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ABSTRACT 35 
Understory fires represent an accelerating threat to Amazonian tropical forests and can, 36 

during drought, affect larger areas than deforestation itself. These fires kill trees at rates varying 37 
from < 10 to c. 90% depending on fire intensity, forest disturbance history, and tree functional 38 
traits. Here, we examine variation in bark thickness across the Amazon. Bark can protect trees 39 
from fires, but it is often assumed to be consistently thin across tropical forests. Here, we show 40 
that investment in bark varies, with thicker bark in dry forests and thinner in wetter forests. We 41 
also show that thinner bark translated into higher fire-driven tree mortality in wetter forests, with 42 
between 0.67 to 5.86 gigatons CO2 lost in Amazon understory fires between 2001-2010. Trait-43 
enabled global vegetation models that explicitly include variation in bark thickness are likely to 44 
improve the predictions of fire effects on carbon cycling in tropical forests. 45 
 46 
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 48 
SPANISH LANGUAGE ABSTRACT 49 
En los bosques tropicales de la Amazonia, los incendios de sotobosque representan una amenaza 50 
que se está acelerando. Durante la sequía, pueden afectar un área mayor que la deforestación 51 
misma. Estos incendios pueden matan árboles a tasas que varían desde <10 hasta cerca de 90% 52 
dependiendo de la intensidad del fuego, la historia de perturbaciones forestales y los rasgos 53 
funcionales de los árboles. En este estudio, examinamos la variación en el grosor de la corteza en 54 
la Amazonía. La corteza puede proteger los árboles de los incendios, pero normalmente se supone 55 
que es uniformemente delgada en los bosques tropicales. Aquí, mostramos que el grosor de la 56 
corteza varía bastante, con una corteza más gruesa en los bosques secos y más delgada en los 57 
bosques húmedos. También, mostramos que cortezas más delgadas resultan en tasas de 58 
mortalidad más altas en bosques más húmedos. En total, estimamos que los incendios en el 59 
sotobosque de la Amazonía han añadido entre 0,67 y 5,86 gigatoneladas de CO2 atmosférico entre 60 
2001-2010. Los modelos globales de vegetación que predicen los efectos de los incendios sobre 61 
el reciclaje de carbono en los bosques tropicales deberían incluir explícitamente la variación en el 62 
grosor de la corteza. 63 
 64 
PORTUGUESE LANGUAGE ABSTRACT 65 
Os incêndios rasteiros de sub-bosque representam uma ameaça cada vez maior às florestas 66 
tropicais da Amazônia. Durante secas, eles podem afetar áreas maiores do que àquelas 67 
desmatadas. Esses incêndios matam árvores a taxas que variam de <10 a c. 90%, dependendo da 68 
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intensidade do fogo, da história de distúrbios florestais e das características funcionais das 69 
árvores. Neste estudo, examinamos a variação na espessura da casca na Amazônia. A casca pode 70 
proteger árvores do fogo, mas geralmente é considerada uniformemente fina para diversas 71 
florestas tropicais. Aqui, mostramos que a espessura da casca varia, com cascas mais espessas 72 
ocorrendo em florestas secas e mais finas ocorrendo em florestas mais úmidas. Mostramos 73 
também que a casca mais fina resulta em taxas de mortalidade mais altas em florestas úmidas. No 74 
total, estimamos que os incêndios de sub-bosque adicionaram entre 0,67 e 5,86 gigatoneladas de 75 
CO2 atmosférico entre 2001-2010. Os modelos globais de vegetação devem incluir explicitamente 76 
a variação na espessura da casca ao prever os efeitos do fogo no ciclo do carbono de florestas 77 
tropicais. 78 
  79 
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INTRODUCTION 80 
Fire has emerged as a primary threat to tropical forests in the Amazon over the past three 81 

decades, in response to a combination of deforestation and increasing severity and frequency of 82 
droughts (Cochrane 2003; Chen et al. 2014). Throughout the 20th century, fires were largely 83 
restricted to areas experiencing deforestation or existing cleared areas for agricultural 84 
maintenance (Alencar et al. 2011), but fires can now spread readily through forests that have not 85 
been otherwise disturbed (Morton et al. 2013), dramatically increasing burned areas. Today, 86 
during major droughts (including 2005, 2007, 2010, and 2015-2016), forest understory fires 87 
affected larger areas in the Amazon basin than deforestation itself (Aragao et al. 2018) – in some 88 
years as much as 5x larger (Morton et al. 2013). This trend is projected to continue in coming 89 
decades, with a greater frequency of Amazon droughts in response to anthropogenic global 90 
change (Le Page et al. 2017). Predicting forest responses to fires is increasingly imperative. 91 

