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Abstract This paper presents an analysis of the performance and usability of automatic 

speech processing tools on six different varieties of English spoken in the British Isles. The tools 

used in the present study were developed for use with Mainstream American English, but we 

demonstrate that their forced alignment functionality nonetheless performs extremely well on a 

range of British varieties, encompassing both careful and casual speech. Where phone boundary 

placement is concerned, substantial errors in alignment occur infrequently, and although small 

displacements between aligner-placed and human-placed phone boundaries are found regularly, 

these will rarely have a significant effect on measurements of interest for the researcher. We 

demonstrate that gross phone boundary placement errors, when they do arise, are particularly 

likely to be introduced in fast speech or with varieties that are radically different from 

Mainstream American English (e.g. Scots). We also observe occasional problems with phonetic 

transcription. Overall, we advise that, although forced alignment software is highly reliable and 

improving continuously, human confirmation is needed to correct errors which can displace 

entire stretches of speech. Nevertheless, sociolinguists can be assured that the output of these 

tools is generally highly accurate for a wide range of varieties. 

 

Keywords forced alignment, British English, computational tools, sociolinguistics, 

sociophonetics, dialectology 

 

1 Introduction 

Tools for forced alignment of speech data are gaining currency in sociolinguistic research for the 

analysis of large-scale datasets (e.g. Labov et al. 2013). These tools convert an orthographic 

transcription into phones, then time-align words and phones to the speech signal. However, this 

process has generally been trained on a particular variety, and moreover it relies on a standard 
                                                
1 Many thanks to Sophie Holmes-Elliott and Meredith Tamminga for sharing their data, Adam Mearns for access to 
DECTE, James Stanford for help with DARLA, audiences at NWAV 42 for helpful comments and questions, and 
the reviewers and editors of this special issue for suggestions which have improved the paper. 
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dictionary of reference pronunciations. The extent to which these tools may be used effectively 

with data from dialects that differ phonologically from those reference points has not been 

systematically investigated, despite the fact that this would be beneficial for many researchers in 

sociolinguistics. In this paper, we investigate whether these tools perform to an acceptable 

standard on data from dialects that they were not built to work on. Our goal is to determine 

whether researchers who work with sociophonetic data that diverges markedly from the standard 

need bespoke alignment software tailored to the dialect they study, or whether existing software 

can be used without compromising performance. 

In the following sections, we argue that there is a need among researchers and students of 

sociolinguistics for off-the-shelf forced alignment systems that can perform robustly on a range 

of different language varieties without training or extensive manipulation. We note that no 

published study has yet investigated the potential of existing forced alignment systems to fit a 

range of distinct varieties in this way. We then evaluate the performance of two different forced 

alignment tools which are well-known and widely used in sociolinguistic research: the Forced 

Alignment and Vowel Extraction suite, or FAVE (Rosenfelder et al. 2014), and the Dartmouth 

Linguistic Automation program, or DARLA (Reddy and Stanford 2015a, Reddy and Stanford 

2015b). We test the aligners on six dialects of British English, selected to represent a range of 

regional and social varieties. We compare the placement of phone boundaries by each aligner for 

each dialect with that of a human annotator, assessing aligner accuracy in terms of agreement 

between aligner-placed and human-placed boundaries. We also weigh each aligner’s accuracy 

against its technical requirements and ease of use. We conclude by providing recommendations 

for researchers in sociolinguistics who wish to use these tools. Overall, we advise that, although 

forced alignment software is highly reliable and is improving continuously, human confirmation 

is needed to correct occasional errors which can displace entire stretches of speech. Nevertheless, 

sociolinguists can be assured that the output of these tools is generally highly accurate for a wide 

range of varieties. 
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2 Background 

