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Abstract 

Infrared thermography has been used to assess plant transpiration and infer 

stress levels in different agricultural production systems. The development of low cost 

infrared cameras adapted to smart phones provides an opportunity to develop 

applications that would allow growers to monitor crop water status. We explored the 

capabilities of this system by assessing the response of crop water stress index (CWSI) 

to treatments differing in irrigation frequency. Soya bean plants were grown in pots in 

a glasshouse and different irrigation treatments were applied for two weeks. CWSI, 

stomatal conductance (gs) and biomass growth were compared in fully irrigated (FI), 

deficit irrigation (50% ET) applied either at high (HFDI) and low (LFDI) frequency. 

Statistical differences in CWSI between deficit irrigation and FI treatments were 

observed when CWSI>0.5. CWSI and gs followed very similar patterns in all treatments, 

but the higher number of replicates that the thermal camera could measure in a given 

time and its low variability compared to the porometer increased the capacity to detect 

differences between treatments. As gs decreased at the end of the experiment in FI 

plants, probably because of restricted soil volume, differences in CWSI between well-

watered and stressed plants diminished, suggesting the need to maintain well-watered 

plants grown under optimal conditions as a reference baseline. Within the deficit 

irrigation treatments, CWSI decreased and gs, increased when irrigation was more 

frequent, but dry biomass and water use efficiency (biomass / irrigation volume) did 

not change, and were lower and higher than FI plants respectively. These results 

demonstrate that the low cost thermal camera is suitable to rapidly assess gs, but 

highlight the issues associated with irrigation scheduling based on this physiological 

response. 
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INTRODUCTION 
The application of precision irrigation techniques that maximise water use efficiency 

currently rely on developing tools that accurately measure the availability of resources to the 
crop. The most precise way to monitor the effect of water availability on crop performance is 
to use plant-based sensors (Jones, 2004). Different tools to monitor plant physiological status 
have been previously used in precision irrigation (Fernández, 2014), but they generally 
require relatively high investment and a certain degree of training in plant physiology. 
Smartphone technology is an affordable and easy-to-use option to monitor plant water status 
and schedule irrigation. Among the numerous gadgets that can be attached to or integrated 
within smartphones, small thermal cameras are the most promising (Skewes et al., 2018).  

The cooling effect of transpiration is the basis of using thermal imaging to estimate 
plant transpiration and detect water stress (Maes and Steppe, 2012). This method has 
received considerable attention over the last decades and farmers use it now as a precision 
irrigation tool. Applying smartphone-based thermal imaging may be beneficial in large 



commercial farms, as it would reduce considerably the costs, but also has potential for use by 
smallholder farmers in developing countries, as phones are now widely and affordably 
available in any part of the world. However, developing this technology for irrigation 
scheduling requires research on the capability of these devices to assess plant transpiration, 
and predict water stress.  

 Deficit irrigation scheduling relies on a good understanding of crop physiological 
responses to drought. Reducing irrigation volume modifies the spatial and temporal 
distribution of soil water, which result in different responses depending on the frequency of 
the irrigation (Boyle et al., 2016). Smartphone-based thermal imaging could be an easy and 
fast method to determine plant response to these complex changes of soil moisture by 
estimating the stomatal closure. However, since stomatal responses can be altered by 
pronounced soil moisture gradients generated during deficit irrigation, the relation between 
stomatal conductance and plant growth needs to be assessed. 

This study aimed to determine the suitability of smartphone-based thermal imaging to 
estimate stomatal conductance and schedule deficit irrigation. Potted soya bean plants were 
subjected to different deficit irrigation treatments with varying frequency of application, and 
stomatal conductance estimated by thermal imaging and porometry. We hypothesised that i) 
Temperature measurements from smartphone-adapted thermal cameras are accurate 
enough to predict stomatal conductance, ii) these predictions can determine the degree of 
plant water stress to assist in deficit irrigation scheduling. 

 
MATERIAL AND METHODS 

Soya bean (Glycine max ‘Siverka’) seeds were sown in sixty 3 L pots containing an 
organic loamy compost (John Innes N2, Westland, UK) and grown for four weeks in an 
unheated greenhouse (maximum temperature 26°C, minimum 16°C). During the photoperiod 
(14 hours), when natural light was below 200 µmol m-2 s-1, light was supplied by lamps 
providing 400 µmol m-2 s-1. Plants were irrigated daily and fertigated weekly with a 
commercial soluble fertiliser (All Purpose, MiracleGro, USA). At the end of the third week, 
twelve plants were assigned randomly to each of 3 irrigation treatments: 

FI: Full irrigation; 100% of evapotranspiration replaced daily at 12:00. HFDI: High 
frequency deficit irrigation; 50% of FI water applied daily. LFDI: Low frequency deficit 
irrigation; water withheld in cycles of four days and 50% of accumulated FI water during the 
cycle applied.  

