
MAAT: Mobile Apps As Things in the IoT

WYATT LINDQUIST, Lancaster University, United Kingdom
SUMI HELAL, Lancaster University, United Kingdom
AHMED KHALED, Northeastern Illinois University, United States
GERALD KOTONYA, Lancaster University, United Kingdom
JAEJOON LEE, Lancaster University, United Kingdom

As the Internet of Things (IoT) proliferates, the potential for its opportunistic interaction with traditional mobile apps becomes
apparent. We argue that to fully take advantage of this potential, mobile apps must become things themselves, and interact in
a smart space like their hardware counterparts. We present an extension to our Atlas thing architecture on smartphones,
allowing mobile apps to behave as things and provide powerful services and functionalities. To this end, we also consider the
role of the mobile app developer, and introduce actionable keywords (AKWs)—a dynamically programmable description—to
enable potential thing to thing interactions. The AKWs empower the mobile app to dynamically react to services provided by
other things, without being known a priori by the original app developer. In this paper, we present the mobile-apps-as-things
(MAAT) concept along with its AKW concept and programming construct. For MAAT to be adopted by developers, changes
to the existing development environments (IDE) should remain minimal to stay acceptable and practically usable, thus we
also propose an IDE plugin to simplify the addition of this dynamic behavior. We present details of MAAT, along with
the implementation of the IDE plugin, and give a detailed benchmarking evaluation to assess the responsiveness of our
implementation to impromptu interactions and dynamic app behavioral changes. We also investigate another study, targeting
Android developers, which evaluates the acceptability and usability of the MAAT IDE plugin.

CCS Concepts: •Human-centered computing→Ubiquitous andmobile computing systems and tools; • Computer
systems organization→ Architectures; Embedded and cyber-physical systems.

Additional Key Words and Phrases: Internet of Things, thing architecture, mobile apps, actionable keywords

ACM Reference Format:
Wyatt Lindquist, Sumi Helal, Ahmed Khaled, Gerald Kotonya, and Jaejoon Lee. 2019. MAAT: Mobile Apps As Things in the IoT.
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 1 (October 2019), 22 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
The success of the Internet of Things (IoT)will largely depend on how the things are architected to opportunistically
engage with each other. This is especially the case in personal IoT where the smart cooperation between the
services offered by the things could expand the ways for smart space users to interact with their smart homes
and workplaces. However, such smart engagement cannot be achieved through simple connections between the
offered services, but through the dynamic creation of IoT applications and scenarios opportunistically by the
things themselves.

Authors’ addresses: Wyatt Lindquist, w.lindquist@lancaster.ac.uk, Lancaster University, United Kingdom; Sumi Helal, s.helal@lancaster.ac.uk,
Lancaster University, United Kingdom; Ahmed Khaled, aekhaled@neiu.edu, Northeastern Illinois University, United States; Gerald Kotonya,
g.kotonya@lancaster.ac.uk, Lancaster University, United Kingdom; Jaejoon Lee, j.lee3@lancaster.ac.uk, Lancaster University, United Kingdom.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2019 Association for Computing Machinery.
2474-9567/2019/10-ART $15.00
https://doi.org/10.1145/1122445.1122456

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 1, Article . Publication date: October 2019.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

2 • W. Lindquist et al.

At the same time, the opportunistic dynamic development of domain-related applications and scenarios should
not only be based on the services offered by the things but also on the relationships that could logically and
functionally tie these services together. The social networking concepts started to converge with IoT technologies
forming a new paradigm named Social Internet of Things (SIoT) [6, 7]. SIoT is about creating a social network of
things through a set of social relationships and interactions. The recently proposed ideas on social IoT [11] are to
logically link the things according to their identification attributes (e.g., things from same vendor), not on the
services offered by these things. However, the exploitation of service-level relationships in the context of social
IoT adds an effective programming perspective to such a new evolving paradigm. The inter-thing relationships
programming framework [17, 18] broadens the social IoT thing-level relationships and utilizes a set of concrete
relationships between the offered services to empower a much wider class of meaningful IoT applications.

On the other hand, the typical models of the things in smart space are things with sensors that sense and collect
environment parameters and things with actuators that perform actions and change the state of the environment.
However, smart spaces are not only full of hardware models of things that offer hardware-based services, but also
software models [25]. A software model—a mobile app—is a new type of thing that represents a different model,
offers software-based services and functions, and is able to engage with its mates in the ecosystem in different
IoT applications and scenarios.

Consider two things that have a potential for interaction—a digital video recorder (DVR) device and a mobile
phone "TV guide" app that lists upcoming television programs—but have not been explicitly programmed for
each other. The DVR could offer to record the program the user has selected on their phone; however, the
developer of the app did not see this as a possibility and did not implement such a feature. This does not stop the
things, however: they have already exchanged capabilities and created a meaningful interaction based around
the concept of TV programs and recording. The user is given the choice (driven by the DVR and displayed by
the app) to record the program whose listing they are currently viewing, and to "integrate" such behavior into
the app, permanently creating a relationship between the DVR and mobile app. Although the developer did not
implement this functionality, such an interaction was able to take place, thanks to the underlying features of
the thing architecture and the app’s descriptive metadata: the developer instead defined keywords—capabilities
and interests—that allowed the architecture to suggest new relationships with other things in the smart space.
Once accepted by the user, the app can adjust its behavior and interface to accommodate new elements for the
deduced interaction. In this paper, we utilize the inter-thing relationships programming framework [17, 18] and
present an extension, Mobile Apps As Things (MAAT), to our Atlas thing architecture [19] targeting mobile
app developers and attempting to pave the way for the mobile apps to engage in smart spaces as things in the
ecosystem. The extension introduces actionable keywords (AKWs) as programmable and dynamic descriptions
that enable potential thing to thing interactions. The AKWs empower the mobile app to opportunistically and
dynamically react to functionalities and services provided by other things in the ecosystem, without being a priori
configured or statically wired by the mobile app developer. For MAAT to be smoothly adopted by developers,
we developed an IDE plugin for a common mobile app development environment (Android Studio) to ensure
minimal, acceptable, and practically usable experience.

