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Under extreme heat stress, corals expel their symbiotic algae and colour (i.e. 
“bleaching”), often leading to widespread mortality. Predicting the large-scale 
environmental conditions that reinforce or mitigate coral bleaching remains unresolved 
and limits strategic conservation actions1,2. Here, we assessed coral bleaching at 226 sites 50 
and 26 environmental variables representing different mechanisms of stress responses 
from East Africa to Fiji through a coordinated effort to evaluate the coral response to the 
2014-2016 El Niño - Southern Oscillation thermal anomaly. We apply common time-
series methods to study the temporal patterning of acute thermal stress and evaluate the 
effectiveness of conventional and new sea surface temperature (SST) metrics and 55 
mechanisms in predicting bleaching severity. The best models indicated the importance 
of peak hot temperatures, the duration of cool temperatures and temperature bimodality 
explained ~50% of the variance, compared to the common degree-heating week 
temperature index that explained only 9%. Our findings suggest that the threshold 
concept as a mechanism to explain bleaching alone was not as powerful as the 60 
multidimensional interactions of stresses, which include the duration and temporal 
patterning of hot and cold temperature extremes relative to average local conditions.  
 
The resilience and persistence of coral reefs to increasingly extreme and changing oceans will 
depend on how corals respond to stressful exposure events and the factors that influence these 65 
responses2. Predicting the responses of corals to exposures of light and temperature and 
increasing climate variability is challenged by how these and other environmental conditions 
interact in time and space3,4. Additionally, the coral holobiont composed of the host, symbionts, 
and the overall microbiome can further modify responses and be modified by environmental 
exposure5,6. Additionally, exposure to sea surface temperature (SST) histories of acute and 70 
chronic exposure can determine future sensitivity or tolerance7,8. Therefore, evaluating and 
comparing thermal impacts over various scales of time and space is a critical challenge needed 
to identify and guide management interventions and policies for safeguarding coral reefs and 
associated species.  
 75 
Factors that influence bleaching have been well studied at local scales, but at global scales 
there are cases where locally observed spatial and temporal patterns differ and are even 
reversed among locations9. This implies that there may be complex and interactive responses 
to thermal stresses that can be further modified by the local biological and environmental 
context, perhaps providing insights into the conditions of spatial refuges for stressed corals. A 80 
better understanding of temperature mechanisms and their geographic context is needed to 
improve predictions of the future state of reefs, as current models largely assume that thermal 
stress threshold anomalies and subsequent impacts are similar and modified by a limited 
number of adaptive responses of corals10. To address this assumption, we used multivariate 
models to test common and previously untested variables of acute thermal exposure against 85 
our observations of bleaching responses, with and without geographic covariates (Table 1). In 
developing these temperature models and mechanisms, we also derived indices from daily time 
series SST to describe thermal stress experienced by reefs during an acute, short-term window 
(90 days), similar to indices that are used widely in hydrology and stream ecology. The ability 
of metrics to predict bleaching response in coral communities was measured in a coordinated 90 
field survey effort in 2016.  
 
All coral bleaching observations were conducted using the same method and within 21 days 
following peak thermal anomalies. We evaluated bleaching responses at 226 sites across 50 
degrees of latitude and 140 degrees of longitude largely through the tropical belt of the Indian 95 



and Pacific Oceans (Figure 1a-e, Methods, Supplementary Table 1). In 2016, only 32% of the 
sites (n = 71) experienced four or more Degree-heating Weeks (DHWs, °C-weeks) measured 
at the NOAA ~5x5 km satellite resolution, which is the common thermal stress index used for 
predicting bleaching. However, in 56% of the sites (n = 127) we observed substantial bleaching 
(>5 bleaching intensity score), even when satellite-derived DHWs were lower than an expected 100 
bleaching threshold of 4 DHWs (Figure 1f-g; Supplementary Figure 1). Observed bleaching 
responses were spatially patchy (Figure 1a-e), suggesting that unevaluated microhabitat and 
local currents may have weakened the ability of coarser satellite metrics to predict in situ 
bleaching (Supplementary Figure 2 and Supplementary Table 2).  
 105 
We evaluated a number of hypothesized mechanisms associated with coral bleaching using 26 
variables that included: thermal stress exposure and patterning, habitat, depth, management, 
and coral community composition (Table 1). To assess warm and cold temperature extremes 
at each site, we characterized sea surface temperatures (SSTs) in the 90 days prior to our 
surveys at each site. From each site, we quantified the frequency, duration and patterning of 110 
extreme temperatures based on the 10th SST quantile (‘cold spells’) and 90th SST quantile (‘hot 
spells’). All variables and hypothesized mechanisms are described in Table 1. We quantified 
the effects on coral bleaching intensity using two approaches: boosted regression trees (BRT) 
and generalized linear mixed-effect methods that compared and selected best models among 
2372 possible models. We also accounted for the possible effect of the non-random sampling 115 
of geography on observed bleaching impacts, by including longitude and latitude as 
independent and interactive covariates with thermal metrics in all models (Supplementary 
Figure 3).  
 