However, our understanding of the short- and long-term ecological impact of tropical forest 92 
understory fires is poorly developed, which limits assessments of fire impacts on ecosystems and 93 
the global carbon cycle (van der Werf et al. 2009; Rappaport et al. 2018). One major source of 94 
uncertainty is the variability in rates of tree mortality across diverse forests in response to 95 
understory fires, with estimates ranging from <10% to c. 90% (Barlow et al. 2012). Fire intensity 96 
clearly impacts tree mortality (Barlow et al. 2012, Brando et al. 2014, Rappaport et al. 2018), but 97 
even so, diverse forests can react differently to similar fire intensity (Hoffmann et al. 2009; 98 
Barlow et al. 2012; Brando et al. 2019). Forest history likely explains some part of these 99 
differences (Barlow & Peres 2008), but underlying fire-related traits may also vary 100 
geographically – a contribution which has, to date, been overlooked in the humid tropical forest 101 
context where fires are increasing in prevalence.  102 

Among fire-related functional traits, bark is the most amenable to widespread sampling (e.g., 103 
(Rosell 2016), and appears broadly to govern fire-driven mortality of tree stems (Harmon 1984). 104 
The corky outer bark protects trees from fires by insulating tree cambium and xylem (Michaletz 105 
et al. 2012; Rosell 2016; Pausas 2017), thereby reducing mortality from cambial necrosis or 106 
cavitation due to excessive heating. Reductions in stem mortality among trees with thicker bark 107 
have been extensively described in more flammable systems, like savannas (Trollope & Tainton 108 
1986; Gignoux et al. 1997; Hoffmann et al. 2009; 2012), but variation in bark thickness can also 109 
determine size- and species-specific differences among trees in their susceptibility to fires even 110 
within tropical forests (Barlow et al. 2003; Hoffmann et al. 2009; Brando et al. 2011). However, 111 
while bark in savanna and other flammable systems has been the subject of large-scale synthesis 112 
(Dantas & Pausas 2013; Pellegrini et al. 2017), the extent and determinants of variation in bark 113 
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thickness within humid tropical forests are not known, complicating efforts to predict carbon 114 
losses in the years following fires.  115 

Known relationships of bark thickness variation to fire history (Pausas 2017) and abiotic 116 
drivers (Richardson et al. 2015) allow us to generate informed expectations. The null expectation 117 
is that bark is consistently thin and variation therefore minimal. After all, the contemporary 118 
literature often assumes that today’s fire return intervals in Amazonia are a historical anomaly 119 
(Cochrane 2003), such that fire protection may be unnecessary for tropical forest trees. However, 120 
the paleo-literature suggests that some Amazonian forests may historically have burned, at least 121 
with relatively low frequency in the drier south and east (Bush et al. 2008; Power et al. 2008). 122 
Moreover, within sites, bark thickness varies in tropical forests (Paine et al. 2010), and work in 123 
temperate forests has documented patterns of variation linked to rainfall (Richardson et al. 2015) 124 
and fire occurrence (Abatzoglou & Williams 2016). A more plausible alternative hypothesis 125 
might therefore be that variation in bark thickness across the Amazon is substantial, reflecting 126 
varying evolutionary pressures across the basin, especially from fire (Bond & Midgley 2001; 127 
Pausas et al. 2006; Pausas 2017) but also from other processes (Rosell 2016). From a more 128 
applied perspective, understanding the variability in bark thickness in humid tropical forests will 129 
be a key step towards improving spatially-explicit predictions of fire-driven tree mortality and the 130 
resulting carbon emissions. 131 

Here, we evaluated the extent and degree of variation in bark thickness across Amazonian 132 
tropical forests, combining data from a total of 6,280 trees in forests in 13 plots (~ 1 ha each), in 133 
diverse regions across Amazonia (see Extended Data Figure 1, Extended Data Table 1), and 134 
evaluate variations with respect to climate (annual rainfall and maximum cumulative water deficit 135 
[MCWD]), yielding estimates of bark thickness across all Amazonian forests. We then combined 136 
these maps of bark thickness with published relationships between bark thickness and tree 137 
mortality (Hoffmann et al. 2009; Brando et al. 2011) to evaluate the potential contributions of 138 
bark thickness variation to estimates of tree mortality and biomass loss from understory fires in 139 
Amazon forests, evaluated against observed tree mortality and biomass loss synthesized from 140 
published studies. 141 
 142 
MATERIALS AND METHODS 143 

Functional Traits and Plot Level Size Class Distributions. We measured bark thickness at 13 144 
sites located throughout the Amazon between 2000 and 2013 (see Figure S1). At each site, we 145 
sampled all trees in plots to total ~ 1 ha of area sampled at each site (see Table S1 for plot 146 
dimensions). Trees were identified to species at 12 sites (leveraging existing data) or 147 



A.C. Staver et al. – Fire, bark, and tree mortality in the Amazon 

 6 

morphospecies at one. At each tree, diameter was measured at breast height (1.3 m), bark was 148 
sampled with a corer at 2-4 points around the trunk of a tree, 0.35 m ± 0.05 m above the ground.   149 