2.1 What is forced alignment? 

Generally, in order to conduct forced alignment, the researcher begins with an audio file 

alongside a time-aligned orthographic transcript of the speech for analysis. Behind the scenes, 

the aligner matches each orthographic word in the transcript with a phonemic representation in a 

pronouncing dictionary. Each phone in the pronouncing dictionary, and its surrounding phonetic 

environment, is matched with its ideal acoustic realization, which is based on a statistical model 

trained on a range of possible phonetic realizations. This may use pre-trained models (e.g. FAVE 

and DARLA) or be based on the speech input itself (e.g. LaBB-CAT; Fromont and Hay 2012; 

Fromont and Watson 2016). The final output is formed by the alignment of each part of the 

speech signal with the most likely acoustic model given the transcription. This process is 

visualized in Figure 1, reproduced from Bailey (2016: 12). For a more detailed overview of the 

inner workings of the acoustic matching process, see Evanini (2009: 52). 

 

 
Figure 1: Visualization of the forced-alignment process of the word base, from Bailey 2016: 12. 

 

The typical output of these systems is a fully time-aligned Praat TextGrid (Boersma and 

Weenink 2017), where each word and phone identified in the audio is paired with its 

transcription. This then allows for the efficient and automated search and identification of 

segments and words of interest to the analyst by serving as input to scripts for coding of acoustic 

properties, such as the Praat handCoder (Fruehwald 2011), which plays each sound of interest in 
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sequence for the researcher to code auditorily. Information about the phonological environment 

of a word or sound of interest, e.g. preceding/following segment, position in word, duration of 

sound, can be taken automatically, vastly increasing the processing speed and eliminating human 

error. 

2.2 Customizing forced alignment 

With the right technical knowhow and enough audio data, a researcher can train their own 

acoustic models on any language or language variety. This, combined with a pronouncing 

dictionary, is the basis that any researcher needs for a forced alignment system. This approach 

has allowed researchers to force align languages including French (Milne 2011), Spanish 

(Wilbanks 2015), Dutch (Schuppler et al. 2011), Mandarin Chinese (Lai et al. 2010), and 

Matukar Panau (González et al. 2018a). 

 In principle, researchers wishing to force align varieties of English which existing 

English-based aligners were not expressly designed for could do the same, i.e. train an acoustic 

model and construct a pronouncing dictionary that reflects the variety under study. Typically, 

however, the technical knowledge required to do this presents a barrier for many researchers 

(although recent advancements in the field are making this easier; see McAuliffe et al. 2017). 

Moreover, it effectively eliminates the possibility that these models could be used in teaching, 

with students who are technical neophytes. By contrast, off-the-shelf aligners are student-

friendly, and have been used in many undergraduate-level classes and independent research 

projects (e.g. Warburton 2016; Lee 2017). 

 In this paper, we thus explore how well existing English-based forced aligners, with no or 

only very few simple modifications, fare on English dialects that they have not been trained on. 

2.3 Testing the accuracy of forced alignment 

A growing body of work compares the placement of phone boundaries by different forced 

alignment systems to the placement of those same boundaries by humans. Because these studies 

assess the performance of aligners on varieties that they were trained on, they constitute a 

baseline for the present study. The findings of these studies are summarized in Table 1. We 

follow customary practice of reporting the percentage of aligned phone boundaries which fall 

within a certain threshold of the human’s placement. 



5 

 Because the advantage of forced alignment is that it can relieve a human annotator of a 

tedious burden, it is also instructive to compare these performance measures to human–human 

agreement on the same task. If aligner–human agreement is comparable to human–human 

agreement, then there is no disadvantage to using an aligner over having a human hand-place 

phone boundaries. The last column of Table 1 provides (where available) human–human 

agreement statistics on the same speech for which human–aligner agreement was assessed. 

  

Table 1: Summary of human–aligner and human–human phone boundary placement agreement 
from published studies. 

