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Abstract

Design and re-analysis of offshore structures requires the joint estimation of extreme values for a set of environmen-
tal variables, representing so-called long-term and short-term characteristics of the environment, subject to sources
of systematic variation including directionality and seasonality. Estimation is complicated by numerous sources of
uncertainty, typically including limited sample size and the specification of a number of analysis parameters (such
as thresholds for peaks over threshold analysis). In this work, we present a model to estimate joint extremal char-
acteristics of the ocean environment incorporating non-stationary marginal and conditional extreme value analysis,
and thorough uncertainty quantification, within a Bayesian framework. The model is used to quantify the joint
directional-seasonal structure of extremes waves, winds and currents at a location in the Danish sector of the North
Sea.
Keywords: offshore design, extremes, non-stationary, conditional extremes, Bayesian, uncertainty, extreme value

1. Introduction

Offshore oil and gas installations must be designed to withstand environmental loads with annual probabilities
of exceedance less than some small value (e.g. 10−4) when lives are at risk or severe pollution possible. Reliable
estimation of rare load levels requires careful analysis of the ocean environmental and structural loading. Envi-
ronmental data from hindcasts and measurements are typically available for time periods of the order of decades.
Extrapolation far beyond the sample is therefore necessary to estimate appropriate design conditions. The quantities
of interest from a design perspective, generically called “responses”, include maximum wave height, crest elevation
or load level. These random quantities are dependent on the environmental conditions for a sea state, typically
with length of the order of 30 minutes to 3 hours, summarised in terms of sea-state significant wave height, mean
wind speed, etc. Some “short-term” distributions (e.g. of maximum wave height in a sea state) are well-studied,
whereas others (e.g. of maximum structural load in a sea state, for a given structure) need to be estimated (e.g.
using approximate load models or full time-domain simulation of environmental loads in a given sea state).
Variables summarising sea states themselves also vary in time, but more slowly than short-term variables; their

variation also depends on covariates such as wave direction, season, etc. In particular, extreme values of responses
tend to be associated with extreme values of sea state variables; it is therefore important to characterise the tails
of the distribution of sea state variables well. Statistical analysis of variables summarising consecutive sea states is
problematic because of temporal dependence. Hence, it is typical to partition sea states into events, referred to here
as “statistical storms”, corresponding to contiguous intervals of time, and to then estimate (a) summary variables
for whole storms (which can be considered independent given covariates) and (b) the local evolution of sea state
variables within a storm given its summary variables. Thus for example, a typical storm might be summarised in
terms of the storm peak significant wave height, storm peak direction, season and spectral peak period, and the
within-storm evolution of these variables in time given storm peak variables. In the current work, we also explicitly
model storm duration.
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To estimate the “long-term” distribution of response, convolution of the “short-term” distribution of response
given sea state with the slowly-varying distribution of sea state variables is required. The method of Tromans and
Vanderschuren (1995) convolves the short-term distribution of wave heights with the long-term distribution of most-
probable maximum wave height in a storm to provide an estimate of the long-term distribution of the maximum
individual wave height. The distribution of individual wave height in a storm conditional on its most probable value
is governed by the shape parameter of the Weibull distribution of individual wave heights, and the number N of
waves (defined in terms of zero-crossings of surface elevation) over the period of the storm. The value of N and
the most probable maximum wave height of historical storms are determined through least-squares regression. The
most probable maximum wave heights of historical storms are treated as random variables on which extreme value
analysis is performed.
The tail of the distribution of storm peak significant wave height can be described using the generalised Pareto

distribution (Pickands 1975). The wind and wave climate typically varies in severity with direction because of
variation in available fetch, and directional variation of wind severity. These directional variations are also often
associated with seasonal variations, and can be accounted for by fitting extreme value models on a partition of
the directional, seasonal or directional-seasonal domain into bins, each of which is assumed to be homogeneous.
Specification of appropriate bin sizes is a trade-off between the need for sufficient data per bin for model inference and
the requirement for approximate within-bin stationarity. Models estimated using independent bin-by-bin analysis
are more uncertain, because of reduced sample size per bin. However, bin-by-bin models are also potentially less
biased than a model which ignores covariate effects, because the model can accommodate variation of response with
covariates more adequately. Better recent approaches (e.g. Davison and Smith 1990) introduce extreme value models
incorporating covariates, but avoiding the need for covariate binning. Jonathan et al. (2014b) use extreme value
models with direction, season, longitude and latitude as covariates, imposing smoothness constraints on extreme
value parameter variation with covariates.
Storm summary variables (e.g. the storm peak significant wave height and associated spectral peak period) exhibit

dependence, as do extreme values of these variables. Since the distribution of response (e.g. maximum individual
wave height) depends typically on multiple storm summary variables, it is critical to be able to simulate accurately
from the joint tails of distributions of storm summary variables. This requires a suitable model for joint extremes.
There are many potential choices, including traditionally those motivated by the work of Longuet-Higgins (1952)
and Haver (1987). The conditional extremes model of Heffernan and Tawn (2004) is advantageous because it is
suitable to describe a wider class of extremal dependence. The parameters of the conditional extremes model can
also be considered as smooth functions of covariates (e.g. Jonathan et al. 2014a).
In estimating the value of response corresponding to an event with annual probability of exceedance of 10−4 or

smaller, conventionally the effect of uncertainties in the underlying contributing models is neglected. Historically,
the mathematical and computational tools to quantify the effect of model uncertainty on predictions of extreme
values were not available. The basis for design was a combination of observations, simple statistical and physical
modelling approaches, safety factors and good engineering judgement. Specifically, uncertainties were not and
could not be accommodated systematically and coherently. Today the situation is different: the most prominent
methodology in the statistics literature to quantify uncertainty is Bayesian uncertainty analysis (see e.g. Berger
1985). For example, our uncertainty regarding (e.g.) wind-shear and bottom friction coefficients in a wave hindcast
simulator, or in estimating extreme value models from data, can be captured within the statistical analysis, and
reflected in estimates for extreme responses, as shown by Jones et al. (2018) in related North Sea work.

Objectives
The objective of the current research is to establish a model for the joint tails of peaks over threshold of storm

summary variables, non-stationary with respect to direction and season. The model uses penalised B-spline repre-
sentations of model parameters for marginal and conditional extremes to accommodate non-stationarity. Bayesian
inference is used to estimate parameters, and to propagate sources of uncertainty such as choices of thresholds for
marginal and conditional models. Simulation under the estimated models, incorporating between-sea-state variabil-
ity within a storm, and short-term variability of responses within sea-state, permits estimation of joint long-term
distributions of responses.