For comparison, where data were available, we also evaluated patterns of tree height and 150 
wood density across sites. Because tree height and wood density both contribute by definition to 151 
biomass (Chave et al. 2014), systematic variation in these traits can impact patterns of forest 152 
biomass (Quesada et al. 2012; Álvarez-Dávila et al. 2017), with downstream effects on estimates 153 
of biomass loss. Therefore, we examined these directly in order to control for their possible 154 
contributions to biomass loss estimates; they also provide a useful point of comparison for 155 
evaluating the magnitude of variation in bark thickness. Height was available at a subset of 156 
RAINFOR-associated sites (with height observations at a total of 6 sites), with height 157 
measurements following published RAINFOR protocols (Feldpausch et al. 2011). Wood density 158 
was extracted via the ‘BIOMASS’ R package from a freely available dataset published by Chave 159 
et al. (2014), with tree species, genus, or family as the lookup for extraction. 160 

Rainfall Climatology and Fire. Annual rainfall and maximum climatological water deficit 161 
(MCWD) was calculated from data from the Tropical Rainfall Measuring Mission (Nicholson et 162 
al. 2003; Brando et al. 2014) from 1998 to 2012 at 0.25 degree resolution. Annual rainfall was 163 
calculated by summing monthly rainfall products, and averaging across years to determine mean 164 
annual rainfall.  165 

MCWD was calculated starting from the first month of the year (south of the Equator = 166 
January; north of the Equator = July), when climatological water deficit was defined as 0. Each 167 
month, we subtract the theoretical water demand (evaporation plus transpiration) of a typical 168 
tropical forest (100 mm monthly rainfall) from the incoming rainfall and add it to the existing 169 
water deficit; if the result is > 0 (i.e., there is excess rainfall), we reset the water deficit to 0. After 170 
the last month of the year, this yields the CWD for the year. MCWD is defined as the maximum 171 
of CWD across all years for each pixel (see also Aragão et al. 2007; Brando et al. 2010).  172 

Fire occurrences were derived via two methods. First, we used the MODIS Active Fires 173 
Product (Giglio et al. 2016) at the 1 km scale; we used the Active Fires instead of the Burned 174 
Area product because the latter is considered somewhat more sensitive in detecting forest-175 
understory fires that do not generate a typical ash or char reflectance values needed for burned 176 
area mapping. Pixels in which fires occurred were considered burned, but were then masked with 177 
tree cover from Hansen’s Landsat-based tree cover estimates at a 1 km resolution (Hansen et al. 178 
2013), to eliminate fires directly associated with deforestation from our predictions of fire-driven 179 
losses (a known limitation of the Active Fires product for estimating understory fire extent; 180 
(Morton et al. 2013). Each year, the burned area map was masked with all areas that experienced 181 
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deforestation of at least 2% (that year or any previous year). A deforestation threshold of 2% is 182 
conservative, with the goal of eliminating direct deforestation fires and focusing instead on forest-183 
understory fires. Overall, we see that fire extent has declined in MODIS Active Fire detections as 184 
deforestation has, suggesting some link, despite our efforts at masking. For this reason, we have 185 
also used an independently calibrated estimate of understory fire extent (Morton et al. 2013) (also 186 
using data from the MODIS satellite; referred to in figures as ‘Morton’), which is even more 187 
conservative in removing deforestation-linked fires. Both fire distribution products detect 188 
increases in fire activity during droughts associated with climate anomalies, suggesting that this is 189 
a robust finding. However, given the moderate resolution of these satellite-based data products, 190 
both likely underestimate the true spatial coverage of wildfires in closed canopy forests. For both 191 
products, we re-aggregated burned area to yield an estimate at the resolution of rainfall and 192 
MCWD calculations.  193 

Climatological data were produced, extracted at each site, and modeled to produce basin-194 
wide estimates of bark thickness using the packages sp, ncdf4, and raster in R 3.2.2. Fire and tree 195 
cover data were managed in the same way. 196 

Above-Ground Biomass. At each site for which we collected tree size and bark thickness, we 197 
calculated biomass using the BIOMASS package (Chave et al. 2014) in R 3.2.2, based on species-, 198 
genus-, or (where necessary) family-level wood density and on plot location (as a proxy for tree 199 
height). To scale to basin-wide fire-driven biomass losses, we used a recently-published biomass 200 
map for forests that integrates remote-sensing with field-based biomass estimates from Avitabile 201 
and colleagues (2016). Biomass was also resampled to match the scale of the climatological data 202 
in R 3.2.2. 203 