The paper is organized as follows. Section 2 highlights related work and presents a brief summary of the Atlas
thing architecture on which we base our ideas in this paper. Section 3 presents the framework by which we propose
mobile apps to be redesigned as things in an IoT. Section 4 presents the AWK idea as an enabling mechanism for
mobile apps to become things. Section 5 gives details of our implementation including programming time support
in the form of an Android Studio Plugin. Section 6 presents a performance evaluation to test the feasibility of our
approach in terms of acceptable responsiveness of mobile apps when they are modified to also be things. Section
7 presents an acceptability study with end users (mobile app developers). Finally, a discussion and future work
are presented in section 8, and a conclusion is presented in section 9.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 1, Article . Publication date: October 2019.

MAAT: Mobile Apps As Things in the IoT • 3

2 PRIOR WORK AND REQUISITE BACKGROUND
In this section, we limit our coverage of prior work to research/products that relate most to our idea of a mobile
apps as a thing (MAAT). As no prior work exists that attempts to directly affect mobile apps to be things, as with
MAAT, we cover mainly ingredients and referential related work.

If This Then That (IFTTT) [13, 29] is a web-based service that allows user in smart space to manually connect
the various Internet-based services and features (e.g., Twitter) to develop an application called an applet. IFTTT
binds such services and features through a single rule: if a certain event occurs (e.g., received a message) then
perform some action (e.g., vibrate the smartphone). Users can give IFTTT permission to utilize various cloud APIs
offered by service vendors (e.g., Instagram) to operate on their data through predefined applets, or custom ones
they create. IFTTT has also added support for smart products (e.g., Belkin WeMo home automation and Philips
Hue lights bulbs), as well as Android system functionality (e.g., Bluetooth, messaging, and notifications). While
these features move towards providing thing-like behavior on mobile devices, they focus more on cloud-based
services and events, and require applications to provide REST-based endpoints for integration. This makes local
interactions difficult and requires users to manually specify applets, either custom or community provided.

Similarly, Yun et al. [32] created a prototype named TTEO (Things Talk to Each Other) that can be programmed
by user-defined if-then rules, in the same vein as IFTTT but focusing specifically on smart things. The architecture
consists of two platforms; Mobius, a connectivity platform that resides as an IoT server, and &Cube, is a smart
service server that acts as the interaction domain. Mobius communicates with devices, maintains virtual entities
for each, and sends this information to &Cube, which allows developers to create and execute new services with
registered devices through predefined control statements. This functionality is exposed through a mobile app that
allows users to specify these rules on the fly. While the project better handles local thing-to-thing interactions, it
still requires users to think up their own interactions, and does not consider the potential for integration with
software features like those in a mobile app.
MOSDEN [26] is an IoT middleware targeting mobile devices, allowing users to collect and analyze sensor

data through a service model. Users can connect with new sensor types without the need to directly program
such an interaction. The middleware uses a plugin architecture to achieve this; individual plugins (developed
by third parties) can be added and removed on the fly to support a specific sensor type or brand, and can be
downloaded through the smartphone’s application store. The mobile app allows users to view detected sensors
and their collected data. While this explores augmenting a mobile app with behavior not explicitly considered by
the original developer, it only considers information transmitted to the mobile device, not data or actions that
may come from the mobile app to be used by other things.
Coulson et al. [10] proposed a programming method to facilitate the composition of self-contained systems

without relying on their functionality. These systems, such as wireless sensor networks, interact and compose
opportunistically, allowing them to create new integrations with potential partner systems. These systems interact
through a set of contact-action rules that allow the developer to react to neighboring systems based on their
properties or functionality. When a neighbor satisfying these rules is found, the system is notified and can react
to the new potential integration. While this approach allows systems to cooperate based on the properties of
other systems, it focuses on systems reacting internally, rather than providing behavior to use on another system.
Atzori et al. [7] proposed a paradigm of a social network of smart objects named Social Internet of Things

(SIoT) to mimic human behavior. The authors analyzed the types of social relationships between things to be:
parental (things built by the same vendor), co-location and co-work (things reside in the same place or cooperate
to provide applications), and owner (things owned by the same user). The authors of the same project, in [11],
also presented an architecture to address network navigability along with service discovery and composition. The
architecture is made up of server and objects (the physical devices) as the network elements. The server holds
the relationship management module where the selection and setting of the relationships is based on human

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 1, Article . Publication date: October 2019.

4 • W. Lindquist et al.

control settings along with appropriate interfaces to objects, humans and third-party services. The object side
holds an abstraction layer for the device and the social management module for the communication between the
device and the server. While our work utilizes inter-thing relationships similar to Atzori’s work, it goes beyond
enabling general communication and links one or more thing services to a mobile app, affecting the dynamic
behavior of that app based on user interactions.

