 −0.469





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+

 0 0 0 −0.641 0

−1.205 0.204 −0.811 0.163 −1.000





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


. (3.29)

Table 3.7 also provides information to compute the impulse response functions of

the four endogenous variables including ỹyt,πt,r̃t and 4ẽt:


ỹyt

πt

r̃t

4ẽt


=


−0.419 0.056 −0.547 0 0.086 0.037

−0.918 0.079 0.155 0 0.189 0.021

0.248 0.047 −0.020 0 −0.051 0.017

−0.918 0.079 0.155 −0.513 0.189 −0.469





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+


−0.549 0.144 0.064 −0.574 0

−1.205 0.204 0.036 0.163 0

0.326 0.123 0.029 −0.021 0

−1.205 0.204 −0.811 0.163 −1.000





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


. (3.30)

Figure 3.4 depicts the calculated impulse response function of the four endogenous

variables to the structural shock with the size of one unit of the standard deviation

offered in the table 3.5.
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Holding everything else constant, a unit of the standard deviation of the monetary

policy shock σR = 0.299 will exert a −0.549∗σR = −0.164 impact on the real out-

put deviation, a −1.205∗σR = −0.360 impact on the inflation,a 0.326∗σR = 0.097

impact on the nominal interest rate deviation, a −1.205 ∗ σR = −0.360 impact on

the nominal exchange rate depreciation.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of the terms of trade σq = 1.920 will exert a 0.064 ∗ σq = 0.124

impact on the real output deviation, a 0.036 ∗ σq = 0.070 impact on the in-

flation,a 0.029 ∗ σq = 0.055 impact on the nominal interest rate deviation, a

−0.811 ∗ σq = −1.556 impact on the nominal exchange rate depreciation.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of the technology σz = 1.673 will exert a 0.144 ∗ σz = 0.241

impact on the real output deviation, a 0.204∗σz = 0.342 impact on the inflation,a

0.123∗σz = 0.206 impact on the nominal interest rate deviation, a 0.204∗σz = 0.342

impact on the nominal exchange rate depreciation.

Holding everything else constant, a unit of the standard deviation of the shock

to the world output deviation σy∗ = 0.859 will exert a −0.574 ∗ σy∗ = −0.493

impact on the real output deviation, a 0.163 ∗ σy∗ = 0.140 impact on the infla-

tion,a −0.021 ∗ σy∗ = −0.018 impact on the nominal interest rate deviation, a

0.163 ∗ σy∗ = 0.140 impact on the nominal exchange rate depreciation.

Holding everything else constant, a unit of the standard deviation of the shock

to the world inflation σπ∗ = 2.413 only exert a −1 ∗ σπ∗ = −2.413 impact on the

nominal exchange rate depreciation.
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Figure 3.4: Impulse response functions for Group Two in Canada. Note:The

figure depicts the impulse response function of the real output,the inflation rate,the

nominal interest rate and the depreciation exchange rate in Canada to one unit of

the structural shocks.
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3.3.3 Group Three: Nominal Exchange Depreciation and

Change of Output Deviation

Table 3.8 reports the estimation results of the third treatment group. The prior

distributions for the treatment group are identical to the first control group, except

there is one more prior setting for the coefficient of the change rate of real output

φ4y, which centres at 0.125 with a gamma distribution. The posterior distribu-

tions of the third treatment group are still not very different from those of control

groups for their common shared parameters.

The log marginal data density of the third treatment group in the UK is -503.067.

Thus, the posterior odds ratio is:

γUK3,0 = e(lnp(DUK1:t |M3)−lnp(DUK1:t |M0)), (3.31)

where M3 represents the DSGE model in the third treatment group. The numeri-

cal results of the posterior odds ratio in the UK, γUK3,0 , is almost 0.283 billion, which

is very large. This ratio supports that the DSGE model in the third treatment

group fit the UK data much better than it in the control group. More specifically,

to put more weights on the stabilisation of the change rate of the output in the

policy decision fits the UK data much better.

The log marginal data density of the third treatment group in Canada is -582.077.

Likewise, the posterior odds ratio is:

γCanada3,0 = elnp(D
Canada
1:t |M3)−lnp(DCanada1:t |M0). (3.32)

The numerical results of the posterior odds ratio in Canada, γCanada3,0 , is 60.280,

which is much bigger than 3. This ratio supports that there the DSGE model in

the third treatment group fit the data from Canada much better. More specifically,

the Canadian data is in favour of the policy reaction function with the nominal

exchange rate depreciation and the rate change of the real output.
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Table 3.8: Constant Parameter Estimation Results (Group Three)

Prior Posterior

UK Canada UK Canada

Parameters Mean Mean Mean 90%interval Mean 90%interval

τ 0.500 0.338 [0.165,0.518] 0.282 [0.161,0.406]

κ 0.300 0.348 [0.166,0.520] 0.669 [0.372,0.953]

φπ 1.500 2.412 [1.626,3.147] 1.945 [1.304,2.567]

φy 0.125 0.112 [0.054,0.170] 0.078 [0.034,0.121]

φ4y 0.125 0.200 [0.143,0.258] 0.156 [0.080,0.230]

φ4e 0.125 0.068 [0.029,0.105] 0.128 [0.067,0.188]

ρR 0.500 0.827 [0.768,0.886] 0.765 [0.687,0.849]

ρz 0.200 0.530 [0.395,0.659] 0.387 [0.290,0.486]

ρq 0.400 0.107 [0.010,0.202] 0.538 [0.422,0.658]

ρπ∗ 0.800 0.590 [0.441,0.740] 0.441 [0.310,0.570]

ρy∗ 0.900 0.952 [0.918,0.987] 0.955 [0.923,0.987]

α 0.200 0.124 [0.077,0.170] 0.140 [0.085,0.187]

r(A) 3.350 2.470 3.106 [2.619,3.584] 2.335 [1.790,2.899]

π(A) 1.920 1.620 2.188 [1.615,2.800] 1.835 [1.202,2.442]

γ(Q) 0.620 0.730 0.657 [0.592,0.721] 0.732 [0.668,0.795]

σR 0.500 0.155 [0.124,0.185] 0.284 [0.214,0.349]

σz 1.500 1.000 0.953 [0.417,1.469] 1.712 [0.850,2.567]

σy∗ 1.500 1.590 [0.453,2.964] 0.833 [0.390,1.281]

σπ∗ 0.550 2.499 [2.134,2.863] 2.366 [2.016,2.713]

σq 1.500 1.215 [1.032,1.392] 1.916 [1.647,2.187]

Log MDD -503.067 -582.077

Note:The table reports the parameter estimation results of UK and Canada considering

the monetary policy with the nominal exchange rate depreciation and the change of the

output deviation.
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Numerical Solution and Simulation Results for the UK in the Group

Three

Table 3.9 reports the numerical solution for the UK in the third treatment group.

According to the table, the transition function is:

r̃t

zt

˜yy∗t

π∗t

ỹyt

4q̃t


=



0.308 0.089 −0.025 0.002 −0.074 −0.002

0 0.530 0 0 0 0

0 0 0.952 0 0 0

0 0 0 0.590 0 0

−0.661 0.151 −0.351 0.009 0.160 0.006

0 0 0 0 0 0.107





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+



0.372 0.168 −0.019 −0.027 0.004

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

−0.800 0.286 0.055 −0.369 0.016

0 0 1 0 0





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (3.33)

and the calculated policy function is:

 πt

4 ˜yy∗t

 =

 −0.872 0.130 0.120 0.016 0.211 −0.005

0 0 −0.048 0 0 0





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+

 −1.055 0.246 −0.049 0.127 0.028

0 0 0 1 0





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (3.34)
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and the function for the static variables is

 ˜yyt,n

4ẽt

 =

 0 0 −0.434 0 0 0

−0.872 0.130 0.120 −0.574 0.211 −0.099





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+

 0 0 0 −0.456 0

−1.055 0.246 −0.925 0.127 −0.972





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


. (3.35)

Table 3.9 also provides information to compute the impulse response functions of

the four endogenous variables including ỹyt,πt,r̃t and 4ẽt:


ỹyt

πt

r̃t

4ẽt


=


−0.661 0.151 −0.351 0.009 0.160 0.006

−0.872 0.130 0.120 0.016 0.211 −0.005

0.308 0.089 −0.025 0.002 −0.074 −0.002

−0.872 0.130 0.120 −0.574 0.211 −0.099





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+


−0.800 0.286 0.055 −0.369 0.016

−1.055 0.246 −0.049 0.127 0.028

0.372 0.168 −0.019 −0.027 0.004

−1.055 0.246 −0.925 0.127 −0.972





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


. (3.36)

Figure 3.5 depicts the calculated impulse response function of the four endogenous

variables to the structural shock with the size of one unit of standard deviation

offered in the table 3.8.
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Holding everything else constant, a unit of the standard deviation of the monetary

policy shock σR = 0.155 will exert a −0.800∗σR = −0.124 impact on the real out-

put deviation, a −1.055∗σR = −0.164 impact on the inflation,a 0.372∗σR = 0.058

impact on the nominal interest rate deviation, a −1.055 ∗ σR = −0.164 impact on

the nominal exchange rate depreciation.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of the terms of trade σq = 1.215 will exert a 0.055 ∗ σq = 0.067

impact on the real output deviation, a −0.049 ∗ σq = −0.006 impact on the in-

flation,a −0.019 ∗ σq = −0.023 impact on the nominal interest rate deviation, a

−0.925 ∗ σq = −1.124 impact on the nominal exchange rate depreciation.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of the technology σz = 0.953 will exert a 0.286 ∗ σz = 0.272

impact on the real output deviation, a 0.246∗σz = 0.234 impact on the inflation,a

0.168∗σz = 0.160 impact on the nominal interest rate deviation, a 0.246∗σz = 0.234

impact on the nominal exchange rate depreciation.

Holding everything else constant, a unit of the standard deviation of the shock

to the world output deviation σy∗ = 1.590 will exert a −0.369 ∗ σy∗ = −0.587

impact on the real output deviation, a 0.127 ∗ σy∗ = 0.201 impact on the infla-

tion,a −0.027 ∗ σy∗ = −0.042 impact on the nominal interest rate deviation, a

0.127 ∗ σy∗ = 0.2011 impact on the nominal exchange rate depreciation.

Holding everything else constant, a unit of the standard deviation of the shock to

the world inflation σπ∗ = 2.499 will exert a 0.016 ∗ σπ∗ = 0.040 impact on the real

output deviation, a 0.028∗σπ∗ = 0.069 impact on the inflation,a 0.004∗σπ∗ = 0.009

impact on the nominal interest rate deviation, a −0.972 ∗σπ∗ = −2.430 impact on

the nominal exchange rate depreciation.
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Figure 3.5: Impulse response functions for Group Three in the UK. Note:The

figure depicts the impulse response function of the real output,the inflation rate,the

nominal interest rate and the depreciation exchange rate in the UK to one unit of

the structural shocks.
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Numerical Solution and Simulation Results for Canada in the Group

Three

Table 3.10 reports the numerical solution for Canada in the third treatment group.

According to the table, the transition function is:

r̃t

zt

˜yy∗t

π∗t

ỹyt

4q̃t


=



0.262 0.046 −0.019 0.001 −0.054 0.013

0 0.387 0 0 0 0

0 0 0.955 0 0 0

0 0 0 0.441 0 0

−0.406 0.054 −0.568 0.010 0.083 0.041

0 0 0 0 0 0.107





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+



0.343 0.120 0.025 −0.020 0.003

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

−0.531 0.140 0.076 −0.594 0.022

0 0 1 0 0





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (3.37)

and the computed policy function is:

 πt

4 ˜yy∗t

 =

 −0.883 0.076 0.163 0.026 0.181 0.041

0 0 −0.045 0 0 0





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+

 −1.155 0.195 0.077 0.171 0.060

0 0 0 1 0





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (3.38)
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and the function for the static variables is

 ˜yyt,n

4ẽt

 =

 0 0 −0.633 0 0 0

−0.883 0.076 0.163 −0.414 0.181 −0.421





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+

 0 0 0 −0.663 0

−1.155 0.195 −0.783 0.171 −0.940





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


. (3.39)

Table 3.10 also computes the impulse response functions of the four endogenous

variables including ỹyt,πt,r̃t and 4ẽt:


ỹyt

πt

r̃t

4ẽt


=


−0.406 0.054 −0.568 0.010 0.083 0.041

−0.883 0.076 0.163 0.026 0.181 0.041

0.262 0.046 −0.019 0.001 −0.054 0.013

−0.883 0.076 0.163 −0.414 0.181 −0.421





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+


−0.531 0.140 0.076 −0.594 0.022

−1.155 0.195 0.077 0.171 0.060

0.343 0.120 0.025 −0.020 0.003

−1.155 0.195 −0.783 0.171 −0.940





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


. (3.40)

Figure 3.6 depicts the calculated impulse response function of the four endogenous

variables to the structural shock with the size of one unit of standard deviation

offered in the table 3.8.
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Holding everything else constant, a unit of the standard deviation of the monetary

policy shock σR = 0.284 will exert a −0.531∗σR = −0.151 impact on the real out-

put deviation, a −1.155∗σR = −0.328 impact on the inflation,a 0.343∗σR = 0.097

impact on the nominal interest rate deviation, a −1.155 ∗ σR = −0.328 impact on

the nominal exchange rate depreciation.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of the terms of trade σq = 1.916 will exert a 0.076 ∗ σq = 0.146

impact on the real output deviation, a 0.077 ∗ σq = 0.147 impact on the in-

flation,a 0.025 ∗ σq = 0.048 impact on the nominal interest rate deviation, a

−0.783 ∗ σq = −1.501 impact on the nominal exchange rate depreciation.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of the technology σz = 1.712 will exert a 0.140 ∗ σz = 0.240

impact on the real output deviation, a 0.195∗σz = 0.334 impact on the inflation,a

0.120∗σz = 0.205 impact on the nominal interest rate deviation, a 0.195∗σz = 0.334

impact on the nominal exchange rate depreciation.

Holding everything else constant, a unit of the standard deviation of the shock

to the world output deviation σy∗ = 0.833 will exert a −0.594 ∗ σy∗ = −0.495

impact on the real output deviation, a 0.171 ∗ σy∗ = 0.142 impact on the infla-

tion,a −0.020 ∗ σy∗ = −0.017 impact on the nominal interest rate deviation, a

0.171 ∗ σy∗ = 0.142 impact on the nominal exchange rate depreciation.

Holding everything else constant, a unit of the standard deviation of the shock to

the world inflation σπ∗ = 2.366 will exert a 0.022 ∗ σπ∗ = 0.053 impact on the real

output deviation, a 0.060∗σπ∗ = 0.141 impact on the inflation,a 0.003∗σπ∗ = 0.007

impact on the nominal interest rate deviation, a −0.940 ∗σπ∗ = −2.225 impact on

the nominal exchange rate depreciation.
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Figure 3.6: Impulse response functions for Group Three in Canada. Note:The

figure depicts the impulse response function of the real output,the inflation rate,the

nominal interest rate and the depreciation exchange rate in Canada to one unit of

the structural shocks.
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3.3.4 An Overall Remark of the Model Comparison at the

First Stage

Table 3.11 reports the numerical results of the posterior odds ratios generated from

the estimation results of the control group and the three treatment groups.

From the first three columns in the row of the UK, it is apparent to see all the

three treatment groups perform better than the control group in terms of data

fitting. Notably, the second treatment group enhance the data performance most

among the three treatment groups. The posterior ratios imply that when it con-

siders no exchange rate depreciation or put the rate change of real output into

consideration, the relevant DSGE model will fit the UK data much better. From

the next two columns in the same row, it is also apparent to see the second and

the third treatment model outperform the first treatment model in terms of data

fitting. Likewise, the second treatment model still enhances the performance of

data fitting much better than the third treatment group. The comparison shows

that considering the rate change of the real output in the monetary policy reaction

function can furthermore enhance the data fitting for the UK. From the last col-

umn in the row of the UK, the second treatment group outperform the third one

in terms of data fitting. Thus, the second treatment group is the best one among

all the groups for the UK. More specifically, the ignorance of the movement of the

nominal exchange rate and the incorporation of the rate change of the output in

the policy decision can best fit the data collected from the UK.

From the first three columns in the row of Canada, it is apparent to see that

only the third treatment group outperform the control one. There is a reduction

in the performance of data fitting when ignoring the nominal exchange rate de-

preciation for the first treatment group. Also, there is no enhancement of data

fitting when incorporating the change rate of real output but ignoring the nominal

exchange rate depreciation for the second treatment group. Only when put them

together in the third treatment group, the DSGE model will fit the data much
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better. From the next two columns in the row of Canada, it shows that the treat-

ment groups with the rate change of the real output outperform the first treatment

group which considers no nominal exchange rate depreciation nor the rate change

of real output in terms of data fitting. From the last column in the row of Canada,

it is easy to find the third treatment group perform much better than the second

group. Thus, the third treatment group is the best one among all the groups in

Canada. That is to say, the incorporation of the rate change of the real output

and the nominal exchange rate depreciation in the policy function can guarantee

the simplified DSGE model to provides the best fitting for the Canadian data.

Table 3.12 ranks the performance of data fitting of all the groups for each country.

For the UK, all the treatment group perform better than the control group, and

the second treatment group performs best to fit the data in the UK. For Canada,

only the third treatment group outperforms the control group and performs best.

There is no significant difference between the second treatment group and the con-

trol group in terms of data fitting and the first treatment group fit the data worst

in Canada.
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Table 3.11: Numerical Results of the Posterior Odds Ratio

γ1,0 γ2,0 γ3,0 γ2,1 γ3,1 γ3,2

UK 48.279 11.222E+09 2.830E+08 2.532E+07 5.862E+06 0.232

Canda 0.015 1.247 60.280 80.479 3889.360 48.327

Note: This table reports the numerical values of the posterior odds ratio among the

control group and all the three treatment groups.

Table 3.12: The Rank of the Data Fitting

Performance of Each Group

UK Canada

Control Group 4 2

Treatment Group One 3 3

Treatment Group Two 1 2

Treatment Group Three 2 1

Note: This table reports the ranks of the data

fitting performance of each group for each

country.
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3.4 Conclusion

Chapter 3 offers model comparisons at the first stage to denote the specification

of the monetary policy reaction function, which brings the best performance of

data fitting. It initially introduces the methodology of calculating the posterior

odds ratio. It then estimates the DSGE models in the three treatment groups

for each country and computes their posterior odds ratios to carry on the model

comparisons.