Reference Language Speech 
style 

Threshold Human–aligner 
agreement rate 

Human–human 
agreement rate 

Hosom 
(2009) English read 20 ms 80–93% 93% 

Goldman 
(2011) English spontaneous 

20 ms 76%2 79% 
10 ms 51% 62% 

McAuliffe et 
al. (2017), 

Raymond et 
al. (2002)3 

English 
spontaneous 

(Buckeye 
corpus) 

25/20 ms4 77% 79% 

10 ms 41% 62% 

Goldman 
(2011) French spontaneous 

20 ms 81% 81% 
10 ms 51% 57% 

Cosi et al. 
(1991) Italian spontaneous 20 ms 56–64%  

Willbanks 
(2015) Spanish spontaneous 

20 ms 69% 
 

10 ms 45% 
 
 Human–aligner agreement is generally high. Moreover, when human–human 

performance is compared to human–aligner performance, humans agree somewhat more, but not 

by a large margin. This has led many researchers to conclude that forced alignment is an 

acceptable substitution for human phone annotation, at least when aligners are used on the 

dialects they have been trained on. 

                                                
2 Goldman compares the performance of one aligner to two humans; we average those two human–aligner 
agreement rates. 
3 The human–aligner statistics are from McAuliffe et al.; the human–human statistics are from Raymond et al. 
4 25 ms is the human–aligner threshold; 20 ms is the human–human threshold. 
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Few published studies look specifically at aligner performance on varieties or languages 

that are unfamiliar to the aligner, as we do here (although see Meer and Matute Flores 2018 on 

Trinidadian English, González et al. 2018b on Australian English, and DiCanio et al. 2015 on 

Mixtec).5 However, Knowles et al. (2015) evaluate the performance of forced alignment on a 

different “non-standard” population of language users: children. They find much poorer results 

than have previously been found for adult language data: for spontaneous child speech, only 15% 

of aligner-placed phone boundaries are within 10 ms of a human’s placement, and 46% are 

within 25 ms. 

3 The present study 

3.1 The aligners 

Our study compares two aligners: Forced Alignment and Vowel Extraction suite (FAVE; 

Rosenfelder et al. 2014) and Dartmouth Linguistic Automation (DARLA; Reddy and Stanford 

2015a, Reddy and Stanford 2015b). 

 FAVE is an adaptation of the Penn Phonetics Lab Forced Aligner (P2FA; Yuan and 

Liberman 2008) and uses the HTK speech recognition toolkit (Woodland et al. 1995). FAVE’s 

acoustic models are based on 9000 hours of speech by US Supreme Court justices; accordingly, 

its models are based on what can be called Mainstream American English (Wolfram and 

Schilling 2015), with 15 unique vowel phonemes. FAVE was developed specifically for 

sociolinguistic use, and thus has a number of advantages for researchers dealing with interview 

data and other types of spontaneous speech: it can align multiple talkers and overlapping speech, 

and can allow for background noise. 

FAVE uses the CMU Pronouncing Dictionary v.0.7 (Weide 2008) for its orthographic–

phonemic matching. The aligner must be installed locally; instructions and a user manual are 

provided on GitHub at https://github.com/JoFrhwld/FAVE/. This local installation allows some 

customizability: namely, the user can substitute their own pronouncing dictionary (provided that 

it conforms to FAVE’s acoustic models; see Section 5) or add additional words to the built-in 

                                                
5 There is also Kisler et al. (2017:333), who reference the existence of an “internal project report” in which an 
aligner trained on Standard Southern British English is tested on Scots English. The aligner is found to have “an 
error rate twice that of human experts.” 
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dictionary (with the same caveat). FAVE requires the user to provide orthographic transcriptions 

at the sentence or breath group level and returns TextGrids suitable for use with the sound 

analysis program Praat. 

 DARLA is “a system […] that automates the entire pipeline from transcribing audio to 

alignment and formant extraction” (Reddy and Stanford 2015a: 17). DARLA provides users with 

the option to furnish their own orthographic sentence-level transcription of their sound file 

(“semi-automated alignment”), or users can instead have their file undergo full automatic speech 

recognition (“completely automated alignment”). DARLA’s forced alignment system is the 

Montreal Forced Aligner (MFA; McAuliffe et al. 2017), which involves several training passes 

of the data (including monophone, triphone, and speaker-specific). DARLA also uses the CMU 

Pronouncing Dictionary for phone-level transcriptions. Unlike FAVE, it does not allow the user 

to customize the pronouncing dictionary; instead, it provides its own best-guess transcription of 

unknown words using the Sequitur grapheme-to-phoneme converter (Bisani and Ney 2008).  

