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Abstract

In the past two decades, it has become evident that signal transduction pathways are
more than two dimensional pathways consisted of proteins that are just activated or
supressed in response to distinct cues. Instead, the dynamic nature of key proteins
regulates the strength and quality of the signal. Several key signal transduction
pathways are controlled by negative feedback loops that are highly dynamic and
demonstrate oscillatory behaviours. Negative feedback regulation of the JAK/STAT
pathway by Suppressors of Cytokine Signalling (SOCS) is an example of oscillatory

signalling.

We sought to investigate the oscillatory capacity of the tumour suppressor protein
SOCS3 and its role in important cellular functions using whole-cell population and

single-cell analysis.

An important aspect of cell biology using experimental cell-population techniques is to
produce a synchronized cell culture. Serum starvation and subsequent shock is able to
capture the oscillatory behaviour of SOCS3 protein to some extent. However, the
average response in whole-cell population systems demonstrated to be ‘noisy’ leading

to establishment of a single-cell analysis system.

To investigate SOCS3 oscillation at the single cell level, we first attempted to generate
cell clones stably expressing SOCS3 C-terminal GFPSpark fusion protein from its
respective endogenous promoter to monitor its expression in real time with confocal
microscopy. Despite careful optimization of each step of CRISPR/Cas9 strategy, the

generation of GFPSpark knockin cell line was not successful.



Finally, we utilised the tandem fluorescent protein timer (tFT) strategy to investigate
localisation and trafficking of SOCS3 protein and monitor its promoter activity in
response to different stimuli. The use of tFT provided us the ability to analyse SOCS3
dynamics across spatial and temporal dimensions under either normal culture conditions
or different treatments that are known to influence on SOCS3 half-life and degradation

rates.
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Chapter 1: Literature Review

1 Literature Review

1.1 Inflammatory Bowel Disease (IBD)

Inflammatory Bowel Disease (IBD) comprises a group of idiopathic, chronic and
recurrent inflammatory conditions of the gastrointestinal tract. Traditionally, the highest
occurrence of IBD has been reported in norther Europe, United Kingdom and North
America. Its incidence and prevalence has raised significantly in the last six decades in
the Western industrialized countries and there is growing evidence that the incidence is
steadily rising in Easter Europe and developing countries, including China and India,
attributed largely to the rapid modernization and Westernization of the population [1,

2.

Patients diagnosed with IBD colitis typically present with gastrointestinal symptoms of
abdominal pain, severe diarrhoea, rectal bleeding, fever and weight loss. Crohn’s
disease (CD) and Ulcerative Colitis (UC) include the two major clinic pathological
phenotypes of IBD [3-5]. CD and UC are most frequently diagnosed in late adolescence

or early adulthood, but the diagnosis may occur at any age. Mean and median ages at
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the time of diagnosis for patients presented with CD are commonly 5-10 years earlier

than those associated with UC [6-9].

A proper diagnosis between Crohn’s disease (CD) and Ulcerative Colitis (UC) can be
of pivotal importance in clinical practice, especially in the context of tailoring clinical
therapy, as each disease classification often includes distinct therapeutic management
and prognosis. Though, up to 10% of patients presenting with IBD colitis cannot be

classified in either category and is thus termed IBD as yet unclassified (IBDU) [10].

Ulcerative Colitis is characterised by a diffuse mucosal inflammation that is limited to
the colon: it extends proximately from the rectum, spreading in a continuous manner
and frequently involves the periappendiceal region (figure 1.1). Histopathological
features involve the presence of an extensive neutrophil infiltration limited to the
mucosa and submucosa with the formation of scattered micro-abscesses and the
depletion of goblet cell mucin is commonly seen. By contrast, Crohn’s disease can cause
transmural inflammation and it involves any site of the gastrointestinal tract with the
terminal ileum and the perianal region is the most commonly affected by the disease
(figure 1.1). The microscopic features of CD include aggregation of macrophages that
frequently result in the formation of non-caseating granulomas, segmental and

transmural inflammation, thickened submucosa and epithelial ulceration [11-13].
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Figure 1.1: Diagram of Inflammatory Bowel Disease (IBD). Healthy colon wall (left),
Ulcerative Colitis (middle) typically affects only the inner colon wall, Crohn’s disease (right)

affects any site of the Gl tract with transmural inflammation. Adapted from [5, 14].

Currently, the exact aetiology of IBD is only partially understood but it is well
documented that it is a multifactorial disorder. A variety of factors and triggers
influence the pathogenesis of IBD (figure 1.2). These triggers involve a series of
interactions between host genetics, dysregulated immune responses of the gut-
associated lymphoid tissue (GALT), dysbiosis between the gut microbiota and the host
intestinal cells as well as environmental factors that include a vast array of triggers such
as smoking, diet, Western life style, sanitation, hygiene, antibiotics and other drugs [15-

17].
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Figure 1.2: The etiopathogenesis of IBD. The interplay between host microbiota dysbiosis,
genetic predisposition, host immune response and environmental triggers contribute to the

pathogenesis of 1BD.