Lee [21] tackled feature interoperability aspect in the dynamic development of software applications. A feature
(a software entity that is visible to users of a system) can collaborate with other features that are not conceived in
the application’s original design or when it is deployed. The authors proposed a model-driven approach called
Dynamic Feature Deployment (DFD) to support the seamless integration of new features and changes to an
application’s configuration at runtime. DFD is an encoded feature configuration knowledge embedded into the
deployed features so that they know their composability. As a new feature model with a changed configuration
can be deployed at runtime, features can recognize new features after deployment and can manage configurations
depending on a currently bound feature model. The authors also introduced a software model that controls the
interactions between the different available features. Our work is different from DFD in that no configuration
management is used or needed; rather, it is a dynamic IoT formation involving an app and things in a smart space.
Additionally, the developer of the mobile app as a thing, and the app itself during runtime, does not know specific
instances of the thing services (that would correspond to DFD features) a priori.

In the apps-as-things demo paper [12], the authors presented a soccer match demo scenario involving media
appliances and mobile app things (the World Cup Scenario). In this demo, the things and app tweet out keywords
about their identity, capabilities, and interests. At the same time, they receive these tweets from the other devices,
which are parsed to learn about the APIs and services available to the smart space. When these keyword tweets
are received, they are compared semantically to the thing’s own capabilities/interests to identify the potential
for new meaningful interactions. In the case of the DVR and mobile app, once a correlation is formed between
the "TV" and "recording" capabilities of the two things, the DVR passes its recording API to the app. The app
then uses this information to adjust its UI layout (adding buttons, notifications, etc.) to allow the user to trigger
the new functionality. Such UI presents itself in the form of a "Chromeless" [5] web view, received from the
DVR, allowing the user to control it directly from the app. Receiving all capabilities and services provided by
thing mates provides a thing with all the information it needs to form new meaningful interactions. However, in
the case of a mobile app thing, this also adds much effort for the app developer to manually decide out how to
integrate such received capabilities and services into the app logic and interface. In this paper, we present an
extension to the Atlas thing architecture [19] targeting mobile app developers, allowing a mobile app to react to
opportunities in the smart space without specific intervention or foresight from the app developer.

2.1 Atlas Thing Architecture
As noted earlier, we base our framework on our Atlas thing architecture [19]. The architecture takes advantage
of a thing’s OS services to provide new capabilities a thing needs in order to engage in ad hoc interactions and
interconnections. The architecture utilizes the specifications of the IoT Device Description Language (IoT-DDL)
[9, 16], which is a machine- and human-readable digital description and metadata that is loaded to the thing
and describes it in terms of its inner components, attachments, resources and the services it offers. The thing
then discovers its own identity and capabilities, generates services, and formulates APIs to these services to be
announced to other space entities. A thing in a smart space engages with thing mates through a set of information-
and action-based interactions. Information-based interactions (referred to as tweets) enable a thing to announce
its identity, capabilities, and APIs to thing mates. Action-based interactions include management commands,
lifetime updates, and configurations from authorized parties as well as applications that target the thing.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 1, Article . Publication date: October 2019.

MAAT: Mobile Apps As Things in the IoTˆ 5

Fig. 1. Atlas Thing Architecture.

The inter-thing relationship programming framework proposed in [17] broadens the social IoTthing-level
relationships proposed in [7] with service-level relationships that logically and functionally show how thethings'
services may tie to build applications. Such service-level relationships extend this limited and restricted set
of relationships with a new set of concrete relationships for a wider class of applications. In this paper, the
thingsdynamically detect the opportunistic relationship with their mates' services and utilizes the framework to
describe such application in terms of the di�erent primitives and operators. The created application is governed
by a set of semantic rules that evaluate correctness and guide execution. Through the mounted architecture
and the uploaded IoT-DDL, thething dynamically builds runtime programmable representations for the o�ered
services and relationships and generates services along with the appropriate APIs to them.

Due to space considerations, we do not describe the full scope of the project but focus on the layers that support
our framework. The Atlas IoT platform layer of the architecture, illustrated in �gure 1, focuses on the descriptive
and semantic aspects ofthings to better enablething engagement and programmability. The DDL sublayer
con�gures the architecture according to the IoT-DDL for just-in-time API-ing, identity and device management,
own- and learnt-knowledge management. A signi�cant requirement we address is to allowthingsto understand
and prepare for new meaningful interactions introduced by a smart space, with minimal intervention required
by the user. Such an ability empowers athing to discover new social relationships with the smart space and
assist the user in discovering new possible relationships. In the tweeting sublayer, thething builds its own tweets
to describe what it is, what it does, and what it knows to the other mates. Thething then analyzes the tweets
announced by its mates. The discovery of social relationships through ad-hoc social interactions (tweets) which
enables the discovery of semantic similarity and a�nity betweenthing mates is accomplished in the tweeting
sublayer with the help of WordNet [23, 30]. WordNet is a lexical database that groups the English words into sets
of synonyms words; measures the semantic similarity between them; and records relations between such sets.
Our architecture also utilizes the Inverse Document Frequency measure (IDF) [27], which is a numerical statistic
intended to re�ect how unique and important a word is in a corpus.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 1, Article . Publication date: October 2019.

6 ˆ W. Lindquist et al.