Longitude, as a covariate, had the highest relative influence as a single variable in both the 120 
BRT and linear mixed-effects models (Figure 2a; Table 2). However, geographical bias in 
our data limits the extent to which we can make credible tests and deductions on geographical 
gradient. Furthermore, the importance of longitude has not been identified in past studies and 
therefore requires future evaluations using geographically balanced samples. The strongest 
linear models were those that included interactions with temperature bimodality, extreme 125 
warm temperatures, and the duration of extreme cold temperatures with longitude (Fig. 2b; 
Supplementary Table 3). These results were consistent for inferences from both BRT and 
linear multi-model approaches (Figure 2). When geographic variables were excluded, mean 
extreme warm temperatures and the mean and cumulative DHWs were the strongest variables 
associated with increased bleaching (Figure 2c). Nevertheless, our findings indicate complex 130 
and interacting responses of temperature and geography for coral bleaching.  
 
Model quality increased substantially when geography was included (∆AICc improvement of 
38). For example, the top models achieved predictability (R2) of ~50%, and had a greater 
strength of evidence than models composed of single variables (Table 2; R2 based on two 135 
resampling approaches, see Methods). Independently, single SST variables were relatively 
weak predictors of bleaching (Table 2). For example, the number of extreme warm events and 
rate of daily temperature rise during extreme warm events predicted only 13% of the variance 
(Table 2). However, four model combinations predicted >45% of the total variance (Table 2; 
Supplementary Table 3) when these variables were combined with geographic covariates of 140 
longitude and latitude, which are likely proxies for other environmental and historical 
conditions. Several models suggested conditions that reduce bleaching, including interactions 
between extreme warm temperatures and bimodality, and between the duration of cold events, 
the mean extreme warm temperatures and longitude (Fig. 2b,c). DHW metrics have historically 



been good predictors of bleaching4,11 but were not chosen among the top multivariate models 145 
(Table 2; Supplementary Table 3) and as a single variable, mean and maximum DHW metrics 
predicted only 5 and 9% of the variance, respectively.  
 
Models with the strongest ability to predict bleaching comprised the interaction of mean SSTs 
of extreme warm events with temperature bimodality, low spell duration and longitude (Table 150 
2; Supplementary Table 3). Across our sampled sites, coral bleaching was highest from East 
African to the central Indian Ocean and declined towards the Coral Triangle and Fiji, 
moderated by interactions between temperature variables (Supplementary Figure 4). The 
bimodality coefficient had more impact in the central to western Indian Ocean and declined to 
little effect east of the western edge of the Coral Triangle. These results suggest that the coral 155 
responses to heat stress are not constant but can vary in terms of other stressors and 
geographically. This is likely because geography can be a proxy for past thermal changes, local 
stressors, and other historical and present environmental conditions (Table 1). Compilations of 
coral bleaching responses pooled on large spatial scales suggest that bleaching is, for example, 
less frequently reported in the western warm pool Pacific12,13 but there are important 160 
exceptions14. An increasing number of studies are also showing that the same coral taxa are 
becoming more tolerant to temperature extremes with repeated stress events, which is likely to 
be a local response based on complex and interacting factors15,16.  
 
The strength of DHW predictions have been variable in the past4,17,18, and, while there are 165 
instances where DHW predictions are good, as in Australia’s Great Barrier Reef (GBR) during 
the 2016 bleaching event (R2 = 0.55)2, our study indicates that prediction success is highly 
dependent on geographical context. Some of this variation may be due to the inability of 
satellite data to predict the temperatures that corals experience in situ (Supplementary Figure 
2). Results also indicate that many currently unmeasured environmental variables represented 170 
by geography are important19.  
 