Effects of Bark Thickness on Mortality in Fires. Rates of mortality in fires were derived from 204 
two major studies examining forest tree mortality in fires (Hoffmann et al. 2009; Brando et al. 205 
2011). The first considered the effects of bark thickness on stem mortality of forest trees in fires 206 
at the IBGE Reserve outside Brasilia by Hoffmann et al (Hoffmann et al. 2009). We constructed 207 
a linear model of tree mortality probability with respect to bark thickness (see Figure 2b) to 208 
model mortality of trees. As the model more representative of the range of forest understory fires 209 
(Figure 2a), we used this for most calculations in the main body of the paper. Second, we also 210 
used stem mortality from a fire experiment in the southern Amazon (at Tanguro) for a more 211 
detailed data source (see Brando et al. for a formal analysis of these data [2011]). Here, we 212 
considered mortality in the three years following a fire as fire-driven mortality, so this should be 213 
considered an estimate of short-term committed losses and not an estimate of instantaneous 214 
responses to a fire. Probability of mortality was modeled using a general linear model assuming 215 
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an underlying binomial distribution (each tree survives or dies in/after a fire). Fires at Tanguro 216 
were mild during normal years and more intense during drought years (see Figure 2a), with major 217 
effects on tree mortality (see Figure 2b).  218 

We modeled fire-driven mortality at each site using four different scenarios: 1) real trees, 219 
with measured diameters and bark thickness, 2) trees with measured diameters, with bark 220 
modelled according to the real community-wide bark allometric constant calculated at each site, 221 
3) tree diameters drawn from an idealized diameter distribution calculated across all sites, and 222 
bark modelled according to the real bark allometric constant at each site, and 4) an idealized 223 
diameter distribution and bark modeled according to a bark allometric relationship modeled from 224 
climate at each site. In each scenario, we modeled the probability of mortality of each tree, from 225 
which we calculated proportional mortality and biomass losses.  226 

Because mortality is a stochastic event (described by a deterministic rate), and because we 227 
propagated errors in bark allometry and diameter distribution estimates, we bootstrapped each 228 
scenario 100 times to calculate average probability of mortality and average biomass losses 229 
across sites. Scenarios reproduced qualitatively similar variation in tree mortality with respect to 230 
rainfall (see Figure S6).  We followed the same method (scenario 4) to calculate mortality rates 231 
and biomass losses across the entire Amazon.   232 

Comparisons with Observed Mortality and Biomass. Predictions were compared qualitatively 233 
and quantitatively with data from two meta-analyses of tree mortality in fires from across tropical 234 
forests by Hoffmann et al (2009) and Barlow et al (2012). The former included rainfall estimates 235 
but no locations, while the latter provided a map of study locations included in the synthesis 236 
(enabling comparison of rainfall vs. MCWD as drivers of forest tree stem mortality). Biomass 237 
loss estimates from Barlow et al (2012) were also used to directly estimate biomass losses (via a 238 
relationship between rainfall vs. biomass loss; see Figure 3B) for comparison with estimates 239 
generated via bark-mortality relationships. 240 
 241 
RESULTS  242 

Stem and region-level bark thickness varied substantially across the Amazon, constrained by 243 
a combination of tree size and climate. On individual stems, bark thickness varied from fractions 244 
of a millimeter to more than 4 cm of bark, and average bark thickness ranged from 0.5 mm to > 1 245 
cm across plots. At each site, bark thickness increased with diameter at breast height (DBH; 246 
Figure S2), as expected (Hoffmann et al. 2003). This allometric relationship yields a constant for 247 
examining bark accumulation, controlling for tree size (a, where 𝑏𝑎𝑟𝑘 = 𝐷𝐵𝐻)). Bark 248 
accumulation varied with respect to climate (Figure 1a-b, S3), decreasing most predictably with 249 
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rainfall (R2 = 0.62, df = 11, p = 0.0015; Table S2), providing the first spatial estimate of bark 250 
investment across the Amazon (Figure 1c).  251 

We next aimed to translate this variation in bark as a functional trait into predictions of tree 252 
mortality using published estimates linking bark thickness with tree stem mortality following 253 
tropical forest understory fires. These estimates are sparse in the literature, with forest work at 254 
only two sites, Amazon forests at Tanguro (Brando et al. 2011) and dense woodlands and riparian 255 
forests in the cerrado biome at the IBGE Reserve (Hoffmann et al. 2009). Stem mortality 256 
decreased with bark thickness and increased with increasing fire intensity (Barlow et al. 2012) 257 
(consistent with results from better-studied savanna systems [Williams et al. 1999]; Figure 2b). 258 
However, tropical forests where fires have been studied in detail (Tanguro and IBGE) have 259 
experienced relatively low-intensity fires compared to the documented range of fire intensities 260 
possible across the Amazon (Figure 2a).  261 