3 REDESIGNING MOBILE APPS TO BE THINGS
Image a user with a mobile app entering a smart space full of smartthings. For example, a soccer fan with a sports
mobile app approaching his media center in his living room (the World Cup Scenario described in section 2), or
a travelling businessman with productivity apps arriving at an airport lounge. In this age of IoT, shouldn't he
expect new kinds of interactions and suggestions for future or new engagement opportunities? And shouldn't he
expect that his mobile app UI update itself to catch and bring awareness to these opportunities? Further, if these
scenarios are possible, how long would it take him to notice these new opportunities re�ected in his mobile apps?

For the above situation to be realizable, a mobile app as athing must react to the capabilities of a smart space,
and change within the context of its own interface and functionality. This calls back tointrospective programs
[8], or programs that "self-reference" their own information. However, instead of performing tasks like copying
itself or print out its source code, a mobile app must use this information for far more practical purposes, such as
adjusting their services, appearance and functionality on the �y to take advantage of and utilize the services of
another smartthing. Before such modi�cations can occur, two pieces of information must be known: the target
functionality (from the smartthing), and the input data or control to give it (from the mobile app). Once both of
these are known by one of the devices, the interaction can occur.

Receiving potential functionalities from thething through the transmission of its APIs, as was done in the
apps-as-things demo [12], provides an app with all the information it needs to form new meaningful interactions.
However, this method also leaves a lot of work for the app developer, in terms of determining how to integrate
this new behavior and display it to the user. If the developer does not know exactly which smartthingsto support,
it becomes impossible to determine what context (when and where in the app) an interaction should be available
in. In this manner, the app developer may want to leave some "placeholder" space for a new interaction's UI
elements; however, anticipating the extent of the requirements (mainly where to place this placeholder and how
to link it logically with the created new behavior) would prove di�cult. Instead, a UI in this manner would
likely �nd most use in pop-ups (such as a toast noti�cation [4]), or a new interface in its entirety, such as the
Chromeless web browser view mentioned above, where the context of the interaction can be entirely contained.
This moves the information requirement to the smartthing, which can now receive input data through its own
interface, using the mobile app only as a display. Unfortunately, in these cases, this context is disjointed from
the rest of the interface: the UI exists "on top" of the app, and cannot easily interact with or extend the app's
developer-created elements.

True integration of athing's functionality into a mobile app, therefore, becomes di�cult. Continuing with the
DVR scenario described in section 2, the app knows what program the user wants to record, but it still needs to
know where and how to send that contextual data�a di�cult situation when the developer lacks prior knowledge
of the received DVR API. Many of the interface decisions would have to be made/provided by thething (i.e., the
Chromeless web view), although its knowledge about the app is limited in a similar manner (e.g., it must ask
again what program to record). If the developer only knows about what information his application can provide
to potential things, how can the features of thesethingsbe more closely integrated?

We argue there is more information that can be used by the developer. In a general sense, the developer also
knows where the data comes from (such as a speci�c UI element), and, by extension, how this data could be used
in a new relationship with an interestedthing. In a situation targeting a speci�c smartthing, an app developer
would indirectly identify this "interaction-capable" information to pass to the known API. For example, the
developer of the TV app knows that each row in the list of TV programs�as shown in �gure 1�o�ers a unique
set of values (e.g., the channel number and air time) that is needed to control the DVR's functionality. When the
target functionality is unknown, the developer can still identify this information, e�ectively saying, "the user
is interested in a speci�c TV channel," compared to "the user is interested in TV channels in general," as in the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 1, Article . Publication date: October 2019.

MAAT: Mobile Apps As Things in the IoTˆ 7

Fig. 2. Independent groups of information available from di�erent elements of a mobile app.

system described in section 2. The mobile app provides the smartthing with the input data it needs, without
requiring thething to collect the data itself, or know when the data should be used to invoke its service.

As mentioned above, thething does not know when to use this data; it needs the context of the interaction,
or where in the app's logical �ow this data will enter and be made available. In the case of a mobile app with
many views and functionalities, such context is critical in enabling meaningful interactions; at times, a piece of
data may not always be relevant or even accessible, depending on the state of the app and the actions of the user.
Conveniently, knowing where the data comes from provides the contextual information: the source UI element is
tied to a speci�c point in the app's logical �ow. For example, each list row in the TV app provides a complete set
of information, and implies that the data is only available when the list view is active (browsed over by the user);
the context of an interaction is contained within each speci�c row. This is illustrated in �gure 2: each row is
backed by data (a channel and program "ID") needed to trigger an interaction with a smartthing (the DVR). More
TV programs may exist in the list, but are contextually unavailable; they are not visible to the user and therefore
cannot be used to invokething functionality.

Collecting and presenting this per-component information, however, poses a signi�cant challenge to the
developers of boththing devices and mobile apps. Making such �ne-grained interaction a reality will require
mobile app developers to truly consider the role of their app in an IoT system, andthing developers to support a
wide range of potential interactions. Through a new programming construct introduced in the next section, we
aim to limit this apparent complexity by reducing the requirements placed on the mobile app developer, where a
mastery of IoT should not be required to create an app withthing capabilities. We also remain mindful that a
solution should impose only minimal changes to the app development process; even with IoT knowledge, app
developers should not need to go out of their way to make their appsthings. Rather, the capabilities introduced
should exist as a �rst-class citizen within the standard development ecosystem.

4 ACTIONABLE KEYWORDS
For a mobile app to realize its functionality as athing, we utilize the information described above and reverse the
roles of a mobile app and normalthing devices. Rather than search for potential interactions through service/API
information broadcast fromthings, the mobile app advertises its available input data back to the smart space. A
thing can then match this input against its available services, discovering new potential interactions that can

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 1, Article . Publication date: October 2019.