At the core of the DHW metric, is the assumption that the main mechanism of bleaching is a 
threshold where symbionts are lost when temperatures exceed local historical summer 
maximum temperatures. This assumption may be true for some taxa and locations, but our 175 
results also suggest a more complex pattern of stress and bleaching responses. Notably, stress 
does not always act in a single temperature threshold-dependent way, but can be associated 
with the frequency, duration, and patterning of both high and low extreme events at local sites. 
For example, corals in 2016 seemed to be unable to tolerate a combination of complex 
interacting stressors even if thresholds were not surpassed (i.e., high bleaching at low DHWs; 180 
Fig. 1, Supplementary Figure 1). Consequently, common bleaching metrics based on 
thresholds may fail in future circumstances where combinations of complex stress initiate the 
loss of symbionts or historical exposures promote greater resistance to heat stress. 
Understanding past and emerging mechanisms of coral bleaching are, therefore, critical for 
predicting potential strategic refuges for coral reefs20. 185 
 
Future analyses should focus on how extreme temperatures interact with location to improve 
the critical global prediction of bleaching and reef status. For example, more severe bleaching 
was predicted by the exposure of corals to two distinct temperatures regimes (bimodality). The 
bimodality metric used here is not the pre-exposure to severe SSTs shown to modify bleaching 190 
responses in the GBR7, which was not observed in our sites. Rather, bimodality characterizes 
the distribution of temperatures within a 90-day window, which may represent stressful (rather 
than acclimating) thermal variability for corals (Supplementary Figure 5). We did not find 



evidence that bleaching was reduced with pre-exposure acclimation; rather, bimodality 
increased bleaching in the western but not eastern coral reefs of our East Africa-Fiji transect 195 
(Supplementary Figure 4).  
 
Ultimately, coral bleaching responses can be shaped by both long-term and recent histories of 
disturbance. For example, time series studies have found that many sensitive reef corals have 
been replaced by weedy and stress tolerant taxa and genotypes following repeated bleaching 200 
events16,21. Many Indian Ocean and equatorial locations surveyed experienced prior thermal 
stresses in 1983, 1988, 1998, 2005, 2010, and 2013. These years produced severe bleaching in 
some reefs but less so in the GBR, where 2016 was among the most severe bleaching years2. 
Thus, we hypothesize that the types of stresses that initiate bleaching at any place and time will 
change based on previous exposures to thermal stresses and interacting factors. As thermal 205 
stresses expand and encounter corals less exposed, threshold metrics may still be predictive13,22. 
Conversely, threshold metrics may increasingly make poorer predictions for corals previously 
and frequently exposed to thermal stresses15,16.  
 
Future predictive models should reconcile the spatial variability of the environments and taxa-210 
specific responses with those of the coarse resolution satellite temperature predictions 
(Supplementary Table 2). Corals experience temperatures that differ from those measured by 
satellites, and their responses also integrate acclimation, adaptation, and histories of stress. 
These mechanisms are used to explain coral tolerance to increasing heat but it is more difficult 
to explain why many of our corals bleached when reported DHWs were low to moderate. First, 215 
chronic SST stresses prior to the 90-day acute evaluations may increase coral sensitivities8. 
Second, a number of other non-thermal factors, such as sunlight, turbidity, and water flow and 
quality strongly influence bleaching16. Third, different bleaching responses may arise from 
duration and magnitude of stress, which are unique components of stress that are poorly 
reflected by the DHW metric23. Finally, some variance can be explained by the accuracy, 220 
spatial resolution, and frequent underestimates of satellite relative to in situ temperatures in 
different reef types and habitats (Supplementary Figure 2)18. Predictions will not be improved 
without further evaluating these issues as well as the changing thermal sensitivity over time at 
appropriate spatial scales24. Ultimately, our results indicate that coordinated field and 
environmental monitoring can document emerging and changing patterns of coral responses to 225 
global climate change.  
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Figure 1. Indo-Pacific scale and severity of coral bleaching during the 2016 El Niño – 
Southern Oscillation event. a. The severity of coral bleaching at 226 sites in 12 countries 
measured from standardized underwater surveys (n = 60,591 coral colonies) during the peak 
of the warm season. Higher bleaching intensity scores indicate more frequent and severe 345 
bleaching (see Methods). Grey scale indicates NOAA bleaching alert levels at each site in 
2016. b. Frequency distribution of 2016 maximum DHWs in the 90-days prior to each survey. 
c. Frequency distribution of bleaching intensity scores for the 226 sites; colours are the same 
as in a.  
  350 