In reality, stem mortality depends on actual bark thickness, not an allometric constant. 262 
Therefore, we also evaluated variations in realized tree bark thickness across sites that arose from 263 
variation in tree size across Amazonian forests. Whereas tree density increased markedly with 264 
rainfall (Figure S4), diameter class distributions showed no consistent trends (Figure S5). We also 265 
examined whether mortality estimates at each field site were sensitive to how we estimated bark 266 
thickness. Results were robust to all forms of bark thickness estimation (Figure S6), with no 267 
systematic biases introduced by general assumptions about size class distributions, although we 268 
note that local variations in tree size distributions might nonetheless change fire susceptibility 269 
depending on site history (Barlow & Peres 2008). 270 

Thinner bark at high rainfall translated into consistently higher predicted mortality from 271 
understory fires (Figure 3a), which in turn translated into increasing biomass loss with rainfall 272 
(Figure 3b). We compared these predictions to observations of stem mortality rates from field 273 
observations across Amazonian forest fires (Hoffmann et al. 2009; Barlow et al. 2012), showing 274 
that stem mortality and biomass loss rates do actually increase with rainfall (Figure 3), even more 275 
strongly than our modeled estimates. Taken together, these patterns suggest that bark variability 276 
may indeed contribute to variability in the effects of fires on forests. Drier forests near the 277 
biogeographic limit of Amazonian forests – where, incidentally, most research on the relationship 278 
between bark and fire-driven mortality has focused – are substantially more resistant to fires than 279 
forests in the wetter core of the Amazon. 280 

We next calculated committed biomass-C fluxes across all Amazonian forests across years. 281 
The net result of incorporating variable bark into our predictions (from Figure 1) was a 57.6% 282 
increase over constant-bark estimates in the basin-wide understory fire-driven biomass loss, with 283 
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estimates that more closely match biomass losses estimated directly from plot-level mortality 284 
observations (Fig. 4; plot-level estimates in Fig. 3a). Trends and variation are evident through 285 
time, with overall decreases in fire extent based on MODIS active fires, likely reflecting 286 
decreases in deforestation-associated fires during the study period, and dramatic increases in fire 287 
extent during drought years (e.g., 2007 and 2010). Summing potential losses across years (see 288 
Fig. 4) yielded a total fire-driven aboveground biomass loss estimate ranging from 0.67 to 5.86 289 
gigatons of CO2 (0.18 to 1.60 gT C) to the atmosphere between 2001-2010. 290 
 291 
DISCUSSION 292 

Here, we find that tree investment in bark varies across Amazonian tropical forests, with 293 
thicker bark in dry forests and thinner in wetter forests. Combining these patterns with published 294 
relationships between bark thickness and tree mortality (Hoffmann et al. 2009; Brando et al. 295 
2011) suggests that fire-driven tree mortality and biomass loss is greater in wet forests than in dry 296 
ones, which is also supported by our synthesis of observed post-fire tree mortality across the 297 
Amazon. Overall, thinner bark in wetter tropical forests may make these forests more sensitive to 298 
fire, which substantially changes estimates of fire impacts on the Amazon-wide carbon cycle. 299 
This fuller understanding of bark variability is likely to improve estimates of the fire-driven 300 
carbon cycle in tropical forests. 301 

Variation in bark investment across tropical forests raises an intriguing question: Why are 302 
there thick-barked species in forests at all (Paine et al. 2010)? One possibility is that fire may 303 
have been historically widespread (if infrequent) in drier tropical forests, making thick bark 304 
advantageous. Certainly, the paleo-fire literature suggests that fires probably did occur in the 305 
Amazon before the modern era in drier Amazonian forests (Bush et al. 2008; Power et al. 2008) 306 
and much less so wetter ones (McMichael et al. 2012). Patterns of bark investment observed here 307 
are roughly consistent with this, suggesting that fire may have had some ecological and 308 
evolutionary importance at the margins of Amazonia. Another possibility is that the functionality 309 
of bark is not limited to withstanding fires, and that bark plays a role in drought tolerance (Rosell 310 
et al. 2013; Rosell 2016), nutrient and water storage (Richardson et al. 2015), and herbivore and 311 
disease defense (Richardson et al. 2015). Drought and water storage hypotheses are weakly 312 
supported by the current evidence. First, past work has shown that bark has limited function in 313 
mitigating drought susceptibility (Paine et al. 2010). Second, resource storage by bark is usually 314 
associated with inner bark (Pausas 2017), not the more insulating corky outer bark (Brando et al. 315 
2011; Michaletz et al. 2012), such that future work should clearly differentiate between these two 316 
features. Anecdotally, most of the thick bark in this study was corky, although we did observe a 317 