8 ˆ W. Lindquist et al.

be shared with the mobile app. In addition to allowing the mobile app developer to create an interface for the
broadcast inputs, this also allowsthing devices to determine the actual matches, which we believe is a more
�exible and realistic alternative to requiring the app developer to account for all potentialthing interactions.

To represent this input information and facilitate the link between the logic of a potential interaction and
the mobile user interface, we introduce theactionable keyword(AKW) concept and programming construct. An
AKW�as shown in �gure 3�is a structure present within a mobile app that contains a description of some input
data, a set of keywords to represent the purpose/source of that data, and information on the UI elements that
data is tied to (the context of the potential interaction). Information on these AKWs is then broadcast to the
smart space, wherething devices compare keywords and data types against their available services. If a match is
found, that service's API is sent back to the app to be invoked by the user. Note that a single AKW may represent
multiple instances of such a UI context (like the rows of a list view); the actionable keyword represents thetype
of information available, not a speci�c piece of data�all instances of that data are valid inputs to athing service
that matches with the AKW.

Fig. 3. Theactionable keywordprogramming construct, along with the messages passed between app andthing.

The above situation highlights a pressing issue: once a relationship is formed through an AKW,what data
should be used, andwhen, to invoke thething device's functionality? To solve this, an actionable keyword also
represents an input control (widget[1]) within its context that allows the user to trigger the formed relationship.
The developer de�nes a "placeholder" button that is initially blank and hidden�it is not known what service, if
any, will respond to the AKW. Once a relationship is established, the button pops into view with athing-speci�ed
label. At this point, tapping the button invokes the receivedthing functionality with the data from the relevant
UI context as input.

To illustrate this entire process (as shown in �gure 3 and 4), consider the TV guide scenario from section 3. The
app developer decides to expose upcoming TV programs to the smart space. The developer decides to transmit
the program ID and channel ID of each (see �gure 2), describing this data with the keywords "TV", "channel", and
"program". The developer then speci�es the list's row layout as the UI context, and adds a placeholder button
within it. This information completes the de�nition of the actionable keyword, which can be broadcast to the
smart space during runtime. Within the Atlas architecture, this information is sent out as a message called a
tweet, along with existing tweets describing the app's identity and general capabilities [18]. These AKW tweets
can then be evaluated by otherthingsin the smart space, searching for potential matches against their available
services.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 1, Article . Publication date: October 2019.

MAAT: Mobile Apps As Things in the IoTˆ 9

Fig. 4. The interaction between a bu�on's actionable keyword and the DVR service.

The DVRthing �nds a match and responds to this AKW to create a new relationship, providing information
about itself, its recording service, and a new label for the placeholder button within the app. Using the Atlas
architecture, the mobile app concatenates its ability to provide information with the functionality o�ered by the
DVR (recording a TV channel) through anextendrelationship [17]. Once this relationship is established, the
app enables the placeholder button in each row of the list view, changing their labels to "RECORD". When a
record button is tapped, the service provided by the DVR is invoked with the channel and program info from
the button's context. Note that multiple services may vie for an AKW, but only one may attach and create a
relationship�this, however, is not permanent; the bound service may be removed or disabled, allowing another
to match.

In the given scenario, all information needed by the DVR service is available from the app immediately, and
the user can complete the interaction with the single tap of a button. The interaction involves athing requiring a
speci�c input type, receiving the relevant AKW, and instructing the mobile app to integrate its service. However,
this kind of back-and-forth may not always be able to satisfy athing service's requirements, especially with
more complicated services, such as those requiring multi-stage interactions or user con�rmation. Handling
such interactions is likely to drastically increase the complexity of the solution, therefore, the proposed systems
in this paper will focus only on "simple" interactions utilizing a single button, to lay groundwork for future
improvements supporting these complexities, as described in section 8.

5 IMPLEMENTATION
The initial design and implementation of our Atlas architecture extension and actionable keyword programming
construct targets Android mobile applications. This includes a custom UI component to represent an AKW, an
Android service process to manage active keywords and communicate with the smart space, and a superclass
of the AndroidApplicationclass to handle data exchange between these parts. These components allow the
actionable keywords to perform their functionality (broadcasting, listening, and updating the UI) independently;
the runtime behavior of individual layouts or keywords within anActivity does not need to be managed.

The custom UI component, called anActionableLayout, is a subclass of the AndroidViewGroupclass (similar to
the standard layout types likeLinearLayout[2]) intended to wrap around an existing layout or view component.
This component represents the context of an actionable keyword�the elements within theActionableLayout
represent the data that can be o�ered to the smart space. EachActionableLayoutrequires the following elements:

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 1, Article . Publication date: October 2019.

10 ˆ W. Lindquist et al.

1) a list of keywords, 2) a representation of the data it provides, 3) an associated button component, and 4) a data
formatting listener function. An example Android layout XML tag for anActionableLayoutis shown in �gure 5.