Note that local installation of MFA does allow this level of customizability. 

Although both FAVE and DARLA provide the ability to automatically measure vowel 

formants, in this paper, we set this technology to the side and focus only on phone-level 

transcription and alignment. For details of the accuracy of automatic vowel extraction, see 

Evanini (2009) and Labov et al. (2013: 35–38). 

 We selected these two aligners because each has unique advantages for sociolinguists. 

FAVE easily enjoys the most currency among sociolinguists at present: for instance, of the 

nineteen abstracts presented at the 2017 New Ways of Analyzing Variation conference that 

mention using forced alignment on English data, twelve used FAVE, while only four used 

DARLA. (The remaining three did not specify which system they used). As mentioned earlier, 

FAVE allows for multiple speakers and speaker overlap, but it requires local installation which 

can be technically demanding. DARLA, by contrast, does not (as of this writing) accommodate 

multiple speakers or speaker overlap, but it has a user-friendly online interface which lends itself 

well to teaching. In selecting these two aligners, we hope to assess whether these trade-offs come 

with trade-offs in performance, as well. 
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3.2 The varieties 

We selected six varieties of British English for this study. These are enumerated in Table 2, 

which also contains information on the speaker selected to represent each variety and a source 

that provides an overview of the variety’s phonological system. 

 These six varieties comprise five non-standard regional varieties (Manchester, Blackburn, 

Sunderland, Hastings, and Westray, all plotted on the map in Figure 2) plus Received 

Pronunciation, the English standard. All varieties are represented in the study with data from a 

sociolinguistic interview (Labov 1984) or similar, though we also include a single passage of 

read speech from the Received Pronunciation speaker as a control case, in order to assess 

performance on speech which is slow and clear. In total, then, we evaluate the performance of 

our two chosen aligners across seven different recordings. 

We selected the varieties that we did in order to represent a diversity of locations and 

phonological features. We were additionally interested to see how the aligners would cope with 

widespread British English phonological variants involving the deletion or substitution of 

consonants (Hughes et al. 2012; MacKenzie 2017): specifically, what effect these missing or 

lenited sounds would have on the ability of the aligner to correctly choose the boundary for 

surrounding sounds, and whether they would introduce a significant problematic effect on the 

overall alignment. 

 

Table 2. Overview of varieties and speakers used in the study. 

Variety Speaker demographics Overview of phonological 

system 

Received Pronunciation Male, 70s, recorded in 2000 

(interview) and 2006 (reading) 

Wells (1982) 

Manchester Female, 20s, interviewed in 

2012 

Baranowski and Turton (2015) 

Blackburn Female, 80s, interviewed in 

2015 

Turton (2015) 

Sunderland Female, 20s, interviewed in 

2012 

Burbano-Elizondo (2008, 

2015) 
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Westray Female, 80s, interviewed in 

2007 

Tamminga (2009) 

Hastings Female, 79, interviewed in 

2011 

Holmes-Elliott (2015) 

 
Figure 2: The locations of the varieties under study. Received Pronunciation is non-regional. 

3.3 Methodology 

All audio files were orthographically transcribed in ELAN (Wittenburg et al. 2006) by the 

authors or trained research assistants. Transcription followed the protocol suggested for use with 

each aligner. 



10 

Audio files and their accompanying transcripts were then run through FAVE and 

DARLA. Each aligner’s built-in pronouncing dictionary was used for alignment in all cases; no 

supplementary dictionary files were used, though out-of-dictionary words were manually 

transcribed by the authors for FAVE alignment. (DARLA does not provide the user with the 

opportunity to manually transcribe out-of-dictionary words.)  

