Computational Governance and Violable Contracts for Blockchain
Applications

Munindar P. Singh and Amit K. Chopra

Abstract

We propose a sociotechnical, yet computational, approach to building decentralized appli-
cations that naturally accommodates and exploits blockchain technology. This approach avoids
the shortcomings of smart contracts that arise from their regimented way of organizing compu-
tation, which limits their prospects for practical decentralized applications.

A centerpiece of our architecture is the notion of a declarative, violable contract in con-
tradistinction to smart contracts. This new way of thinking enables flexible governance, by
formalizing organizational structures; verification of correctness without obstructing autonomys;
and a basis for trust.

Keywords: Smart contracts; Contracts; Sociotechnical systems; Blockchain

1 Introduction

Blockchain technology has brought newfound prominence to the challenges of building decentralized
systems, which we understand quite literally as systems with no distinguished locus of control. As
such, blockchain is a natural fit for building systems that support interactions among autonomous
parties, each an independent locus of control. Unsurprisingly, blockchain promises support for
multiparty interactions in domains such as government, health, manufacturing, and banking [1].

Blockchain applications, conceived to upend conventional business models, rely upon a smart
contract—executable code placed and executed from a blockchain (Sidebar 1). But smart contracts
suffer from major shortcomings that undermine their usefulness for decentralized applications.
Specifically, smart contracts are antithetical to autonomy and compatible only with endogenous
applications—those computed entirely within a blockchain. Thus, smart contracts are inadequate
for real applications (consider healthcare, finance, or IoT), which typically involve external compo-
nents.

Argument: Violability, Verifiability, Validation Decentralized applications presuppose mod-
eling interactions between autonomous parties, which calls for a representation of contracts. A
crucial property of any contract is verifiability: it should be possible to determine from a public
record of events whether the contract was satisfied or violated. Verifiability lies at the heart of a
public semantics [2].

Whereas smart contracts seek to prevent violation, we embrace wviolability and make verifiability
explicit. Verifiability requires a formal representation of a contract to computationally evaluate
a history of attestations. And, walidation, ensuring that stakeholder requirements are correctly
captured, presumes a high-level language that provides relevant abstractions.

Accordingly, we formulate a perspective on sociotechnical systems (STSs) whose salient features
are (1) an autonomy-preserving representation for wviolable contracts; (2) guaranteed verifiability

through formal semantics interpreted over blockchain; (3) high-level representation to facilitate
validation; and () an architecture of organizations that balances flexibility and rigor to engender
trust.

Scope and contributions We focus on sociotechnical challenges, deemphasizing concerns such
as confidentiality and performance, and contributing:

e An analysis of the shortcomings of smart contracts through the lens of decentralized applica-
tions.

e A formulation of research challenges to address those shortcomings from a sociotechnical
perspective.

e A description of the key elements of a possible solution.

Sidebar 1: Blockchain and Smart Contracts, Conceptually

Notionally, a blockchain is an immutable distributed ledger, as epitomized by Bitcoin (https:
//bitcoin.org/bitcoin.pdf). Blockchain solves the longstanding distributed computing problem
of achieving immutable agreement on the state of the system, despite failures and malice. Here,
immutability relies upon consensus, which relies upon a majority of the computing power
on the network remaining in the hands of benevolent (that is, protocol-following) parties.
Specifically, blockchain determines a consensus order in which events have occurred.

The notion of a smart contract (https://en.wikipedia.org/wiki/Smart_contract) predates
blockchain. A smart contract specifies contractual conditions programmatically, such that
the contract would automatically execute when input data meets the stated conditions. A
vending machine is characterized as a smart contract that takes in coins and outputs a product.
Smart contracts could potentially be attached to any real-world object, e.g., a house for rent
(https://slock.it).

In blockchain applications, a smart contract is digitally signed by its creator and placed on
a blockchain. Since a smart contract is public, the parties wishing to exercise it can know in
advance how it will function—provided they can understand the associated program. Hence,
smart contracts can enable commerce in an open setting.