The given keyword list and data representation are used as provided to broadcast the actionable keyword to
other things, while the button and data formatter are used internally to facilitate the app's dynamic behavior in
reaction to athing responding to the AKW. The button component, as described in section 4, is a child component
of the ActionableLayoutthat is initially hidden, but becomes visible and enabled once athing responds to the
actionable keyword, as shown in �gure 6. The respondingthing is given some control over this component
through its label (thething service may specify the text that should appear within the button). This allows the new
functionality to be presented to the user without requiring speci�c knowledge from the original app developer.
The data formatting function, the �nal requisite part of an AKW de�nition, replaces the concept of theonClick
listener for theActionableLayout'sbutton; while button clicks are handled internally, they collect the data to be
sent to the appropriatething service by referencing this developer-de�ned data formatting function (see �gure
5). This allows the developer to pull the data from their application logic and format it as they speci�ed in the
ActionableLayoutparameters, without needing to manage the AKW display logic.

Fig. 5. AnActionableLayoutXML definition, and its companion forma�er function.

When an application utilizing actionable keywords is running, a supporting Android service becomes active in
the background. This service performs most of the traditional Atlas architecture functionality, such as listening
for and responding to tweets. In the context of actionable keywords, this includes sending keyword info, handling
interestedthings, and invokingthing services.ActionableLayoutsregister their AKW with the service if needed
(multiple instances of an individual layout refer to the same AKW and only register once), and are noti�ed by the
service to enable their button upon receiving a response.

5.1 Responsiveness
Even after an actionable keyword is matched and the mobile app's interface updates, nothing can occur until the
user sees the change and interacts with the new UI elements. User understanding is an important part of the
actionable keyword concept, especially when the signs of an AKW are mostly "invisible" before it is matched; a
user will likely only notice a new interaction after it has formed and the UI elements appear. Between the required
communication and keyword matching time, any modi�cations to the app's UI will occur with some level of
delay from the time the AKW is broadcast. Depending on the amount of delay, the user may miss interaction
opportunities by navigating throughout the app to quickly, or become confused when a UI element has changed
since the last time it was viewed.

App responsiveness and user awareness, therefore, are critical to the functioning of actionable keyword
interactions. The presentation of an AKW before and after it is matched must be carefully considered to ensure

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 1, Article . Publication date: October 2019.

MAAT: Mobile Apps As Things in the IoTˆ 11

using such an app does not confuse the user or feel clunky or sluggish. Mainly, this involves handling what
happens when an AKW's button becomes visible during a match, in terms of latency and user perception. For
example, the sudden appearance of a UI element might confuse the user: where did such a button come from
and why? One possible solution would be to use a progress bar or other element to gradually replace the hidden
button (see �gure 6), raising awareness to the use of an ongoing search for AKWs. This would hint to the user
that something may occur in that area of the UI. However, this may also cause confusion if the delay before
a match is too short and the progress bar appears only brie�y, unless a limit is set on how fast the bar may
progress. Optimizing the behavior of a progress bar in the MAAT UI design is important; however, in the current
implementation iteration, we have adopted a simple "pop-in" design.

Fig. 6. The di�erent states (before: le�, during: middle, a�er: right) of the app UI as an actionable keyword is broadcast and
tied to a service. "Game 1" and "Game 2" show a simple "pop-in" bu�on, while "Game 3" shows a "search" progress bar.

For the initial implementation of the actionable keywords programming concept, we chose to focus on the
latency between an AKW broadcast and match, to minimize the user's perceived delay. With a small enough
latency, the button will appear during navigation transitions or within reasonable human reaction time, giving
the illusion that the button is seamlessly integrated with the original app. We explore this responsiveness and
latency between apps and things further in section 6, with a set of experiments that record these metrics under
varying conditions.

5.2 IDE Plugin
Using actionable keywords does require developers to somewhat modify the way they advertise and search for
services. Thething developer (the DVR manufacturer, continuing on our example), must look not only for the
type of app/thing ("TV-related") their service can utilize, but also for the speci�c data their service requires ("TV
Program ID" or similar). On the app side, the developer (or their IDE) must consider which elements of the app
they desire to make available to a smart space, and then adequately describe what the element is o�ering such
that athing can recognize a potential for interaction when it is there.

Both requirements may be overlooked by a developer who is not engrossed in IoT. In the original case (see
section 2), the developer provides keywords and capabilities for the app as a whole, probably with little need to
update. Now, however, AKWs can be speci�ed in many components across the app and may be added or removed

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 1, Article . Publication date: October 2019.

12 ˆ W. Lindquist et al.

as features change or the UI is altered. This increases the burden on the developer, who must add these actionable
keywords (both descriptively and as part of the UI), based partly on their imagination of what information might
be useful to a smart space.

To facilitate the creation of actionable keywords, and reduce this burden, we implemented an AKW plugin
targeting the Android Studio IDE [15]. The plugin consists of a series of dialog windows guiding the developer
through the creation of AKWs, as illustrated in �gure 7. The plugin provides support in: 1) creating theAction-
ableLayoutwith the appropriate �elds, 2) choosing the keywords and data format, and 3) implementing the data
formatter. The developer starts by selecting a layout component that should be wrapped by anActionableLayout,
and initiating an Android Studio intention action [14] provided by the plugin. Anintention action(or "lightbulb")
is an IDE feature that provides localized warnings or suggestions within an active source �le. This is commonly
used by developers to �x errors or import dependencies.

Fig. 7. The AKW IDE plugin interface.

Invoking the AKW intention creates a dialog with �elds for the required data. The �elds for keywords and
data format may create an additional dialog, allowing the developer to search a repository of existing keywords
(described in the next section) within the plugin and directly select from this information. Accepting the dialog
wraps the selected layout element in anActionableLayout, sets up any needed references, and creates a skeleton
function for the data formatter within the relevant activity class. This skeleton function creates a JSON object
with the appropriate key names for the chosen data format, only requiring the developer to �ll in the values (see
�gure 5).