 
 
Figure 2. Effect of environmental variables on coral bleaching. a. Relative influence of 
variables on bleaching response from a boosted regression tree approach. b. Model-averaged 
parameter estimates and 95% confidence intervals of top models (<2AIC) of environmental 355 
and site factors that predict bleaching intensity c. The same approach after excluding 
geographic variables of longitude and latitude. Solid and transparent bars indicate significant 
and non-significant effects based on 95% CI from a linear mixed-effects modelling approach. 
Colours indicate variables associated with reef context (grey: location, depth, habitat and 
management) or acute temperature stress (red).  360 
 
  



Table 1. Models, hypotheses, and results for main drivers of coral bleaching across reefs 
in 11 Indo-Pacific countries during the 2016 El Niño – Southern Oscillation event. 
Temperature characteristics calculated for each of the 226 survey sites during the 90-day 365 
window of acute thermal stress that preceded each underwater survey to assess coral 
bleaching.  
 

Variable Model/Mechanism Variable Description Range Conclusions 

Geography 

Historical 
environmental 
conditions will modify 
responses to thermal 
stress13,24 

Longitude and 
Latitude Geographic positions  140° x 50° 

Strongest variable 
and significantly 
modified responses 
to heat stress 

Excess heat 

The accumulation of 
temperature above a 
threshold (summer 
maximum + 1°C) is a 
standard model to 
predict coral bleaching, 
assessed as Degree 
Heating Weeks 
(DHWs)10,25 

Maximum 
DHW 

Maximum Degree Heating 
Weeks (DHW) during 90 
days prior to survey date 

0 - 17.2 

Significant positive 
but weak effect, and 
interacts strongly 
longitude and mean 
high spells 

Average 
DHW 

Average DHW during 90-
day period prior to survey 
date 

0 - 13.4 

Significant positive 
but weak effect, and 
interacts strongly 
bimodality and 
mean high spells 

Early acute 
temperature 
acclimation 

Early exposure to 
warm water can prime 
and acclimate corals to 
subsequent extreme 
temperature anomalies, 
reducing bleaching6 

Degree 
Heating Days 
(DHDs) 

Cumulative sum of DHD 
>1° C threshold in the first 
60 days of the 90-day 
period prior to survey date 

0 - 60 
Not commonly 
observed at our 
sites or significant 

Temperature 
distributions 
and 
bimodality  

Temperature variability 
and thermal histories 
can influence 
protection or sensitivity 
of bleaching6,9,26 

Bimodality 
coefficient 

The bimodality coefficient 
has a range of 0 to 1 where 
a value greater than 0.55 
suggests bimodality. The 
maximum value of one 
identifies a bimodal 
distribution 

0.34 - 0.85 

Weak single 
variable effect but 
moderate when 
combined with 
longitude and mean 
high spell peak 

Bimodality 
ratio 

A ratio of the two 
identified bimodality peaks 
to show the difference in 
magnitude of the bimodal 
temperature patterns 

0 - 4.43 

Weak effect when 
combined with 
depth and 
maximum low 
spells 

Extreme 
warm 
temperatures  

Reefs experiencing 
more frequent, more 
extreme or more 
variable warm extreme 
events longer-duration 
warm events, and faster 
warming trends will 
deplete energy reserves 
and increase the 
severity of bleaching4 

High spell 
events 

Total number of 
temperature events that 
exceed the 90th quantile of 
temperatures at each site. 
Events that occur less than 
5 days apart are considered 
to be within the same 
event 

0 - 4 Not significant 

High spell 
duration, days 

Average duration (days) of 
high spell events  0 - 91 

Significant non-
linear effect where 
bleaching peaks at 
~35-day duration 

High spell 
peak, °C 

Average temperature of 
high spell events  27-31 

Moderate 
independent effect; 
important with 
geography 



High spell rate 
of rise, °C/day 

Average rate of daily 
temperature rise (oC/day) 
during high spell events 

0 - 0.32 

Weak single 
variable effect but 
important when 
combined with 
other variables 

  SD high spell 
peak, °C 

Standard deviation of 
temperature of high spell 
events 

0.4-1.4 

Moderate single 
variable effect but 
important when 
combined with 
geographic 
variables 