After alignment, an excerpt from each sound file of approximately 300 words (precise 

counts in Table 3) was selected for hand-correction. To the extent possible, in order to capture 

the most vernacular speech, these excerpts were chosen to contain narratives of personal 

experience (Labov 2006 [1966]). Then, the word and segment boundaries produced by FAVE 

and by DARLA were hand-corrected by the authors – both trained sociophoneticians with 

considerable experience with several of the varieties under study – in Praat (Boersma and 

Weenink 2017). Figure 3 provides an example. These human-placed annotations were then 

compared to the aligners’ placement of the same boundaries to measure amount of human–

aligner displacement for the onset and offset of every phone. The results of this analysis are 

presented in Section 4. 

 

 
Figure 3: Hand-correction of FAVE output. The bottom two tiers are FAVE output; the top two 

tiers are manual correction of that output. Variety: Westray. 
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 As is apparent from Figure 3, in the output of forced alignment, the onset of every phone 

is the offset of the previous phone, and the offset of every phone is the onset of the next phone 

(with the exceptions, of course, of the very first and very last phones in a given audio file). It is 

thus redundant to provide overall statistics on both phone onset displacement and phone offset 

displacement. We report phone onset displacements in this paper unless otherwise indicated. 

 Phones were excluded from analysis when the aligner chose a pronunciation variant that 

was simply not alignable with the audio. There were two words for which we observed this to 

occur: the preposition for, which has a possible (presumably erroneous) transcription “F R ER0” 

in the CMU Pronouncing Dictionary, and the pronoun us, for which the aligner occasionally 

selected the (unintended) pronunciation “Y UW1 EH1 S” (i.e., U.S.). In such cases, all phones 

associated with the erroneously transcribed word were omitted from analysis.6 

4 Results 

In this section, we present quantitative results on phone boundary placement (Section 4.1), assess 

aligner performance (Section 4.2), and discuss alignment problems (Section 4.3). The word 

count and duration of each analyzed excerpt is provided in Table 3. Also provided is the total 

number of phone boundaries that were hand-corrected for each excerpt–aligner pair. This 

number differs by aligner even within an excerpt because aligners given identical word-level 

transcripts may nonetheless choose different pronunciations for a given word if multiple possible 

entries exist in the dictionary. 
 

Table 3: Word count and duration of analyzed excerpt, and total number of hand-corrected phone 

boundaries per excerpt–aligner pair. 

  word count duration 
(sec.) number of phone boundaries 

      DARLA FAVE 

RP - 
spontaneous 334 89 1045 1038 

RP - 
reading 277 147 1086 1125 

                                                
6 This was rare and resulted in the omission of only 19 phones in total. 
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Manchester 284 85 912 944 
Blackburn 317 103 942 1097 
Sunderland 308 88 1008 1056 
Westray 261 131 931 997 
Hastings 340 88 1022 1049 

 

As is evident from comparing the word count and duration columns on each row, speaking rates 

vary widely in this sample, from 3.85 words/sec (Hastings) to 1.88 words/sec (RP - reading). We 

address the implications of this for aligner performance in Section 4.3. 

4.1 Quantitative results  

Following, e.g., Goldman (2011), Hosom (2009), and Wilbanks (2015), we provide summary 

statistics on human–aligner phone onset boundary displacement, in Table 4. The raw data that 

these summary statistics are based on is plotted in Figure 4. Figure 5 shows the percentage of 

aligner-placed phone onset boundaries that were within 10 ms and 20 ms of the human’s 

placement. 

 

Table 4: Phone onset boundary displacement for two forced alignment methods. All values in 

milliseconds. 

  DARLA  FAVE 
  mean median s.d. mean median s.d. 

RP - 
spontaneous 12.9 0 50.7 17.6 0 64.1 

RP - 
reading 6.4 0 16.5 8 0 19 

Manchester 10.9 0 26.7 11.7 0 32.8 
Blackburn 9.7 0 28.8 7.5 0 27.3 
Sunderland 17.5 0 61.5 16.8 0 32.8 
Westray 14.6 0 42.3 19.5 0 46.8 
Hastings 15.2 0 57.7 19.6 0 64.5 
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Figure 4: Phone onset boundary displacement for two forced alignment methods. 