5.3 Sourcing Actionable Keywords
As mentioned above, the developer not only has to describe the information being o�ered, but also must provide
the information in a form usable by thething service. For example, the app developer may provide program
information in a tuple of channel number and air time, while the DVR developer expects this as a vendor-
speci�c "program ID" number. Due to this mismatch, the app andthing would not be able to directly form a new
relationship�the thing service does not expect the data in the format given by the app. In addition to providing
accurate keywords, a mobile app acting as athing must also cooperate with the behavior of potentialthing
interactions. To increase the likelihood of �nding a compatible interaction, presentation of data from the app can
be facilitated with a mixture of IDE intervention and a repository of existing standards andthing descriptions.

One way to reduce potential compatibility issues could be the suggestion and use of standardized object
representations: within the actionable keyword, the developer may specify the schema of their data, allowing
thingsto better identify the format of the data they are interested in. For example, the app developer may want

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 1, Article . Publication date: October 2019.

MAAT: Mobile Apps As Things in the IoTˆ 13

to specify the encoding of their TV channel listings as XMLTV [31]�a standard object format for describing
TV programs. The DVR developer can then use this information (available from the AKW) to know the app is
providing TV information, rather than just seeing a tuple of plain integers. Speci�cation of an existing object
representation also reduces the e�ort needed by the app developer to determine what data their app may broadcast
and encouragesthing developers to support these common formats�increasing the chances of new interactions
being formed.

However, an object format may not always be su�cient for all types ofthing services; an interaction's data
may have many standardized representations, or not �t well into what is available. To cover these situations,
keywords are instead supported by a central repository of information obtained from existing IoT-DDLs: the
human-readable manufacturer descriptions that exist on Atlas thing devices. Because these descriptions already
contain the keywords and inputs of existingthing services, they can easily be connected and indexed as a database
of potentialthing interactions that will work directly with a MAAT application. This repository (a web-accessible
database that indexes vendor, service, and input descriptions) then allows for developers to search (directly in
the IDE plugin) through existing services with their own terms, but choose keywords and data formats that are
guaranteed to work with their app. This interface can be seen in the second image of �gure 7. The availability of
this information can help in�uence the developer in their choice of keywords, their structuring of the app for
unknown interactions, and their providing of data to best support a wide range of IoT devices. Note that the
repository does not need to inform the developer exactly whichthingsshould be supported in their app, but
instead o�ers insight on the potential forthing interactions.

Such a repository may also bene�tthing vendors: the capabilities of their devices become easily known, and the
information available may in�uence their service de�nitions, helping to achieve greater potential for interaction
with mobile apps. Continuing the above example, an app developer would likely choose a data format that is
supported by multiple TV-related devices in the repository for maximum compatibility. The common usage of a
single format may in�uence a vendor when creating a similar device; by utilizing this interface, thething vendor
increases their capability for interaction with various TV-related mobile applications.

6 PERFORMANCE EVALUATION
In this section, we adopt two main metrics for evaluating our implementation of the MAAT idea. The �rst is
the latency of discovering new engagement opportunities between a mobile app and other IoTthingsin a smart
space. The second is the responsiveness of the behaviorally-altered mobile app's UI in reaction to these changes.

While metrics such as battery usage and processing power are important in all mobile applications, the main
factors for a true evaluation of feasibility and usability in an app-as-a-thing scenario are di�erent. We describe a
set of experiments to benchmark the time elapsed in the di�erent phases of an actionable keyword's lifecycle. We
believe minimizing this elapsed time is critical to user experience: because AKWs are tied to speci�c interface
elements (and therefore anActivity), relationships may be formed on the �y as the user navigates through the app.
A delayed change happening after the user has been looking at the UI could be confusing or annoying; therefore,
the time required to process a keyword and form the relationship/changes should be as small as possible. There is
no speci�c duration that constitutes "too long" in waiting for a response (the appearance of an AKW), especially
when the user's attention is likely on the core features of the app. In these experiments, we consider durations up
to one second to be an acceptable response time. Within this range, responses occurring within 100 milliseconds
are perceived to be instantaneous, while 1 second is a noticeable but well within tolerable times [20, 24]. It is also
important to note that the default activity transition time in Android is de�ned as 220 milliseconds [3]. Therefore,
any interaction occurring within this time (before the transition completes) will not require any additional delay
to display a new capability to the user.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 1, Article . Publication date: October 2019.

14 ˆ W. Lindquist et al.

The experiments detailed below break the total response time into three separate measurements: 1) the
opportunity discovery latency, or the transmission time for sending a tweet to athing device plus that for sending
the response to the app, 2) the keyword match time, or the time required by athing to compare an AKW's
keywords with its own, and 3) the UI update time, or the time required by the Android app to redraw the AKW
interface elements. To measure these durations, benchmark programs are deployed on two representativething
devices. The �rst is the app-as-a-thing running on Nexus 9 with Android version 6.0.1 and 2 GB RAM, and the
second is an Intel Edison development board with 500 MHz CPU and 1GB RAM. Thesethingsare connected to
the same private wireless network. The �rstthing used in the experiment is obviously the real target device
which is the platform hosting the mobile apps, whereas the secondthing used is a real hardware platform that
adequately resembles and represents "real-life" targetthingssuch as consumer electronics (e.g., the DVR used in
our running example). Therefore, it should be feasible to transfer our approach to these real-life targetthingsin
the future.