For the UK, the simplified DSGE model best fit the data considering the rate

change of the real output and ignoring the nominal exchange rate depreciation in

the policy function. This finding is evident in contrast with Lubik and Schorfheide

(2007)’s research, which covers a period that Britain remains in the ERM before

1992. When applying the rule with the best data fitting, Figure 3.3 depicts that

the central bank possibly encounters trade-offs in the policy decision. First, a

booming world output shock impedes the domestic output, and the central bank

cuts the rates to lean against the wind at the expense of the stabilisation of the

inflation rates. Also, an increased price of the exports goods arising from the

higher demand from the foreign market motivates the domestic output and ap-

preciates the currency value. The central bank instead cut the policy rate to lean

against the wind of the disinflation at the expense of the stabilisation of the output.

For Canada, the simplified DSGE model best fit the data considering the rate

change of the real output and the nominal exchange rate depreciation in the policy

function together. This finding is consistent with Lubik and Schorfheide (2007)’s

research and the bank reports in Canada. When applying the rule with the best

data fitting, Figure 3.6 depicts that the central bank possibly encounters different

situations from the case in the UK. First, the increased export price not only push

the domestic output upward but also raise the domestic price level. In the case of

the UK, CPI inflation decreases due to the result that the falling price of the im-

ported good because of the currency appreciation outweighs the increasing price of
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the exported goods. In the case of Canada, CPI inflation increases due to the result

that the falling price of the imported good because of the currency appreciation

cannot offset the increasing price of the exported goods. Thus, the central bank

in Canada tights the monetary policy to lean against the wind from the output

and the inflation rate together at the expense of the stabilisation of the move-

ments of the nominal exchange rates. Also, unlike the case in the UK, the world

inflation shock can affect the domestic output and CPI inflation in Canada. Thus,

the central bank tights the monetary policy at the expense of the stabilisation of

the movements of the nominal exchange rate in facing up with the international

inflationary pressure.

The next chapter will move to the second stage of the model comparison and

prefers the simplified DSGE models with the best data fitting at the first stage

as the benchmark models. It continues studying whether introducing some types

of structural changes, including the environmental and managerial aspects, can

furtherly lead to an improvement in the data fitting.
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Chapter 4

Model Comparison Two:

Markov-Switching Parameters

Estimation

4.1 Introduction

Chapter 4 carries on the model comparison at the second stage to identify whether

introducing Markov-switching parameters can improve the performance of data fit-

ting in comparison with the constant parameter DSGE model with the best fitting

in chapter 3. Chapter 3 has already discovered that the model which fits the UK

data best does not consider the nominal exchange rate depreciation in the policy

function while the model which fits the Canadian data best should put the move-

ments of exchange rates into consideration.

Markov-Switching DSGE models are more appropriate than constant parameter

DSGE models to analyse the dynamic macroeconomic variables when the selected

period potentially includes some kinds of structural changes. Chapter 4 will put

forward three types of Markov-Switching models. The first model examines the

structural breaks in the variance of exogenous shocks (Stock and Watson, 2003[84];

Sims and Zha, 2006[81]; Justiniano and Primiceri, 2008[49]). The second model
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considers the structural breaks in the parameters of the policy functions(Clarida,

Gali and Gertler,2000[19]; Lubik and Schorfheide, 2004[59]; Davig and Leeper,

2007[22]). The third model explores the two types of structural breaks together

(Liu and Mumtaz, 2011[57]; Chen and MacDonald, 2011[16]). After estimating

all the three kinds of DSGE models, chapter 4 checks out the Markov-Switching

DSGE model with the best performance of data fitting for the UK and Canada.

Apart from the model comparison, chapter 4 provides data analysis for the UK

and Canada base on the best data fitting model, which explicitly presents the con-

tribution of each of the structural shocks to the dynamic macro-economic variables

within the sample period.

Chapter 4 proceeds as follows. Section 2 brings in the methodology put forward

by Farmer et al. (2011[32]) to solve and estimate the DSGE model with Markov-

switching parameters. Section 3 solves and estimates the mentioned three kinds of

Markov-switching DSGE models with the data collected from the UK. It provides

the model comparison at the second stage and offers a detailed data analysis for

the UK within the sample period. Likewise, section 4 repeats the procedures in

the previous section to offer the model comparison and data analysis for Canada

within the same sample period. Section 5 concludes.
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4.2 Markov-Switching DSGE Models

Chapter 2 have shown how a DSGE model can be represented by the structured

equations below:

B(Θ)xt+1 = A(Θ)xt + G(Θ)ξt+1, (4.1)

where xt = [ ˜yyt,n,4ẽt, r̃t, zt, ˜yy∗t , π
∗
t ,4q̃t, ỹyt, πt,4 ˜yy∗t ]

′, ξt = [ξRt , ξ
z
t , ξ

q
t , ξ

y∗t
t , ξ

π∗t
t ]′.

B, A and G are the functions of the structural parameters Θ. The parameter space

Θ includes [τ, κ, α, φπ, φy, φ4e, ρR, ρz, ρq, ρπ∗ , ρy∗ , σR, σz, σy∗ , σπ∗ , σq]
′. The Markov-

switching DSGE model allows its subset of the parameter space to shift between

two regimes. Thus, the above structured form can be rewritten as the following

equation:

B(Θst)xt+1 = A(Θst)xt + G(Θst)ξt+1, (4.2)

where St denotes the unobserved state variables which assumes some structural

parameters follow a two state Markov process with the following transition prob-

abilities:

Prob[St = 2|St = 1] = p12, P rob[St = 1|St = 2] = p21. (4.3)

There are three kinds of the Markov-switching DSGE models, two types of struc-

tural breaks (Markov chains) and two states (regimes) for each break in chapter 4.

The first model permits the regime shifts in the standard deviations of the exoge-

nous shocks including [σR, σz, σy∗ , σπ∗ , σq]. The construction of the first model is

motivated by the idea to capture whether there is good luck (low volatility) or bad

luck (high volatility) in the researched economy within the sample period. The

first model defines the transition probability of the first type of Markov chain as:

Prob[St = 2|St = 1] = Q12, P rob[St = 1|St = 2] = Q21. (4.4)

The second Markov-switching DSGE model enables the regime shifts in the mon-

etary policy parameters including [φπ, φy, φ4e, φ4y, ρR]. The construction of the

second model is to whether there is a potential change in the monetary policy

within the sample period. The second model defines the transition probability of

the second type of Markov chain as:

Prob[St = 2|St = 1] = P12, P rob[St = 1|St = 2] = P21. (4.5)
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The third model allows the two types of regime shifts to happen together. The

construction of the third model investigates whether the two independent Markov

chains can exist simultaneously in a researched economy within the sample pe-

riod. The third model still denotes Q and P as the transition probability for each

Markov chain.

Farmer et al. (2008[32]) updates equation 4.2 to a model with time invariant

parameters:

B∗xt+1 = A∗xt + G∗ξt+1, (4.6)

where B∗, A∗ and G∗ are functions of the structural parameters and the transition

probabilities. Farmer et al. (2008) defines that there is a minimal state variable

solutions both satisfying the equation 4.2 and 4.6. When the solution is unique

and stable, Farmer et al. (2008) rewrites the above equation 4.6 as follows:

xt = Φ1(ΘSt)xt−1 + Φξ(ΘSt)ξt, ξt ∼ iidN(0,ΣSt). (4.7)

Chapter 4 uses the same measurement equations introduced in chapter 2 to connect

the observable variables to the model variables. The original parameter sapce

expands to include the parameters rA, πA and γQ. Furthermore, the combination

between the measurement equations and equation 4.7 can lead to the following

equation:

dt = Ψ0(ΘSt) + Ψ1(ΘSt)t+ Ψ2(ΘSt)xt + ut, (4.8)

where dt is the vector of the observable variables [robst , πobst ,4yobst ,4eobst ,4qobst ]′

and ut is the vector of measurement errors.

ut ∼ iidN(0,Σu) (4.9)

Equation 4.7 and 4.8 provide a state-space representation of the DSGE model

which offers a joint density for the observable and model variables:

p(D1:T , X1:T |ΘSt) =
T∏
t=1

p(dt, xt|D1:t−1, X1:t−1,ΘSt) =
T∏
t=1

p(dt|xt,Θ)p(xt|xt−1,ΘSt),

(4.10)
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where D1:T = d1, d2, ..., dT and X1:T = x1, x2, ..., xT . The equation above brings in

the beginning of the Bayesian inference, which is a method comprising of the like-

lihood function p(D1:T |ΘSt) and the prior distribution of the relevant parameters

p(ΘSt):

p(ΘSt |D1:t) =
p(ΘSt)p(D1:T |ΘSt)

p(D1:T )
, (4.11)

where p(D1:t) is defined as the marginal likelihood:

p(D1:t) =

∫
p(D1:t|ΘSt)p(ΘSt)dΘSt . (4.12)

Moreover, ΘSt actually incorporates the structural parameter Θ, the transition

probability φ∗, and the latent state variables S1:t.Thus, the posterior distribution

in the equation 4.11 can be rewritten as the following equation:

p(ΘSt|D1:t) = p(Θ, φ∗, S1:t|D1:t) =
p(Θ, φ∗)p(S1:t|φ∗)p(D1:T |Θ, φ∗, S1:t)

p(D1:T )
, (4.13)

where p(Θ, φ∗) are the prior distributions for the structural parameters Θ and the

transition probability φ∗, p(S1:t|φ∗) are the prior distributions for the latent state

variables and p(D1:T |Θ, φ∗, S1:t) is the likelihood function. Moreover, the marginal

data density p(D1:t) can be updated as followed:

p(D1:t) =

∫
p(D1:T |Θ, φ∗, S1:t))p(Θ, φ

∗)p(S1:t|φ∗)d(Θ, φ∗, S1:t). (4.14)

The goal is to compute the moments of the posterior distributions p(Θ, φ∗, S1:t|D1:t).

As mentioned in chapter 2, I implement the Markov Chain Monte Carlo (MCMC)

method to draw the Bayesian posterior distribution approximately. First, I use

Sim’s optimization routine Csmiwel to maximize the log-likelihood function nu-

merically and arrive at the posterior mode ΘML
St

. Second, I calculate the inverse

Hessian matrix ΣΘSt
at the posterior mode to generate the covariance matrix

of the approximate multi-normal distribution ΘSt ∼ N(ΘML
St

,ΣΘSt
), which is a

benchmark of the proposed density q(z|ΘSt , D1:t). Third, I apply the Metropolis-

Hastings algorithm to generate N = 200, 000 draws from the posterior distribution

and the first M = 10, 000 draws are burned. Meanwhile, adjust the jump scale

to have a acceptance rate between 0.2 and 0.4. Finally, I calculate the posterior

means of the selected draws by Monte Carlo method. All the algorithms of the
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solution and estimation above can be incorporated within a very efficient and flex-

ible toolbox named RISE invented by professor Junior Maih (Maih,2015[62]).

Table 4.1 reports the estimation results of the constant parameter DSGE models

with the best data fitting for the UK and Canada. Chapter 4 regards these models

as the benchmark models at the second stage of model comparison. Section 3 and

section 4 solve and estimate the three kinds of Markov-switching DSGE models

for the UK and Canada, respectively. In comparison with the constant parameter

DSGE models, the following two sections examine whether there is an improve-

ment of the data fitting when introducing a specific type of Markov-switching

parameters. Apart from the model comparison, these two sections also report the

variance decompositions for each type of the regime in the three Markov-switching

models and provide historical decompositions of the time series data with the best

data fitting DSGE model.
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Table 4.1: Parameter Estimation Results of the Benchmark Models

Prior Posterior

UK Canada UK Canada

Parameters Mean Mean Mean 90%interval Mean 90%interval

τ 0.500 0.308 [0.151,0.451] 0.282 [0.161,0.406]

κ 0.300 0.366 [0.174,0.547] 0.669 [0.372,0.953]

φπ 1.500 2.249 [1.516,2.946] 1.945 [1.304,2.567]

φy 0.125 0.097 [0.043,0.147] 0.078 [0.034,0.121]

φ4y 0.125 0.183 [0.133,0.234] 0.156 [0.080,0.230]

φ4e 0.125 0.128 [0.067,0.188]

ρR 0.500 0.812 [0.749,0.875] 0.765 [0.687,0.849]

ρz 0.200 0.536 [0.411,0.663] 0.387 [0.290,0.486]

ρq 0.400 0.103 [0.010,0.193] 0.538 [0.422,0.658]

ρπ∗ 0.800 0.604 [0.448,0.775] 0.441 [0.310,0.570]

ρy∗ 0.900 0.949 [0.916,0.986] 0.955 [0.923,0.987]

α 0.200 0.128 [0.082,0.175] 0.140 [0.085,0.187]

r(A) 3.350 2.470 3.127 [2.674,3.594] 2.335 [1.790,2.899]

π(A) 1.920 1.620 2.182 [1.633,2.753] 1.835 [1.202,2.442]

γ(Q) 0.620 0.730 0.660 [0.595,0.722] 0.732 [0.668,0.795]

σR 0.500 0.149 [0.120,0.178] 0.284 [0.214,0.349]

σz 1.500 1.000 0.914 [0.433,1.409] 1.712 [0.850,2.567]

σy∗ 1.500 1.262 [0.463,2.112] 0.833 [0.390,1.281]

σπ∗ 0.550 2.507 [2.132,2.858] 2.366 [2.016,2.713]

σq 1.500 1.212 [1.033,1.393] 1.916 [1.647,2.187]

Log MDD -501.064 -582.077

Note:The table reports the constant parameter estimation results of the UK and Canada

best fit the data in chapter 3.
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4.3 Estimated Markov Switching DSGE Models

for the UK

This section estimates three kinds of Markov-Switching DSGE models for the UK,

which includes four components. The first component provides the estimated re-

sults, numerical solutions and variance decomposition of the model one with the

switching variances. The second component provides the estimated results, nu-

merical solutions and variance decomposition of the model two with the switching

monetary policy parameters. The third component provides the estimated re-

sults, numerical solutions and variance decomposition of the model three with the

switching variances and the switching policy parameters. The final component

presents an overall model comparison and yields a general analysis of the UK data

based on the best fitting model.

Table 4.2 presents the prior distributions of the structural parameters for the

UK prepared for the estimation of the Markov-switching parameters. The struc-

tural parameters in chapter 3 and chapter 4 share the same prior distributions.

As mentioned before, there are two types of independent Markov chains, and each

chain includes two regimes. The first Markov chain Q controls the shifts of the

standard deviations across the two regimes representing low and high volatilities,

respectively. The prior means of the transition probability in the first chain, Q1,2

and Q2,1, are both 0.1. The second Markov chain P controls the shifts of the policy

parameters across the two regimes representing more strict and less strict inflation

targeting behaviours correspondingly. The prior means of the transition probabil-

ity in the second chain, P1,2 and P2,1, are both 0.1. Overall, it is helpful to notice

that the standard deviations of the exogenous shocks are permitted to shift across

low volatility and high volatility in the model one and the model three, while the

policy parameters are allowed to shift across more strict inflation targeting and

less strict inflation targeting in the model two and the model three.
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Table 4.2: Prior Distributions of the Structural Parameters for the UK

Parameters Domain Density Para(1) Para(2) Model Spec

τ [0,1) Beta 0.5 0.2

κ R+̂ Gamma 0.3 0.2

φπ R+̂ Gamma 1.5 0.5 Model 2 & 3

φy R+̂ Gamma 0.125 0.05 Model 2 & 3

φ4y R+̂ Gamma 0.125 0.05 Model 2 & 3

ρR [0,1) Beta 0.5 0.25 Model 2 & 3

ρz [0,1) Beta 0.2 0.1

ρq [0,1) Beta 0.4 0.2

ρπ∗ [0,1) Beta 0.8 0.1

ρy∗ [0,1) Beta 0.9 0.05

α [0,1) Beta 0.2 0.05

r(A) R+̂ Normal 3.35 1

π(A) R+̂ Normal 1.92 1

γ(A) R+̂ Gamma 0.62 0.2

σR R+̂ Inverse Gamma 0.5 4 Model 1 & 3

σz R+̂ Inverse Gamma 1.5 4 Model 1 & 3

σy∗ R+̂ Inverse Gamma 1.5 4 Model 1 & 3

σπ∗ R+̂ Inverse Gamma 0.55 4 Model 1 & 3

σq R+̂ Inverse Gamma 1.5 4 Model 1 & 3

P12 [0,1) Beta 0.1 0.05 Model 2 & 3

P21 [0,1) Beta 0.1 0.05 Model 2 & 3

Q12 [0,1) Beta 0.1 0.05 Model 1 & 3

Q21 [0,1) Beta 0.1 0.05 Model 1 & 3

Note: The table introduces the prior distributions of the structural parameters for

the UK.Para(1) and Para(2) are the means and the standard deviations for the

relevant distributions,respectively.
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4.3.1 UK: the Model One with Switching Variances

Table 4.3 produces the estimation results of the model one for the UK. This model

allows the vector of the standard deviations of exogenous shocks [σR, σz, σy∗ , σπ∗ , σq]

to shift between two regimes. The posterior mean of the transition probability from

regime 1 representing low volatility to regime 2 representing high volatility Q12 is

0.064, while the transition probability from regime 2 to the regime 1 Q21 is 0.090.

The asymmetric transition reflects that it is more likely to hold good luck than to

take bad luck persistently in the UK within the sample period.