Bitcoin transactions are simple smart contracts—Bitcoin’s limited language allows little
more than verifying signatures. But subsequent approaches, including Ethereum, ambitiously
support Turing-complete languages for smart contracts that initiate transactions based on
observed events.

2 Sociotechnical Limitations of Smart Contracts

Let’s consider the hazards of smart contracts. The Decentralized Autonomous Organization (DAO)
fiasco (https://blog.ethereum.org/2016,/06 /17 /critical-update-re-dao-vulnerability/) is telling. DAO,
a venture funding entity created as a smart contract on the Ethereum blockchain, was hacked to
the tune of $50M by exploiting a flaw in the smart contract and the underlying Ethereum virtual
machine. The specific flaw does not concern us since it is merely a symptom of a flawed architecture
that confuses verifiability with inviolability.

Interestingly, the hack was remedied by causing a fork in the blockchain. Specifically, several
Ethereum users colluded to extend a prior block as a way to exclude the undesirable transactions,

discarding legitimate ones as well. (Naturally, this effort produced two competing versions of
Ethereum, though the details of their history don’t concern us here.) Of course, a fork was possible
only because a large fraction of the active participants agreed to it. A minority would not be able
to take such remedies.

For something like DAQO, it may be appropriate to discard several days of legitimate transactions
to avert a loss of $50M. But what would the tradeoffs be in practice? Would it be fair to discard
an hour’s worth of real commerce at the national scale to save $50M? We suspect not. A patient
attacker may succeed by causing only small amounts of harm at a time, for which detection and
reversion are infeasible.

The success of the fork, however, undermines the very point that motivated blockchains, namely,
their immutability. The episode reinforces the main claim of this paper: There is necessarily
a social underpinning to any approach that has pretensions to decentralization. On permissioned
blockchains such as Hyperledger (http://hyperledger.org), where membership is controlled, the risk
is presumably better contained. However, errors in smart contracts are unavoidable and undesirable
outcomes would be difficult to reverse.

In essence, our main choice is (1) whether to keep the social component ad hoc, hidden, and
second class—as existing approaches do; or (2) to make the social component principled, explicit,
and computational-—as we propose doing in this article.

We now discuss three major shortcomings in the current conception of smart contracts and
formulate questions that guide our investigation.

2.1 Lack of Control

The independence of participants with respect to their beliefs and actions is a crucial aspect of
decentralization. Blockchain supports independence with regard to private beliefs since consensus
applies only to shared events, such consensus being essential for achieving interoperation.
However, smart contracts fail independence for actions. They automate processing, removing
control from the participants. A smart contract once launched cannot be overridden. Indeed, we
cannot even contemplate overriding a smart contract because it executes automatically.
How can we reconcile blockchain with participant autonomy?

2.2 Lack of Understanding

Since the meaning of a smart contract is hidden in a procedure, even though it may be public, one
cannot readily determine whether it meets stakeholder requirements, and how it may be exercised
by a participant. Since blockchains are immutable, any mistake in capturing requirements cannot
be corrected without violating immutability. Therefore, a powerful language for smart contracts
placed on a blockchain poses a huge risk, as the DAO incident illustrates.

Instead, we need a language in which we can capture the essential stakeholder requirements
directly. To enhance confidence in capturing requirements correctly, such a language would offer
constructs close to the stakeholders’ conception and would be limited in expressiveness.

How can we develop a contract language including an appropriate semantics?

2.3 Lack of Social Meaning

Any software application involves contact with the real world. In rare cases, the real world can be
abstracted out. Bitcoin, being designed for cryptocurrency, is endogenous, meaning that bitcoins
exist entirely within the blockchain, which can therefore ensure their integrity. Bitcoin is an atypical
blockchain application since it excludes considerations other than of transactions involving bitcoins.