Layout
The article is laid out as follows. Section 2 introduces the North Sea data used to illustrate the model, and presents

the “storm model” used to summarise the characteristics of ocean storms, and outlines statistical approaches to
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marginal and conditional extreme value analysis adopted in this work. The procedure used for parameter estimation
using Bayesian inference is described in Section 3. Section 4 outlines how simulation under the model is used to
estimate distributions of responses corresponding to very long return periods. Results from an application to
hindcast data from a location in the Danish sector of the North Sea are presented in Section 5. Section 6 provides
discussion and conclusions.
Readers primarily interested in how the model is implemented, might consider reading Section 4 first, before

reading from Section 2 in order.

2. The model

In this section, we describe the “storm model” used to isolate so-called “characteristic variables” X, namely
important summary statistics of a whole storm used for extreme value modelling. Characteristic variables are
isolated from the corresponding time-series of sea state variables X̃(s). For the application discussed in Section 5,
characteristic variables are listed in the third column of Table 1 below, and sea state variables in the fourth column.
We then describe a statistical model for the joint distribution of characteristic variables, in particular of their
extreme values, varying with directional and seasonal covariates.

2.1. The storm model
The distribution of a response R such as maximum individual wave height in a storm S depends on a set X̃(s) of

sea state variables for sea state s in storm S, such as significant wave height, peak period and directional spreading.
The long-term distribution of R also depends on the evolution of sea states within a particular storm, as well as the
joint variability of a set of storm characteristic variables. To estimate the long-term distribution of R, we therefore
need a hierarchy of models to describe (a) R|X̃(s), the response given a single sea state s; (b) {X̃(s)}s∈S |X, the
sea state variables and covariates in time given storm characteristic variables and covariates; and (c) X, the storm
characteristic variables and covariates.
The proposed storm model is an extension of the response-based approach of Tromans and Vanderschuren (1995).

They characterise random independent storm events in terms of the most probable maximum response Rmpm in the
storm, and an associated equivalent number of waves N in the storm. Unlike Tromans and Vanderschuren (1995),
we characterise the storm magnitude, not by the most probable maximum response, but rather by the storm peak
significant wave height Hm0,p,eq of an “equivalent storm” exhibiting a Gaussian bell-shaped profile in time. Storm
duration is then quantified using the standard deviation σeq of the Gaussian bell, expressed in multiples of the
spectral zero-crossing period TZ . That is, σeq expresses the “number of waves” in a storm; this parameter plays a
similar role in our model to the parameter N of Tromans and Vanderschuren (1995). The most probable response
in a storm is therefore a function of both Hm0,p,eq and σeq. The significant wave height at time t relative to the
storm peak (at t = 0) in the equivalent storm is hence given by

Hm0(t) = Hm0,p,eq exp

(
−1

2

(
t

TZσeq

)2
)
. (1)

For a given historical storm event, the characteristic variables Hm0,p,eq and σeq are estimated by least-squares
minimization of the difference between the most probable maximum response per sea state Rmpm(s) for the actual
historical and equivalent storms. Figure 1 shows two examples of a true time history of hourly values of Hm0 (vertical
green bars) and equivalent storm representations (black lines). The Forristall (1978) wave height distribution has
been chosen here as a representative short-term response distribution, but the estimated values of Hm0,p,eq and σeq
are rather insensitive to the choice of short-term distribution. The contribution to maximum short-term response
from sea states with Hm0 less than 75%− 80% of storm peak Hm0 (Hm0,p) is negligible and the “statistical storm´´
may therefore be confined to the sea states with Hm0 above 75% − 80% of storm peak. The filled bars in figure 1
mark the sea states of the storms confined to Hm0 > 0.75Hm0,p.

[Figure 1 about here.]

The distribution of a response R such as maximum individual wave height is typically also dependent on other sea
state variables X̃ such as spectral peak period. We therefore include such variables in our storm model, defining
their characteristic variables X as weighted averages, with sea-state weights based on the sea state’s contribution to
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the most probable response Rmpm(S) within the whole storm, as follows. The set {ws} of weight factors for each sea
states s ∈ S are computed from the contribution of individual sea states to the most probable maximum response
Rmpm(S) for the complete storm as

ws = cw (Rmpm(S)−Rmpm(S \ s)) , (2)

where Rmpm(S) is the most probable maximum response in the storm considering all sea states, Rmpm(S \ s) is the
most probable maximum response when sea state s is omitted from the storm, and cw is a normalisation constant
set to ensure

∑
s∈S ws = 1. Using these weights, characteristic variables X of the form

X =
∑
s∈S

wsX̃(s) (3)

are estimated and indicated using overbars (e.g. Tp, PWD, etc.) as shown in Table 1 and illustrated as horizontal
blue lines in Figure 1. This table gives the full set of characteristic and sea state variables being modelled in the
present application.

[Table 1 about here.]

Jones et al. (2018) illustrate the estimation of a discrepancy model for characteristic variables, combining data from
a continuous hindcast covering the entire spatial domain of interest with partial measurements at selected locations.
The discrepancy model is used to correct for bias in hindcast values, and to estimate uncertainties associated with
prediction of measurements at arbitrary locations. We note, as necessary, that we are careful to adjust variables
(e.g. for Hm0 from one-hour and three-hour sea-states) so that they can be fairly compared.

2.2. A statistical model for characteristic variables
Estimation of the statistical model for the joint distribution of characteristic variables X, non-stationary with

respect to characteristic covariates, is performed in two stages, as in Ross et al. (2018). First we independently
estimate non-stationary marginal models for each characteristic variable in turn. Then we estimate non-stationary
conditional extremes models describing the extremal dependence between characteristic variables.

Marginal models
Marginal distributions are estimated for each characteristic variables X (except for covariates, see Table 1). We

assume that the marginal probability distribution of X can be expressed as the sum of three parts. Upper and
lower tails (defined as exceedances of upper and lower quantile thresholds of the marginal distribution given co-
variates with specified non-exceedance probabilities) are assumed to follow generalised Pareto (GP) distributions.
The remaining central “bulk” of the distribution is described by a truncated gamma distribution. The marginal
cumulative distribution function for characteristic variable X can thus be written

FX(x|α, µ, ξ1, ζ1, ξ2, ζ2) =


FΓ (ψ1|α, µ)

(
1 + ξ1

ζ1
(ψ1 − x)

)−1/ξ1
, x 6 ψ1

FΓ(x|α, µ) , ψ1 < x 6 ψ2

1− (1− FΓ (ψ2|α, µ))
(
1 + ξ2

ζ2
(x− ψ2)

)−1/ξ2
, x > ψ2.