Extreme cool 
temperature 

Cool temperature 
extremes during 
warming events can 
provide a reprieve from 
bleaching -- longer-
duration low spells 
hypothesized to reduce 
bleaching27 

Mean low 
spell duration, 
days 

Average duration of low 
spell events that fall below 
a 10th quantile of SSTs at 
each site within 90 days 
prior to survey 

1.43 - 11 

Weak single 
variable effect but 
important when 
combined with 
longitude and mean 
high spell peak 
variables 

Coral 
community 
composition 

Community 
composition can 
influence overall 
bleaching severity and 
mortality. Acropora-
dominated 
communities typically 
show greater sensitivity 
to warm temperature 
anomalies and 
bleaching than massive 
Porites species25,28 

Coral 
community 
composition  
 

Multivariate index of coral 
community composition 
based on a 
Correspondence Analysis 
(CA1). High values 
indicate dominance by 
Acropora, low values 
indicate dominance by 
massive Porites corals 
 

-1.79 - 
1.33 
 

Weak effect but 
interacts with 
location and depth 

Coral 
community 
susceptibility 

A weighted score of the 
relative abundance 
multiplied by bleaching 
sensitivity in 2016 

18.9 – 36.7 

Depth 

Deeper reefs have less 
surface irradiation and 
potentially cooler 
waters than predictions 
from surface 
measurements and are 
expected to bleach less 
than shallow reefs but 
shallow reefs can have 
more background 
temperature variability 
that promotes 
acclimation25,29 
 

Depth, m Depth of survey, meters 1 - 18 

Weak effect but 
interacts with 
location and coral 
community 

Habitat 

Lagoons and reef flats 
can have warmer more 
variable environments 
with more potential for 
acclimation and taxa 
that acclimate 
compared to other 
exposed habitats with 
more environmental 
stability30 

Habitat 

Habitat was classified as: 
reef slope, reef crest, reef 
flat, lagoon or back reef, 
reef channel or submerged 
bank. 

Bank, 
channel, 
crest, flat, 
lagoon, 
slope 

Not significant, but 
associated with 
mean high spell 
peak 



Management 

No-take marine 
reserves reduce 
destructive fishing 
practices that may 
promote competitive 
coral life histories 
sensitive to thermal 
disturbances12 

Management 

Management was 
classified as open access 
(fished), restricted (some 
gear or access restrictions) 
or no-take (full restriction 
on fishing with high 
compliance) 

Open, 
restricted, 
 no-take 

Weak single effect 
but moderate when 
combined with 
longitude and mean 
high spell peak 
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Table 2.  Multivariate and single variable models of bleaching observations in 2016. 
Multivariate models are ranked using Akaike’s information criteria (∆AICc); the three top 
models (∆AICc < 2) are highlighted in bold. We also present R2 as an indication of each 
model’s predictive ability. The multivariate models are a subset of the 2372 competed models, 
and the presented model is the strongest multivariate model identified by ∆AICc for its single 375 
variable.  Supplementary Table 3 presents more information on the top two models.  
 

Multivariate model  ∆AICc Multivariate 
model R2 Single variable  ∆ 

AICc 

Single 
variable 

model R2 

Longitude x Bimodality coefficient x 
High spell peak 0.0 0.47 

Longitude 29.2 0.19 
Bimodality 
coefficient 33.8 0.07 

High spell peak 29.0 0.08 
Longitude x High spell peak x  
Low spell duration 1.3 0.57 Low spell duration 31.9 0.04 

Longitude x Latitude x High spell peak 6.0 0.55 Latitude 32.2 0.16 
Longitude x Maximum DHW x  
High spell peak 8.1 0.49 Maximum DHW 29.9 0.09 

Longitude x High spell rate of rise x  
High spell peak 8.4 0.34 High spell rate of rise 35.9 0.13 

Average DHW x Bimodality coefficient x 
High spell peak 10.5 0.23 Average DHW 31.6 0.05 

Longitude x Depth x Coral community 11.3 0.16 Depth 29.0 <0.01 
Longitude x Depth x Coral community 11.3 0.16 Coral community  35.8 0.01 
Longitude x High spell peak x  
SD high spell peak 12.0 0.41 SD high spell peak 34.9 0.02 