More commonly, applications such as healthcare and commerce are entwined with the real world,
both social and technical. For example, in healthcare, surgical equipment may fail or a patient may
deny having been adequately informed when giving consent. For physical or communication failures,
the possible resolutions lie in the social sphere, as traditionally handled through contracts and laws.

The DAO hack demonstrated an integrity violation, indicating a platform failure. In a decen-
tralized scenario, any response to an interoperation failure, including a platform failure, must be
social. Indeed, the response to fork the Ethereum blockchain was social—it’s just that it was an
ad hoc and unverifiable response entirely outside the computational realm.

How can we enhance blockchain with abstractions to express and compute with social meaning?

3 Architecture: Compacts, Governance, Verification, Trust

The foregoing discussion shows that smart contracts are inadequate for describing interoperation
between autonomous parties: they take over control of participant decision making, are opaque,
and omit social meaning. We now describe our architecture that avoids these shortcomings and
enables natural interactions between autonomous parties.

3.1 Declarative Violable Contracts

We introduce the term compact (https://www.ldoceonline.com/dictionary/compact) for our con-
ception of contracts to avoid confusion with both smart contracts and traditional contracts.

In contrast to a smart contract, a compact is not a program executed by the blockchain but a
specification of correct behavior. In contrast to a traditional contract, a compact is a computational
artifact: its formal semantics determines which blockchain instances satisfy and which violate the
compact. A compact would be stored on the blockchain and be unambiguously computed based
on its semantics.

Figure 1 illustrates how compacts differ from smart contracts. In both settings, principals (social
entities) own and control devices (technical entities), such as computers, sensors, and vehicles.
Importantly, the autonomy rests with social entities who control the technical entities.

A device may originate an event or relay an event from another source, such as a human.
The blockchain records events received from devices provided they pass any input checks. Smart
contracts provide two functions in both architectures and, in both, the input checker is a smart
contract.

In the traditional architecture, in Figure la, the principals additionally specify their business
agreements as smart contracts that carry out actions and record events on the blockchain. Thus,
a smart contract once launched may perform immutable (modulo rollback and forking, as in the
DAO incident) changes to the blockchain.

In our proposed architecture, in Figure 1b, the principals specify the compacts corresponding
to their business agreements. Given the recorded events, the evaluator—a smart contract by fact of
being a program on the blockchain—determines whether a compact is satisfied, violated, expired,
or neither. It informs the principals about states of relevant compacts, but does not insert events
into the blockchain. That is, of the functions of smart contracts in Figure la, Figure 1b retains
being able to check (filter) incoming events and query the blockchain but not to make changes to
the blockchain.

In general, our sociotechnical architecture splits the necessary functions between the social and
technical parts (and models the social part computationally) whereas the traditional architecture
hides the social part and places all functions in the technical part. Through our models of compacts,
organizations, and trust, the rest of this paper demonstrates how the social and technical parts

Participants Participants —
Blockchain Blockchain
Smart Contract Dceclaratlve Smart Contract qua
ompact
qua e — > Compact State
Agreement A Evaluator
- greement -
S S
!] f g
Smart Contract Smart Contract
Recorded Recorded
qua Event qua Events
Input Checker vents Input Checker ven
Devices <~ Devices <~
(a) Smart contracts not only check received events (b) Compacts provide a declarative standard of cor-
but can insert additional events into the blockchain. rectness but do not insert events into the blockchain.

Figure 1: Comparing compacts and smart contracts in a blockchain architecture.

coexist. For expository convenience, we place input checking as a technical function; in the limit,
we could potentially dispense with input checking and handle all discrepancies at the social level
though it would not be an effective approach for many practical applications.

A compact helps balance autonomy and correctness. A party to a compact, in exercising its
autonomy, may violate the compact. For example, a compact in healthcare may specify that a
hospital prohibits a nurse from sharing a patient’s data without the patient’s consent. Yet, a nurse
Bob may share patient Charlie’s data with cardiologist Alice without Charlie’s consent. From the
semantics, given recorded events on the blockchain, we can compute whether the compact was
satisfied or violated. Crucially, violation doesn’t entail malfeasance. It could be that Charlie had
a medical emergency and was in no condition to give consent. Bob could be rewarded for saving
Charlie’s life for his workaround [3].