(4)

Subscripts 1 and 2 refer to the lower and upper tails of the distribution respectively and FΓ(x|α, µ) to the cumulative
distribution function of the gamma distribution given by

FΓ (x|α, µ) =
1

Γ(α)
γ

(
α,
α

µ
x

)
, (5)

where Γ(•) is the complete gamma function and γ(•, •) the lower incomplete gamma function. This particular model
parameterisation was motivated by the work of Cox and Reid (1987). Model parameters defining the marginal
distributions are therefore the gamma shape α and mean µ, the lower generalised Pareto shape ξ1 and scale ζ1, and
the corresponding upper tail shape ξ2 and scale ζ2. Note specifically that all of these model parameters vary as a
function of the relevant covariates; thus for example the model for Hm0,p,eq is non-stationary with respect to wave
direction and season.
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Thresholds ψ1 and ψ2 are also non-stationary with respect to covariates, and are set to quantiles of a gamma
distribution fitted to the complete sample. This fit is performed using Bayesian inference (see Section 3), with
sample log-likelihood

`Γ =
∑nS

i=1

(
(αi − 1) lnxi − αi

µi
xi − ln Γ (αi)− αi(lnµi − lnαi)

)
, (6)

where the additional index i on parameters α and µ indicates that these quantities are evaluated at values of
covariates corresponding to storm Si from a total of nS storms. Values ψ1 and ψ2 are quantiles of the fitted
distribution with fixed non-exceedance probabilities κ1, κ2 (> κ1) such that

ψ1 = F−1
Γ (κ1|α, µ) ,

ψ2 = F−1
Γ (κ2|α, µ) .

(7)

Threshold uncertainty due to (a) imprecise estimation of α and µ from the sample and (b) lack of knowledge of κ1,
κ2 is included in subsequent modelling by ensemble forecasting over a range of values for κ1 and κ2, sampled at
random from uniform distributions over pre-set non-exceedance probability limits, specified following inspection of
diagnostic plots for upper and lower tail fits.
Full marginal inference is performed as follows. First α and µ are estimated by fitting the gamma distribution as

described above. Then, for κ1, κ2 sampled randomly from prior distributions, lower and upper generalised Pareto
tails are fitted independently using Bayesian inference to estimate the remaining parameters. Sample log-likelihoods
`1 and `2 for the lower and upper intervals of the distribution following Equation (4) are therefore

`1 =
∑

i:xi6ψ1i

(
lnκ1 − ln ζ1i −

(
1 + 1

ξ1i

)
ln
(
1 + ξ1i

ζ1i
(ψ1i − xi)

))
,

`2 =
∑

i:xi>ψ2i

(
ln(1− κ2)− ln ζ2i −

(
1 + 1

ξ2i

)
ln
(
1 + ξ2i

ζ2i
(xi − ψ2i)

))
.

(8)

For computational efficiency, we choose to infer these GP models in terms of parameter set (ξ, ζ∗) in place of (ξ, ζ),
where ζ∗ = ζ(1 + ξ), since maximum likelihood estimates of ξ and ζ∗ are asymptotically independent.

Rate of occurrence
The rate ρ of occurrence of a storm event of any magnitude is estimated using an approximation to the Poisson

process, following Chavez-Demoulin and Davison (2005) and Jonathan et al. (2014b). Rate ρ is non-stationary with
respect to storm covariates. The sample log-likelihood is

`ρ =

nB∑
k=1

gk ln (ρk)−∆

nB∑
k=1

ρk , (9)

where we assume that the covariate domain has been partitioned into nB “bins” of (small) constant volume ∆
within which rate is stationary. The set {gk}nB

k=1 is then the number of occurrences of storm events in each bin, and
{ρk}nB

k=1 is the set of corresponding Poisson rates, where ρk is evaluated at the values of covariate corresponding to
bin k.

Conditional extremes models
The conditional extremes model of Heffernan and Tawn (2004) is defined for variables on a standard marginal

Laplace (or alternatively Gumbel) scale. Therefore, having estimated marginal models for each of a set X = {Xj}
of characteristic variables X, non-stationary with respect to the relevant covariates (see Table 1), we proceed to
transform the samples {xji}nS

i=1 for each Xj independently to the corresponding standard Laplace samples {yji}ni=1

for random variable Yj following Keef et al. (2013)

yji =

 ln(2FXj (xji)), FXj (xji) 6 0.5 ,

− ln(2((1− FXj (xji))), FXj (xji) > 0.5 .
(10)
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On Laplace Y scale, the conditional extremes model takes the following form for both positive and negative depen-
dence (

Yj′ |Yj = y
)
= aj′|j,iy + ybj′|j,i

(
mj′|j,i + sj′|j,iZj′|j

)
, y > νj (11)

for conditioning characteristic variable Yj and conditioned characteristic variable Yj′ , where νj is a high quantile
of the marginal Laplace distribution with non-exceedance probability λj . Parameters a ∈ [−1, 1], b ∈ (−∞, 1],
m ∈ R and s > 0 are non-stationary with respect to covariate, and must be estimated for each combination j, j′
of interest. Here for example, aj′|j,i refers to the a parameter for conditional extremes modelling of characteristic
variable Yj′ conditioned on large values of characteristic variable Yj , evaluated using covariates for storm Si. Zj′|j
is a residual random variable from an unknown distribution. For parameter estimation purposes only, we assume
that Zj′|j ∼ N(0, 1) independently for each combination j, j′. Once we have estimated parameters, we estimate the
distribution of Zj′|j using the empirical distribution of fit residuals {rj′ji}i:yji>νj

rj′ji =
1

sj′|j,i

((
yj′i − aj′|j,iyji

)
y
−bj′|j,i
ji −mj′|j,i

)
, (12)

where estimates from the posterior distribution of parameters (see Section 3) are substituted for the parameters
themselves on the right hand side. Joint extremal dependencies {Yj′1 , Yj′2 , ...}|{Yj = y} are estimated by first fitting
each of the pairwise dependencies {Yj′k}|{Yj = y}, k = 1, 2, ..., for some fixed choice of νj , and then ensuring that
the joint residual set {rj′1ji, rj′2ji, ...}i:yji>νj is assembled and sampled appropriately (i.e. using the same storm Si
to assemble and sample across residuals for models of different characteristic variables) to retain the dependence
between conditioned variates. The log-likelihood for sample {yji, yj′i}i:yji>νj is given by

`CE,j′|j = −
∑

i:yji>νj(λj)

1

2
ln (2π) + ln sj′|j,iy

bj′|j,i
ji +

(
yj′i −

(
aj′|j,iyji +mj′|j,iy

bj′|j,i
ji

))2
2
(
sj′|j,iy

bj′|j,i
ji

)2
 . (13)

Threshold νj is set independently of the generalised Pareto threshold ψ2j . As for marginal thresholds, uncertainty
in the specification of νj is incorporated in inference by sampling non-exceedance probability λj from a uniform
distribution over a pre-specified range of reasonable threshold non-exceedance probabilities.