Longitude x High spell peak x 
Management 15.9 0.30 Management 36.2 0.01 

Longitude x Coral community 
susceptibility x High spell peak 16.0 0.33 Coral community 

susceptibility 30.7 0.02 

Average DHW x Bimodality x  
High spell rate of rise 16.4 0.01 Bimodality coefficient 30.4 0.02 

High spell events x High spell peak x  
Low spell duration 20.9 0.08 High spell events 35.9 0.13 

Longitude x High spell duration x  
Low spell duration 21.3 0.26 High spell duration 35.9 0.17 

Depth x Bimodality ratio x  
Low spell duration 21.5 0.01 Bimodality ratio 32.2 0.01 

Longitude x High spell peak x  
Degree Heating Days 22.9 0.34 Degree Heating Days 35.2 0.02 

High spell peak x Habitat 29.0 0.13 Habitat 37.7 <0.01 
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Methods 
 415 
Study sites and field methods 
 
Between March and September 2016, we conducted 235 bleaching surveys in 12 countries 
across the Indian and Pacific Oceans using a standard rapid roving observer methodology. To 
evaluate how survey timing was related to accumulated temperature stress, we extracted daily 420 
5 km Degree Heating Week time series from NOAA Coral Reef Watch for each site from 1 
September 2015 to the date of survey and calculated the date of maximum observed DHWs 
for each site. Based on these satellite temperature time-series, 45 sites did not experience 
excess heating (i.e., 0 DHWs). For the remaining 190 sites, we calculated the number of days 
between the date of the bleaching survey and the date of maximum DHW. For 181 sites, 425 
bleaching surveys occurred within 21 days of maximum DHW, well within suggested 
timelines to assess bleaching-related stress and mortality for corals (~30 days31). Nine sites 
where bleaching surveys were assessed >21 days after maximum DHW were excluded from 
further analyses, leaving 226 sites across 11 countries for further analysis. Further details on 
study reefs and bleaching notes are provided in Supplementary Table 1.   430 
 
During each survey, an observer assessed coral bleaching across a series of haphazard 
replicate quadrats (~1.5 m2) to assess the frequency and severity of bleaching. Within each 
quadrat, hard coral colonies (>5 cm) were identified to genus (using Veron’s 
classifications32), and scored for bleaching severity using the following categories: c0 – 435 
normal; c1 – pale; c2 – 0-20% bleached; c3 – 21-50% bleached; c4 – 51-80% bleached, c5 – 
81-100% bleached; c6 – recently dead. From each survey, we calculated the relative 
abundance of coral colonies with each category. Within each quadrat, observers also 
estimated the average percent cover of live hard coral, live soft coral and macroalgae (e.g., 
fleshy or calcareous algae taller than filamentous turf). On each survey, observers conducted 440 
an average of 17.8 quadrats (+4.7 SD). In some surveys, quadrats were recorded using 
photographs and colonies identified and scored for bleaching post-hoc by the observer. 
Observers also recorded depth, habitat type, and management for each survey site.  
 
Bleaching metrics  445 
For each survey, we calculated two standard bleaching metrics: (1) the percentage of 
bleached coral colonies, and (2) bleaching intensity, a weighted average of the relative 
abundance of coral colonies within each category of bleaching severity (Fig. 1b):  
 
Bleaching	intensity 	= 	 /(1×31)5(6×36)5(7×37)5(8×38)5(9×3:)5(:×3:)5(;×3;)<

=
  450 

 
Both metrics of bleaching produced similar results, and both provide simple, repeatable, and 
comparable methods to quantify bleaching. We chose the intensity metric for further analyses 
as it is separated sites across a wider bleaching gradient and resulted in better distinctions for 
modelling. On each survey, we evaluated total bleaching intensity across all coral colonies.  455 
 
Temperature and site covariates 
At each location, we calculated a suite of temperature characteristics informed by specific 
hypotheses of how thermal stress affects corals (Table 1). Excess thermal stress is among the 
commonly used models to predict coral bleaching33-35. To assess thermal stress, we 460 
downloaded daily Degree Heating Weeks (DHWs) that are based on a rolling 14-day average 



from the NOAA Coral Reef Watch website33 and calculated the maximum and mean DHWs 
during the 90-days prior to each survey. We also derived an estimate of early exposure to 
thermal stress as Degree Heating Days (DHDs), calculated as the sum of DHDs during the 
first 60 of the 90-day SST time series; an early pulse of exposure to high temperatures has 465 
been hypothesized to provide corals with a protective early pre-bleaching stress exposure7. 
All temperature-based variables, including DHW, were derived from NOAA daily SST 
products33. 
 