A.C. Staver et al. – Fire, bark, and tree mortality in the Amazon 

 11 

few instances of extremely thick inner bark (see also Roth 1981); that bark was mostly corky is 318 
consistent with observations at Tanguro (included in this study) that bark thickness overall was 319 
more predictive of fire-protection than bark traits than bark moisture or density (Brando et al. 320 
2011). However, the defense hypothesis argues that thin bark has evolved to resist pathogens at 321 
high rainfall (Richardson et al. 2015) where pathogen loads are heavy (Swinfield et al. 2012), 322 
consistent with and potentially contributing to patterns observed here. Mechanisms that lead to 323 
bark differences, particularly within forest system, merit further direct consideration. 324 

Of course, important caveats apply, especially relating to the time scales of these patterns and 325 
processes. First of all, we have documented decreases in bark thickness only with respect to 326 
modern rainfall patterns, without considering any historical or paleo-rainfall distributions. 327 
Secondly, humans have been an important influence on the ecology of the Amazon basin for the 328 
past 16,000 years at least, perhaps filtering the composition of marginal Amazonian forests 329 
towards the species most tolerant of disturbances from fire (e.g., Heckenberger et al. 2003). 330 
Although anthropogenic filtering cannot account for the existence of species with thick bark to 331 
begin with (i.e., for standing variation in bark thickness), it may have strengthened existing 332 
patterns.  333 

Whatever its evolutionary or ecological origins, patterns of bark investment across the 334 
Amazon suggest that fire-driven tree mortality should occur at higher rates in wet forests than in 335 
dry ones. These predictions are borne out in real mortality and biomass-loss estimates from 336 
understory fires (see Fig. 4), although, curiously, the observed response of mortality and biomass 337 
loss to rainfall was even stronger than our models predicted (Figure 3). There are a number of 338 
possible reasons that our models may underestimate high stem mortality rates in wet forests (see 339 
also Cochrane 1999; Barlow et al. 2012; Rappaport et al. 2018). One probable contributor is that 340 
we have only poorly represented the effects of fires that are intense (at least by tropical forest 341 
standards; Figure 2; Cochrane & Schulze 1999). This highlights a well-appreciated need for ways 342 
to quantify fire intensity, especially after fires have already occurred (see, e.g., Rappaport et al., 343 
2018), and for work across a broader range of forests and forest types. 344 

Another possibility is that bark alone does not determine how trees respond to fire (Ryan & 345 
Williams 2011). For instance, hydraulic vulnerability may contribute to making the combination 346 
of drought and fire potent in killing tropical forest trees (Brando et al. 2014), if drought-induced 347 
water stress makes cavitation during fires more likely (Michaletz et al. 2012). Vulnerable 348 
hydraulic architecture – common in trees that have not experienced a history of drought or fire 349 
and perhaps also in taller forests – and root susceptibility to fires may both merit further 350 
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examination as a contributor to fire-driven mortality of forest trees. Nonetheless, bark thickness 351 
clearly had major impacts on mortality and thus on biomass losses in understory fires.  352 

An increased emphasis on plant functional responses to fire – via bark but also other traits – 353 
could further contribute to improving predictions of fire effects on tropical forests. For one, 354 
although fires often cause the mortality of the tree stem, they do not always kill the whole 355 
individual. Resprouting following fires (Hoffmann et al. 2009) can be widespread, and may 356 
dramatically speed forest community and biomass recovery following fires. Resprouting traits are 357 
understudied in tropical forests (Clarke et al. 2012), a critical gap if we are to understand the 358 
long-term implications of tropical understory fires for the carbon cycle. Conversely, repeated fires 359 
may slow post-fire forest succession. Changes in forest structure following an initial burn may 360 
predispose forests to additional fires (Barlow & Peres 2008), which in extreme cases can lead to 361 
grass invasion and eventual forest savannization (Silvério et al. 2013), although the generality of 362 
this runaway feedback is an issue of some debate (Cochrane 1999). Bark traits may make this 363 
more likely, since many of the smaller trees that grow back after fires have thinner bark, and 364 
these pioneers are often highly susceptible to subsequent fires (Barlow & Peres 2008).  365 

Here, we provide the first evidence of substantial variation in bark investment across 366 
Amazonian forests. Thinner bark in wetter forests provides a convincing explanation for 367 
extremely high local tree mortality in understory fires, which improves our understanding of both 368 
carbon emissions and biodiversity losses. Together with improved models for fire behavior, a 369 
more comprehensive perspective on how plant functional traits (including bark thickness and 370 
resprouting) mediate ecosystem responses to global change will be critical to predicting the future 371 
of Amazonian forests and associated climate-carbon feedbacks, including fires (Cochrane 2003). 372 
In this study, aboveground biomass loss estimates based on varying bark thickness suggest that 373 
Amazon understory fires have added between 0.67 to 5.86 gigatons of CO2 to the atmosphere 374 
between 2001-2010 (Fig. 4), without accounting for regrowth. Ignoring fire-related functional 375 
traits thus risks missing a major ecological influence on forest responses to fire, with 376 
consequences for predictions of tropical forest impacts on global carbon cycles.  377 
 378 
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FIGURES 385 
 386 