6.1 Experiment I � AKW Activation Time
This experiment benchmarks theactivation timeof an actionable keyword; that is, the time between the broadcast
of the AKW tweet and the appearance of the interface element after an appropriate match is received. This time
is equivalent to the perceived delay experienced by the user as new relationships are discovered between the app
and the smart space, as well as the sum of the three measurements de�ned above. Each of the three components of
activation time (see above) were measured using the Intel Edisonthing device with a single advertised actionable
keyword.

Fig. 8. Segmented activation time for an Intel Edisonthing interacting with an actionable keyword.

As illustrated in �gure 8, the network activity of the opportunity discovery consumes the majority of the time
as it depends on the current tra�c on the network as well as the network module in use (e.g., WiFi or Ethernet).
Both the keyword match and UI update times are minimal in comparison; together, the activation time on an Intel
Edison devices would result in an in-app delay of about 150 milliseconds after the activity transitions into view.

6.2 Experiment II � UI Update Time for Multiple AKW Instances
This experiment benchmarks the time needed to redraw the Android user interface as the number of active AKW
elements increases. Multiple instances of the sameActionableLayoutare used, such that they are all activated at

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 1, Article . Publication date: October 2019.

MAAT: Mobile Apps As Things in the IoTˆ 15

the same time when the appropriate AKW response is received. This case re�ects a situation like the TV guide
app from section 1, where an AKW is embedded into a list view, and each row represents an instance of the same
AKW information. This UI update time is critical to a user's experience, as it directly a�ects the performance of
the app. Too long a delay could cause the app to appear unresponsive.

Fig. 9. The UI update time for multiple instances of the same AKW.

As illustrated in �gure 9, the update time increases as the number of keywords increases, but levels o� at
around 8 keywords. This is because rows 8-10 reside o�-screen, hidden by the list view layout; they are only
updated once they are visible to the user. If an element is active but not visible, the Android OS will update it at a
slower interval. Overall, the total update duration is low, taking approximately 2 frames (about 33 milliseconds at
60 frames per second) to display the new capabilities. Note that this is not active rendering time; it is simply the
time from when a redraw is requested to when it actually occurs.

6.3 Experiment III � Activation Time for Multiple AKWs
This experiment benchmarks the e�ect on total activation time when multiple AKWs are being activated across
multiple things. First, we consider the e�ect the number of "background" tweets has on activation time; that
is, actionable keyword messages (from this app or others) that will not be matched with athing in the current
smart space. To do this, an Intel Edison was con�gured to match a single AKW with the app. At the same time, as
illustrated in �gure 10, up to 19 other AKWs are broadcast�these simulate "unrelated" keywords that are not
compatible with thething. Thething device must receive and compare these keywords before rejecting them:
they do not a�ect the app, as it will not con�gure a new relationship with them.

The additional network load has a reasonable e�ect on thething device, increasing networking time as well as
the time needed to compare keywords for a match. Thething is able to multithread the receiving and comparing
of AKWs, to help limit the e�ect a large number of active AKWs has on the device.

Next, as illustrated in �gure 11, we consider a situation to test the limits of our actionable keyword concept
and programming construct. An app with up to 20 active AKWs, all on-screen and visible in a singleActivity,
was con�gured to match these keywords evenly across four Edisonthing devices. Because these keywords are
received and processed independently, we consider only the total activation time of the entire set; that is, the
time between sending the �rst AKW tweet and updating the �nal UI element.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 1, Article . Publication date: October 2019.

16 ˆ W. Lindquist et al.

Fig. 10. Processing multiple AKWs when only one will match, on an Intel Edison device.

The total activation time increases steadily as the number of active AKWs increase, but even at 20 elements
(completely �lling the screen of our Android tablet device), the time remains manageable at about half of a second.
We believe that this represents a high number of AKWs for a single interface; although more may exist across an
entire application, o�-screen instances may not be actively broadcast and update at a slower rate as mentioned
above. The overall activation time stays reasonable across a wide range of AKW loads.

Fig. 11. Enabling a set of AKWs across multiple thing devices.

7 USABILITY EVALUATION
In addition to the performance of the MAAT framework and its interactions withthings, we also placed emphasis
on the functionality and ease of use of the IDE support plugin. In this section, we describe a short study conducted
to gauge the usability of the MAAT plugin from an Android developer viewpoint. The study evaluated three
usability metrics: e�ectiveness, e�ciency, and satisfaction. These metrics are derived from the ISO/IEC 9126-4
Usability Standard and are de�ned as follows [28].

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 1, No. 1, Article . Publication date: October 2019.

	Abstract
	1 Introduction
	2 Prior Work and Requisite Background
	2.1 Atlas Thing Architecture

	3 Redesigning Mobile Apps to be Things
	4 Actionable Keywords
	5 Implementation
	5.1 Responsiveness
	5.2 IDE Plugin
	5.3 Sourcing Actionable Keywords

	6 Performance Evaluation
	6.1 Experiment I – AKW Activation Time
	6.2 Experiment II – UI Update Time for Multiple AKW Instances
	6.3 Experiment III – Activation Time for Multiple AKWs

	7 Usability Evaluation
	7.1 Methodology
	7.2 Effectiveness and Efficiency Results
	7.3 Satisfaction Survey Results

	8 Discussion and Future Work
	8.1 Minimizing App Developer Overhead
	8.2 Sourcing and Identifying Actionable Keywords

	9 Conclusion
	References