P-spline representation of covariate effects
A full description of the covariate representation used in this work is given in Randell et al. (2016). This section

provides a motivating summary; readers are referred to Randell et al. (2016) for details. Penalised B-splines (also
referred to as P-splines) are used to describe model parameter variation with covariate on some domain. The
basic idea of penalised B-splines, originally introduced by Eilers and Marx (1996), is to use a basis set of B-splines
with a moderately large number of evenly-spaced knots to characterise an arbitrary function flexibly, but then to
control spline smoothness by penalising function roughness. B-spline regression can be explained as follows. First
we partition the covariate domain into n′ equal intervals by specifying the position of n′ + 1 knots. B-spline basis
functions {Bk}n

′+q
k=1 are then constructed as a sequence of polynomial functions of degree q connected at the knots.

Each Bk is positive on an interval spanning q+2 knots (for an aperiodic domain), and is zero elsewhere. Parameter
estimation using B-splines then consists of finding coefficients {βk}n

′+q
k=1 such that the value of any function η(θ) (or

any of the model parameters and thresholds from Equation (4) and Equation (11) in the present work) of interest
at covariate value θ is expressed as the linear combination

η(θ) =

n′+q∑
k=1

βkBk(θ) = B(θ)β , (14)

where B(θ) = {Bk(θ)} and Bk(θ) is the value of the kth B-spline basis at θ, and β = {βk} is the vector of spline
coefficients. Roughness is quantified in terms of the quadratic form

n′+q∑
k=1

n′+q∑
k′=1

βkKkk′βk′ = β′Kβ , (15)
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where K = {Kkk′} is a penalty matrix. In the current work using Bayesian inference, the quadratic form in Equation
(15) motivates the prior specification for β, discussed in Section 3.2. The first order penalty matrix for knots on an
arbitrary covariate domain is given by:

K =



1 −1

−1 2 −1

. . . . . . . . .

−1 2 −1

−1 1


. (16)

This penalty penalises differences between adjacent values of βk. In the current work we deal with periodic covariates
such as direction and season, for which periodic spline bases and penalties are required. In periodic cases only q
spline basis functions are required, and the first order penalty matrix becomes

K =



2 −1 · · · −1

−1 2 −1

−1 2 −1
... . . . . . . . . .

−1 2 −1

−1 −1 2


. (17)

B-splines can be extended to higher dimensions as tensor-product B-splines (see e.g. Eilers and Marx (2003)). A
tensor-product B-spline in two dimensions is illustrated in Figure 2, for estimation of directional-seasonal quantile ψ
for Hm0,p,eq, for different choices of directional and seasonal roughness coefficients τ2. Coloured shapes underlying
the surface are individual tensor-product B-spline basis functions scaled by the respective coefficients. The total
number of β coefficients to be estimated in two dimensions is given by the product of the number of spline coefficients
in each of the one-dimensional margins. Different numbers of knots, spline orders and roughness penalties may be
used on different margins.

[Figure 2 about here.]

Note that inference described in the next section exploits generalised linear array models (GLAMs; Currie et al.
2006, Eilers et al. 2006) permitting computationally-efficient analysis of tensor products of splines; see Randell et al.
2016) for further information. A full list of model parameters estimated in terms of tensor-product B-splines is
given in Table 2.

[Table 2 about here.]

Covariate transformation
We also note that individual directional and seasonal covariates are not typically uniformly distributed on their

marginal domains. For this reason, is it helpful to transform covariates marginally following Jonathan et al. (2013),
so that the original set of covariate values {θi}nS

i=1 is related to the transformed set {θ∗i } by

θ∗i =
360

nS
(r(θi)− 1) , (18)

where r(θi) is the rank of θi in the set of covariates, namely the position of θi in the set of covariate values sorted in
ascending order. The transformed set is uniformly distributed on [0, 360) by design, stabilising parameter estimation
on the transformed scale. Interpreted on the original scale, the transformation imposes greater smoothness for values
of covariate which are less frequently observed in the sample, and allows greater parameter flexibility for more
frequently observed values, in a natural way according to the rate of occurrence of events for different covariate
values.
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3. Inference

A posterior estimate for the joint distribution of all marginal (gamma and GP) and conditional extremes model
parameters, as described in Section 2.2 and Table 2, is estimated using Bayesian inference. Likelihoods for all
models, and a description of the spline parametrisation used, is provided in Section 2. Here, we provide a brief
discussion of prior specification and the inference procedure.

3.1. Distribution for hyper-parameters
Distributions for marginal threshold non-exceedance probabilities κ1, κ2 are set by inspection of GP tail diagnostic

plots. Conditional extremes non-exceedance probabilities {λj} are similarly set by inspection of conditional extremes
model diagnostics; we do not learn about these hyper-parameters during inference.
Specification of a reasonable distribution for B-spline roughness coefficients τ2 is challenging. For example, inference

for each of the gamma and GP marginal directional-seasonal models involves estimation of two parameters, each of
which has a roughness coefficient in direction and season. Thus, specifically, the GP high tail marginal model requires
specification of a joint prior for four roughness coefficients τ2ξθ, τ2ξφ, τ2ζ∗θ and τ2ζ∗φ, where θ and φ refer to direction
and season respectively. We estimate reasonable combinations for these hyper-parameters using a cross-validation
scheme. The intention of the scheme is to identify combinations of τ2 which yield good predictive performance of
any model of interest. We partition the sample into nCV blocks, withhold one block and estimate the model for the
remaining blocks using Bayesian inference, for specified choices of τ2 parameters. Then we evaluate the predictive
log-likelihood using the withheld block: large log-likelihood values indicate good predictive performance. We repeat
this procedure until each block has been withheld exactly once, and use the sum of predictive log-likelihoods over
all blocks as an estimate of the relative predictive performance for different choices of τ2. We exponentiate the
predictive log-likelihood, and normalise its integral to unity over the four-dimensional domain of τ2, using the
resulting empirical density as a prior for the joint distribution of τ2ξθ, τ2ξφ, τ2ζ∗θ and τ2ζ∗φ. Since this scheme is
computationally slow for four or more τ2s, we use an approximate calculation which proceeds as follows. First,
(a) we use the cross-validation scheme to estimate a common τ2 across all four margins. Then (b) we use the
cross-validation scheme to find an optimal ratio of τ2ξ /τ2ζ∗ for both direction and season starting from the solution
to (a). Then finally (c) use the cross-validation scheme to evaluate the predictive performance on a two-dimensional
τ2ξθ × τ2ξφ domain with fixed (optimal) τ2ξ /τ2ζ∗ ratio. Figure 3 shows the variation of predictive log-likelihood with
τ2ξθ and τ2ξφ, with optimal ratio log10(τ

2
ξ )− log10(τ

2
ζ∗) = −1.7. We do not learn about τ2 in the Bayesian inference.