 

Figure 5: Phone onset boundary displacement for two forced alignment methods. 
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4.2 Performance assessment 

First, we compare the results in Table 4 to the “baseline” results of previous research, in which 

aligners were tested on the same variety they had been trained on. McAuliffe et al. (2017) 

evaluated the performance of both MFA (the aligner that DARLA serves as a wrapper for) and 

FAVE on the Buckeye Corpus. They found an average human–MFA phone boundary 

displacement of 17 ms. DARLA’s performance in our study improves on this for five of the 

studied dialects, and effectively matches for the sixth (Sunderland). Where FAVE is concerned, 

McAuliffe et al. found an average human–FAVE phone boundary displacement of 19.3 ms. 

FAVE’s performance here actually improves on this for four of our studied dialects (RP, 

Manchester, Blackburn, Sunderland) and effectively matches it for the remaining two (Westray 

and Hastings). Aligner–human agreement in the present study is thus excellent.  

 In fact, aligner–human agreement in this study often exceeds human–human agreement 

as found in previous work. Raymond et al. (2002) found a mean boundary placement difference 

between humans of 17 ms (again using the Buckeye Corpus). Both aligners’ performance 

improves on this in nearly every case. This should serve as reassurance for researchers who wish 

to use these aligners on English data that differs phonologically from the data they have been 

trained on: on the whole, phone boundary placement is nevertheless just as good as what a 

human would achieve. 

 When we compare the aligners’ absolute performance to each other, DARLA performs 

significantly better than FAVE via a Wilcoxon rank sum test with continuity correction (p < 

0.001). But in practical terms, the actual difference between the two is negligible: DARLA 

achieves an overall mean onset boundary displacement of 12.4 ms and FAVE, 14.3 ms. 

 Turning to Figure 5, we look at the aligners’ performance relative to 10 ms and 20 ms 

thresholds in light of previous work. Though no previous research has used these particular 

accuracy metrics with the specific aligners we test here, Goldman (2011) investigates human–

aligner agreement with the aligner EasyAlign, finding 51% of aligner-placed boundaries to be 

within 10 ms of the human’s placement, and 76% to be within 20 ms. Both DARLA and FAVE 

meet or exceed EasyAlign’s accuracy rate within both thresholds in all cases. We can also 

compare the aligners’ performance on this metric to attested human–human agreement rates, and 

again, the aligners perform well. Raymond et al. (2002) found that 62% of phone boundaries 

placed by humans were within 10 ms of each other; DARLA and FAVE meet or exceed this in 
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thirteen out of fourteen cases (with only FAVE+Sunderland coming up short, at 58%). They also 

found that 79% of phone boundaries placed by humans were within 20 ms of each other; 

DARLA and FAVE meet or exceed this in twelve out of fourteen cases. (Coming up short, by 

only two or three percentage points, are FAVE+Sunderland and FAVE+Westray.) 

 There is no significant difference between the aligners on either the 10 ms or the 20 ms 

threshold metric via a chi-square test (p > 0.05). 

It is clear that both aligners have performed very well. The fact that they have been 

provided with phonological systems that differ – sometimes rather radically – from the systems 

they have been trained on has not hindered their performance. 

4.3 Alignment problems 

In the previous section, we established that aligner performance in terms of phone boundary 

placement relative to a human’s is, on the whole, very good. Still, it is apparent from looking at 

Figures 4 and 5 that the aligners perform worse on some sound samples than others. Has 

anything systematic led to these differences? 

 One contender is speaking rate, which, as noted previously, varied widely across the 

excerpts selected for study. Table 5 reorders the excerpts from fastest to slowest speaking rate 

(calculated by dividing the number of words in the excerpt by the duration of the excerpt) and 

provides the mean displacement measures and 20 ms threshold accuracy measures from Table 4 

and Figure 5. 