More specifically, regime 1 stands for the low level of volatilities with the posterior

means being [0.141, 0.326, 0.710, 2.288, 0.927] compared to [0.213, 1.653, 2.569, 4.125

, 3.506] in regime 2. The differences between the two vectors are significant. The

standard deviation of the rate change of the technology shock σz in regime 2 is

five times larger than in regime 1. The standard deviations of the world output

shock σy∗ and the rate change of the terms of trade shock σq are three times

larger than in regime 1. The standard deviations of the monetary policy shock σR

and the foreign inflation shock σπ∗ almost double in regime 2. The calculated log

marginal density is −468.588 calculated from the equation (4.14) for the model

one with the Markov-switching variances, which is much bigger compared to the

log marginal density produced from the constant parameter model with the best

data fitting(−501.064) from the equation (3.1).
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Table 4.3: Model One with Markov-Switching Vari-

ances(UK)

Regime 1: Regime 2:

Low volatility High volatility

parameter mean 90% interval mean 90% interval

τ 0.272 [0.159,0.409]

κ 0.557 [0.270,0.967]

φπ 1.969 [1.393,2.691]

φy 0.162 [0.093,0.246]

φ4y 0.134 [0.083,0.189]

ρR 0.780 [0.705,0.844]

ρz 0.636 [0.540,0.728]

ρq 0.131 [0.028,0.277]

ρπ∗ 0.555 [0.390,0.728]

ρy∗ 0.935 [0.884,0.974]

α 0.131 [0.081,0.188]

r(A) 3.439 [3.069,3.806]

π(A) 1.869 [1.148,2.567]

γ(A) 0.703 [0.669,0.734]

σR 0.141 [0.113,0.176] 0.213 [0.133,0.364]

σz 0.326 [0.203,0.501] 1.653 [0.822,2.960]

σy∗ 0.710 [0.322,1.303] 2.569 [1.011,5.469]

σπ∗ 2.288 [1.898,2.712] 4.125 [2.623 ,6.147]

σq 0.927 [0.782,1.110] 3.506 [1.951,6.647]

Q12 0.064 [0.028,0.110]

Q21 0.090 [0.034,0.168]

Note:The table reports posterior means and 90% probability

interval of the model one for the UK.
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Numerical Solution and Simulation Results for the UK in the Model

One

There are two regimes in the model one with switching variances, and accordingly,

there are two solutions for the same model. Table 4.4 provides the numerical solu-

tion to regime 1 representing low volatility of the model one, and table 4.5 provides

the numerical solution to regime 2 representing high volatility of the same model.

Table 4.4 brings in the information to compute the impulse response functions

of the four endogenous variables including ỹyt,πt,r̃t and 4ẽt in regime 1:


ỹyt

πt

r̃t

4ẽt


=


−0.470 0.200 −0.530 0 0.081 0.005

−0.930 0.322 0.214 0 0.160 −0.007

0.297 0.173 0.003 0 −0.051 −0.002

−0.930 0.322 0.214 −0.555 0.160 −0.121





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+


−0.085 0.102 0.035 −0.402 0

−0.168 0.165 −0.049 0.163 0

0.054 0.089 −0.015 0.002 0

−0.168 0.165 −0.855 0.163 −2.288





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (4.15)

where the second matrix in the above equation embodies the impact of the struc-

tural shocks on the real output, inflation rate, nominal interest rate and depreci-

ation exchange rate in regime 1. Figure 4.1 depicts the impulse responses of the

four mentioned endogenous variables to one unit structural shock of regime 1 with

solid and blue lines. One major difference from chapter 3 is that the estimated

standard deviations of the structural shocks have already entered into the second

coefficient matrix above and thus, the standard deviations in figure 4.1 are all

assumed to be one.

Table 4.5 provides information to compute the impulse response functions of the
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four endogenous variables including ỹyt,πt,r̃t and 4ẽt in regime 2:


ỹyt

πt

r̃t

4ẽt


=


−0.470 0.200 −0.530 0 0.081 0.005

−0.930 0.322 0.214 0 0.160 −0.007

0.297 0.173 0.003 0 −0.051 −0.002

−0.930 0.322 0.214 −0.555 0.160 −0.121





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+


−0.128 0.519 0.132 −1.456 0

−0.254 0.837 −0.186 0.589 0

0.081 0.451 −0.058 0.008 0

−0.254 0.837 −3.233 0.589 −4.125





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (4.16)

where the second matrix in the above equation represents the impact of the struc-

tural shocks on the real output, inflation rate, nominal interest rate and depreci-

ation exchange rate in regime 2. Figure 4.1 depicts the impulse responses of the

four mentioned endogenous variables to one unit structural shock of regime 2 with

dashed and red lines.

Figure 4.1 compares the impulse response functions of the two regimes in the

model one. Holding everything else constant, a unit of the standard deviation of

the monetary policy shock will exert a −0.085 impact on the real output deviation

in regime 1 while −0.128 in the regime 2; a −0.168 impact on the inflation in

regime 1 while −0.254 in regime 2;a 0.054 impact on the nominal interest rate

deviation in regime 1 while 0.081 in regime 2; a −0.168 impact on the nominal

exchange rate depreciation in regime 1 while −0.254 in regime 2.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of the terms of trade will exert a 0.035 impact on the real out-

put deviation in regime 1 while 0.132 in regime 2; a −0.049 impact on the inflation

in regime 1 while −0.186 in regime 2;a −0.015 impact on the nominal interest rate
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deviation in regime 1 while −0.058 in regime 2; a −0.855 impact on the nominal

exchange rate depreciation in regime 1 while −3.233 in regime 2.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of the technology will exert a 0.102 impact on the real output

deviation in regime 1 while 0.519 in regime 2; a 0.165 impact on inflation in regime

1 while 0.837 in regime 2;a 0.089 impact on the nominal interest rate deviation in

regime 1 while 0.451 in regime 2; a 0.165 impact on the nominal exchange rate

depreciation in regime 1 while 0.837 in regime 2.

Holding everything else constant, a unit of the standard deviation of the shock

to the world output deviation will exert a −0.402 impact on the real output devi-

ation in regime 1 while −1.456 in regime 2; a 0.163 impact on inflation in regime

1 while 0.589 in regime 2;a 0.002 impact on the nominal interest rate deviation in

regime 1 while 0.008 impact regime 2; a 0.163 impact on the nominal exchange

rate depreciation in regime 1 while 0.589 in regime 2.

Holding everything else constant, a unit of the standard deviation of the shock

to the world inflation will only exert a −2.288 impact on the nominal exchange

rate depreciation in regime 1 while −4.125 in the regime 2.
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Figure 4.1: Impulse responses,UK(Model One). Note:The figure depicts the im-

pulses responses of real output, inflation rate, nominal interest rate and depreci-

ation exchange rate to one unit structural shock of regime 1 representing the low

volatility(solid and blue lines)and regime 2 representing the high volatility(dashed

and red lines).
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Variance Decomposition of the Model One for the UK

Table 4.6 reports the variance decomposition of the model one with the switching

variances for the UK. It summarise the major contributions to the variation of the

four endogenous variables ỹyt,πt,r̃t and 4ẽt as follows. First, the world output

shock ξ
y∗t
t contributes most to the variation of the output deviation ỹyt in both

of the two regimes. Second, the world output shock ξ
y∗t
t contributes most to the

variation of the inflation πt in regime 1 while the change rate of technology shock

ξzt contributes most in regime 2. Third, the change rate of the technology shock ξzt

contributes most to the variation of the interest rate r̃t in both of the two regimes.

Finally, the world inflation shock ξ
π∗t
t contributes most to the variation of nominal

exchange rate depreciation 4ẽt in both of the two regimes.

Table 4.6 also compares the contributions of the same structural shock in dif-

ferent regimes. The policy shock ξRt contributes 0.51% to the variation of the

output deviation ỹyt in regime 1 while 0.09% in regime 2,29.93% to the variation

of inflation πt in the regime 1 while only 5.07% in regime 2,10.05% to the variation

of interest rate r̃t in regime 1 while only 1.17% in regime 2,0.39% to the variation

of exchange rate depreciation 4ẽt in regime 1 while 0.21% in regime 2.

The terms of trade shock ξqt contributes 0.09% to the variation of the output

deviation ỹyt in regime 1 while 0.10% in regime 2,2.41% to the variation of infla-

tion πt in regime 1 while 2.61% in regime 2,0.96% to the variation of interest rate

r̃t in regime 1 while only 0.71% in regime 2,8.79% to the variation of exchange rate

depreciation 4ẽt in regime 1 while 28.88% in regime 2.

The change rate of the technology shock ξzt contributes 0.70% to the variation

of the output deviation ỹyt in regime 1 while 1.38% in regime 2,25.81% to the

variation of inflation πt in regime 1 while 50.24% in regime 2,59.54% to the varia-

tion of interest rate r̃t in regime 1 while 78.38% in regime 2,0.34% to the variation

of exchange rate depreciation 4ẽt in regime 1 while 2.04% in regime 2.
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The world output shock ξ
y∗t
t contributes 98.69% to the variation of the output

deviation ỹyt in regime 1 while 98.44% in regime 2,42.45% to the variation of

inflation πt in the regime 1 while 42.08% in regime 2,29.45% to the variation of

interest rate r̃t in regime 1 while 19.74% in regime two,0.57% to the variation of

exchange rate depreciation 4ẽt in regime 1 while 1.71% in regime 2.

The world inflation shock ξ
π∗t
t contributes 89.91% to the variation of exchange

rate depreciation 4ẽt in regime 1 while 67.17% in regime 2. It contributes nothing

to the variation of the other three endogenous variables.
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Table 4.6: Variance Decomposition of the Model One for the UK

Regime 1 Output Inflation interest rate Exchange rate depreciation

Policy 0.51 29.33 10.05 0.39

Terms of trade 0.09 2.41 0.96 8.79

Technology 0.70 25.81 59.54 0.34

World output 98.69 42.45 29.45 0.57

World inflation 0.00 0.00 0.00 89.91

Regime 2 Output Inflation interest rate Exchange rate depreciation

Policy 0.09 5.07 1.17 0.21

Terms of trade 0.10 2.61 0.71 28.88

Technology 1.38 50.24 78.38 2.04

World output 98.44 42.08 19.74 1.71

World inflation 0.00 0.00 0.00 67.17

Note:(a)The table reports the variance decomposition of model one for the UK.

(b)Regime 1 is characterized as low volatility compared to Regime 2.
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4.3.2 UK: the Model Two with the Switching Taylor Rule

Table 4.7 presents the estimated results of the model two for the UK. This model

allows the vector of the policy parameters [φπ, φy, φ4y, ρR] to shift between two

regimes. The posterior mean of the transition probability from regime 1 repre-

senting more strict inflation targeting to regime 2 representing less strict inflation

targeting (P12) is 0.101, while from regime 2 to regime 1 (P21) is 0.042. The

asymmetric transition indicates that it is more likely to hold less strict inflation

targeting persistently in the UK within the sample period.

More specifically, regime 1 stands for more strict inflation targeting with the pos-

terior mean of φπ being 2.093 compared to 1.641 in regime 2. Next, the posterior

mean of ρR in regime 1 is just 0.387 compared to 0.83 in regime 2. Also, the

posterior mean of the coefficients of the output deviations from steady states φy

in regime 1 is three times smaller than it in regime 2. Finally, the difference

between the coefficient of the rate change of the output deviations φ4y is less sig-

nificant across the two regimes. The calculated marginal density is −488.018 for

the model with the Markov-switching policy parameters, which is bigger compared

to the constant parameter model with the best data fitting (−501.064).
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Table 4.7: Model Two with Markov-Switching Policy Parameters(UK)

Regime 1: Regime 2:

more strict inflation targetting less strict inflation targeting

parameter mean 90% interval mean 90% interval

τ 0.308 [0.175,0.457]

κ 0.176 [0.082,0.310]

φπ 2.093 [1.470,2.894] 1.641 [1.195,2.140]

φy 0.047 [0.022,0.084] 0.159 [0.093,0.238]

φ4y 0.129 [0.062,0.220] 0.137 [0.088,0.193]

ρR 0.387 [0.075,0.867] 0.830 [0.770,0.881]

ρz 0.603 [0.484,0.711]

ρq 0.094 [0.018,0.212]

ρπ∗ 0.598 [0.435,0.763]

ρy∗ 0.950 [0.904,0.983]

α 0.110 [0.077,0.150]

r(A) 3.640 [3.181,4.081]

π(A) 1.248 [0.291,2.204]

γ(A) 0.693 [0.664,0.721]

σR 0.120 [0.099,0.145]

σz 0.611 [0.333,1.050]

σy∗ 1.599 [0.667,2.998]

σπ∗ 2.519 [2.174,2.921]

σq 1.213 [1.046,1.409]

P12 0.101 [0.035,0.196]

P21 0.042 [0.016,0.080]

Note:The table reports posterior means and 90% probability interval of the model

two for the UK.
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Numerical Solution and Simulation Results for the UK in the Model

Two

There are two regimes in the model two with the Markov-switching policy parame-

ters. Table 4.8 presents the numerical solution to regime 1 representing more strict

inflation targeting of the model two, and table 4.9 brings the numerical solution

to regime 2 representing less strict inflation targeting of the same model.

Table 4.8 contributes to computing the impulse response functions for the four

endogenous variables including ỹyt,πt,r̃t and 4ẽt in the regime 1:


ỹyt

πt

r̃t

4ẽt


=


−0.181 0.185 −0.415 0 0.060 0.007

−0.119 0.120 0.045 0 0.040 −0.006

0.205 0.184 −0.008 0 −0.068 −0.006

−0.119 0.120 0.045 −0.598 0.040 −0.089





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+


−0.056 0.188 0.084 −0.699 0

−0.037 0.122 −0.075 0.075 0

0.064 0.186 −0.083 −0.013 0

−0.037 0.122 −1.155 0.075 −2.519





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (4.17)

where the second matrix in the above equation incorporates the impact of the

structural shocks on the real output, inflation rate, nominal interest rate and de-

preciation exchange rate regime 1. Figure 4.2 depicts the impulse responses of the

four endogenous variables to one unit structural shock in regime 1 with solid and

blue lines.

Table 4.9 provides information to compute the impulse response functions of the
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four endogenous variables including ỹyt,πt,r̃t and 4ẽt in regime 2:


ỹyt

πt

r̃t

4ẽt


=


−0.970 0.268 −0.315 0 0.160 0.004

−0.866 0.164 0.156 0 0.143 −0.007

0.429 0.090 −0.008 0 −0.071 −0.001

−0.866 0.164 0.156 −0.598 0.143 −0.091





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+


−0.140 0.272 0.047 −0.530 0

−0.125 0.166 −0.090 0.263 0

0.062 0.091 −0.017 −0.003 0

−0.125 0.166 −1.170 0.263 −2.519





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (4.18)

where the second matrix in the above equation embodies the impact of the struc-

tural shocks on the real output, inflation rate, nominal interest rate and depreci-

ation exchange rate in regime 2. Figure 4.2 depicts the impulse responses of the

four endogenous variables to one unit structural shock of regime 2 with dashed

and red lines.

Figure 4.2 compares the impulse response functions of the two regimes in the

model two with the Markov-switching policy parameters. Holding everything else

constant, a unit of the standard deviation of monetary policy shock will exert a

−0.056 impact on the real output deviation in regime 1 while −0.140 in regime 2; a

−0.037 impact on inflation in regime 1 while −0.125 in regime 2;a 0.064 impact on

the nominal interest rate deviation in regime 1 while 0.062 in regime 2; a −0.037

impact on the nominal exchange rate depreciation in regime 1 while −0.125 in

regime 2.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of terms of trade will exert a 0.084 impact on the real output

deviation in regime 1 while 0.047 in regime 2; a −0.075 impact on inflation in
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regime 1 while −0.090 in regime 2;a −0.083 impact on the nominal interest rate

deviation in regime 1 while −0.017 in regime 2; a −1.155 impact on the nominal

exchange rate depreciation in regime 1 while −1.170 regime 2.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of technology will exert a 0.188 impact on the real output de-

viation in regime 1 while 0.272 in regime 2; a 0.122 impact on inflation in regime

1 while 0.166 in regime 2;a 0.186 impact on the nominal interest rate deviation in

regime 1 while 0.091 in regime 2; a 0.122 impact on the nominal exchange rate

depreciation in regime 1 while 0.166 in regime 2.

Holding everything else constant, a unit of the standard deviation of the shock

to the world output deviation will exert a −0.699 impact on the real output devi-

ation in regime 1 while −0.530 in regime 2; a 0.075 impact on inflation in regime

1 while 0.263 in regime 2;a −0.013 impact on the nominal interest rate deviation

in both regime 1 and regime 2; a 0.075 impact on the nominal exchange rate de-

preciation in regime 1 while 0.263 in regime 2.

Holding everything else constant, a unit of the standard deviation of the shock

to the world inflation will only exert a −2.519 impact on the nominal exchange

rate depreciation in both regime 1 and regime 2.
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Figure 4.2: Impulse responses,UK(Model Two). Note:The figure depicts the im-

pulses responses of real output, inflation rate, nominal interest rate and depreci-

ation exchange rate to one unit structural shock of regime 1 representing more

strict inflation targeting(solid and blue lines)and regime 2 representing less strict

inflation targeting(dashed and red lines).
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Variance Decomposition of the Model Two for the UK

Table 4.10 presents the variance decomposition of the model two with the Markov-

switching policy parameters for the UK. It summarises the major contributions to

the variation of the four endogenous variables ỹyt,πt,r̃t and 4ẽt as follows. First,

the world output shock ξ
y∗t
t contributes most to the variation of the output de-

viation ỹyt in both of the two regimes. Second, the change rate of technology

shock ξzt contributes most to the variation of the inflation πt in regime 1 while the

world output shock ξ
y∗t
t contributes most in regime 2. Third, the change rate of

the technology shock ξzt contributes most to the variation of the interest rate r̃t in

regime 1 while the world output shock ξ
y∗t
t contributes most in regime 2. Finally,

the world inflation shock ξ
π∗t
t contributes most to the variation of nominal exchange

rate depreciation 4ẽt in both of the two regimes.

The policy shock ξRt contributes 0.06% to the variation of the output deviation ỹyt

in regime 1 while 0.61% in regime 2,3.16% to the variation of inflation πt in regime

1 while only 9.34% in regime 2,4.25% to the variation of interest rate r̃t in regime 1

while 8.96% in regime 2,0.01% to the variation of exchange rate depreciation 4ẽt

in regime 1 while 0.21% in regime 2.