 Stomatal conductance and leaf temperature were measured in one fully expanded 
sunlit leaf per plant. Before applying the treatments, leaves were selected and marked to 
facilitate their identification in the thermal picture by attaching a letter-shaped piece of paper. 
In the middle of the experiment, the mark was shifted to an upper leaf to avoid ageing and 
self-shading effects on gs. Photographs were taken daily within 10 minutes, three hours before 
irrigation and immediately before porometry measurements. Six pictures were needed to 
capture the 36 plants of the experiment. For each picture, two 100 cm2 grey cardboard 
references (wet and dry) were used to calculate CWSI values. Overhead photographs of the 
canopy were taken with a thermal camera (FLIR One, FLIR, UK) attached to a smartphone 
(Galaxy S6, Samsung, UK) from 1 m above the canopy and analysed with FLIR Tools software 
(FLIR, UK). The temperature of the marked leaf (Tleaf) in each plant and references (Tdry, Twet) 
was averaged from 2-3 points and CWSI calculated as CWSI=(Tleaf – Twet)/(Tdry-Twet). CWSI was 
selected as the preferred index since it can be easily calculated from thermal imaging (Maes 
and Steppe, 2012). Stomatal conductance was measured in two of the three leaflets of the 
marked leaf with a porometer (AP4, Delta-T Devices, UK) in a subsample of 6 plants per 
treatment. Porometry measurements took 30-35 minutes.  

 
After two weeks of applying treatments, all plants were harvested to determine shoot 

and root dry weight and retrospectively calculate substrate gravimetric water content based 
on actual substrate dry weight, and the pot weight measured before each irrigation (plant 
weight was considered negligible as it was <2% of the total soil weight). The substrate was 



dried in an oven at 70°C for one week until constant mass. Applied water use efficiency (WUE) 
was calculated for each treatment by dividing plant biomass by the total volume of irrigation. 

  
Statistical analyses 

Statistical differences for all the variables were analysed by simple ANOVA. Statistical 
differences among treatments were assessed with the Tukey post-hoc test with SPSS 24 (IBM, 
USA). Relationships between CWSI and gs were assessed by nonlinear regression and fitted to 
a hyperbolic decay curve with SigmaPlot (Systat Software, USA). 

 
RESULTS 

 Soil gravimetric water content (g) in FI was always above 0.9 g g-1 (Fig. 1a), which 
according to a soil moisture release curve corresponded to soil matric potentials above -10 
kPa (data not shown). The LFDI treatment rapidly decreased g to 0.4 g g-1 (-125 kPa) within 
4 days, which increased after re-watering. g after re-watering declined progressively, but it 
was relatively high after the last irrigation on day 12,(0.7 g g-1; -40 kPa). g in The HFDI 
treatment rapidly decreased g during the first week down to 0.5 g g-1 (-100 kPa) and more 
slowly on the following week.. 

 
Figure 1. Soil gravimetric water content (g) (n=12) during the application of 

treatments. FI: Full irrigation (depicted in both panels for comparison, black circles); HFDI: 
High frequency irrigation (white circles); LFDI: Low frequency irrigation treatments (gray 
inverted triangles). Standard errors smaller than the symbols and not depicted. 

 
Stomatal conductance decreased after withholding water in LFDI and recovered the day 

after re-watering (Fig. 2a). HFDI and FI showed a less distinctive pattern, but HFDI was 
generally lower than FI and higher than LFDI except after re-watering of the latter. However, 
due to high variability, there were no statistical differences between HFDI and LFDI (except 
on day 4, at the end of the first LFDI cycle) or FI (except for the last four days of the 
experiment). After the second cycle of LFDI (~10 days after imposing treatments), gs declined 
steadily in all the treatments including FI. 

CWSI followed a similar pattern to gs, but the statistical significance in the difference 
between treatments was higher, probably because of lower standard errors (Fig 2b), which 
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were caused by both larger sample size and lower variability. For instance, on day 7, the 
coefficient of variation (C.V.) of gs in the different treatments was 63, 55, and 70% for FI, HFDI 
and LFDI respectively, while it was 7, 32 and 20% for CWSI in the same plants where gs was 
measured. Hence, CWSI values in FI were more stable than gs (around 0.3) and increased 
steadily over the last 4 days of the experiment.  

 
Figure 2. Stomatal conductance (gs) (a) and Crop Water Stress Index (CWSI) (b) during 
treatment application (mean±s.e.; n=12). FI: Full irrigation (black circles); HFDI: High 
frequency irrigation (white circles); LFDI: Low frequency irrigation treatments (gray inverted 
triangles). In panel b, arrows indicate irrigation day for LFDI. The horizontal line mark the 
CWSI=0.5 threshold for reference. Different letters denote differences between treatments 
(FI: upper letter, HFDI: middle, LFDI: lower).  
 