 

Table 5: Speaking rate for each excerpt, arranged from fastest to slowest, accompanied by 

accuracy metrics reproduced from Table 4. 

  
speaking 
rate 
(words/sec.) 

mean 
displacement, 
DARLA (ms.) 

mean 
displacement, 
FAVE (ms.) 

% within 
20 ms, 
DARLA 

% within 
20 ms, 
FAVE 

Hastings 3.86 15.2 19.6 81% 80% 

RP - 
spontaneous 3.75 12.9 17.6 87% 83% 

Sunderland 3.5 17.5 16.8 80% 76% 
Manchester 3.34 10.9 11.7 83% 85% 
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Blackburn 3.08 9.7 7.5 85% 90% 
Westray 1.99 14.6 19.5 79% 77% 

RP - reading 1.88 6.4 8 90% 88% 

 

Looking first at the mean boundary displacement measures, neither aligner shows a significant 

correlation between speaking rate and mean displacement via a Spearman’s rank test (p > 0.05). 

But this may be because both aligners perform fairly poorly on Westray, despite the speaker’s 

slow speaking rate. When we omit the outlier Westray excerpt, FAVE’s accuracy does 

significantly correlate with speaking rate (rho = 0.942, p = 0.017). DARLA’s does not (though p 

= 0.058). 

 FAVE’s sensitivity to speaking rate has been shown before (Bailey 2016). But the 

Westray results show that slow speaking rate is no guarantee of successful FAVE performance. 

The Westray variety’s considerable phonological differences from Mainstream American 

English result in particularly poor FAVE performance even at a slow rate of speech. DARLA, by 

contrast, is less sensitive to speech rate, and comparatively less sensitive to radical phonological 

deviation from North American English. 

 The 20 ms threshold placement accuracy metric, which is not sensitive to outlying values 

like the mean is, does not correlate with speaking rate for either aligner (p > 0.05 with and 

without Westray). This implies that fast speech induces extreme cases of boundary displacement, 

rather than minor deviations. 

With fast speech comes massive phonetic reduction (Johnson 2004), which is the likely 

source of speaking rate-induced poor performance on the part of the aligners. Figure 6 gives an 

example of reduction-induced misalignment. We also noticed that considerable misalignment 

could occur with laughter, which the aligners often misplaced (Figure 7; {LG} indicates 

laughter). 
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Figure 6: Extreme misalignment of the string over and like jumped, induced by massive 

reduction of over and, which the speaker pronounces [ovn̩]. Variety: Sunderland. 

 

 
Figure 7: Extreme misalignment of the string {LG} when. {LG} marks a period of laughter. 

Variety: RP-spontaneous. 

 

5 Discussion 

Our analysis has shown impressive performance from both DARLA and FAVE, and we have full 

confidence in recommending that researchers who work on non-American and non-standard 

varieties of English use these tools for forced alignment. On the whole, human–aligner boundary 

placement disagreements are rare, and, as the examples in Figure 6 and 7 demonstrate, even 

when alignment is thrown off, it quickly recovers. This said, the aligners clearly perform worse 

on faster, reduced speech, and on the Westray variety of Scots. We would suggest that 

researchers take care in checking alignment output when working with varieties which stray so 
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far from the standard they were designed to work with. This warning also stands for rapid speech 

rates and massively reduced speech. 

We have also found little meaningful difference between the aligners in terms of 

boundary placement accuracy. Given that the two aligners are essentially indistinguishable in 

terms of performance on this measure, in this section we discuss ways in which they do differ, so 

researchers can choose which one best suits their needs. 