The change of the terms of trade shock ξqt contributes 0.14% to the variation

of the output deviation ỹyt in regime 1 while 0.07% in regime 2,12.22% to the

variation of inflation πt in the regime 1 while only 3.34% in regime 2,7.72% to the

variation of interest rate r̃t in regime 1 while only 0.82% in regime 2,11.92% to the

variation of exchange rate depreciation 4ẽt in regime 1 while 11.96% in regime 2.

The change rate of the technology shock ξzt contributes 0.81% to the variation

of the output deviation ỹyt in regime 1 while 1.82% in regime 2,42.60% to the

variation of inflation πt in regime 1 while 12.42% in regime 2,65.00% to the varia-

tion of interest rate r̃t in regime 1 while 30.78% in regime 2,0.18% to the variation

of exchange rate depreciation 4ẽt in regime 1 while 0.28% in regime 2.
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The world output shock ξ
y∗t
t contributes 99.00% to the variation of the output

deviation ỹyt in regime 1 while 97.50% in regime 2,42.02% to the variation of in-

flation πt in regime 1 while 74.89% in regime 2,23.03% to the variation of interest

rate r̃t in regime 1 while 59.43% in regime 2,0.17% to the variation of exchange

rate depreciation 4ẽt in regime 1 while 1.67% in regime 2.

The world inflation shock ξ
π∗t
t contributes 87.72% to the variation of exchange

rate depreciation 4ẽt in regime 1 while 85.88% in regime 2. It contributes nothing

to the variation of the other three endogenous variables.
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Table 4.10: Variance decomposition of the Model Two for the UK

Regime 1 Output Inflation interest rate Exchange rate depreciation

Policy 0.06 3.16 4.25 0.01

Terms of trade 0.14 12.22 7.72 11.92

Technology 0.81 42.60 65.00 0.18

World output 99.00 42.02 23.03 0.17

World inflation 0.00 0.00 0.00 87.72

Regime 2 Output Inflation interest rate Exchange rate depreciation

Policy 0.61 9.34 8.96 0.21

Terms of trade 0.07 3.34 0.82 11.96

Technology 1.82 12.42 30.78 0.28

World output 97.50 74.89 59.43 1.67

World inflation 0.00 0.00 0.00 85.88

Note:(a)The table reports the variance decomposition of the model two for the UK.

(b)Regime 1 is characterized as more strict inflation targeting compared to Regime 2.
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4.3.3 UK: the Model Three with Switching Variances and

Switching Policy Parameters

Table 4.11 reports the estimated results of the model three with Markov-switching

variances and Markov-switching policy parameters for the UK. This model enables

the vector of the standard deviations of exogenous shocks [σR, σz, σy∗ , σπ∗ , σq] and

the vector of the coefficients of Taylor rule [φπ, φy, φ4y, ρR] to follow two inde-

pendent Markov chains respectively and shift between two regimes in each of the

chain. The posterior mean of the transition probability from regime 1 to regime

2 (Q12) for the first Markov chain is 0.070 while from regime 2 to regime 1 (Q21)

is 0.080. The posterior mean of the transition probability for the second Markov

chain from regime 1 to regime 2 (P12) is 0.075 while from regime 2 to regime 1

(P21) is 0.134.

The combinations of the two regimes in each Markov chain will lead to four regimes.

Regime 1 stands for low volatility and more strict inflation targeting. Regime 2

represents high volatility and more strict inflation targeting. Regime 3 serves as

low volatility and less strict inflation targeting. Regime 4 substitutes for high

volatility and less strict inflation targeting. Table 4.11 directly provides empirical

results for regime 1 and regime 4. Exchanging the vector of coefficients of Taylor

rule yields regime 3 in the place of regime 1 and regime 2 in the place of regime 4.

More specifically, regime 1 and regime 2 represent more strict inflation target-

ing with the posterior mean of φπ being 2.540 compared to 1.339 in regime 3 and

regime 4. Next, the posterior mean of the coefficient of output deviation φy in

regime 1 and regime 2 is 0.155 compared to 0.194 in regime 3 and regime 4. Fur-

thermore, the posterior mean of the rate change of output φ4y in regime 1 and

regime 2 is two times larger than it in regime 3 and regime 4. Finally, the posterior

mean of the persistence ratio ρR in regime 1 and regime 2 is 0.707 compared to

0.963 in regime 3 and regime 4.
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Moreover, regime 1 and regime 3 substitute for the low level of volatility with the

posterior means of the above standard deviations being [0.195, 0.654, 0.784, 2.144,

0.922] compared to [0.322, 3.993, 2.082, 4.260, 2.849] in regime 2 and regime 4. The

differences between the two vectors are significant. The standard deviation of the

rate change of the technology shock σz in regime 2 and regime 4 is six times larger

than in regime 1 and regime 3. The standard deviations of the world output shock

σy∗ and the rate change of the terms of trade shock σq are three times larger than

in regime 1 and regime 3. The standard deviations of nominal interest rate shock

σR and foreign inflation shock σπ∗ almost double in regime 2 and regime 4.

The calculated marginal density is −469.735 for model three with the two inde-

pendent Markov chains, which is much bigger compared to the constant parameter

model (−501.064).
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Table 4.11: Model Three with 2 Markov Chains(UK)

Regime 1: Regime4:

parameter mean 90% interval mean 90% interval

τ 0.286 [0.187,0.400]

κ 0.646 [0.272,1.341]

φπ 2.540 [1.800,3.353] 1.339 [1.026,1.896]

φy 0.155 [0.084,0.256] 0.194 [0.088,0.336]

φ4y 0.175 [0.097,0.249] 0.084 [0.034,0.155]

ρR 0.707 [0.578,0.801] 0.967 [0.778,0.994]

ρz 0.545 [0.464,0.665]

ρq 0.061 [0.014,0.149]

ρπ∗ 0.516 [0.356,0.689]

ρy∗ 0.966 [0.926,0.989]

α 0.139 [0.074,0.199]

r(A) 3.373 [3.027,3.735]

π(A) 2.319 [1.520,3.057]

γ(A) 0.697 [0.659,0.734]

σR 0.195 [0.143,0.248] 0.322 [0.187,0.516]

σz 0.654 [0.275,0.969] 3.993 [1.221,5.918]

σy∗ 0.784 [0.336,1.452] 2.082 [0.884,3.601]

σπ∗ 2.144 [1.805,2.553] 4.260 [2.628,6.168]

σq 0.922 [0.785,1.130] 2.849 [1.737,4.190]

P12 0.075 [0.036,0.135]

P21 0.134 [0.051,0.238]

Q12 0.070 [0.035,0.119]

Q21 0.080 [0.029,0.141]

Note:The table reports posterior means and 90% probability

interval of the structural parameters in the model three for the

UK.
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Numerical Solution and Simulation Results for the UK in the Model

Three

There are four regimes in the model three with the Markov-switching variances

and the Markov-switching policy parameters. Table 4.12 provides the numerical

solution to regime 1, representing a low level of volatility and more strict inflation

targeting. Table 4.13 presents the numerical solution to regime 2, representing

a high level of volatility and more strict inflation targeting. Table 4.14 presents

the numerical solution to regime 3, representing a low level of volatility and less

strict inflation targeting. Table 4.15 produces the numerical solution to regime 4,

representing a high level of volatility and less strict inflation targeting.

Table 4.12 contributes to computing the impulse response functions of the four

endogenous variables including ỹyt,πt,r̃t and 4ẽt in regime 1:


ỹyt

πt

r̃t

4ẽt


=


−0.300 0.094 −0.559 0 0.074 0.003

−0.670 0.088 0.189 0 0.166 −0.002

0.142 0.086 0.017 0 −0.035 −0.001

−0.670 0.088 0.189 −0.516 0.166 −0.055





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+


−0.083 0.113 0.041 −0.454 0

−0.185 0.105 −0.034 0.153 0

0.039 0.103 −0.017 0.014 0

−0.185 0.105 −0.828 0.153 −2.144





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (4.19)

where the second matrix in the above equation introduces the impact of the struc-

tural shocks on the real output, inflation rate, nominal interest rate and depreci-

ation exchange rate in regime 1.

Table 4.13 provides numerical information to compute the impulse response func-
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tions of the four endogenous variables including ỹyt,πt,r̃t and 4ẽt in regime 2:


ỹyt

πt

r̃t

4ẽt


=


−0.300 0.094 −0.559 0 0.074 0.003

−0.670 0.088 0.189 0 0.166 −0.002

0.142 0.086 0.017 0 −0.035 −0.001

−0.670 0.088 0.189 −0.516 0.166 −0.055





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+


−0.137 0.688 0.128 −1.206 0

−0.305 0.643 −0.106 0.407 0

0.065 0.630 −0.051 0.037 0

−0.305 0.643 −2.560 0.407 −4.260





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (4.20)

where the second matrix in the above equation incorporates the impact of the

structural shocks on the real output, inflation rate, nominal interest rate and de-

preciation exchange rate in regime 2.

Table 4.14 offers information to compute the impulse response functions of the

four endogenous variables including ỹyt,πt,r̃t and 4ẽt in regime 3:


ỹyt

πt

r̃t

4ẽt


=


−4.034 0.189 −0.203 0 0.350 0.002

−10.028 0.286 1.090 0 0.871 −0.004

0.159 0.030 0.030 0 −0.014 0

−10.028 0.286 1.090 −0.516 0.871 −0.057





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+


−0.813 0.227 0.025 −0.165 0

−2.022 0.344 −0.065 0.884 0

0.032 0.036 −0.001 0.024 0

−2.022 0.344 −0.859 0.884 −2.144





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (4.21)
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where the second matrix in the above equation embodies the impact of the struc-

tural shocks on the real output, inflation rate, nominal interest rate and depreci-

ation exchange rate in regime 3.

Table 4.15 brings in numerical information to compute the impulse response func-

tions of the four endogenous variables including ỹyt,πt,r̃t and 4ẽt in the regime

4:


ỹyt

πt

r̃t

4ẽt


=


−4.034 0.189 −0.203 0 0.350 0.002

−10.028 0.286 1.090 0 0.871 −0.004

0.159 0.030 0.030 0 −0.014 0

−10.028 0.286 1.090 −0.516 0.871 −0.057





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+


−1.343 1.384 0.079 −0.438 0

−3.339 2.098 −0.200 2.349 0

0.053 0.218 −0.002 0.064 0

−3.339 2.098 −2.653 2.349 −4.260





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (4.22)

where the second matrix in the above equation includes the impact of the structural

shocks on the real output, inflation rate, nominal interest rate and depreciation

exchange rate in regime 4.

Figure 4.3 compares the impulse response functions between regime 3 and regime 4

in model three with two independent Markov chains. In other words, It compares

the impulse response functions between the high and the low level of the volatility

given the same low coefficient of the inflation rate representing less strict inflation

targeting. It depicts the impulse response functions of a low level of the volatility

with the solid and blue lines, and a high level of the volatility with the dashed and

red lines.
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Holding everything else constant, a unit of the standard deviation of the monetary

policy shock will exert a −0.813 impact on the real output deviation in regime 3

while −1.343 in regime 4; a −2.022 impact on inflation in regime 3 while −3.339

in regime 4;a 0.032 impact on the nominal interest rate deviation in regime 3 while

0.053 in regime 4; a −2.022 impact on the nominal exchange rate depreciation in

regime 3 while −3.339 in regime 4.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of the terms of trade will exert a 0.025 impact on the real out-

put deviation in regime 3 while 0.079 in regime 4; a −0.065 impact on inflation in

regime 3 while −0.200 in regime 4;a −0.001 impact on the nominal interest rate

deviation in regime 3 while −0.002 in regime 4; a −0.859 impact on the nominal

exchange rate depreciation in regime 3 while −2.653 in regime 4.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of the technology will exert a 0.227 impact on the real output

deviation in regime 3 while 1.384 in regime 4; a 0.344 impact on inflation in regime

3 while 2.098 in regime 4;a 0.036 impact on the nominal interest rate deviation in

regime 3 while 0.218 in regime 4; a 0.344 impact on the nominal exchange rate

depreciation in regime 3 while 2.098 in regime 4.

Holding everything else constant, a unit of the standard deviation of the shock

to the world output deviation will exert a −0.165 impact on the real output devi-

ation in regime 3 while −0.438 in regime 4; a 0.884 impact on inflation in regime

3 while 2.349 in regime 4;a 0.024 impact on the nominal interest rate deviation in

regime 3 while 0.064 impact regime 4; a 0.884 impact on the nominal exchange

rate depreciation in regime 3 while 2.349 in regime 4.

Holding everything else constant, a unit of the standard deviation of the shock

to the world inflation will only exert a −2.144 impact on the exchange rate depre-
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ciation in regime 3 while −4.260 in regime 4.

Figure 4.4 compares the impulse response functions between regime 2 and regime

4 in model three with two independent Markov chains. It compares the impulse

response functions between the high and the low level of the coefficient of inflation

given the same high level of volatility. It depicts the impulse response functions of

a high level of the coefficient of inflation with solid and blue lines, and a low level

of the coefficient of inflation with dashed and red lines.

Holding everything else constant, a unit of the standard deviation of the mon-

etary policy shock will exert a −0.137 impact on the real output deviation in

regime 2 while −1.343 in regime 4; a −0.3052 impact on inflation in regime 2

while −3.339 in regime 4;a 0.065 impact on the nominal interest rate deviation

in regime 2 while 0.053 regime 4; a −0.305 impact on the nominal exchange rate

depreciation in regime 2 while −3.339 in regime 4.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of the terms of trade will exert a 0.128 impact on the real out-

put deviation in regime 2 while 0.079 in regime 4; a −0.106 impact on inflation in

regime 2 while −0.200 in regime 4;a −0.051 impact on the nominal interest rate

deviation in regime 2 while −0.002 in regime 4; a −2.560 impact on the nominal

exchange rate depreciation in regime 2 while −2.653 in regime 4.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of the technology will exert a 0.688 impact on the real output

deviation in regime 2 while 1.384 in regime 4; a 0.643 impact on inflation in regime

2 while 2.098 in regime 4;a 0.630 impact on the nominal interest rate deviation in

regime 2 while 0.218 in regime 4; a 0.643 impact on the nominal exchange rate

depreciation in regime 2 while 2.098 in regime 4.
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Holding everything else constant, a unit of the standard deviation of the shock

to the world output deviation will exert a −1.206 impact on the real output devi-

ation in regime 2 while −0.438 in regime 4; a 0.407 impact on inflation in regime

2 while 2.349 in regime 4;a 0.037 impact on the nominal interest rate deviation

regime 2 while 0.064 impact in regime 4; a 0.407 impact on the nominal exchange

rate depreciation in regime 2 while 2.349 in regime 4.

Holding everything else constant, a unit of the standard deviation of the shock

to the world inflation will only exert a −4.260 impact on the nominal exchange

rate depreciation in regime 2 and the regime 4.
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ẽ t

r̃ t
z t

˜ y
y
∗ t

π
∗ t

4
q̃ t

ỹ
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Figure 4.3: Impulse responses,UK(Switching Variance of Model Three). Note:The

figure depicts the impulses responses of real output, inflation rate, nominal inter-

est rate and depreciation exchange rate to one unit structural shock of regime 3

representing a low level of the volatility(solid lines)and regime 4 representing a

high level of the volatility(dashed lines) given less strict inflation targeting.
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Figure 4.4: Impulse responses,UK(Switching Taylor Rules of Model Three).

Note:The figure depicts the impulses responses of real output, inflation rate, nom-

inal interest rate and depreciation exchange rate to one unit structural shock of

regime 2 representing a high level of the coefficient of inflation(solid and blue

lines)and regime 4 representing a low level of the coefficient of inflation (dashed

and red lines) given high levels of volatility.
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Variance Decomposition of the Model Three for the UK

Table 4.16 reports the variance decomposition of the model three with two inde-

pendent Markov chains for the UK. It summarises the major contributions to the

variation of the four endogenous variables ỹyt,πt,r̃t and 4ẽt as follows. First, the

world output shock ξ
y∗t
t contributes most to the variation of the output ỹyt in each

of the four regimes. Second, the world output shock ξ
y∗t
t contributes most to the

variation of the inflation πt in regime 1, the change rate of the technology shock ξzt

contributes most in regime 2 and the policy shock ξRt contributes most in regime

3 and regime 4. Furthermore, the world output shock ξ
y∗t
t contributes most to

the variation of the interest rate r̃t in all the regimes except for regime 2, where

the change rate of the technology shock ξzt contributes most. Finally, the world

inflation shock ξ
π∗t
t contributes most to the variation of the nominal exchange rate

depreciation 4ẽt in all the regimes.

The policy shock ξRt contributes 0.19% to the variation of the output deviation ỹyt

in regime 1, 0.07% in regime 2, 21.04% in regime 3 and 8.77% in regime 4. Next,

it contributes 36.65% to the variation of the inflation πt in regime 1, 11.13% in

regime 2, 81.44% in regime 3 and 53.61% in regime 4. Moreover, it contributes

4.10% to the variation of the interest rate r̃t in regime 1, 0.55% in regime 2, 6.10%

in regime 3 and 1.76% in regime 4. Finally, it contributes 0.51% to the variation

of the exchange rate depreciation 4ẽt in regime 1, 0.30% in regime 2, 40.09% in

regime 3 and 25.18% in regime 4.

The change rate of the terms of trade shock ξqt contributes 0.05% to the varia-

tion of the output deviation ỹyt in regime 1, 0.06% in regime 2,0.02% in regime

3 and 0.03% in regime 4. Next, it contributes 1.50% to the variation of the infla-

tion πt in regime 1, 1.59% in regime 2,0.08% in regime 3 and 0.17% in regime 4.

Moreover, it contributes 0.76% to the variation of the interest rate r̃t in regime 1,

0.36% in regime 2, and nothing in regime 3 and regime 4. Finally, it contributes

9.75% to the variation of the exchange rate depreciation 4ẽt in regime 1, 20.40%
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in regime 2. 5.35% in the regime 3 and 11.78% in regime 4.

The change rate of the technology shock ξzt contributes 0.39% to the variation

of the output deviation ỹyt in regime 1, 2.01% in regime 2, 1.31% in regime 3 and

7.49% in regime 4. Next, it contributes 11.49% to the variation of the inflation

πt in regime 1, 47.70% in regime 2, 2.02% in regime 3 and 18.19% in regime 4.