Consider another example: a compact for renting apartments to tourists. Such a compact may
stipulate conditions such as that registered guests may not smoke in the apartment; not invite others
except children under twelve years old to stay overnight; and not leave the windows open during
the day. Such prohibitions are impossible to impose through the blockchain since they concern
exogenous events and would be impractical or risky to enforce physically. Guests may violate the
stipulations in the compact. The rental agency may install monitors (e.g., smoke detectors, face
recognizers, and window sensors) that enable detecting violations of the compact. Again, from
the semantics and recorded events, we can compute whether the compact was satisfied or violated.
Again, violation doesn’t entail malfeasance. First, sensors aren’t perfect and a smoke detector may
falsely report smoking, e.g., because of a deep fryer. Second, a compact may be overridden by other
compacts (don’t leave a child alone) or a principal may discover the circumstances are such that it
is sensible to violate a compact. For example, if the adult guests are taken to a hospital, they may
hire a baby sitter to stay overnight with their young children even though it is prohibited by the
compact.

The foregoing examples highlight the importance of compacts in detecting and resolving con-

flicting requirements [4].

3.2 Specifying Compacts via Norms

To recover understanding, control, and make the social meaning explicit, we need a declarative
representation for compacts that captures the essence of traditional contracts. A compact would
explicitly state what each concerned party may expect from another. To this end, the formal notion
of norms, which resembles but is not identical to “social norms” in the vernacular, yields promising
constructs. As motivated by Georg von Wright, who invented modern deontic logic in the 1950s,
this notion of norm carries regulatory force [5].

Therefore, we propose to represent each compact as a set of norms. The specific norms we adopt
are commitment, authorization, prohibition, and power. The following are key features of norms.

e Each norm in our representation is directed from its Accountable Party to its Party with
Standing [6]. Thus, a norm always makes accountability clear.

e Each norm arises in the context of an organization. Thus, a norm makes its scope and
adjudicating jurisdiction clear.

e Each norm is conditional, and states logical conditions under which it goes in force (an-
tecedent) and under which it completes (consequent). The antecedent and consequent are
definitively evaluated on a ledger, thereby ensuring clarity on what state each norm instance
is in.

Let’s introduce our specification language, based on the Custard language [7], via example. Let’s
begin with a fairly routine business agreement, which may be described by a compact comprising
the following commitment. In the commitment, keywords are in sans serif. Words beginning with
an uppercase letter are names of event schemas unless otherwise specified. Words beginning with
a lowercase letter are attributes of the events.
compact Market
role Seller Buyer Marketplace

commitment DiscountQuote from Seller to Buyer within Marketplace
create Quote

detach (Order and Payment) deadline Quote + 10m

where paymentAmount >= 0.90 % quotedPrice x quantity
discharge Shipment deadline Payment + 5d

This listing describes a compact, Market, consisting of one commitment schema labeled Dis-
countQuote, which is directed from a role Seller to a role Buyer. At runtime, these roles are played
by specific principals, e.g., individuals Meryl and Custer.

e An instance of DiscountQuote is created when an instance of the Quote event occurs—Quote
being the event expression given under create. The attributes of Quote, such as quotelD,
item, and quotedPrice, are the information relevant to the creation of this commitment. As
Seller, Meryl alone can commit herself.

e A (created) instance of DiscountQuote is detached when instances of Order and Payment for a
matching quotelD occur within 10 minutes of the matching Quote, and paymentAmount is at
least 90% of the cost of the Order items (quotedPrice x quantity). Here, Custer would bring
about those events although in general a commitment could be detached through anyone’s
actions.

e An instance of DiscountQuote expires if a matching Order and Payment do not occur within
10 minutes of the matching Quote.

e If Shipment for the matching quotelD occurs (and, if there is a matching instance of Payment,
occurs within five days of Payment), the commitment is discharged. Presumably, Meryl or
one of her business partners would bring about this event.

e [f the commitment is detached, but Shipment for the matching quoteID does not occur
within five days of Payment, then the commitment is violated. Now Custer can hold Meryl
to account.