One major difference between the two is that FAVE allows the user to override its default 

pronouncing dictionary. This can be valuable for sociolinguists, who can modify the dictionary 

to incorporate possible variants for words that undergo widespread cases of sociolinguistic 

variation. For instance, -ing final words can be transcribed with both alveolar- and velar-final 

variants, and then the aligner can choose, for any given -ing word, which transcription best 

matches the audio. A number of researchers have found this to be a reliable way of automating 

the coding of sociolinguistic variation (Yuan and Liberman 2011a, Yuan and Liberman 2011b; 

Milne 2011; Schuppler et al. 2011; Milne 2012; Schuppler et al. 2012; Milne 2015; Bailey 

2016).7 

In terms of ease of use, the division is clear. DARLA has a user-friendly online interface 

which not only outputs an aligned transcript, but also provides raw and normalized formants, and 

a vowel plot. It is ideal for student projects, relies on simpler transcription conventions than 

FAVE, and its guess-the-pronunciation feature of unknown words is particularly useful for 

British spellings or non-standard lexical items, the transcription of which can be time-consuming 

in FAVE.  

FAVE, on the other hand, has many benefits to sociolinguists, such as a built-in ability to 

handle multiple talkers and annotations of contextual style. When installed locally, FAVE is 

customizable, and allows for transparent error tracking and troubleshooting. That said, FAVE’s 

local installation is non-trivial, and may be off-putting for researchers who are not comfortable 

with command line tools or the more technical aspects of dealing with FAVE’s multiple 

requirements. This also makes FAVE near-impossible to use in most undergraduate teaching.   

                                                
7 In principle, researchers could even replace FAVE’s dictionary entirely, with, say, a British English one, such as 
BEEP (Robinson 1997). In practice, however, phonemic mismatches between British and American English make 
this nearly impossible: Standard British English has one more unique low back vowel than General American 
English does, and FAVE cannot align vowels it has no acoustic models for, i.e., that do not exist in American 
English. 
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6 Conclusion 
This study investigated the performance of two off-the-shelf forced alignment systems which 

were developed for use with Mainstream American English on a diverse set of social and 

regional varieties of British English. Our results, based on comparing aligners’ phone boundary 

placement to humans’, indicate that researchers working with such varieties can rest assured that 

both DARLA and FAVE will generally do an excellent job of aligning their sound files. As ever, 

researchers need to check the results of such automated tools: errors are particularly likely to be 

introduced in fast speech or with varieties that are radically different from Mainstream American 

English (e.g. Scots), and there are occasional problems with phonetic transcription. But, overall, 

these problems are outweighed by the elimination of tedious manual analysis and the vast 

speeding-up of the research process, resulting in more ambitious projects and much larger 

datasets.  

One of our original motivations for carrying out this study was to test whether the 

aligners’ phone boundary placement accuracy would be affected by processes of British English 

consonantal variation, such as h-dropping and post-vocalic r-vocalization, and to assess whether 

a user would be better off with a pronouncing dictionary which incorporates these variants 

(MacKenzie and Turton 2013). While it is true that the aligner will be looking for these sounds, 

which may not always be present, unless such variation is near-categorical and causing persistent 

alignment issues (which we did not find it to do in this study), it is probably not worth users 

modifying a pronouncing dictionary to incorporate these variants. 

That said, one of the biggest issues that does arise when using American aligners on 

British data – not in terms of phone boundary placement, but in terms of transcription – is the 

differing number of phonemic distinctions in the vocalic domain. Aligners cannot make 

phonemic distinctions that they were not trained on, which means that British English speech 

will be phonetically transcribed by an American English aligner to have vocalic “mergers” that 

are not actually present. For now, we advise that the user goes ahead with the American model 

and corrects the transcription of vowel categories post-hoc at the analysis stage. This seems to be 

the most efficient method until these aligners can be made to handle more phonemic categories. 

In terms of the performance of specific aligners, DARLA performs slightly better than 

FAVE where accuracy is concerned, and also has the upper hand in terms of ease-of-use, 

accessibility, and teaching purposes. FAVE performs slightly better than DARLA where 
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customizability and the specific needs of sociolinguistic research are concerned, though it 

struggles slightly more than DARLA on rapid speech. 

Overall, if these aligners are used in the manner for which they were designed – as tools, 

and not as the complete replacement of a dedicated researcher – they have highly positive 

consequences in terms of improving the speed, accuracy, and efficiency of the data analysis 

process. 
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