Furthermore, it contributes 44.16% to the variation of the interest rate r̃t in regime

1, 81.33% in regime 2, 8.89% in regime 3 and 34.96% in regime 4. Finally, it con-

tributes 0.16% to the variation of the exchange rate depreciation 4ẽt in regime 1,

1.30% in regime 2,0.99% in regime 3 and 8.54% in regime 4.

The world output shock ξ
y∗t
t contributes 99.38% to the variation of the output

deviation ỹyt in regime 1, 97.86% in regime 2, 77.63% in regime 3 and 83.71% in

regime 4. Moreover, it contributes 50.37% to the variation of the inflation πt in

regime 1, 39.58% in regime 2,16.47% in regime 3 and 28.04% in regime 4. Next,

it contributes 50.97% to the variation of the interest rate r̃t in regime 1, 17.76%

in regime 2, 85.01% in regime 3 and 63.28% in regime 4. Finally, it contributes

0.70% to the variation of the exchange rate depreciation 4ẽt in regime 1, 1.08%

in regime 2,8.11% in regime 3 and 13,17% in regime 4.

The world inflation shock ξ
π∗t
t contributes 88.88% to the variation of the exchange

rate depreciation 4ẽt in regime 1, 76.91% in regime 2, 45.46% in regime 3 and

41.34% in regime 4. It contributes nothing to the variation of the other three

endogenous variables.
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Table 4.16: Variance Decomposition of the Model Three for the UK

Regime 1 Output Inflation interest rate Exchange rate depreciation

Policy 0.19 36.65 4.10 0.51

Terms of trade 0.05 1.50 0.76 9.75

Technology 0.39 11.49 44.16 0.16

World output 99.38 50.37 50.97 0.70

World inflation 0.00 0.00 0.00 88.88

Regime 2 Output Inflation interest rate Exchange rate depreciation

Policy 0.07 11.13 0.55 0.30

Terms of trade 0.06 1.59 0.36 20.40

Technology 2.01 47.70 81.33 1.30

World output 97.86 39.58 17.76 1.08

World inflation 0.00 0.00 0.00 76.91

Regime 3 Output Inflation interest rate Exchange rate depreciation

Policy 21.04 81.44 6.10 40.09

Terms of trade 0.02 0.08 0.00 5.35

Technology 1.31 2.02 8.89 0.99

World output 77.63 16.47 85.01 8.11

World inflation 0.00 0.00 0.00 45.46

Regime 4 Output Inflation interest rate Exchange rate depreciation

Policy 8.77 53.61 1.76 25.18

Terms of trade 0.03 0.17 0.00 11.78

Technology 7.49 18.19 34.96 8.54

World output 83.71 28.04 63.28 13.17

World inflation 0.00 0.00 0.00 41.34

Note:The table reports the variance decomposition of the model three for the UK. Regime

1(2) is characterised as a low (high) volatility and a high level of coefficient of inflation.

Regime 3(4) is characterised as a low (high) volatility and a low level of coefficient of

inflation. 194



4.3.4 The Model Comparison and Data Analysis for the

UK

Table 4.17 presents the model comparison at the second stage for the UK. It ranks

the models from best to worst in terms of data fitting. As mentioned in chapter 3,

the log marginal data densities lead to the posterior odds ratios, thereby evaluat-

ing the relative performance of models. When the ratio is above than 3 or smaller

than 1
3
, it shows that one mode outperforms or underperforms others significantly

in terms of data fitting.

More specifically, the UK data is firmly in favour of the Markov-switching models

compared to the benchmark model with the best data fitting in chapter 3. The

model one with switching variances ranks first in terms of data fitting, the model

three with two independent Markov chains ranks second, and the model two with

switching policy parameters ranks third. The benchmark model without Markov-

switching parameters ranks last. Thus, introducing either or both of the Markov

chains can improve the performance of the simplified model on data fitting for the

UK.

Figure 4.5 plots the smoothed probability (blue and solid) of regime 2 in the

model one with Markov-switching variances, representing a high level of volatil-

ity, against the actual time series data (red and dashed) in the UK. It scales the

smoothed probability by ten times, except for the first panel, to compare the prob-

ability and data more explicitly. Figure 4.5 shows that regime 2 dominates at the

very beginning and the end of the sample period, which captures the burst of

the currency crisis and the most recent financial crisis, respectively. During that

period, the UK experience domestic shocks ξRt , ξ
z
t and foreign shocks ξqt , ξ

y∗t
t , ξ

π∗t
t

with significantly large variances. Regime 1, representing a low level of volatility,

dominates persistently from early 1992 until late 2007. During that period, the

UK experience domestic shocks and foreign shocks with smaller variances.
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Figure 4.6 plots the smoothed probability (blue and solid) of regime 1 in the model

two with Markov-switching policy parameters, representing more strict inflation

targeting, against the actual time series data (red and dashed) in the UK. Like-

wise, it scales the smoothed probability by ten times, except for the first panel, to

compare the probability and data more explicitly. Figure 4.5 shows that regime 1

begins to dominate the sample period after the most recent financial crisis, which

implies the central bank of England abruptly switches to cut nominal interest rate

aggressively in response to the falling output and the falling expected inflation

rate before zero lower bound. Regime 1, representing less strict inflation target-

ing, dominates the majority periods of the sample until 2008: Q3.

The model comparison at the second stage indicates that the model one with

the Markov-switching variances best fit the UK data. Figure 4.7 plots the histori-

cal decomposition of the UK data given the contributions of the structural shocks

generated from the model one.

Regime 1 dominates from since early 1993 until the most recent financial cri-

sis. First, the world output shock (yellow) contributes most to the variation of

the output growth. Second, the world output shock (yellow), policy shock (green)

and the change rate of the technology shock (purple) offer a major contribution to

the variation of the inflation rate. Next, the change rate of the technology shock

(purple), world output shock (yellow) and the policy shock (green) dominate in

the variation of the nominal interest rate. Finally, the world inflation shock (red)

and the change of the terms of trade shock (blue) dominate in the variation of the

movements of the nominal exchange rate.

Regime 2 prevails in early 1992 and after the most recent financial crisis. First,

The world output shock (yellow) contributes most to the variation of the output

growth. Second, the change rate of the technology shock (purple) and the world

output shock (yellow) offer a major contribution to the variation of the inflation
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rate. Next, the change rate of the technology shock (purple) and the world output

shock (yellow) offer a major contribution to the variation of the nominal interest

rate. Last but not least, the world inflation shock (red) and the change rate of the

terms of trade shock (blue) dominates in the variation of the movements of the

nominal exchange rate.
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Table 4.17: Log Marginal Data Densities and Ranks of the Models for the UK

Models Log MDD Rank of data fitting

Benchmark Model:Constant parameters model -501.064 4

Model 1:Markov-switching in volatility of shocks -468.588 1

Model 2:Markov-switching monetary policy -488.018 3

Model 3:The model with two Markov chains -469.735 2

Note:The table reports the log marginal data densities and ranks for the models in the second

stage of the model comparison. The model one with Markov-switching variances ranks first

in terms of data fitting.
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Figure 4.5: Smoothed probability of high volatility from model one. Note:The

figure depicts the smoother probability of high volatility against the data from the

UK covering sample period 1992:Q4-2008:Q4.
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Figure 4.6: Smoothed probability of strict inflation from model two. Note:The

figure depicts the smoother probability of more strict inflation targeting against

the data from the UK covering the sample period 1992: Q4-2008: Q4.
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Figure 4.7: Historical Decomposition Using Model One for the UK. Note:The

figure depicts the historical decomposition of output growth, inflation rate, nominal

interest rate and the movement of the nominal exchange rate in the UK over the

sample period 1992: Q4-2008: Q4.
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4.4 Estimated Markov Switching DSGE Models

for Canada

This section estimates three kinds of Markov-switching DSGE models for Canada,

which includes four components, too. The first component offers the estimated

results, numerical solutions and variance decomposition of the model one with the

switching variances. The second component provides the estimated results, nu-

merical solutions and variance decomposition of the model two with the switching

monetary policy parameters. The third component provides the estimated results,

numerical solutions and variance decomposition of the model three with switching

variances and switching policy parameters. The final component presents an over-

all model comparison and offers a general analysis of the Canadian data based on

the best data-fitting model.

Table 4.18 offers the prior distribution of the parameters for Canada, prepared

for the Bayesian estimation of the Markov-switching parameters. Likewise, the

structure parameters for Canada share identical prior distributions for chapter 3

and chapter 4. Also, there are two independent Markov chains for Canada. The

first Markov chain Q controls the shifts of the standard deviations across two

regimes representing low and high volatility, respectively. The second Markov

chain P controls the shifts of the coefficients of monetary policy reaction functions

across two regimes representing more strict and less strict inflation targeting. The

prior means of the transition probability across any two regimes of each chain are

still 0.1. Overall, it is still helpful to notice that the standard deviations of the

exogenous shocks are permitted to shift in the model one and the model three,

while the policy parameters are allowed to shift in the model 2 and the model 3.
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Table 4.18: Prior Distributions of the Structural Parameters for Canada

Parameters Domain Density Para(1) Para(2) Model Spec

τ [0,1) Beta 0.5 0.2

κ R+̂ Gamma 0.3 0.2

φπ R+̂ Gamma 1.5 0.5 Model 2 & 3

φy R+̂ Gamma 0.125 0.05 Model 2 & 3

φ4e R+̂ Gamma 0.125 0.05 Model 2 & 3

φ4y R+̂ Gamma 0.125 0.05 Model 2 & 3

ρR [0,1) Beta 0.5 0.25 Model 3 & 4

ρz [0,1) Beta 0.2 0.05

ρq [0,1) Beta 0.4 0.2

ρπ∗ [0,1) Beta 0.8 0.1

ρy∗ [0,1) Beta 0.9 0.05

α [0,1) Beta 0.2 0.05

r(A) R+̂ Normal 2.47 1

π(A) R+̂ Normal 1.62 1

γ(A) R+̂ Gamma 0.73 0.2

σR R+̂ Inverse Gamma 0.5 4 Model 1 & 3

σz R+̂ Inverse Gamma 1 4 Model 1 & 3

σy∗ R+̂ Inverse Gamma 1.5 4 Model 1 & 3

σπ∗ R+̂ Inverse Gamma 0.55 4 Model 1 & 3

σq R+̂ Inverse Gamma 1.5 4 Model 1 & 3

P12 [0,1) Beta 0.1 0.05 Model 2 & 3

P21 [0,1) Beta 0.1 0.05 Model 2 & 3

Q12 [0,1) Beta 0.1 0.05 Model 1 & 3

Q21 [0,1) Beta 0.1 0.05 Model 1 & 3

Note: The table reports the prior distributions of the structural parameters for

Canada. Para(1) and Para(2) are the means and the standard deviations for the

relevant distributions,respectively.
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4.4.1 Canada: the Model One with Switching Variances

Table 4.19 reports the estimation results of the model one for Canada. This model

allows the vector of the standard deviations of exogenous shocks [σR, σz, σy∗ , σπ∗ , σq]

to shift between two regimes. The posterior mean of the transition probability from

regime 1 representing low volatility to regime 2 representing high volatility Q12 is

0.102, while the transition probability from regime 2 to regime 1 (Q21) is 0.145.

The asymmetric transition reflects that it is possible for Canada to experience

more periods of high volatility shocks compared to the UK.

More specifically, regime 1 represents the low level of volatilities with the posterior

means being [0.227, 1.138, 0.838, 1.775, 1.087] compared to [0.460, 1.741, 1.293, 3.524

, 3.253] in regime 2. The differences between the two vectors are still significant.

The standard deviation of the rate change of the terms of trade shock σq in regime

2 is almost three times larger than in regime 1. The standard deviations of nom-

inal interest rate shock σR and world inflation shock σπ∗ almost double in regime

2. The standard deviation of the rate change of the technology shock σz and

the world output shock σy∗ in regime 2 are one and a half times larger than in

regime 1. The calculated marginal density is −569.826 for the model one with

the Markov-switching variances, which is much bigger compared to the marginal

density calculated from the constant parameter model with the best data fitting

(−582.077).
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Table 4.19: Model One with Markov-Switching Vari-

ances(Canada)

Regime 1: Regime 2:

Low volatility High volatility

parameter mean 90% interval mean 90% interval

τ 0.309 [0.184,0.454]

κ 0.723 [0.441,1.090]

φπ 2.086 [1.386,2.978]

φy 0.064 [0.029,0.115]

φ4e 0.131 [0.070,0.206]

φ4y 0.140 [0.076,0.216]

ρR 0.746 [0.607,0.838]

ρz 0.430 [0.331,0.524]

ρq 0.512 [0.397,0.627]

ρπ∗ 0.420 [0.298,0.548]

ρy∗ 0.950 [0.909,0.982]

α 0.146 [0.088,0.210]

r(A) 2.044 [1.492,2.501]

π(A) 1.944 [1.674,2.393]

γ(A) 0.748 [0.673,0.820]

σR 0.227 [0.174,0.294] 0.460 [0.311,0.659]

σz 1.138 [0.631,1.844] 1.741 [0.856,2.864]

σy∗ 0.838 [0.396,1.693] 1.293 [0.580,2.300]

σπ∗ 1.775 [1.411,2.172] 3.524 [2.587,4.692]

σq 1.087 [0.838,1.357] 3.253 [2.435,4.402]

Q12 0.102 [0.049,0.168]

Q21 0.145 [0.073,0.232]

Note:The table reports posterior means and 90% probability

interval of the model one for Canada.
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Numerical Solution and Simulation Results for Canada in the Model

One

There are two regimes in the model one for Canada, and thus, there is a unique

solution for each regime. Table 4.20 offers the numerical solution to regime 1 rep-

resenting low volatility of the model one, and table 4.21 produces the numerical

solution to regime 2 representing high volatility of the same model.

Table 4.20 brings in the numerical information to compute the impulse response

functions of the four endogenous variables including ỹyt,πt,r̃t and 4ẽt in regime 1:


ỹyt

πt

r̃t

4ẽt


=


−0.364 0.068 −0.528 0.009 0.068 0.039

−0.778 0.100 0.113 0.024 0.146 0.035

0.251 0.067 −0.019 0.001 −0.047 0.012

−0.778 0.100 0.113 −0.396 0.146 −0.402





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+


−0.111 0.181 0.083 −0.466 0.038

−0.237 0.266 0.075 0.100 0.100

0.076 0.178 0.024 −0.016 0.003

−0.237 0.266 −0.853 0.100 −1.675





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (4.23)

where the second matrix in the above equation incorporates the impact of the

structural shocks on the real output, inflation rate, nominal interest rate and de-

preciation exchange rate in regime 1. Figure 4.8 depicts the impulse responses of

the four endogenous variables to one unit structural shock of regime 1 with solid

and blue lines.

Table 4.21 introduces the information to compute the impulse response functions
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of the four endogenous variables including ỹyt,πt,r̃t and 4ẽt in regime 2:


ỹyt

πt

r̃t

4ẽt


=


−0.364 0.068 −0.528 0.009 0.068 0.039

−0.778 0.100 0.113 0.024 0.146 0.035

0.251 0.067 −0.019 0.001 −0.047 0.012

−0.778 0.100 0.113 −0.396 0.146 −0.402





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+


−0.225 0.277 0.249 −0.719 0.076

−0.480 0.407 0.225 0.154 0.199

0.155 0.272 0.073 −0.025 0.007

−0.480 0.407 −2.553 0.154 −3.325





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


. (4.24)

Where the second matrix in the above equation embodies the impact of the struc-

tural shocks on the real output, inflation rate, nominal interest rate and depreci-

ation exchange rate in regime 2. Figure 4.8 also depicts the impulse responses of

the four endogenous variables to one unit structural shock of regime 2 with dashed

and red lines.

Ultimately, figure 4.8 compares the impulse response functions of the two regimes

in the model one together. Holding everything else constant, a unit of the stan-

dard deviation of the monetary policy shock will exert a −0.111 impact on the

real output deviation in regime 1 while −0.225 in regime 2, a −0.237 impact on

the inflation in regime 1 while −0.480 in regime 2,a 0.076 impact on the nominal

interest rate deviation in regime 1 while 0.155 in regime 2, a −0.237 impact on the

movement of the nominal exchange rate in regime 1 while −0.480 in regime 2.

Holding everything else constant, a unit of standard deviation of the shock to

the change rate of the terms of trade will exert a 0.083 impact on the real output

deviation in regime 1 while 0.249 in regime 2, a 0.075 impact on the inflation

in regime 1 while 0.225 in regime 2,a 0.024 impact on the nominal interest rate
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deviation in regime 1 while 0.073 in regime 2, a −0.853 impact on the nominal

exchange rate depreciation in regime 1 while −2.553 in regime 2.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of the technology will exert a 0.181 impact on the real output

deviation in regime 1 while 0.277 in regime 2, a 0.266 impact on the inflation in

regime 1 while 0.407 in regime 2,a 0.178 impact on the nominal interest rate devi-

ation in regime 1 while 0.272 in regime 2, a 0.266 impact on the nominal exchange

rate depreciation in regime 1 while 0.407 in regime 2.

Holding everything else constant, a unit of the standard deviation of the shock

to the world output deviation will exert a −0.466 impact on the real output devi-

ation in regime 1 while −0.719 in regime 2, a 0.100 impact on inflation in regime 1

while 0.154 in regime 2,a −0.016 impact on the nominal interest rate deviation in

regime 1 while −0.025 impact in regime 2, a 0.100 impact on the nominal exchange

rate depreciation in regime 1 while 0.154 in regime 2.