CWSI and gs were correlated but the relationship was not strong (Fig. 3), as plants with 
lower gs sometimes had low CWSI values. However, leaves with high gs (>200 mmol m-2s-1) 
had always CWSI<0.5.    
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Figure 3. Relationship between Crop Water Stress Index (CWSI) and stomatal conductance 
(gs) in individual leaves. FI: Full irrigation (depicted in both panels for comparison, black 
circles); HFDI: High frequency irrigation (white circles); LFDI: Low frequency irrigation 
treatments (gray inverted triangles). Nonlinear regression curve (hyperbolic decay), P-value 
and R2 for the pooled dataset are depicted. 
 

Dry biomass was higher in FI than the two deficit irrigation treatments, which did not 
differ (Table 1).  WUE followed the inverse pattern, with higher WUE in the deficit irrigation 
treatments than in FI. 
 

Table 1., Shoot and root dry weight (DW) and water use efficiency (WUE) for the three 
irrigation treatments (FI: Full irrigation; HFDI: High frequency deficit irrigation; LFDI: Low 
frequency deficit irrigation). Mean±s.e, n=12. Different letters denote statistical differences 
between treatments (Tukey, P<0.05) 
Treatment Shoot DW (g) Root DW (g) WUEapplied (g l-1) 

FI 8.52±0.23 b 1.13±0.04 b 4.87±0.19 a 

HFDI 6.51±0.25 a 0.83±0.03 a 7.22±0.27 b 

LFDI 6.11±0.20 a 0.82±0.04 a 7.40±0.38 b 

 
DISCUSSION 

 The good agreement between gs and CWSI evolution during the experiment (Fig. 2) 
confirmed that this thermal camera was sufficiently accurate to capture differences in 
physiological status across treatments, as in woody crops such grapevine and almond which 
were compared against high-end thermal cameras (around 20-fold more expensive) with 
satisfactory results (Skewes et al., 2018; García-Tejero et al., 2018). Average CWSI values 
above 0.5 in deficit irrigation treatments were generally statistically different from FI, which 
typically was 0.3. That value separating stressed from well-watered plants (0.5) could be used 
as a decision threshold in deficit irrigation scheduling. 

The lower variability of CWSI compared to gs might be because it is a non-invasive 
technique. This together with the ability to obtain more rapidly an extensive representation 
of the canopy suggests an overall superior precision to porometry as a tool to detect the 
physiological status of the different irrigation treatments. However, the correlation between 
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leaf temperature and stomatal conductance on an individual plant basis was not strong 
because of the poor relationship at low gs (Fig. 3). This could be due to the effect of transient 
shading at the time the picture was taken by the structural beams of the greenhouse roof, 
which decreased leaf temperature compared to the reference. However, the consistent high 
gs of leaves with CWSI<0.5 explains the ability of average values of CWSI to discriminate 
between deficit and full irrigation treatments.  

 The decline of gs over time could be attributed to the effect of root binding as the plant 
grew in a restricted soil volume (Sinclair et al., 2017). The increase CWSI in FI might make it 
difficult to use a constant value of this parameter as a threshold for deficit irrigation 
scheduling. These difficulties are not attributable to limitations of the thermal imaging 
technique, but in general of the use of gs as a water stress indicator. Nevertheless, average 
values of CWSI and gs still significantly differed between fully irrigated and deficit irrigation 
treatments (Fig. 2b), suggesting that CWSI thresholds need to be re-evaluated at different 
stages of the crop by comparing stressed vs. non-stressed plants, so the maintenance of  a few 
irrigated plants as a reference might be necessary (Agam et al., 2013). 

Previous studies showed that increased deficit irrigation frequency improved plant gs 
at the same overall pot water content, as it creates wetter layers in the upper part of the pot 
(Puértolas et al., 2017). This explains the intermediate CWSI in HFDI compared to LFDI and 
FI on many dates during the experiment, in particular at the end of LFDI drying cycles, when 
overall pot soil moisture was comparable in HFDI and LFDI (Fig. 1, 2a). However, dry matter 
accumulation and applied water use efficiency depended exclusively on the irrigation volume 
and not on the frequency of application. This suggests gs and plant growth are de-coupled, due 
to the higher sensitivity of plant growth to declining plant water status, implying that carbon 
demand (growth) is more reduced at higher plant water potential than supply 
(photosynthesis) (Muller et al., 2011). This highlights a potential limitation of using thermal 
imaging to improve water use efficiency by efficient deficit irrigation scheduling, as growth 
limitation is likely to occur before changes in stomatal conductance. More research is needed 
to determine the variations of carbon assimilation and growth upon re-watering events to 
assess the extent of this limitation. 
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