[Figure 3 about here.]

3.2. Prior for B-spline coefficients
All other model parameters, described using tensor-product B-splines, require specification of a prior distribution

for the corresponding vector of spline coefficients β. Motivated by the outline in Section 2, following Green and
Silverman (1994), the prior density is given by

f(β|τ2) ∝ 1

(τ2)
rk(K)

2

exp

(
− 1

2τ2
β′Kβ

)
, (19)

where rk(K) is the rank of the penalty matrix. Thus as the value of τ2 increases, the prior distribution for β
becomes narrower and the resulting spline estimate less variable.

3.3. MCMC proposal generation
Posterior distributions are approximated using Markov Chain Monte Carlo with a Metropolis-Hastings (MH)

sampling scheme. For example, for the GP high tail, the basic MH scheme seeks to estimate the posterior distribution

f(βξ,βζ∗ |Data) ∝ f(Data|βξ,βζ∗)× f(βξ,βζ∗)

by iteratively sampling from the set of full conditionals

f(βξ|Data,βζ∗) ∝ f(Data|βξ,βζ∗)× f(βξ)

f(βζ∗ |Data,βξ) ∝ f(Data|βξ,βζ∗)× f(βζ∗)
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for specified choices of hyper-parameters κ1, κ2 and {τ2}. For example, a proposal β†
ξ for βξ is generated from the

current state using a proposal density g. In this work, we assume g represents a random walk from a multivariate
Gaussian density with covariance matrix C. Well-chosen correlated proposals improve the rate of convergence, and
mixing of MCMC chains. Therefore, following Rue (2001) and Lang and Brezger (2004) for starting iterations, we
set C = (BT

2 B2 + P )−1 where matrix P incorporates four τ2s and four penalty matrices K, and B2 represents
a directional-seasonal tensor-product B-spline basis matrix as explained in Randell et al. (2016). After sufficient
iterations, we then follow Roberts and Rosenthal (2009) in setting

C = 2.382(1− ε)2
Σ

p
+ 0.01ε2

Ip
p
, (20)

where p is the number of parameters being estimated, Σ is the empirical covariance matrix estimated from previous
iterations of the Markov chain, and Ip is a p× p identity matrix. We use ε = 0.05 as recommended by Roberts and
Rosenthal (2009). The proposed state is then accepted with probability

min

(
1,
f(β†

ξ|Data,βζ∗)g(β
†
ξ → βξ)

f(βξ|Data,βζ∗)g(βξ → β†
ξ)

)
.

3.4. Full model inference
The procedure detailed above is appropriate for estimating the posterior distribution of parameters for any one of

the marginal gamma, lower or upper GP tail for any characteristic variable Xj , or any conditional extremes model
Xj′ |Xj . Full model inference requires estimation of parameters of all model components in a hierarchical order. As
outlined in Section 2, marginal distributions are first estimated for each Xj in turn; conditional extremes models
are then estimated for {Xj′}j′ 6=j |Xj for each Xj in turn. This is described in more detail below.
Initially (a) the rate of occurrence model for storm events is fitted across the covariate domain. Then marginal

analysis is made for each characteristic variable (e.g. Hm0,p,eq, Tp), involving the following steps: (b) Fit the gamma
distribution to all events and save a number of independent posterior samples of parameters from the MCMC chain.
(c) For each sample of the gamma parameters from (b), sample a low threshold probability, compute the extreme
value threshold, perform GP inference, and save a number of independent posterior samples of parameters. (d)
Repeat (c) for the high GP tail. Steps (b)-(d) results in the generation of nΓ samples of gamma parameters, and
nΓ × nGP GP samples.
For a given conditioning variate, all required conditional extremes models can then be estimated contemporaneously

to accumulate vectors of residuals, preserving dependencies between residuals corresponding to different choices of
marginal and conditional extremes parameters; these dependencies can then be carried over into storm simulations.
Uncertainty in the conditional extremes model threshold probabilities {λj} is accounted for by sampling a new value
for each new selection of marginal GP model parameters used. For conditioning variate Xj , the inference procedure
is as follows: (e) Sample a threshold non-exceedance probability λj and identify events for which the value of Xj

exceeds this. (f) Estimate conditional extremes models for {Xj′}j′ 6=j |Xj for each conditioning variate Xj in turn.
Retain posterior parameter estimates and sets of residuals for the last iteration of the MCMC only. (g) Accumulate
an array of conditional extremes residuals. Steps (e)-(g) generate nΓ × nGP sets of conditional extremes model
parameters and residuals.
The above procedure (a)-(g) yields an equal number of posterior samples of marginal and conditional model

parameters, and associated residuals, providing a characterisation of the marginal and joint structure of the set
of characteristics variables X. A number of threshold choices for both marginal tails and conditional extremes
are incorporated in this sample, accounting for threshold uncertainty, on a specified prior interval of threshold
non-exceedance probabilities. It is our experience that this straightforward approach to incorporation of threshold
variability is useful, and superior to ignoring the effects of threshold choice.

4. Estimation of extreme values

The procedure described in the previous section is used to simulate realisations of characteristic variables X
corresponding to long return periods; this allows estimation of extreme values for those characteristic variables.
Historical storm trajectories are then allocated to realisations of characteristic variables from simulation, by matching
values of simulated and historical characteristics variables; this allows simulation of full intra-storm time-series

9



{X̃(s)}|X for arbitrary return periods for each sea state s in a storm. As storm trajectories are simulated for each
storm event, this procedure further allows convolution of long-term distributions of sea state variables with short-
term (within sea state) distributions of one or more responses, and hence the estimation of the long-term distribution
of response: a typical example in this respect is convolution of the long-term distribution of sea states Hm0 with
the short-term distribution of maximum crest height (within sea state) to obtain the long-term distribution of the
maximum crest elevation. Extreme values are thence obtained by straightforward simulation. In layman’s terms,
such a simulation simply consists in sampling a very large number of storms, storm trajectories and short-term
responses, reading off the T -year extreme value as the dP/T eth largest value in a simulation of P years. We note
alternative methods for deriving extreme values from numerical integration, presented in Ross et al. (2017), and
from importance sampling.