Holding everything else constant, a unit of the standard deviation of the shock

to the world inflation will exert a 0.038 impact on the real output deviation in

regime 1 while 0.076 in regime 2, a 0.100 impact on the inflation in regime 1

while 0.199 in regime 2,a 0.003 impact on the nominal interest rate deviation in

regime 1 while 0.007 in regime 2, a −1.675 impact on the nominal exchange rate

depreciation in regime 1 while −3.325 in regime 2.
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Figure 4.8: Impulse responses,Canada(Model One). Note:The figure depicts the

impulses responses of real output, inflation rate, nominal interest rate and depre-

ciation exchange rate to one unit structural shock of regime 1 representing the low

volatility(solid and blue lines)and regime 2 representing the high volatility(dashed

and red lines).
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Variance Decomposition of the Model One for Canada

Table 4.22 reports the variance decomposition of the model one with the Marov-

switching variances for Canada. It draws a conclusion to the major contributions

to the variation of the four endogenous variables ỹyt,πt,r̃t and4ẽt as follows. First,

the world output shock ξ
y∗t
t contributes most to the variation of the output devi-

ation ỹyt in both of the two regimes. Second, the change rate of the technology

shock ξzt contributes most to the variation of the inflation πt in the regime 1 and

the policy shock ξRt contributes most in regime 2. Furthermore, the change rate

of the technology shock ξzt contributes most to the variation of the interest rate r̃t

in both of the two regimes. Finally, the world inflation shock ξ
π∗t
t contributes most

to the variation of the movement of the nominal exchange rate 4ẽt in both of the

two regimes.

Additionally, table 4.22 also compares the contributions of the same structural

shock in different regimes. The policy shock ξRt contributes 0.52% to the variation

of the output deviation ỹyt in regime 1 while 0.88% in regime 2, 37.12% to the

variation of the inflation πt in regime 1 while only 44.96% in regime 2, 11.23% to

the variation of the interest rate r̃t in regime 1 while 17.44% in regime 2,1.37%

to the variation of the nominal exchange rate depreciation 4ẽt in regime 1 while

1.12% in regime 2.

The change rate of the terms of trade shock ξqt contributes 0.34% to the varia-

tion of the output deviation ỹyt in regime 1 while 1.27% in regime 2,4.10% to the

variation of the inflation πt in regime 1 while 10.83% in regime 2,1.57% to the

variation of the interest rate r̃t in regime 1 while only 5.31% in regime 2, 21.92%

to the variation of exchange rate depreciation 4ẽt in regime 1 while 39.17% in

regime 2.

The change rate of the technology shock ξzt contributes 1.27% to the variation

of the output deviation ỹyt in regime 1 while 1.23% in regime 2, 43.49% to the
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variation of the inflation πt in regime 1 while 29.96% in regime 2,84.82% to the

variation of the interest rate r̃t in regime 1 while 75.09% in regime 2, 1.60% to the

variation of the exchange rate depreciation4ẽt in regime 1 while 0.75% in regime 2.

The world output shock ξ
y∗t
t contributes 97.80% to the variation of the output

deviation ỹyt in regime 1 while 96.50% in regime 2,7.91% to the variation of the

inflation πt in regime 1 while 5.55% in regime 2, 2.36% to the variation of interest

rate r̃t in regime 1 while 2.13% in regime 2, 0.29% to the variation of the nominal

exchange rate depreciation 4ẽt in regime 1 while 0.14% in regime 2.

The world inflation shock ξ
π∗t
t contributes 0.07% to the variation of the output

deviation ỹyt in regime 1 while 0.11% in regime 2, 7.48% to the variation of the

inflation πt in regime 1 while 8.70% in regime 2, 0.02% to the variation of the

interest rate r̃t in regime 1 while 0.03% in regime 2, 74.81% to the variation of the

nominal exchange rate depreciation 4ẽt in regime 1 while 58.82% in regime 2.
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Table 4.22: Variance Decomposition of the Model One for Canada

Regime 1 Output Inflation interest rate Exchange rate depreciation

Policy 0.52 37.12 11.23 1.37

Terms of trade 0.34 4.10 1.57 21.92

Technology 1.27 43.39 84.82 1.60

World output 97.80 7.91 2.36 0.29

World inflation 0.07 7.48 0.02 74.81

Regime 2 Output Inflation interest rate Exchange rate depreciation

Policy 0.88 44.96 17.44 1.12

Terms of trade 1.27 10.83 5.31 39.17

Technology 1.23 29.96 75.09 0.75

World output 96.50 5.55 2.13 0.14

World inflation 0.11 8.70 0.03 58.82

Note:(a)The table reports the variance decomposition of the model one for Canada.

(b)Regime 1 is characterized as low volatility compared to Regime 2.
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4.4.2 Canada: the Model Two with the Switching Taylor

Rule

Table 4.23 presents the estimated results of the model two for Canada. This model

allows the vector of the coefficients of the policy parameters [φπ, φy, φ4e, φ4y, ρR]

to shift between two regimes. The posterior mean of the transition probability

from regime 1 representing more strict inflation targeting to regime 2 represent-

ing less inflation targeting (P12) is 0.098 while from regime 2 to regime 1 (P21)

is 0.114. The asymmetric transition probability marks that Canada experiences

more periods of very strict inflation targeting compared to the UK.

More specifically, regime 1 represents more strict inflation targeting with the pos-

terior mean of φπ being 2.140 compared to 1.503 in regime 2. Next, the posterior

mean of the coefficient of the output φy in regime 1 is two times smaller than it in

regime 2. Also, the posterior mean of the rate change of the output φ4y in regime

1 is 0.128 compared to 0.160 in regime 2. Besides, the posterior mean of ρR in

regime 1 is 0.626 compared to 0.821 in regime 2. Finally, the difference between the

coefficients of the nominal exchange rate depreciation φ4e is less significant across

the two regimes. The calculated marginal density is −575.813 for the model with

the Markov-switching policy parameters, which is bigger compared to the constant

parameter model with the best data fitting (−582.077).
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Table 4.23: Model Two with Markov-Switching Policy Parameters(Canada)

Regime 1: Regime 2:

more strict inflation targeting less strict inflation targeting

parameter mean 90% interval mean 90% interval

τ 0.297 [0.157,0.499]

κ 0.655 [0.381,1.023]

φπ 2.140 [1.559,3.127] 1.503 [1.069,2.070]

φy 0.052 [0.024,0.091] 0.118 [0.065,0.180]

φ4e 0.118 [0.064,0.177] 0.119 [0.063,0.189]

φ4y 0.128 [0.063,0.223] 0.160 [0.083,0.251]

ρR 0.626 [0.483,0.757] 0.821 [0.751,0.879]

ρz 0.338 [0.243,0.439]

ρq 0.538 [0.396,0.655]

ρπ∗ 0.448 [0.323,0.578]

ρy∗ 0.962 [0.934,0.984]

α 0.140 [0.098,0.190]

r(A) 2.272 [1.779,2.711]

π(A) 2.134 [1.686,2.626]

γ(A) 0.725 [0.676,0.772]

σR 0.263 [0.206,0.341]

σz 1.898 [1.033,3.071]

σy∗ 0.905 [0.394,1.963]

σπ∗ 2.370 [2.062,2.748]

σq 1.901 [1.654,2.163]

P12 0.098 [0.039,0.189]

P21 0.114 [0.051,0.186]

Note:The table reports posterior means and 90% probability interval of the model

two for Canada.

216



Numerical Solution and Simulation Results for Canada in the Model

Two

There are two regimes in the model two with the Markov-switching policy param-

eters. Table 4.24 presents the numerical solution to regime 1, representing more

strict inflation targeting, and table 4.25 produces the numerical solution to regime

2, representing less strict inflation targeting of the same model.

Table 4.24 contributes to computing the impulse response functions of the four

endogenous variables including ỹyt,πt,r̃t and 4ẽt in regime 1:


ỹyt

πt

r̃t

4ẽt


=


−0.234 0.035 −0.559 0.009 0.048 0.040

−0.458 0.044 0.094 0.023 0.094 0.035

0.204 0.042 −0.003 0.001 −0.042 0.015

−0.458 0.044 0.094 −0.425 0.094 −0.428





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+


−0.098 0.197 0.067 −0.526 0.048

−0.193 0.247 0.058 0.089 0.123

0.086 0.237 0.025 −0.003 0.007

−0.193 0.247 −0.720 0.089 −2.247





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


. (4.25)

Where the second matrix in the above equation includes the impact of the struc-

tural shocks on the real output, inflation rate, nominal interest rate and depreci-

ation exchange rate in regime 1. Figure 4.9 depicts the impulse responses of the

four mentioned endogenous variables to one unit structural shock of regime 1 with

solid and blue lines.

Table 4.25 provides numerical information to compute the impulse response func-
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tions of the four endogenous variables including ỹyt,πt,r̃t and 4ẽt in regime 2:


ỹyt

πt

r̃t

4ẽt


=


−0.651 0.046 −0.482 0.012 0.127 0.046

−1.432 0.060 0.287 0.031 0.279 0.047

0.287 0.026 −0.004 0.001 −0.056 0.012

−1.432 0.060 0.287 −0.417 0.279 −0.415





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+


−0.208 0.259 0.077 −0.453 0.063

−0.459 0.340 0.080 0.270 0.162

0.092 0.146 0.021 −0.004 0.008

−0.459 0.340 −0.698 0.270 −2.208





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


. (4.26)

Where the second matrix in the above equation embodies the impact of the struc-

tural shocks on the real output, inflation rate, nominal interest rate and deprecia-

tion exchange rate in the second regime. Figure 4.9 depicts the impulse responses

of the four mentioned endogenous variables to one unit structural shock of regime

2 with dashed and red lines.

Figure 4.9 compares the impulse response functions of the two regimes in the

model two with the Markov-switching policy parameters. Holding everything else

constant, a unit of the standard deviation of the monetary policy shock will exert

a −0.098 impact on the real output deviation in regime 1 while −0.208 in regime

2, a −0.193 impact on the inflation in regime 1 while −0.459 in regime 2,a 0.086

impact on the nominal interest rate deviation in regime 1 while 0.092 in regime

2, a −0.193 impact on the nominal exchange rate depreciation in regime 1 while

−0.459 in regime 2.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of terms of trade will exert a 0.067 impact on the real output

deviation in regime 1 while 0.077 in regime 2, a 0.058 impact on the inflation
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in regime 1 while 0.080 in regime 2,a 0.025 impact on the nominal interest rate

deviation in regime 1 while 0.021 in regime 2, a −0.720 impact on the nominal

exchange rate depreciation in regime 1 while −0.698 in regime 2.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of the technology will exert a 0.197 impact on the real output

deviation in regime 1 while 0.259 in regme 2, a 0.247 impact on the inflation in

regime 1 while 0.340 in regime 2,a 0.237 impact on the nominal interest rate devi-

ation in regime 1 while 0.146 in regime 2, a 0.247 impact on the nominal exchange

rate depreciation in regime 1 while 0.340 in regime 2.

Holding everything else constant, a unit of the standard deviation of the shock

to the world output will exert a −0.526 impact on the real output deviation in

regime 1 while −0.453 in regime 2, a 0.089 impact on the inflation in regime 1

while 0.270 in regime 2,a −0.003 impact on the nominal interest rate deviation in

regime 1 while −0.004 in regime 2, a 0.089 impact on the nominal exchange rate

depreciation in regime 1 while 0.270 in regime 2.

Holding everything else constant, a unit of the standard deviation of the shock

to the world inflation will exert a 0.048 impact on the real output deviation in

regime 1 while 0.063 in regime 2, a 0.123 impact on the inflation in regime 1

while 0.162 in regime 2,a 0.007 impact on the nominal interest rate deviation in

regime 1 while 0.008 in regime 2, a −2.247 impact on the nominal exchange rate

depreciation in regime 1 while −2.208 in regime 2.
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ỹ
y t

π
t

4
˜ y
y
∗ t

en
d
og

en
ou

s
va

ri
ab

le
s

˜
r t
−

1
-1

.4
32

0.
28

7
-0

.6
51

-1
.4

32

z t
−

1
0.

06
0

0.
02

6
0.

33
8

0.
04

6
0.

06
0

˜
y
y
∗ t−

1
-0

.5
93

0.
28

7
-0

.0
04

0.
96

2
-0

.4
82

0.
28

7
-0

.0
38

π
∗ t−

1
-0

.4
17

0.
00

1
0.

44
8

0.
01

2
0.

03
1

˜
y
y t
−

1
0.

27
9

-0
.0

56
0.

12
7

0.
27

9

4
˜
q t
−

1
-0

.4
15

0.
01

2
0.

53
8

0.
04

6
0.

04
7

ex
og

en
ou

s
va

ri
ab

le
s

ξR t
-0

.4
59

0.
09

2
-0

.2
08

-0
.4

59

ξz t
0.

34
0

0.
14

6
1.

89
8

0.
25

9
0.

34
0

ξq t
-0

.6
98

0.
02

1
0.

90
5

0.
07

7
0.

08
0

ξy
∗ t
t

-0
.5

58
0.

27
0

-0
.0

04
0.

90
5

-0
.4

53
0.

27
0

0.
90

5

ξπ
∗ t

t
-2

.2
08

0.
00

8
2.

37
0

0.
06

3
0.

16
2

N
ot

e:
T

h
is

ta
b

le
re

p
o
rt

s
th

e
n
u

m
er

ic
al

so
lu

ti
o
n

of
re

g
im

e
2

of
th

e
m

o
d

el
tw

o
fo

r
C

an
ad

a.
R

eg
im

e
2

co
n

si
d

er
s

a
lo

w
le

ve
l
o
f

th
e

co
effi

ci
en

t

o
f

th
e

in
fl

a
ti

o
n

in
T

ay
lo

r
ru

le
.

221



0 2 4 6 8 10 12
-0.4

-0.2

0

O
u

tp
u

t

Monetary Shock

0 2 4 6 8 10 12

-0.4

-0.2

0

In
fl
a

ti
o

n

Monetary Shock

0 2 4 6 8 10 12
0

0.05

0.1

N
o

m
 I

n
te

r
e

s
t

Monetary Shock

0 2 4 6 8 10 12

-0.4

-0.2

0

d
e

l 
E

x
c
h

.R
a

te

Monetary Shock

0 2 4 6 8 10 12
0

0.05

0.1

O
u

tp
u

t

Terms of Trade Shock

0 2 4 6 8 10 12
0

0.05

0.1

In
fl
a

ti
o

n

Terms of Trade Shock

0 2 4 6 8 10 12
0

0.02

0.04

N
o

m
 I

n
te

r
e

s
t

Terms of Trade

0 2 4 6 8 10 12
-1

-0.5

0

d
e

l 
E

x
c
h

.R
a

te

Terms of Trade

0 2 4 6 8 10 12
-0.5

0

0.5

O
u

tp
u

t

Technology Shock

0 2 4 6 8 10 12
-0.5

0

0.5

In
fl
a

ti
o

n

Technology Shock

0 2 4 6 8 10 12
0

0.2

0.4
N

o
m

 I
n

te
r
e

s
t

Technology Shock

0 2 4 6 8 10 12
-0.5

0

0.5

d
e

l 
E

x
c
h

.R
a

te

Technology Shock

0 2 4 6 8 10 12
-1

-0.5

0

O
u

tp
u

t

World Output Shock

0 2 4 6 8 10 12
0

0.2

0.4

In
fl
a

ti
o

n

World Output Shock

0 2 4 6 8 10 12
-0.05

0

0.05

N
o

m
 I

n
te

r
e

s
t

World Output Shock

0 2 4 6 8 10 12
0

0.2

0.4
d

e
l 
E

x
c
h

.R
a

te

World Output Shock

0 2 4 6 8 10 12
0

0.05

0.1

O
u

tp
u

t

World Inflation Shock

0 2 4 6 8 10 12
0

0.1

0.2

In
fl
a

ti
o

n

World Inflation Shock

0 2 4 6 8 10 12
-0.01

0

0.01

N
o

m
 I

n
te

r
e

s
t

World Inflation Shock

0 2 4 6 8 10 12
-4

-2

0

d
e

l 
E

x
c
h

.R
a

te

World Inflation Shock

1st regime
2nd regime

Figure 4.9: Impulse responses,Canada(Model Two). Note:The figure depicts the

impulses responses of real output, inflation rate, nominal interest rate and depre-

ciation exchange rate to one unit structural shock of regime 1 representing more

strict inflation targeting (solid and blue lines)and regime 2 representing less strict

inflation targeting(dashed and red lines).
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Variance Decomposition of the Model Two for Canada

Table 4.26 reports the variance decomposition of the model two with the Markov-

switching policy parameters for Canada. It summarises the major contributions to

the variation of the four endogenous variables ỹyt,πt,r̃t and 4ẽt as follows. First,

the world output shock ξ
y∗t
t contributes most to the variation of the output devi-

ation ỹyt in both of the two regimes. Second, the change rate of the technology

shock ξzt contributes most to the variation of the inflation πt in regime 1 while

the policy shock ξRt contributes most in regime 2. Third, the change rate of the

technology shock ξzt contributes most to the variation of the interest rate r̃t in both

of the two regimes. Finally, the world inflation shock ξ
π∗t
t contributes most to the

variation of the nominal exchange rate depreciation4ẽt in both of the two regimes.

The policy shock ξRt contributes 0.25% to the variation of the output deviation ỹyt

in regime 1 while 1.29% in regime 2,28.39% to the variation of the inflation πt in

regime 1 while only 46.56% in regime 2,8.58% to the variation of the interest rate

r̃t in regime 1 while 17.52% in regime 2,0.55% to the variation of the exchange

rate depreciation 4ẽt in regime 1 while 3.49% in regime 2.

The change rate of the terms of trade shock ξqt contributes 0.14% to the vari-

ation of the output deviation ỹyt in regime 1 while 0.19% in rgime 2,3.10% to

the variation of the inflation πt in regime 1 while 1.45% in regime 2,1.06% to the

variation of the interest rate r̃t in regime 1 while 1.13% in regime 2,10.28% to the

variation of the exchange rate depreciation4ẽt in regime 1 while 9.58% in regime 2.

The change rate of the technology shock ξzt contributes 0.94% to the variation

of the output deviation ỹyt in regime 1 while 1.68% in regime 2,44.27% to the

variation of inflation πt in regime 1 while 22.47% in regime 2,80.56% to the vari-

ation of the interest rate r̃t in regime 1 while 49.33% in regime 2,0.86% to the

variation of the exchange rate depreciation 4ẽt in regime 1 while 1.68% in regime

2.
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The world output shock ξ
y∗t
t contributes 98.61% to the variation of the output

deviation ỹyt in regime 1 while 96.71% in regime 2,10.41% to the variation of the

inflation πt in regime 1 while 23.25% in regime 2,9.74% to the variation of the

interest rate r̃t in regime 1 while 31.91% in regime 2,0.20% to the variation of the

exchange rate depreciation 4ẽt in regime 1 while 1.74% in regime 2.