We illustrate the above healthcare example. For brevity, we focus on a prohibition norm and
assume the relevant events: Employment, when a Nurse becomes employed by a Hospital; Data-
Access, when a Nurse accesses a Patient’s data; and CopyData, when a Nurse shares a Patient’s
data with someone. Attributes of these events express relevant information, including the Patient’s
identity.

The compact specifies a prohibition on a Nurse by a Hospital that is created when the Nurse is
employed. When the Nurse accesses a Patient’s data, the Nurse may not copy that data to anyone

outside of the Patient’s care team.
compact PatientData
role Patient Hospital Nurse MedicalSystem CareTeam

prohibition NoSharing on Nurse by Hospital within MedicalSystem

create Employment /* in Hospitalx/
detach DataAccess /* about Patientx/
violate CopyData /xto receiverk/

where receiver not in CareTeam of Patient /+xreceiver is an outsiderx/

3.3 Computing the Norm Lifecycle

The above declarative specification of compacts yields significant benefits over smart contracts.
First, the language of norms is geared toward expressing agreements between autonomous prin-
cipals: norms can be reliably identified from real-life natural language contracts [8]. Two, the
language is amenable to formal reasoning since it is simpler than a traditional programming lan-
guage. Three, specifications in the language can be automatically evaluated, meaning that the
state of any norm can be unambiguously determined from the norm’s expression and the events
recorded in any snapshot of the blockchain.

Specifically, a blockchain is naturally modeled as a sequence of events with timestamps. From
these events, we can determine what norm instances have been created, and which of them have
transitioned to other relevant states. For example, we might observe that Meryl has produced
instances of Quote for ten prospective buyers, of whom Custer alone has responded with matching
instances of Order and Payment. From the matching Shipment event, we can conclude that Meryl
discharged her commitment to Custer.

Alternatively, if Meryl failed to bring about a matching Shipment event, we would conclude
that Meryl violated her commitment to Custer. Importantly, we can compute abstract events, such
as when a norm instance transitions in its lifecycle. For example, the violation of a commitment
is itself an event that we can effectively compute. That event could be referenced from other
norms—essential to achieving governance, as discussed next.

3.4 Organizations and Governance

Consensus on what has transpired can support decentralized applications by averting disputes as
to the public facts. But, as envisioned here, the principals may nevertheless violate applicable
compacts.

Decentralized applications cannot avoid governance: the choice is whether to leave governance
ad hoc and manual or to make governance formal and computational, as we envision. In our
conception, every decentralized application is associated with an organization, which serves as the
context of its defining compact. Such organizations are seen on today’s blockchains, such as channels
on Hyperledger Fabric. However, current practice doesn’t model the organization itself. The ill-
fated DAO was arguably modeled procedurally as a smart contract but that is not satisfactory
since, even if it were correct, its behavior would not have been comprehensible or modifiable.

Today’s approaches lack a computational model for such organizations. Consequently, there is
no precise characterization of what an organization can expect from its members and vice versa.
As a result, governance in blockchain applications remains ad hoc.

To address this limitation, we propose a three-pronged approach. First, we model an organiza-
tion as a principal on par with any other, such as an individual. An organization may feature as a
subject or object of another norm.

Second, an organization provides an organizational context for each norm arising, as described
in [9]. In the listing above, the role Marketplace provides the context for Seller and Buyer’s dealings.
The Marketplace role would be adopted by a concrete organization, such as Raleigh’s Artsplosure
(an arts fair), within whose scope Meryl and Custer would interact if they joined Artsplosure. The
context can embody jurisdictional weight and can serve as an adjudicating authority for disputes.
The context can thus help mitigate violations of norms in a compact [10].