 387 
 388 
Figure 1. Response of community-wide bark thickness to rainfall (A) and maximum cumulative 389 
water deficit (B), and modeled bark thickness across the Amazon (C). Log-rainfall was the 390 
preferred explanatory variable (Table S2; R2 = 0.616, df = 11, p = 0.0015). Higher values of a 391 
indicate that bark accumulates more quickly as tree diameter increases (i.e., that bark is thicker). 392 
Thus, bark is thicker in lower-rainfall forests. 393 
  394 
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 395 
Figure 2. Fire intensity at Tanguro, the IBGE Reserve, and across the Amazon (A), and predicted 396 
mortality response to bark thickness from Tanguro and the IBGE Reserve (B). Fire intensities at 397 
Tanguro and IBGE were calculated from char height observations using equations given in 398 
[(Williams et al. 1998)]. At IBGE, the probability of tree mortality decreased with bark thickness 399 
(R2 = 0.909, df = 4, p = 0.0032). At Tanguro, a model including bark thickness, year (as a proxy 400 
for fire intensity and drought stress), and the interaction between them was used to predict tree 401 
mortality (see Brando et al. (2014) for a formal analysis) and explained 16.2 % of variation in 402 
tree mortality. Tanguro data are drawn from Brando et al. (2011; 2014), IBGE data from 403 
Hoffmann et al. ( 2009), and whole-Amazon syntheses from Cochrane et al. (1999). 404 
 405 

 406 
 407 
Figure 3. Modeled and observed fire-driven tree mortality (A) and biomass loss (B) in response 408 
to rainfall. Mortality (Hoffmann et al. 2009; Barlow et al. 2012) and biomass loss (Barlow et al. 409 
2012) observations are drawn from published meta-analyses of field studies across the Amazon, 410 
and modeled fire-driven mortality is based on published relationships between tree bark and 411 
mortality at Tanguro in mild and intense fires (Brando et al. 2011) and at the IBGE reserve 412 
(Hoffmann et al. 2009). Observed fire-driven mortality rates increased with rainfall (R2 = 0.290, 413 
df = 24, p = 0.0045) more strongly that modeled mortality did. So too did biomass losses (R2 = 414 
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0.347, df = 10, p = 0.044). Note that in both cases, rainfall was a better predictor of observed 415 
mortality and biomass loss than MCWD (R2 = 0.121, df = 15, p = 0.17 and R2 = 0.331, df = 10, p 416 
= 0.05, respectively). 417 

 418 
 419 
Figure 4. Predicted fire-driven losses of above-ground biomass (GtC) across all Amazonian 420 
forests, calculated from published estimates of biomass loss (Barlow et al. 2012) (magenta, pink) 421 
and modeled assuming constant bark thickness (navy, blue) vs. variable bark (orange, yellow) and 422 
a bark-mortality relationship from [(Hoffmann et al. 2009)]. For constant bark calculations, we 423 
assume bark equivalent to our four driest sites, near the southern edge of the Amazon. Fire extent 424 
was estimated directly from MODIS Active Fires data (‘MODIS’) (Giglio et al. 2016) and via 425 
independent MODIS-derived understory fire distributions (‘Morton’) (Morton et al. 2013).  This 426 
reveals the effects of extrapolating current and future fire-driven losses from historical fire-driven 427 
losses in comparatively fire-tolerant forests. See Methods for detail. Including variations in bark 428 
thickness across the Amazon increases predicted fire-driven carbon losses by 57.6 ± 3.9% (see 429 
Table S2).  430 
 431 
  432 
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SUPPLEMENTARY FIGURES AND TABLES 433 
 434 

 435 
 436 

Figure S1. Mean annual rainfall and site locations and names across the Amazon. 437 
  438 
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 439 

 440 
 441 

Figure S2. Bark allometries by site. Lines represent the best-fit relationship between diameter 442 
(DBH; cm) and bark thickness (mm) with a form given by 𝑏𝑎𝑟𝑘 = 𝐷𝐵𝐻) . Here, fits are shown to 443 
all trees at a site, but for formal analysis, allometric constants were calculated by species, and 444 
averaged weighted by species abundance at a site. Note that all plots have been truncated at 20 445 
mm bark thickness and 100 cm DBH, focusing on the majority of data (89.4%) and avoiding 446 
sparse regions of morphological space. 447 
 448 
 449 

 450 
 451 
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Figure S3. Inverse cumulative bark thickness distribution at each site (A), and response of the 452 
best-fit log-normal parameters at each site to rainfall (B-C). The first parameter of the log-normal 453 
distribution varied predictably with rainfall across sites (R2 = 0.592, df = 11, p = 0.0021). 454 
 455 
 456 