The world inflation shock ξ
π∗t
t contributes 0.07% to the variation of the output

deviation ỹyt in regime 1 while 0.13% in regime 2,13.84% to the variation of the

inflation πt in regime 1 while 6.27% in regime 2,0.06% to the variation of the in-

terest rate r̃t in regime 1 while 0.12% in regime 2,88.11% to the variation of the

exchange rate depreciation 4ẽt in regime 1 while 83.51% in regime 2.
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Table 4.26: Variance Decomposition of the Model Two for Canada

Regime 1 Output Inflation interest rate Exchange rate depreciation

Policy 0.25 28.39 8.58 0.55

Terms of trade 0.14 3.10 1.06 10.28

Technology 0.94 44.27 80.56 0.86

World output 98.61 10.41 9.74 0.20

World inflation 0.07 13.84 0.06 88.11

Regime 2 Output Inflation interest rate Exchange rate depreciation

Policy 1.29 46.56 17.52 3.49

Terms of trade 0.19 1.45 1.13 9.58

Technology 1.68 22.47 49.33 1.68

World output 96.71 23.25 31.91 1.74

World inflation 0.13 6.27 0.12 83.51

Note:(a)The table reports the variance decomposition of the model two for Canada.

(b)Regime 1 is characterized as more strict inflation targeting compared to Regime 2.
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4.4.3 Canada: the Model Three with Switching Variances

and Switching Policy Parameters

Table 4.27 reports the estimated results of the model three with the Markov-

switching variances and the Markov-switching policy parameters for Canada. This

model permits the vector of the standard deviations of exogenous shocks [σR, σz, σy∗ , σπ∗ , σq]

and the vector of the coefficients of Taylor rule [φπ, φy, φ4e, φ4y, ρR] to follow two

independent Markov chains individually and shift between two regimes of each

Markov chain. The posterior mean of the transition probability from regime 1 to

regime 2 (Q12) for the first Markov chain is 0.060 while from regime 2 to regime

1 (Q21) is 0.169. The posterior mean of the transition probability for the second

Markov chain from regime 1 to regime 2 (P12) is 0.063 while from regime 2 to

regime 1 (P21) is 0.082.

The combinations of the two regimes in each Markov chain produces four regimes.

Regime 1 represents low volatility and more strict inflation targeting. Regime 2

stans for high volatility and more strict inflation targeting. Regime 3 marks low

volatility and less strict inflation targeting. Regime 4 indicates high volatility and

less strict inflation targeting. Table 4.27 provides empirical results for regime 1

and regime 4. As mentioned in the case of the UK, exchanging the vector of policy

parameters yields regime 3 in the place of regime 1 and regime 2 in the place of

regime 4.

More specifically, regime 1 and regime 2 mark more strict inflation targeting with

the posterior mean of φπ being 1.621 compared to 1.311 in regime 3 and regime 4.

Next, the posterior mean of the coefficient of output φy in regime 1 and regime 2

is just 0.032 compared to 0.138 in regime 3 and regime 4. Moreover, the posterior

mean of the coefficient of nominal exchange rate depreciation φ4e in regime 1 and

regime 2 is 0.104 compared to 0.113 in regime 3 and regime 4. Furthermore, the

posterior mean of the rate change of output φ4y in regime 1 and regime 2 is 0.125

compared to 0.106 in regime 3 and regime 4. Finally, the posterior mean of the
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persistence ratio ρR in regime 1 and regime 3 is 0.594 compared to 0.796 in regime

3 and regime 4.

Additionally, regime 1 and regime 3 stand for low volatility with the posterior

means of the above standard deviations being [0.253, 1.371, 0.581,

1.864, 1.150] compared to [0.325, 2.090, 0.954, 3.600, 4.551] in regime 2 and regime

4. The differences between the two vectors are significant. The standard deviation

of the rate change of the terms of trade shock σq in regime 2 and regime 4 is almost

four times larger than in regime 1 and regime 3. The standard deviation of the

foreign inflation shock σπ∗ almost doubles in regime 2 and regime 4. The standard

deviation of the rate change of the technology shock σz and the world output shock

σy∗ in regime 2 and regime 4 are approximately one and a half times larger than in

regime 1 and regime 3. The standard deviation of the nominal interest rate shock

σR is 0.253 in regime 1 and regime 3 compared to 0.325 in regime 2 and regime 4.

The calculated marginal density is −595.267 for the model three with two indepen-

dent Markov chains, which is quite smaller compared to the constant parameter

model with the best data fitting (−582.077). This finding, which is very different

from the case of the UK, implies the Canadian time series data in the sample is

not in favour of the assumption of the two independent Markov chains.
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Table 4.27: Model Three with 2 Markov Chains(Canada)

Regime 1: Regime 4:

parameter mean 90% interval mean 90% interval

τ 0.218 [0.157,0.280]

κ 0.584 [0.396,0.760]

φπ 1.621 [1.426,1.847] 1.311 [1.050,1.522]

φy 0.032 [0.016,0.056] 0.138 [0.085,0.180]

φ4e 0.104 [0.060,0.157] 0.113 [0.070,0.151]

φ4y 0.125 [0.074,0.180] 0.106 [0.047,0.199]

ρR 0.594 [0.502,0.690] 0.796 [0.743,0.840]

ρz 0.358 [0.308,0.419]

ρq 0.508 [0.450,0.565]

ρπ∗ 0.450 [0.323,0.566]

ρy∗ 0.926 [0.891,0.964]

α 0.131 [0.105,0.158]

r(A) 2.698 [2.392,2.946]

π(A) 1.866 [1.677,2.050]

γ(A) 0.757 [0.720,0.800]

σR 0.253 [0.220,0.283] 0.325 [0.249,0.443]

σz 1.371 [0.985,1.712] 2.090 [1.454,2.759]

σy∗ 0.581 [0.362,0.855] 0.954 [0.494,1.463]

σπ∗ 1.864 [1.587,2.219] 3.600 [2.815,4.268]

σq 1.150 [0.976,1.341] 4.551 [3.201,5.524]

P12 0.063 [0.022,0.110]

P21 0.082 [0.042,0.126]

Q12 0.060 [0.028,0.090]

Q21 0.169 [0.086,0.236]

Note:The table reports posterior means and 90% probability

interval of the structural parameters in the model three for

Canada
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Numerical Solution and Simulation Results for Canada in the Model

Three

There are four regimes in the model three with the Markov-switching variances

and the Markov-switching policy parameters. Table 4.28 offers the numerical so-

lution to regime 1, representing low volatility and more strict inflation targeting.

Table 4.29 provides the numerical solution to regime 2, representing high volatility

and more strict inflation targeting. Table 4.30 presents the numerical solution to

regime 3, representing low volatility and less strict inflation targeting. Table 4.31

produces the numerical solution to regime 4, representing high volatility and less

strict inflation targeting.

Table 4.28 contributes to computing the impulse response functions of the four

endogenous variables including ỹyt,πt,r̃t and 4ẽt in regime 1:


ỹyt

πt

r̃t

4ẽt


=


−0.226 0.039 −0.768 0.010 0.048 0.034

−0.467 0.057 0.121 0.026 0.098 0.031

0.236 0.045 −0.021 0.001 −0.050 0.008

−0.467 0.057 0.121 −0.424 0.098 −0.410





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+


−0.096 0.150 0.077 −0.482 0.040

−0.199 0.219 0.070 0.076 0.108

0.100 0.174 0.018 −0.013 0.003

−0.199 0.219 −0.929 0.076 −1.756





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


. (4.27)

Where the second matrix in the above equation includes the impact of the struc-

tural shocks on the real output, inflation rate, nominal interest rate and depreci-

ation exchange rate in regime 1.

Table 4.29 provides numerical information to compute the impulse response func-

229



tions of the four endogenous variables including ỹyt,πt,r̃t and 4ẽt in regime 2:


ỹyt

πt

r̃t

4ẽt


=


−0.226 0.039 −0.768 0.010 0.048 0.034

−0.467 0.057 0.121 0.026 0.098 0.031

0.236 0.045 −0.021 0.001 −0.050 0.008

−0.467 0.057 0.121 −0.424 0.098 −0.410





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+


−0.124 0.229 0.306 −0.791 0.077

−0.256 0.333 0.278 0.125 0.209

0.129 0.265 0.070 −0.022 0.005

−0.256 0.333 −3.667 0.125 −3.391





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (4.28)

where the second matrix in the above equation embodies the impact of the struc-

tural shocks on the real output, inflation rate, nominal interest rate and depreci-

ation exchange rate in regime 2.

Table 4.30 offers numerical information to compute the impulse response func-

tions of the four endogenous variables including ỹyt,πt,r̃t and 4ẽt in regime 3:


ỹyt

πt

r̃t

4ẽt


=


−0.571 0.048 −0.695 0.012 0.076 0.037

−1.328 0.067 0.340 0.032 0.177 0.038

0.333 0.026 0.006 0.001 −0.044 0.006

−1.328 0.067 0.340 −0.418 0.177 −0.404





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+


−0.182 0.183 0.084 −0.436 0.049

−0.422 0.258 0.086 0.213 0.134

0.106 0.100 0.013 0.003 0.003

−0.422 0.258 −0.914 0.213 −1.730





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (4.29)
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where the second matrix in the above equation incorporates the impact of the

structural shocks on the real output, inflation rate, nominal interest rate and de-

preciation exchange rate in regime 3.

Table 4.31 produces numerical information to compute the impulse response func-

tions of the four endogenous variables including ỹyt,πt,r̃t and 4ẽt in regime 4:


ỹyt

πt

r̃t

4ẽt


=


−0.571 0.048 −0.695 0.012 0.076 0.037

−1.328 0.067 0.340 0.032 0.177 0.038

0.333 0.026 0.006 0.001 −0.044 0.006

−1.328 0.067 0.340 −0.418 0.177 −0.404





˜rt−1

zt−1

˜yy∗t−1

π∗t−1

˜yyt−1

4 ˜qt−1



+


−0.233 0.279 0.333 −0.716 0.095

−0.542 0.394 0.339 0.350 0.260

0.136 0.152 0.052 0.006 0.005

−0.542 0.394 −3.615 0.350 −3.340





ξRt

ξzt

ξqt

ξ
y∗t
t

ξ
π∗t
t


, (4.30)

where the second matrix in the above equation embodies the impact of the struc-

tural shocks on the real output, inflation rate, nominal interest rate and depreci-

ation exchange rate in regime 4.

Figure 4.10 compares the impulse response functions between regime 3 and regime

4 in model three with two independent Markov Chains. In other words, It com-

pares the impulse response functions between the high and the low volatility given

the same less strict inflation targeting. It draws the impulse response functions of

low volatility with solid and blue lines, and high volatility with dashed and red

lines.

Holding everything else constant, a unit of the standard deviation of the mon-

etary policy shock will exert a −0.182 impact on the real output deviation in
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regime 3 while −0.233 in regime 4, a −0.422 impact on the inflation in regime 3

while −0.542 in regime 4,a 0.106 impact on the nominal interest rate deviation in

regime 3 while 0.136 in regime 4, a −0.422 impact on the nominal exchange rate

depreciation in regime 3 while −0.542 in regime 4.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of the terms of trade will exert a 0.084 impact on the real

output deviation in regme 3 while 0.333 in regime 4, a 0.086 impact on inflation

in regime 3 while 0.339 in regime 4,a 0.013 impact on the nominal interest rate

deviation in regime 3 while 0.052 in regime 4, a −0.914 impact on the nominal

exchange rate depreciation in regime 3 while −3.615 in regime 4.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of the technology will exert a 0.183 impact on the real output

deviation in regime 3 while 0.279 in regime 4, a 0.258 impact on the inflation in

regime 3 while 0.394 in regime 4,a 0.100 impact on the nominal interest rate devi-

ation in regime 3 while 0.152 in regime 4, a 0.258 impact on the nominal exchange

rate depreciation in regime 3 while 0.394 in regime 4.

Holding everything else constant, a unit of the standard deviation of the shock

to the world output deviation will exert a −0.436 impact on the real output devia-

tion in regime 3 while −0.716 in regime 4, a 0.213 impact on the inflation in regime

3 while 0.350 in regime 4,a 0.003 impact on the nominal interest rate deviation in

regime 3 while 0.006 impact in regime 4, a 0.213 impact on the nominal exchange

rate depreciation in regime 3 while 0.350 in regime 4.

Holding everything else constant, a unit of the standard deviation of the shock

to the world inflation will exert a 0.049 impact on the real output deviation in

regime 3 while 0.095 in regime 4, a 0.134 impact on the inflation in regime 3 while

0.260 in regime 4,a 0.003 impact on the nominal interest rate deviation in regime
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3 while 0.005 impact in regime 4, a −1.730 impact on the nominal exchange rate

depreciation in regime 3 while −3.340 in regime 4.

Figure 4.11 compares the impulse response functions between regime 2 and regime

4 in model three with two independent Markov chains. It compares the impulse

response functions between the more strict and the less strict inflation targeting

given the same high volatility. It depicts the impulse response functions of more

strict inflation targeting with solid and blue lines, and less strict inflation targeting

with dashed and red lines.

Holding everything else constant, a unit of the standard deviation of monetary

policy shock will exert a −0.124 impact on the real output deviation in regime

2 while −0.233 in regime 4, a −0.256 impact on the inflation in regime 2 while

−0.542 in regime 4,a 0.129 impact on the nominal interest rate deviation in regime

2 while 0.136 in regime 4, a −0.256 impact on the nominal exchange rate depreci-

ation in regime 2 while −0.542 in regime 4.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of the terms of trade will exert a 0.306 impact on the real out-

put deviation in regme 2 while 0.333 in regime 4, a 0.278 impact on the inflation

in regime 2 while 0.339 in regime 4,a 0.070 impact on the nominal interest rate

deviation in regime 2 while 0.052 in regime 4, a −3.677 impact on the nominal

exchange rate depreciation in regime 2 while −3.615 in regime 4.

Holding everything else constant, a unit of the standard deviation of the shock

to the change rate of the technology will exert a 0.229 impact on the real output

deviation in regime 2 while 0.279 in regime 4, a 0.333 impact on the inflation in

regime 2 while 0.394 in regime 4,a 0.265 impact on the nominal interest rate devi-

ation in regime 2 while 0.152 in regime 4, a 0.333 impact on the nominal exchange

rate depreciation in regime 2 while 0.394 in regime 4.
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Holding everything else constant, a unit of the standard deviation of the shock

to the world output deviation will exert a −0.791 impact on the real output devia-

tion in regime 2 while −0.716 in regime 4, a 0.125 impact on the inflation in regime

2 while 0.350 in regime 4,a −0.022 impact on the nominal interest rate deviation in

regime 2 while 0.006 impact in regime 4, a 0.125 impact on the nominal exchange

rate depreciation in regime 2 while 0.350 in regime 4.

Holding everything else constant, a unit of the standard deviation of the shock

to the world inflation will exert a 0.077 impact on the real output deviation in

regime 2 while 0.095 in regime 4, a 0.209 impact on the inflation in regime 2 while

0.260 in regime 4,a 0.005 impact on the nominal interest rate deviation in both of

the two regimes, a −3.391 impact on the nominal exchange rate depreciation in

regime 3 while −3.340 in regime 4.
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Figure 4.10: Impulse responses,Canada(Switching Variances of Model Three).

Note:The figure depicts the impulses responses of real output, inflation rate, nom-

inal interest rate and depreciation exchange rate to one unit structural shock of

regime 3 representing low volatility(solid and blue lines)and regime 4 representing

high volatility(dashed and red lines), given the same less strict inflation targeting.
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Figure 4.11: Impulse responses,Canada(Switching Taylor Rules of Model Three).

Note:The figure depicts the impulses responses of real output, inflation rate, nom-

inal interest rate and depreciation exchange rate to one unit structural shock

of regime 2 representing more strict inflation targeting(solid and blue lines)and

regime 4 representing less strict inflation targeting (dashed and red lines), given

the same high volatility.
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Variance Decomposition of Model Three for Canada

Table 4.32 reports the variance decomposition of the model three with two inde-

pendent Markov Chains for Canada. It summarises the major contributions to the

variation of the four endogenous variables ỹyt,πt,r̃t and 4ẽt as follows. First, the

world output shock ξ
y∗t
t contributes most to the variation of ỹyt in each of the four

regimes. Second, the change rate of the technology shock ξzt contributes most to

the variation of the inflation πt in regime 1 and regime 2 while the policy shock

ξRt contributes most in regime 3 and regime 4. Moreover, the change rate of the

technology shock ξzt contributes most to the variation of the interest rate r̃t in each

of the four regimes. Finally, the world inflation shock ξ
π∗t
t contributes most to the

variation of the nominal exchange rate depreciation4ẽt in each of the four regimes.

The policy shock ξRt contributes 0.54% to the variation of the output deviation ỹyt

in regime 1, 0.33% in regime 2, 2.24% in regime 3 and 1.35% in regime 4. Next,

it contributes 35.70% to the variation of the inflation πt in regime 1, 19.56% in

regime 2, 53.94% in regime 3 and 36.48% in regime 4. Moreover, it contributes

19.86% to the variation of the interest rate r̃t in regime 1, 14.19% in regime 2,

35.36% in regime 3 and 25.75% in regime 4. Finally, it contributes 0.84% to the

variation of the exchange rate depreciation 4ẽt in regime 1, 0.22% in regime 2,

4.09% in regime 3 and 1.09% in regime 4.

The change rate of the terms of trade shock ξqt contributes 0.43% to the varia-

tion of the output deviation ỹyt in regime 1, 2.48% in regime 2,0.53% in regime 3

and 3.04% in regime 4. Next, it contributes 5.47% to the variation of the inflation

πt in regime 1, 28.42% in regime 2,2.40% in regime 3 and 15.43% in regime 4.