The Marketplace serves as the context for the DiscountQuote commitment and the Medical-
System as the context for the NoSharing prohibition. The organizational context is captured as
a role in its own right. Let us extend the above examples to illustrate how compacts can handle
violations. Marketplace commits to Buyer that if a Seller violates the DiscountQuote commitment,

Marketplace would step in and provide a refund within two days.

commitment Compensation Marketplace to Buyer within Marketplace
create Quote /x when Seller creates a Quote */
detach violated (DiscountQuote)

discharge Refund deadline violated (DiscountQuote) + 2d

where refundAmount = paymentAmount

Similarly, Hospital, as the context of the NoSharing prohibition norm, commits to Patient to
investigate any violations of the NoSharing prohibition within 30 days.
commitment SanctionC from Hospital to Patient within MedicalSystem
create Enroll /+* when Patient enrolls x/
detach violated (NoSharing) /x the Patient ID match is implicit *x/
discharge Investigation deadline violated (NoSharing) + 30d

Now when Bob reveals Charlie’s data without Charlie’s consent, the hospital’s commitment to
Charlie is activated. The hospital can satisfy its commitment by conducting its investigation, upon
which it may either exonerate and reward Bob or penalize him.

Third, the organization is specified through a compact between itself and its members. This
compact specifies precisely what expectations an organization and its members may have of each
other. Membership in the organization provides identity for all purposes within that organization.
Enrollment as member may rely upon another organization that this organization is part of, where
the second organization provides its identity, and so on. The nesting would ordinarily terminate

either at a self-contained organization (as in Bitcoin) or at the real society (as in the banking
industry, where regulations require a national ID for each depositor). Certain organizations, such
as for social services to drug users, may be self-contained to protect the anonymity of the people
they help.

3.5 Programming and Verifying Interactions

Achieving coordination is nontrivial in decentralized applications. Existing approaches hardcode
coordination in software implementations. Doing so reduces flexibility in interoperation and hides
essential details, thereby preventing composing compacts. Blockchains, e.g., Hyperledger, provide
coordination abstractions such as a channel—a subnet on which only participants can access in-
formation. A channel supports confidentiality and helps decouple participants by hiding irrelevant
information. To enable interoperation, we must formalize how an interaction proceeds, not just
who participates or what data they exchange. Thus, we face challenges of how to specify a channel
and to produce software to interact through a channel.

An effective solution would specify coordination declaratively in conjunction with compacts.
Doing so requires not just formal semantics for data [11] but also models of causality and integrity
constraints on interactions underlying the data [12].

In essence, we would formally specify an interaction protocol for each compact that would ensure
the compact can be flexibly enacted, meaning that the protocol does not foreclose any enactment
that remains acceptable with respect to the compact. Specifically, the protocol includes a way for
each lifecycle state of each norm (including states of satisfaction and violation) in the compact to
be realized. To capture the intuition that a decentralized application is specified via a compact,
we would need to generate protocols automatically from a compact such that each involves only
the relevant principals. The interactions in the protocol would naturally be endowed with a public
semantics [2], a major benefit of a shared ledger.

The input checker component, realized as a smart contract in Figures 1la and 1b, helps ensure
integrity of the information in the blockchain. Thanks to our approach being based on compacts,
we can produce the checker’s specification from a compact, and the specification can capture, for
each principal, the legal actions with respect to the compacts in which that principal participates.

3.6 Meaningful Trust and Reputation

The autonomy of principals and embedding in the real world suggest that principals would need to
trust one another to interoperate. The possibility of violation of a compact creates a vulnerability, a
hallmark of trust [13]. Blockchain obviates the need for trust only to the extent that the governance
structures provide assurance against malfeasance by another—and the structures themselves are
trusted.