4.1. Simulation of storm characteristic variables
The simulation procedure followed to simulate characteristic variables in one year of (statistical storm) events is

as follows: (a) Sample a joint set of marginal and conditional extremes model parameters to use; (b) Sample the
number of events to be simulated from a Poisson distribution with expected annual rate of occurrence; (c) Assign
covariate values to each storm event using the fitted non-stationary rate function for each conditioning variable;
(d) Sample the magnitude of the conditioning variable from its marginal non-stationary distribution; (e) Estimate
magnitudes of conditioned variables above the conditional extreme model quantile threshold using the conditional
extremes model. For non-exceedances of the conditional extremes threshold, estimate the magnitude of conditioned
variables by sampling with replacement from the original sample of threshold non-exceedances; and (f) store the
annual maximum value observed, and values of other variables given occurrences of annual maxima of conditioning
variates. The T -year extreme values are typically estimated as a quantile of the distribution of the annual maximum
with non-exceedance probability exp (−1/T ). The period P of simulation (in years) needs to be considerably longer
than the return period T of interest. In the current work, we impose P > 100T ; in other words, a 100 year extreme
value requires simulation of around 10.000 years.
Extreme values found in this way incorporate sources of epistemic uncertainty from model estimation as described

above. Larger model-fitting uncertainty will inflate extreme values; inflation can be large for return periods consid-
erably longer than the period P0 of the historical data.

4.2. Simulation of storm trajectories
The hourly evolution of each storm event is required to estimate the long-term distribution of short-term responses.

For each storm event simulated using the procedure described in Section 4.1, we achieve this by adopting a historical
storm trajectory, the values of characteristic variables for which are similar to those of the simulated storm event,
and associate it after some adjustment with the simulated storm, following Feld et al. (2015). In short, we (a)
identify a sample of historical storms similar to the simulated storm event; (b) select one of these at random, the
“matched” storm, and (c) scale, stretch and rotate the matched historical storm trajectory such that characteristic
storm variables calculated from the modified trajectory matches those of the simulated event.
Historical storm events, similar to the simulated storm, are found by computing a “storm dissimilarity” for all

historical storms given the simulated storm event. For historical observations {xHji}ni=1 of each of p characteristic
variables Xj , and the corresponding simulated value xSjk, dissimilarity is calculated using

djik =
|xHji − xSjk|

σHj
(21)

for historical storm Si and simulated storm Sk. σHj is the standard deviation of Xj over all historical storms, used
to standardise the dissimilarity for each Xj . Then the overall dissimilarity of Sk from Si is calculated as

d2ik =

p∑
j=1

d2jik . (22)

For each Sk, a matched historical storm Si∗ is then selected from the set of historical storms yielding one of the
lowest values of dik. This is then adjusted (as described in the next paragraph) and adopted as the storm trajectory
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for simulated storm Sk. Typically, the matched storm is selected from the 20 least dissimilar storms; experience
suggests that inferences are not overly sensitive to this number.
Next we sample the matched historical storm trajectory x̃Hji∗(s), adjusting it such that the characteristic variable

from the adjusted storm trajectory is equal to that of the simulated storm. Adjustment is performed using a constant
linear additive term (for directional covariates only) and a constant linear scaling factor (otherwise) applied to the
entire storm trajectory. Thus for a (non-covariate) characteristic variable Xj such as Hm0,eq and simulated storm
Sk, we define scale factor υjk

υjk =
xSjk

xHji∗
(23)

and use it to adjust the matched historical storm trajectory x̃Hji∗(s) such that

x̃Sjk(s) = υjk × x̃Hji∗(s) . (24)

Wave, wind and current directional covariates are corrected in the analogous manner. Typically, peak or mean
wave direction is used as characteristic covariate for marginal and conditional extremes models; wind and current
directions are not modelled statistically. The same additive directional correction is used to rotate all of wave, wind
and current directions, such that wind-wave and current-wave misalignment from the historical storm is maintained
in the simulated storm.
The duration of the simulated storm event is a function of the simulated characteristic storm variables σeq (number

of waves in the storm) and T02 (average duration in seconds of each wave). So that the simulated storm trajectory
has the right duration, the time axis for the simulated storm is adjusted according to

tSjk = tHji∗ × υjkT02 × υjkσeq , (25)

with υjkT02 and υjkσeq being the scaling factors applicable for T02 and storm duration σeq, respectively.

5. Application to North Sea

The marginal and conditional extremes models introduced in Section 2 are estimated for hindcast time-series of
wave, current and wind. A large number of marginal and conditional extremes models are estimated; only a small
subset of these are presented here, corresponding to non-stationary directional-seasonal models, with Hm0,p,eq used
as conditioning variate for conditional extremes models. Space also prevents presentation of all the diagnostic
information generated during model estimation. Nevertheless we hope that the illustrations in this section give at
least a flavour of the analysis.

5.1. Hindcast data and exploratory data analysis
The sample used for model estimation is taken from a hindcast at a location in the Danish sector of the North

Sea, for a period of approximately 37 years. The hindcast model uses CFSR wind fields (Saha et al. 2010, Saha
et al. 2014) to force local models for waves, water levels and currents using MIKE21 Spectral Waves (Sørensen et al.
2005) and MIKE21 Hydrodynamics (DHI 2017) respectively. Independent statistical storm events are then isolated
and characteristic variables and covariates estimated.
Figure 4 illustrates the directional and seasonal variation of Hm0,p,eq. Directions of increased rate of occurrence

of storms are apparent, reflecting fetch effects; the most severe events emerge from approximately 315◦N. Hm0,p,eq

shows smooth seasonal variation in storm severity; the most severe events occur in the winter months from November
to February. Figure 5 shows the characteristic peak period Tp and residual water level (or “surge”) WLresi on
Hm0,p,eq, and Figure 6 shows the same parameters on the characteristic wave direction PWD. The relationship
between WLresi and Hm0,p,eq appears rather unclear from inspection of Figure 5. However, comparing Figure 6
with Figure 4 suggests that, given PWD, this relationship is somewhat more straightforward. Large negative surge
amplitudes are related to events from the south-east, whereas the largest positive surge amplitudes occur for waves
from the north-west. This direction also coincides with the largest values of both Hm0,p,eq and Tp and corresponds
to the direction of largest free fetch.