Moreover, it contributes 0.79% to the variation of the interest rate r̃t in regime 1,

5.34% in regime 2, 0.65% in regime 3 and 4.52% in regime 4. Finally, it contributes

22.73% to the variation of the nominal exchange rate depreciation 4ẽt in regime

1, 55.54% in regie 2,21.58% in regime 3 and 56.45% in regime 4.
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The change rate of the technology shock ξzt contributes 1.25% to the variation

of the output deviation ỹyt in regime 1, 1.06% in regime 2, 1.94% in regime 3 and

1.65% in regime 4. Next, it contribute 40.01% to the variation of the inflation πt

in regime 1, 30.87% in regime 2,17.68% in regime 3 and 16.84% in regime 4. Fur-

thermore, it contributes 75.63% to the variation of the interest rate r̃t in regime

1, 76.12% in regime 2, 39.16% in regime 3 and 40.16% in regime 4. Finally, it

contributes 0.94% to the variation of the exchange rate depreciation 4ẽt in regime

1, 0.34% in regime 2,1.34% in regime 3 and 0.5% in regime 4.

The world output shock ξ
y∗t
t contributes 97.66% to the variation of the output

deviation ỹyt in regime 1, 95.98% in regime 2, 95.10% in regime 3 and 93.71% in

regime 4. Moreover, it contributes 6.28% to the variation of the inflation πt in

regime 1, 5.62% in regime 2,20.02% in regime 3 and 22.12% in regime 4. Next,

it contributes 3.70% to the variation of the interest rate r̃t in regime 1, 4.33% in

regime 2,24.81% in regime 3 and 29.53% in regime 4. Finally, it contributes 0.15%

to the variation of the exchange rate depreciation4ẽt in regime 1, 0.06% in regime

2,1.52% in regime 3 and 0.66% in regime 4.

The world inflation shock ξ
π∗t
t contributes 0.11% to the variation of the output

deviation ỹyt in regime 1, 0.15% in regime 2, 0.18% in regime 3 and 0.25% in

regime 4. Moreover, it contributes 12.54% to the variation of the inflation πt in

regime 1, 15.53% in regime 2,5.96% in regime 3 and 9.12% in regime 4. Next,

it contributes 0.01% to the variation of the interest rate r̃t in regime 1, 0.02% in

regime 2 and regime 3, and 0.03% in regime 4. Finally, it contributes 75.34% to

the variation of the exchange rate depreciation 4ẽt in regime 1, 43.84% in regime

2,71.46% in regime 3 and 43.10% in regime 4.
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Table 4.32: Variance Decomposition of the Model Three for Canada

Regime 1 Output Inflation interest rate Exchange rate depreciation

Policy 0.54 35.70 19.86 0.84

Terms of trade 0.43 5.47 0.79 22.73

Technology 1.25 40.01 75.63 0.94

World output 97.66 6.28 3.70 0.15

World inflation 0.11 12.54 0.01 75.34

Regime 2 Output Inflation interest rate Exchange rate depreciation

Policy 0.33 19.56 14.19 0.22

Terms of trade 2.48 28.42 5.34 55.54

Technology 1.06 30.87 76.12 0.34

World output 95.98 5.62 4.33 0.06

World inflation 0.15 15.53 0.02 43.84

Regime 3 Output Inflation interest rate Exchange rate depreciation

Policy 2.24 53.94 35.36 4.09

Terms of trade 0.53 2.40 0.65 21.58

Technology 1.94 17.68 39.16 1.34

World output 95.10 20.02 24.81 1.52

World inflation 0.18 5.96 0.02 71.46

Regime 4 Output Inflation interest rate Exchange rate depreciation

Policy 1.35 36.48 25.75 1.09

Terms of trade 3.04 15.43 4.52 54.65

Technology 1.65 16.84 40.16 0.50

World output 93.71 22.12 29.53 0.66

World inflation 0.25 9.12 0.03 43.10

Note:The table reports the variance decomposition of the model three for Canada.

Regime 1 (2) is characterized as low (high) volatility and more strict inflation targeting.

Regime 3 (4) is characterized as low (high) volatility and less strict inflation targeting.
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4.4.4 Model Comparison and Data Analysis for Canada

Table 4.33 provides the model comparison at the second stage for Canada. It

ranks the models from the best to the worst in terms of data fitting. Likewise, the

log marginal data densities yield the posterior odds ratios, which are important

indicators of the model comparison.

More specifically, the Canadian data is not always in favour of the Markov-

switching models compared to the benchmark model with the best data fitting

in the previous chapter. The model one with switching variances still ranks first in

terms of data fitting, the model two with switching policy parameters ranks sec-

ond, and the benchmark model without any Markov-switching parameters ranks

third. The model three with two independent Markov chains ranks last. Thus,

it is beneficial to introduce only one Markov chain to the benchmark model to

improve the performance of the data fitting. However, considering two kinds of

Markov chain together, there is a potential fitting loss compared to the benchmark

model.

Figure 4.12 plots the smoothed probability (blue and solid) of regime 2 in the model

one with the Markov-switching variances, representing high volatility, against the

actual time series data (red and dashed) in Canada. It scales the smoothed proba-

bility by ten times except for the first panel. It is obvious to see Canada experiences

domestic shocks ξRt , ξ
z
t and foreign shocks ξqt , ξ

y∗t
t , ξ

π∗t
t with significantly large vari-

ances more frequently, including the periods of 1993-1995, 2001-2004,2005-2006

and the most recent financial crisis.

Figure 4.13 plots the smoothed probability (blue and solid) of regime 1 in the

model two with Markov-switching policy parameters, representing more strict in-

flation targeting, against the actual time series data (red and dashed) in Canada.

Regime 1 dominates at 1992: Q4 and lasts between 1995: Q1 and 2001: Q4 and

reappears during the period from 2005 until the beginning of the most recent fi-
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nancial crisis. Regime 2 dominates during the period of the most recent financial

crisis, which may imply there is a cautious cut on the nominal interest rate, thereby

saving the ammo for the future cut.

The model comparison at the second stage marks the model one with the Markov-

switching variances best fit the Canadian data. Figure 4.14 plots the historical

decomposition of the Canadian data given the shock contributions generated from

the model one.

Regime 2, representing high volatility, dominates from 1993 to 1995, 2001-2004,

2005-2006 and the most recent financial crisis. First, The world output shock (yel-

low) contributes most to the variation of the output deviation. Second, the policy

shock (green), the change rate of technology shock (purple), the change rate of the

terms of trade shock (blue) and the world inflation shock (red) contribute most to

the variation of the inflation rate. Next, the change rate of the technology shock

(purple) and the policy shock (green) dominate in the variation of the nominal

interest rate. At last, the world inflation shock (red) and the change rate of the

terms of trade shock (blue) contribute most to the variation of the nominal ex-

change rate depreciation.

During the rest of the sample period, regime 1 representing low volatility domi-

nates. First, the world output shock (yellow) still contributes most to the variation

of the output deviation. Second, the change rate of technology shock (purple) and

the policy shock (green) dominates in the variation of the inflation rate. Further-

more, the change rate of the technology (purple) and the policy shock (green)

also offer a major contribution to the variation of the interest rate. Finally, the

world inflation shock (red) and the change rate of the terms of trade shock (blue)

dominate in the variation of nominal exchange rate depreciation.
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Table 4.33: Log Marginal Data Densities and Ranks of the Models for Canada

Models Log MDD Rank of data fitting

Benchmark Model: Constant parameters model -582.077 3

Model 1:Markov-switching in volatility of shocks -569.826 1

Model 2:Markov-switching monetary policy -575.813 2

Model 3:The model with two Markov chains -595.267 4

Note:The table reports the log marginal data densities and ranks for the models at the second

stage of the model comparison. The model one with Markov-switching variances ranks first

in terms of data fitting.
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Figure 4.12: Smoothed probability of high volatility from model one. Note:The

figure depicts the smoother probability of high volatility against the data from

Canada covering the sample period of 1992:Q4-2008:Q4.
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Figure 4.13: Smoothed probability of strict inflation from model two. Note:The

figure depicts the smoother probability of strict inflation targeting against the data

from Canada covering the sample period 1992:Q4-2008:Q4.
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Figure 4.14: Historical Decomposition Using Model One for Canada. Note:The

figure depicts the historical decomposition of output growth, inflation rate, nominal

interest rate and the movement of nominal exchange rate in Canada over the

sample period of 1992:Q4-2008:Q4.
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4.5 Conclusion

Chapter 4 introduces two kinds of Markov-switching parameters to the constant

parameter models with the best data fitting in chapter 3. The estimation of the

Markov-switching DSGE models based on the data collected from the UK and

Canada provides the fundamentals o the model comparisons at the second stage.

Model comparisons suggest the model one with the switching variances provide

the best empirical fit to the UK and Canadian data, which implies the uncertain-

ties regarding the economic environment play more dominated roles in modelling

the economy compared to the uncertainties regarding the behaviours of policy-

makers in the model two with switching policy parameters. Moreover, the model

three with two independent Markov chains behave utterly different in the UK and

Canda. That is to say, the combination between the uncertainties regarding the

environment and the behaviours of policymakers sometimes cannot provide bet-

ter data fitting compared to the benchmark model without any structural changes.

Apart from the model comparison, chapter 4 decompose the time series data for

the UK and Canada with the model one which outperforms other models at the

second stage of model comparison. Here are the main results from the data decom-

position. First, the world output shock dominates in the variation of the British

and Canadian output in both high and low volatility regimes. Second, when the

volatility is low, the world output shock contributes most to the variation of the

UK inflation, and when the volatility is high, the change rate of the technology

shock contributes most. Compared to the UK, when the volatility is low, the

change rate of the technology shock contributes most to the variation of Canadian

inflation, and the policy shock contributes most when the volatility is high. Third,

the change rate of the technology shock in both of the two countries contribute

most to the variation of the nominal interest rate regardless of the high or low

volatility. At last, the world inflation shock only affects nominal exchange rate

depreciation in the UK since the term of exchange rate depreciation is omitted
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from the monetary policy reaction function. In contrast, the world inflation shock

dominates in the variation of Canadian nominal exchange rate depreciation and

also influence Canadian inflation to a large extent.
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Chapter 5

General Conclusion

5.1 Main Findings

The small open DSGE model with Markov switching variances offers the best data

fitting for the UK and Canada during the sample period 1992: Q4-2008: Q4. More

specifically, the UK data supports that the monetary policy function should not

include the movement of the nominal exchange rate while the data of Canada

supports that the policy function should include the movement of the nominal

exchange rates.

For the UK, the regime of high volatility initially dominates during the period

of 1992:Q4-1993:Q2, as a result of the currency crisis in the early 1990s. In re-

sponse to the decline in the GDP growth rate and the inflation rate, the bank of

England cuts the nominal interest rate from 6.82 on 1992:Q4 to 5.79 on 1993:Q2.

The same type of regime then happens during the period of 2007:Q3-2008:Q4, as

a result of the most recent financial crisis. Due to the massive decline of the GDP

growth rate and the inflation rate, the bank of England cuts the nominal interest

rate dramatically from 5.82 on 2007:Q3 to 1.65 on 2008:Q4. In the regime of high

volatility, the change of the technology shock and the world output shock mainly

contribute to the fluctuation of the nominal interest rate, while the world inflation

shock contributes little. This result is consistent with the policy specifications for
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the UK. The bank of England determines monetary policy based on the domestic

output, affected by the world output shock, and the inflation rate, affected by the

change of the technology shock and the world output shock. The feedback rule of

the policy rate does not incorporate the movement of the nominal exchange rate,

majorly affected by the world inflation shock.

For Canada, the regime of high volatility initially dominates during the period

of 1993:Q2-1995:Q1, as a result of the severe budget deficits and the inflationary

excess in the early 1990s. The central bank increases the nominal interest rate from

4.29 on 1993:Q2 to 8.06 on 1995:Q1. The central bank of Canada firmly establishes

a low-inflation environment in the early 1990s. The regime of high volatility then

happens during the period of 2000:Q3-2004:Q2, when the collapse of the high tech

companies hit the stock market. The central bank cuts the nominal interest rate

from 5.80 on 2000:Q3 to 2.00 on 2004:Q2. The same type of regime plays a role

again during the period of 2005:Q1-2006:Q3, after the enormous expansion in 2004

due to the increasing personal expenditure. In response to the most substantial

annual increase since 2000, the central bank raises the nominal interest rate from

2.48 on 2005:Q1 to 4.25 on 2006:Q3. The regime finally happens during the period

of 2007:Q2-2008:Q4, as a result of the most recent financial crisis. The central bank

of Canada cuts the nominal interest rate aggressively from 4.24 on 2007:Q2 to 1.50

on 2008:Q4. In the regime of high volatility, the change of the technology shock

and the monetary policy shock contribute most to the fluctuation of the policy

rate. This result is also consistent with the policy specifications for Canada. The

central bank of Canada mainly determines monetary policy based on the inflation

rate, affected by the change of the technology shock and the world output shock.

The feedback rule of the policy rate also incorporates the output, affected by the

world output shock, and the movement of nominal exchange rate, majorly affected

by the world inflation shock. However, the world output shock and the world

inflation shock contributes very little to the fluctuations of the nominal interest

rate within the sample period.
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The UK and Canada both adopt strict inflation targeting strategy in the early

1990s. However, the regimes change less frequently in the UK than in Canada.

In addition to the most recent financial crisis, Canada faces two more challenges

brought by the exogenous shocks of high variances after 2000. Moreover, the high

volatility environment always motivates the bank of England to adopt an expan-

sionary monetary policy while it sometimes urges the central bank of Canada to

switch back and forth on the expansionary and restrictive policy.
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5.2 Limitations and Directions of Further Re-

search

The primary purpose of the thesis is to use Bayesian estimation likelihood ap-

proach to compare the small open DSGE models with different specifications of

monetary policy reaction functions. Moreover, it also compares the models with

two kinds of Markov Chains, including the switching variances and the switching

coefficients of Taylor rule. The two steps of model comparisons can ultimately

lead to a model offering the best data fitting over the sample period for each of

the two countries. However, it is still necessary to discuss some limitations and

possible directions for further research.

First, although it can enhance the data fitting of the small open DSGE model

significantly due to an appropriate specification of monetary policy function and

the introduced Markov chains, the model itself inevitably suffers from the mis-

specification problem to some extent. It needs to go back to Gali and Monacelli’s

framework to check the derivation process of the main equations in the model. For

instance, it can incorporate the habit information into the model, as suggested by

Justiniano and Preston (2010[48]). It can also consider the capital accumulation

process with investment adjustment costs to relax the assumption that decisions

made by firms today will not affect future profits (Christiano, Eichenbaum and

Evans,2004[78]). After changing the main structure of the model, one can repeat

the procedures of this thesis to evaluate the data fitting of the new model and

identify whether there is an improvement compared to the current stage.

Second, the kinds of Markov chains in the current stage are very fundamental.

In addition to the variance and the coefficients of policy reaction functions, some

other parameters can also be allowed to change. For instance, a Markov-Switching

Philip coefficient κ, reflecting the degree of price stickiness, and its combinations

between the current two chains can be estimated separately to identify whether
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there is an improvement in terms of data fitting.

Next, the data sample can be extended to cover the period, including the regime

of zero lower bounds. The restriction of the current sample period can avoid the

possible misspecification problem in the monetary policy reaction function, but

also departs from one of the most popular topics after the financial crisis. Af-

ter obtaining the empirical results just before the nominal interest rate arrives

at 0.5%, the prior information of the Bayesian approach is well prepared for the

extended size of the sample. To solve and estimate the model with the possible

binding on the nominal interest rate, it can borrow the methodology proposed by

Iiboshi(2016[44]) or Holden (2017[43]).

Last but not least, the thesis focuses on identifying the monetary policy within

the DSGE model, offering the best data fitting, which is different from looking for

an optimal monetary policy. The design of the optimal monetary policy requires

to minimise the welfare loss functions derived from the consumer utilities, which

generally fixes some parameters at specific values for mathematical simplifications.

For the practical purpose, the thesis evaluates all the parameters given the actual

time series data and ignores its requirements for mathematical simplification, so it

cannot apply the derived welfare loss function directly. Having said this, however,

further research can fix a subset of the whole parameter space at specific values

which fit the mathematical requirements and evaluate the monetary policy with

the remaining estimated parameters in this thesis.
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Appendix

Structure of the DSGE Model

IS curve

[A.1] ỹyt = Et ˜yyt+1−(τ+λ)(r̃t−Etπt+1−Etzt+1)+α(τ+λ)Et4 ˜q∗t+1+
λ

τ
Et4 ˜yy∗t+1

where λ = α(1− τ)(2− α).

The change rate of world output:

[A.2] 4 ˜yy∗t = ˜yy∗t − ˜yy∗t−1

Philips Curve

[A.3] πt = βEtπt+1 + αβEt4 ˜q∗t+1 − α4q̃∗t +
κ

τ + λ
(ỹyt − ˜yyt,n)

where β = e−
rA

400 .

Potential output

[A.4] ˜yyt,n = αΨ ˜yy∗t = −α(1− τ)(2− α)

τ
˜yy∗t

CPI

[A.5] πt = π∗t +4ẽt + (1− α)4q̃∗t

Monetary Policy

[A.6] r̃t = ρR ˜rt−1 + (1− ρR)[φππt + φyỹyt + φ4e4ẽt] + ξRt , ξ
R
t ∼ NID(0, σ2

R)

AR(1) of change rate of terms of trade

[A.7] 4q̃∗t = ρq4 ˜q∗t−1 + ξqt , ξ
q
t ∼ NID(0, σ2

q )
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AR(1) of change rate of technology

[A.8] zt = ρzzt−1 + ξzt , ξ
z
t ∼ NID(0, σ2

z)

AR(1) of world output

[A.9] ˜yy∗t = ρy∗ ˜yy∗t−1 + ξ
y∗t
t , ξ

y∗t
t ∼ NID(0, σ2

y∗)

AR(1) of world inflation

[A.10] π∗t = ρπ∗π
∗
t−1 + ξ

π∗t
t , ξ

π∗t
t ∼ NID(0, σ2

π∗)

Measurement Equations of the Observed Data

measurement equations of change of real output

[A.11] 4yobst = γQ +4ỹyt

measurement equations of observable inflation

[A.12] πobst = πA + 4πt

measurement equations of observable nominal interest rate

[A.14] robst = rA + πA + 4r̃t

measurement equations of observable nominal exchange rate depreciation

[A.14] 4eobst = −4ẽt

measurement equations of observable change rate of terms of trade

[A.15] 4qobst = 4q̃∗t
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