To characterize other aspects of the acute thermal environment and relate it to our in situ 470 
bleaching observations, we downloaded SST time series for 90 days prior to the date of 
sampling for each survey33. Gap-filled daily sea surface temperature (SST) data based on 
NOAA AVHRR satellite observations at a resolution of ~5 x 5 km grid cells. At 13 sites in 
four countries (Tanzania, Kenya, Indian and la Réunion, France), we compared NOAA 5-km 
daily SSTs records to in situ temperature gauges placed on the study reefs. We used linear 475 
regressions and dynamic time warp analysis to compare time series of satellite and in situ 
records, using the package ‘dtw’ package in R36 (Supplementary Table 2).  
 
To describe the frequency, duration and other characteristics of extreme warm and cold 
temperature events, we used Hydrostats package in R37 to calculate a suite of indices for daily 480 
time series data that are widely used in hydrology and stream ecology. These included the 
frequency and duration of high and low ‘spells’ – or extreme events – during each 90-day 
time series (Table 1). We defined ‘spells’ as extreme SST site-specific characteristics that 
were greater than the 90th quantile of SST temperatures (‘warm spells’) or lower than the 10th 
quantile (‘low spells’). Spell events within five days were considered as one event for 485 
purpose of calculations. After identifying the high and low spells at each site, we calculated 
factors to describe the frequency (count), duration, and rate of temperature change within 
extreme spell events for both warm and cold extreme events, and the maximum temperature 
within high spells (Table 1).  
 490 
Studies have suggested that fluctuating temperature distributions prior to bleaching may 
expose corals to either additional stress or pre-stress acclimation that acts to reduce or protect 
corals from subsequent thermal stress7,8. To evaluate these possibilities we assessed the time 
series of SSTs at each site by visual inspection but failed to find patterns described to 
produce pre-stress acclimation7,. Thus, we used bimodality metrics during the 90 days prior 495 
to each bleaching survey to evaluate bimodal variability in the distributions.  
 
Bimodal probability distributions38 are defined by two unambiguous peaks of temperatures, 
cool and hot, separated by an abrupt boundary, in contrast to unimodal (Gaussian) 
distributions of temperature that fall along a normal distribution from cool to hot 500 
temperatures. To quantify bimodality characteristics, we computed two metrics: bimodality 
coefficient and bimodality peak proportion for each site38.. The bimodality coefficient 
measures the presence of bimodal distributions with a range of [0,1]), where a value greater 
than 0.55 suggests bimodality; the maximum value of one ("1") can only be reached when the 
distribution is composed of separate two-point masses (Supplementary Figure 5). The 505 
bimodality peak proportion describes the ratio between the two peaks, where values greater 
than 0 indicate the amplitude of the hot peak dominates that of the cool peak. These multi-
modality metrics reflect probability distributions and not the temporal patterning within time-
series and were calculated using the package modes39 package in R.  
 510 



A correlation matrix was used to evaluate the relationships between all temperature factors, 
and collinear variables were accounted for in the following analyses40 (see Data Analysis; 
Supplementary Figure 6). 
 
Community composition  515 
 
Coral community composition is an important predictor of bleaching, for example more 
bleaching may occur when a coral assemblage is dominated by bleaching-susceptible coral 
taxa. Here, we estimated two metrics of community composition to use as predictor variables 
in the models. First, we estimated a multivariate metric of coral community dominance from 520 
bleaching-sensitive Acropora corals to less-sensitive massive genera, such as Porites34,4. To 
estimate this metric, we calculated the relative abundance of each hard-coral taxa observed 
during each survey and used a Correspondence Analysis (CA) ordination to distinguish a 
strong gradient from Acropora to Porites-dominated communities. For each survey, we 
extracted the value of CA1 as a covariate of community composition. Second, we calculated 525 
a metric of community susceptibility to bleaching, estimated by multiplying the observed 
bleaching intensity for each taxon (based on all 2016 surveys) by the numbers of individuals 
of that taxon, and summing for all taxa. Sites with more bleaching susceptible taxa would 
have higher scores of community susceptibility than sites with more bleaching-tolerant taxa4. 
 530 
Data analyses 
 