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]
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5.2. Marginal modelling
Posterior median estimates for marginal model parameters of Hm0,p,eq are shown in Figure 7 as function of the

direction and season. Estimates for gamma shape α and scale µ both exhibit minima for summer storms from
approximately 180◦N. The estimate for upper tail generalised Pareto shape ξ2 does not show much variability with
covariates. The corresponding scale parameter ζ2 exhibits a clear maximum for winter storms from approximately
315◦N, reflecting evidence from Figure 4. We note that, to generate this estimate, we have adjusted samples
of generalised Pareto scale estimates from the MCMC so that they all correspond to a marginal non-exceedance
probability ψ2 of 0.4 .

[Figure 7 about here.]

Posterior distributions of parameter estimates from Figure 7 are further illustrated in Figure 8, for “season”
corresponding to the 15th January. From the figure, it is clear that directional variation is of importance for all
parameters except ξ2 in this case.

[Figure 8 about here.]

Figure 9 compares empirical tails of the distribution of Hm0,p,eq, generated from Monte-Carlo simulations under
the model, with the actual hindcast sample for different directional intervals. A large number of realisations of the
same length (37 years) as the hindcast were simulated. Marginal parameter uncertainty was included by randomly
drawing new parameter estimates from the sample of posterior estimates for every realisation of 37 years. Posterior
median and 95% credible intervals for the tail are illustrated in the figure. The hindcast tail is generally found to
lie within the 95% uncertainty interval as would be expected from a reasonable model.

[Figure 9 about here.]

5.3. Conditional extremes modelling
Posterior median parameter estimates for a, b, m and s from the conditional extremes model of characteristic

residual water level WLresi conditioned on Hm0,p,eq are shown in Figure 10 as functions of direction and season. For
all parameters, it is clear that directional variability is more prominent than seasonal variability; further, directions
around 315◦ show the greatest directional variability.

[Figure 10 about here.]

Posterior distributions of parameters from Figure 10 as a function of direction are illustrated in Figure 11, again
for 15th January.

[Figure 11 about here.]

There is directional variation in conditional extremes model parameter estimates, but practically no seasonal
variation. This tallies with physical understanding of processes at play in a semi-enclosed basin like the North Sea.
Strong winds result in large significant wave heights for effectively all directions; the same winds drive negative surge
for some directions and positive surge for others. It appears that these processes do not result in seasonal variation
in extremal dependence, over and above that already captured by marginal extremal models for Hm0,p,eq and
WLresi. The directional dependence between storm surge and extreme significant wave height is further illustrated
in Figure 12. This figure illustrates the modelled distribution of storm surge conditional on Hm0,p,eq exceeding the
1-year and 100-year quantile respectively, as function of peak wave direction. The model appears to capture both
the negative dependence for wave directions in the interval of 225◦N-270◦N and the positive dependence for wave
directions around 315◦N. It also provides reasonable estimates of the variance of the storm surge associated with
extremes of Hm0,p,eq, as illustrated by the quantiles of the conditioned distributions.

[Figure 12 about here.]

Figures 13, 14 and 15 illustrate the output of simulations under the fitted model. The left hand panel of Figure 13
shows characteristic Hm0,p,eq against PWD; the right hand panel shows the corresponding relationship for hourly
sea-state variable Hm0 on PWD. As described in the figure caption, the colour of a simulated event varies with
the rate of occurrence of that event (thereby making it possible to perceive variations in rate of occurrence even
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when individual events are no longer identifiable in the figure). The original hindcast sample has been added to the
plots for reference. The simulation corresponds to 50,000 years with only significant wave heights above 4 meters
included. Contours of constant probability density are also shown as solid lines; the density for all points on this
contour is equal to the maximum density (i.e. rate of occurrence, over all directions) corresponding to the marginal
10- and 100-year extreme value estimates.

[Figure 13 about here.]

Figure 14 shows realisations of characteristic storm length σeq (on natural logarithmic scale) against Hm0,p,eq (left)
and PWD (right). σeq decreases with increasing storm severity. Directional variation is rather weak, with some
evidence that storms from approximately 135◦N are more persistent; no meteorological explanation for this is offered
here.

[Figure 14 about here.]

The left hand panel of Figure 15 shows characteristic spectral peak period Tp on Hm0,p,eq; the right hand panel
gives the corresponding plot of Tp on Hm0 for hourly sea states. The variance of Tp for given Hm0 is generally larger
than that of Tp for the same value of Hm0,p,eq, both for hindcast and simulated data. This effect is caused by the
fact that sea states during storm rise are steeper (i.e. larger Hm0/T

2
p ) than at storm peak, and less steep during

storm decay; this feature may be important to capture well in storm modelling since wave breaking is more frequent
in steep sea states. For certain short-term responses, this effect might be as important as variation of significant
wave height around the storm peak.

[Figure 15 about here.]

6. Discussion and conclusions

We present an approach to joint modelling of multiple features of wind-driven storm events in a statistically-
rigorous and physically-reasonable manner. The method is comprised of (a) estimation of summary variables for
storms, referred to in this work as characteristic variables (b) marginal extreme value modelling of characteristic
variables, non-stationary with respect to covariates, (c) non-stationary conditional extremes modelling of charac-
teristic variables given extreme values of a different conditioning characteristic variable, (d) subsequent modelling
of within-storm evolution of related sea state variables, corresponding to storm rise and decay, and (e) simulation
under the fitted model to estimate joint samples of storm characteristic and sea state variables corresponding to
arbitrary return periods, and thereby estimation of extreme values for structural design and reassessment.
Inference is performed within a Bayesian framework, allowing estimation of full joint posterior distributions, spec-

ification of appropriate distributions for hyper-parameters and prior distributions for model parameters encoding
prior engineering knowledge, and propagation and quantification of uncertainty in a consistent fashion. Tensor prod-
ucts of penalised B-splines are use to provide general representations of the domain of covariates, providing flexible
modelling of non-stationarity. The storm model used provides a reasonable approach to isolation of statistically
independent storms, represented by characteristic variables and covariates, facilitating modelling of independent
events. No prior assumptions regarding storm shape, the directional and seasonal dependence of storms, or the
(extremal) dependence between characteristic variables is necessary. Given characteristic variables, historical storm
trajectories representing storm rise and decay are exploited to incorporate the effects of storm duration and within-
storm variation. Seasonal-directional design criteria may be obtained from the model by simulation, and simulated
sea state data may also be used directly for subsequent structural reliability assessment, such as that carried out
for the Tyra field (Tychsen et al. 2016).
The model has been applied to hindcast data for a location in the central North Sea. Diagnostics demonstrate