The Compensation example above illustrates how to achieve coherent interactions without a
central authority [6, 14, 15]. Governance is a prerequisite for accountability and trust, which are
means with which to balance autonomy and correctness.

Blockchain can serve as a platform for promoting meaningful trust. First, quite naturally, the
states of relevant compacts provide an opportunity to make evidential trust judgments. Violation
and satisfaction of a norm would mean a lowering and raising, respectively, of trust in the concerned
party with respect to similar norms. Second, explicit governance engenders trust by assuring
principals that malefactors would be sanctioned. A party may violate a compact by failing to
satisfy its conditions, but if it does so its violation would be determinable from the blockchain. The

aggrieved party (http://thelawdictionary.org/aggrieved-party/) may file a complaint, also recorded
in the blockchain, thereby triggering a governance compact.

Third, governance provides a basis for capturing the trust assumptions by formalizing what
counts as evidence for what norm. Consensus on blockchain concerns the events observed. But
armed with a governance structure, we can encapsulate norm-relevant evidence within an event to
reflect the application meaning. For example, a norm may rely upon a patient having a benign
tumor. But, in medical practice (http://aspe.hhs.gov/sp/reports/2010/PathRad/index.shtml),
whether a tumor is benign is a fact that is established by the tumor board of the hospital. That
is, the tumor board’s assertion counts as the tumor being benign.

4 Prototype over R3 Corda

Our compacts-based approach is readily realized on existing blockchains. To illustrate our approach,
we implemented a proof of concept prototype on R3 Corda (https://www.r3.com/). The relevant
Corda programming abstractions are these: Corda is a network of nodes, each of which hosts a
relational database. Each party is a business entity and runs a node. A workflow is a program over
database transactions that specifies the parties to whom the transaction is visible. By invoking
a workflow, a party invokes the transactions in the workflow, which causes updates to its own
database and the databases of the other parties to whom the transaction is visible. An RPCclient
is a means by which a party may invoke a workflow programmatically.

Our prototype maps the principal and event constructs to Corda’s party and transaction, re-
spectively. It specifies a workflow for each event and encodes agents as RPCclients that invoke the
workflows to insert events into the databases of the appropriate parties. The prototype adapts our
norms compiler [7] to generate queries for the lifecycle states of each norm. These queries execute
on a node database. Additional details are in the supplementary material.

5 Discussion

The emergence of blockchain as a platform for decentralized applications exposes new usage sce-
narios. These scenarios bring forth sociotechnical considerations into computing—specifically, in
terms of expectations regarding governance (organizations, norms, privacy) and trust.

Table 1 highlights how our architecture of compacts contrasts with existing approaches. In the
compacts approach, the blockchain declaratively represents contractual relationships; maintains
relevant events; enables a principal to violate a compact if the principal so desires; computes whether
the compact is satisfied, violated, expired, or otherwise pending; thereby activating applicable
governance compacts and providing a basis for trust.

In this manner, we envision computational representation and reasoning about sociotechnical
considerations. Specifically, we advocate developing approaches for programming interactions us-
ing blockchain that build on and support effective governance and trust. In this way, we differ
from the notion of Ricardian contracts (https://iang.org/papers/ricardian_contract.html), which
associates a textual description with a computational description, thereby creating two competing
standards of correctness: one that is applied computationally and one that is understood by peo-
ple. In our approach, there is only one standard—it is high-level (so understandable by people)
and computational (so executable by machine).

The compacts-based architecture yields valuable research opportunities concerning how princi-
pals (1) preserve autonomy in being able to violate a compact and verify each other’s compliance;

Table 1: Contrasting compacts with traditional and smart contracts.