 457 
 458 
Figure S4. Response of height allometry (A-B), wood density (C-D), tree density (E-F), and 459 
above-ground biomass (G-H) at each site to rainfall and MCWD. 460 
 461 
 462 
  463 
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 464 

 465 
 466 
Figure S5. Inverse cumulative diameter distribution at each site (A), and response of the best-fit 467 
log-normal parameters at each site to rainfall (B-C). 468 
 469 

 470 
 471 
Figure S6. Fire-driven tree mortality response to rainfall, modeled using real bark measurements 472 
(blue), bark modeled on real diameter measurements and real bark allometric constants by site 473 
(purple), bark modeled on a stylized diameter distribution (see Figure S4) and real bark allometric 474 
constants by site (yellow), and bark modeled on a stylized diameter distribution and modelled 475 
bark allometric constants (see Figure 1) (red). Mortality was estimated using published 476 
relationships between bark and mortality from Tanguro (Brando et al. 2011) (triangle and 477 
diamonds for intense and mild fires, respectively) and from all tropical forests (Hoffmann et al. 478 
2009) (circles).  479 
 480 
 481 
 482 
  483 
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Table S1. Sites and plot details. 484 
 485 

Site Plot dimensions Total area sampled 

Tucabaca 100 m ´ 100 m 1 ha 

Ottavio 100 m ´ 100 m 1 ha 

Jardin Botanico 100 m ´ 100 m 1 ha 

Kenia A 100 m ´ 100 m 1 ha 

Kenia B 100 m ´ 100 m 1 ha 

Los Fierros 500 m ´ 20 m 1 ha 

Tanguro 50 m ´ 50 m ´ 4 1 ha 

Santarem† 50 m ´ 50 m ´ 5 1.25 ha 

Cocha Cashu 100 m ´ 100 m 1 ha 

Roraima 50 m ´ 50 m ´ 3 0.75 ha 

Jari 10 m ´ 250 m ´ 6 1.5 ha 

Alpahuayo B 100 m ´ 100 m 1 ha 

Alpahuayo C 100 m ´ 100 m 1 ha 

 486 

† At Santarem, species were identified only to morphospecies, so site-specific biomass 487 

was calculated for another nearby site, where taxonomic information was available, for 488 

use in analyses. 489 
 490 
  491 
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Table S2. Akaike information criterion model selection for bark allometry (a: bark = DBHa), 492 

height (b: height = DBHb), and wood density (r) functional traits, and plot-level stem density (ha-493 
1) and above ground biomass (Mg ha-1). The simplest model with DAIC < 2 was selected as the 494 
best, indicated in bold. 495 
 496 

predictors 

DAIC 

bark 

(a) 

height 

(b) 

wood 

(r) 

stem density 

(ha-1) 

AG biomass 

(Mg ha-1) 

~ log (mar) * mcwd 9.31 > 10 11.05 6.21 4.78 

~ log (mar) + mcwd 3.92 > 10 6.85 1.18 6.04 

~ mar * mcwd 9.11 > 10 11.84 5.60 0 

~ mar + mcwd 4.39 > 10 7.44 2.73 8.40 

~ log (mar) *0* 8.65 2.83 *0* *1.81* 

~ mar 0.37 8.81 3.13 1.22 4.15 

~ mcwd 1.83 9.96 3.26 5.14 4.92 

~ 1 8.96 *0* *0* 4.35 6.96 

 497 
 498 
  499 
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Table S3. Fire-driven carbon losses from Amazonian forests, calculated assuming constant bark 500 
thickness vs. variable bark. For constant bark calculations, we assume bark equivalent to our four 501 
driest sites, near the southern edge of the Amazon, where fires may have been historically 502 
frequent. This reveals the effects of extrapolating from comparatively fire-tolerant forests to the 503 
entire Amazon basin. Errors represent standard deviations. 504 

fire extent 

estimate 
mortality model 

Total fire-driven 

biomass loss (GtC), 

constant bark 

Total fire-driven 

biomass loss (GtC), 

variable bark 

Percent 

change (%) 

MODIS 

Active Fires 

All forests† 0.16 ± 0.09 0.26 ± 0.14 57.6 ± 3.9 

Mild Tanguro‡ 0 ± 0 0.11 ± 0.06 ∞ 

Intense Tanguro‡ 0.097 ± 0.053 0.20 ± 0.11 1927.3 ± 14.3 

MODIS-derived 

‘Morton’ 

All forests† 0.015 ± 0.017 0.024 ± 0.026 57.2 ± 0.047  

Mild Tanguro‡ 0 ± 0 0.019 ± 0.021 ∞ 

Intense Tanguro‡ 0.0010 ± 0.0011 0.010 ± 0.012 18.2 ± 0.16 

º Morton et al. 2013 505 
† (Hoffmann et al. 2009) 506 
‡ (Brando et al. 2011) 507 
 508 
  509 
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