that the model makes reasonable predictions of extreme events for return periods of the order of the length of the
data record for the hindcast sample.
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Figure 1: Two examples of time series from storms of hindcast Hm0 (vertical bars) and T02 (blue triangles), both with 1-hour time step
resolution. Solid black lines show the Gaussian bell shaped equivalent storm time series and horizontal blue lines show characteristic
storm T02. The confined storms containing only sea states with Hm0 > 0.75Hm0,p are marked by the filled green bars.
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Figure 2: Quantile regression example illustrating the components of tensor-product P-splines in 2 dimensions and the effect of roughness
penalty. The coloured surfaces show the individual Tensor-product B-splines each multiplied by its respective β-coefficient. Quadratic
B-splines (q = 2) and first order penalty have been used.
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Figure 3: Predictive log-likelihoods for GP high tail estimation for Hm0,p,eq. Yellow indicates better predictive performance. Left panel
shows cross-validation for optimal ratio τ2

ξ /τ
2
ζ∗ . Right panel shows cross-validation across the two-dimensional τ2

ξθ × τ2
ξφ domain using

the optimal ratio log10(τ
2
ξ ) − log10(τ

2
ζ∗) = −1.7. A random sample of combinations of τ2 from the resulting empirical density is shown

as black dots.
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Figure 4: Characteristic variable Hm0,p,eq against covariates PWD (left) and season φ (right).
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Figure 5: Characteristic variables Tp and WLresi on Hm0,p,eq.
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Figure 6: Characteristic variables Tp and WLresi on covariate PWD.
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Figure 7: Posterior median parameter estimates for the marginal model of Hm0,p,eq . Estimates for the upper tail generalised Pareto
scale parameter ζ2 are adjusted to a nominal non-exceedance probability of 0.4 .
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Figure 8: Directional variation of posterior marginal model parameter estimates for Hm0,p,eq, on 15th January. Shown are median (black
line), 50% credible interval (dark grey band) and 95% credible interval (light grey band).
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Figure 9: Tails of the distribution of Hm0,p,eq for different directional intervals, empirically estimated from the original hindcast sample
(black dots), and from simulation under the fitted marginal mode. For each direction, black dashed lines show the simulated median,
dark grey band the central 50% credible interval and the light grey band the corresponding 95% credible interval. Empirical and model
estimates for the rate of occurrence are given in the legend.
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Figure 10: Posterior median parameter estimates from conditional extremes model parameters of WLresi|Hm0,p,eq .
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Figure 11: Posterior distributions of conditional extremes model parameters for WLresi|Hm0,p,eq on 15th January as a function of PWD.
Black line show median, dark grey patch the 50% band and the light grey patch the 95% confidence band.
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Figure 12: Top panel shows Hm0,p,eq on PWD. Coloured lines, estimated under the fitted model, have constant annual exceedance
probabilities corresponding to return periods of 1 year (blue) and 100 years (orange). Black and grey dots show the original hindcast
above and below the blue level respectively. Lower panel shows WLresi on PWD for events with Hm0,p,eq above the level marked by the
blue line in the top panel. Black dots show the corresponding hindcast data; the solid black line is their directional median. Blue and
orange lines mark the median of WLresi associated with exceedances of Hm0,p,eq above the blue and orange lines in the top panel; the
shaded areas mark intervals bounded by the 10% and 90% quantiles of the corresponding conditional distributions.
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Figure 13: Directional distribution of significant wave height. Scatter plots of 50,000 years of simulated data (coloured round markers)
compared to hindcast data (black dots); “warmer” colours indicate higher rate of occurrence of simulated events. Left: Characteristic
storm Hm0,p,eq vs. PWD. Right: Hourly values of Hm0 vs. PWD. Solid lines represent directional density contours for 10- and 100-year
marginal extreme values. Black disks indicate the original hindcast sample.
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Figure 14: Directional distribution of storm length. Left: ln(σeq) on Hm0,p,eq per storm. Right: ln(σeq) on PWD per sea state. For
other details, see Figure 13.
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Figure 15: Joint distribution of spectral peak period and significant wave height. Left: Characteristic Tp on Hm0,p,eq per storm. Right:
Tp on Hm0 per sea state. For other details, see Figure 13.
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Characteristic Sea state

Description Unit variable, X variable, X̃

Significant wave height [m] Hm0,p,eq Hm0

Storm duration parameter [−] σeq -

Peak wave period [s] Tp TP

Second moment wave period [s] T02 T02

Directional spread at spectral peak [◦] σθ,p σθ,p

Residual water level [m] WLresi WLresi

Residual current speed [m/s] CSresi CSresi

Mean wind speed [m/s] WS WS

Air density [kg/m3] ρair ρair

Peak wave direction† [◦N] PWD PWD

Residual current direction† [◦N] - CDresi

Mean wind direction† [◦N] - WD

Table 1: Overview of environmental variables. The last three listed variables marked with † are covariates in extreme value models.
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Description Symbol Type

Rate of occurrence ρ Tensor-product B-spline

Γ shape α Tensor-product B-spline

Γ mean µ Tensor-product B-spline

GP low tail threshold ψ1 Scalar

GP low tail threshold probability κ1 Scalar hyper-parameter

GP low tail shape ξ1 Tensor-product B-spline

GP low tail scale ζ1 Tensor-product B-spline

GP high tail threshold ψ2 Scalar

GP high tail threshold probability κ2 Scalar hyper-parameter

GP high tail shape ξ2 Tensor-product B-spline

GP high tail scale ζ2 Tensor-product B-spline

CE threshold ν Scalar

CE threshold probability λ Scalar hyper-parameter

CE a parameter a Tensor-product B-spline

CE b parameter b Tensor-product B-spline

CE mean m Tensor-product B-spline

CE standard deviation s Tensor-product B-spline

Roughness coefficient τ2 Scalar hyper-parameter

Table 2: Overview of model parameters. The joint distribution of all parameters (other than hyperparameters) is estimated by MCMC.
Hyperparameters for κ are set by hand. Hyperparameters for τ2 are set to provide reasonable ranges of penalised B-spline flexibility
using a pre-analysis described in Section 3
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