Traditional Smart Compacts
Specification Text Procedure Formal, declarative
Automation None Full Compliance checking
Principals’ Control Complete None Complete
Venue External Within blockchain Recorded on blockchain
Trust Model Hidden Hardcoded Explicit
Social Meaning Informal None Formal
Standard of Correctness Informal legal Whatever executes Formal legal
Scope Open but ad hoc Closed Sociotechnical

(2) deal with events in the real business or social worlds, external to the blockchain; (3) maxi-
mize flexibility in having their interactions minimally constrained to interoperate successfully; and
(4) most importantly, build and realize governance structures to deal with autonomy and excep-
tions.

Acknowledgments

Singh was supported by an IBM Faculty Award and Chopra by EPSRC grant EP/N027965/1
(Turtles). We thank Alessandra Scafuro and Samuel Christie for helpful discussions. Thanks also
to the anonymous reviewers for their helpful comments.

References

[1] Daniele Magazzeni, Peter McBurney, William Nash. Validation and verification of smart
contracts. IEEE Computer, 50(9):50-57, 2017.

[2] Munindar Singh. Agent communication languages. IEEE Computer, 31(12):40-47, 1998.

[3] Ross Koppel, Sean Smith, Jim Blythe, Vijay Kothari. Workarounds to computer access in
healthcare organizations. In Karen Courtney, Alex Kuo, Omid Shabestari, editors, Driving
Quality in Informatics, pages 215-220. IOS Press, 2015.

[4] Jéssica dos Santos, Jean de Oliveira-Zahn, Eduardo Silvestre, Viviane da Silva, Wamberto Vas-
concelos. Detection and resolution of normative conflicts in multi-agent systems. Autonomous
Agents and Multi-Agent Systems, 31(6):1236-1282, 2017.

[5] Georg Von Wright. Deontic logic. Ratio Juris, 12(1):26-38, 1999.

[6] Munindar Singh. Norms as a basis for governing sociotechnical systems. ACM Trans. Intelligent
Systems Technology, 5(1):21:1-21:23, 2013.

[7] Amit Chopra, Munindar Singh. Custard: Computing norm states over information stores.
Proc. Autonomous Agents and Multiagent Systems, pages 1096-1105, 2016.

[8] Xibin Gao, Munindar Singh. Extracting normative relationships from business contracts. Proc.

Autonomous Agents and MultiAgent Systems, pages 101-108, 2014.

[9]

[10]

[11]

[12]

Munindar Singh. An ontology for commitments in multiagent systems. Artificial Intelligence
and Law, 7(1):97-113, 1999.

Munindar Singh, Amit Chopra, Nirmit Desai. Commitment-based service-oriented architec-
ture. IEEE Computer, 42(11):72-79, 2009.

Allan Third, John Domingue. Linked data indexing of distributed ledgers. Proc. World Wide
Web Companion, pages 1431-1436, 2017.

Munindar Singh. Semantics and verification of information-based protocols. Proc. Autonomous
Agents and MultiAgent Systems, pages 1149-1156, 2012.

Cristiano Castelfranchi, Rino Falcone. Trust Theory. Wiley, 2010.

Jeremy Pitt, Alexander Artikis. The open agent society. Artificial Intelligence and Law,
23(3):241-270, 2015.

Christopher Frantz, Martin Purvis, Mariusz Nowostawski, Bastin Savarimuthu. nADICO: A
nested grammar of institutions. Proc. Principles and Practice of Multi-Agent Systems, LNCS
8291, pages 429-436, 2013.

Author Bios

Munindar P. Singh is a Professor in Computer Science and a co-director of the Science of Se-

curity Lablet at NC State University. His research interests include the engineering and
governance of sociotechnical systems, including the applications of blockchain in automating
financial transactions. Singh is an IEEE Fellow, a AAAI fellow, and a former Editor-in-Chief
of IFEFE Internet Computing and ACM Transactions on Internet Technology. Contact him
at singh@ncsu.edu.

Amit K. Chopra is a senior lecturer in the School of Computing and Communications at Lan-

caster University in the UK. Chopra’s interests span sociotechnical systems, multiagent sys-
tems, and decentralized systems. Contact him at amit.chopra@lancaster.ac.uk.