To evaluate our sampling distribution, we compared our empirical with a random sampling of 
reefs based on the Reefs at Risk mapping41.  Random sampling of the reefs used the package 
dismo42 in R to generate coral reef sites on the 500-m resolution the tropical coral reef grid, 535 
resulting in a total of 19,700 sites randomly distributed in the same latitude and longitude 
windows as the empirical sampling. This process indicated higher sampling in East Africa 
relative to the random distribution (Supplementary Figure 3). To account for the non-random 
distribution of sampling, longitude and latitude were included as a covariates in all further 
analyses. We also included the location of sampling as a random intercept in our linear 540 
models, where location was defined as an alternative hierarchical structure to country to 
account for more appropriate geomorphology and environmental groupings of survey sites, as 
compared to national socioeconomic boundaries (see Supplementary Table 1). Spatial 
autocorrelation was evaluated using Moran’s I and Mantel tests and found to be accounted 
for by our modelling approaches (Supplementary Figures 7 and 8).    545 
 
We evaluated hypothesized models and mechanisms of coral bleaching (Table 1) using two 
quantitative approaches: boosted regression trees (BRTs) and generalized linear mixed-effect 
models. Boosted regression trees are an ensemble method that relates response variables to 
predictor variables by using recursive splits ‘boosted’ with multiple trees43. They also 550 
account for higher-order interactions and nonlinear relationships and are a complementary 
approach to linear modelling. We used generalized linear mixed-effect models to examine the 
direction and magnitude of the relationships between the environmental and site covariates 
with bleaching intensity. Models with fit using Beta regression models as bleaching intensity 
is a continuous variable distributed from 0 to 144. 555 

Before applying statistical models, we constructed models using all possible combinations of 
the covariates (up to three covariates and their respective interactions). Within each model 
combination, we checked for collinearity among covariates by examining the variance 



inflation factor (VIF) for each model. We used a VIF > 1.5 as a threshold to determine 
collinearity and removed any models that contained collinear variables above this threshold. 560 
A subset of 2372 combinations of independent predictor variables (for a full list of variables, 
see Table 1 and descriptions above) were then used to construct generalized linear mixed-
effect models using the package glmmADMB45 in R. We standardized and centered numerical 
covariates prior to analysis, so that the resulting coefficients were directly comparable46.  

Models were run in a multimodel selection framework and compared using Akaike’s 565 
Information Criterion adjusted for small sample sizes (AICc) and Akaike weights (wi) to 
represent the relative support for each model47. To discriminate more thoroughly among 
covariates and the mechanisms postulated as important for bleaching (Table 1), we selected a 
best model set (<2 delta AICc, N=2 top models) and performed AICc-weighted model 
averaging across the best model set to calculate standardized coefficients (with 95% CI), 570 
adjusted standard errors and associated t-statistics and p-values. To illustrate interactions 
between continuous variables identified in the top models, we used the package jtools48 to 
visualize the relationship of two-way interactions.  

To validate the best models, we visually evaluated plots of the model residuals versus fitted 
values, and constructed Moran’s I similarity spline correlograms from the residuals of the 575 
fitted models to test for bias from spatial autocorrelation49. Additionally, we used Mantel 
tests50,51 to confirm the lack of spatial autocorrelation between the Pearson residuals of the 
model averages and the lag distance (in km) between sites, and found that the overall 
correlation coefficient for the model was low (Supplementary Figures 7 and 8). We used R 
package ncf52 for estimating Moran’s I and Mantel tests.  580 

To evaluate the predictive ability of the best and null mixed models of bleaching intensity, 
we applied two variants of bootstrapping, ‘simple’ and ‘enhanced’ bootstrapping53 using the 
R package boot54. Simple bootstrapping involved creating resamples with replacement from 
the original data of the same size and applying the models to the resample, then using the 
model to predict the values of the full set of original data and calculating a goodness of fit 585 
statistic (R2) by comparing the predicted value to the actual value53. With the enhanced 
bootstrap53, we first estimated the ‘optimism’ of the goodness of fit statistic (i.e. overfitting). 
When a model fitted using a bootstrap dataset is applied to the original data, the predictive 
accuracy is lower than the apparent accuracy when evaluating the fitted model using the same 
data that was used to fit it. In enhanced bootstrap, the difference in these predictive abilities is 590 
calculated for each bootstrap sample, and then averaged across 100 bootstrap samples, before 
subtracting from the naive estimate of predictive ability. All analyses were run in R 3.3.454. 
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