Since the exact aetiology of IBD is currently unknown, treatment is currently
symptomatic and targets general inflammatory mechanisms rather than specific
pathophysiological changes. Treatment options of patients with IBD include intense and
long-term therapy that frequently prolongs to lifelong treatment, which is often
accompanied with side effects associated with high dose intake. Therefore, a better
understanding of the pathogenesis of these complex diseases is needed to expand and

improve treatment modalities for IBD [18-20].

Nowadays, IBD therapeutic regimens mainly involve anti-inflammatory compounds,
such as corticosteroids, 5-aminosalicates (5-ASA), such as mesalazine, and
immunosuppressant modulators, including methotrexate, thiopurines, tacrolimus and
cyclosporine [21, 22]. Mesalazine, the active moiety of sulfasalazine, acts as an anti-
inflammatory compound, and it is used as a first-line treatment of active UC of mild to

moderate severity. It is demonstrated to be a highly effective treatment option with less
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side effects compared to other therapeutic compounds [23]. Furthermore, anti-
inflammatory anti-TNFa biological agents, such as infliximab, adalimumab,
certolizumab and golimumab, have been primarily used as a treatment option to patients
with moderate to severe CD and UC as well as to those not responding to steroids and/or
immunomodulators [24, 25]. Only recently, biological agents such as vedolizumab, that
have been found to supress the migration of leucocytes to the mucosa, have been added
to the armamentarium [26]. Alternative therapeutic strategies, such as faecal microbiota
transplantation (FMT) are also increasingly considered as treatment option for IBD
[27]. Over the course of the past decade, genome-wide association studies (GWAS)
have identified a large number of genes associated with the development of both CD
and UC. Recent studies have indicated that the number of IBD susceptibility loci raised
to 163 in European population [28]. Moreover, 110 of those IBD susceptibility genes
are linked with both CD and UC, such as IL23R, IL12B, HLA, NKX2-3 and MST1),
whereas 50 of which represent an equal effect for both phenotypes, 23 demonstrate risk
effects that are UC-specific and the remaining 30 are considered as CD-only genes [28,

29].

Nevertheless, meta-analysis of Genome-wide association studies (GWAS) have
implicated key pathways associated with intestinal homeostasis in IBD pathogenesis.
Paramount among these are related to barrier function, epithelial restitution, microbial
pathogen sensing, innate immune regulation, reactive oxygen species (ROS) generation,
regulation of adaptive immunity, endoplasmic reticulum (ER) stress and autophagy

[13].

Several of the loci identified in GWAS for CD and UC are known to encode and regulate

cytokines and receptors that signal via the janus kinase (JAK)/signal transducer and
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activator of transcription (STAT) pathway, e.g., IL-23R, IL-10, IFN-y or IL-12B [30,
31]. Furthermore, multiple single nucleotide polymorphisms have been detected in
several JAK-STAT pathway genes including Jak2, Tyk2, STAT1, STAT3 and STAT4,

which have been described to entail an elevated risk for the progression of IBD [28, 32].

1.2 Colorectal Cancer (CRC)

Colorectal cancer (CRC), also known as bowel cancer, is the second leading cause of
cancer-related deaths for both women and men. Despite advances in diagnosis and
treatment, it is the fourth most common cancer in the UK, with nearly 42,000 new cases
diagnosed in 2015 and an estimated 14,000 deaths in 2014 [33, 34]. Approximately, 70-
80% of cases of CRC occur sporadic with the presence of somatic mutations [35]
whereas the remaining 20-30% have an inherited component [36]. The five-year
survival rate of early stage diagnosed CRC can reach as high as 90%, whereas this
survival rate is dramatically decreased to 10% for CRC cases diagnosed at later stages.

Hence, early diagnosis is of greatest significance [37].

Adenomatous polyp +

Early adenoma *

Late adenoma *

>
Adenocarcinoma
& metastasis

Figure 1.3: The developmental phases of Colorectal adenocarcinoma. Adapted from [38].
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The progression of CRC from normal epithelial cells to adenocarcinoma and finally to
invasive carcinoma typically follows several consecutive steps (figure 1.3). The clear
majority of CRC cases initiate from an adenomatous polyp (adenoma). Adenomatous
polyps are well-demarcated masses of epithelial dysplasia, with uncontrolled crypt cell
proliferation. An adenoma can be considered malignant when neoplastic cells invade

through the muscularis mucosae and infiltrate the submucosa [39, 40].

The development of sporadic CRC is mainly influenced by diet, lifestyle,
environmental factors and host genetics. Moreover, these tumours are known to affect
different molecular pathways and arise from the accumulation of several genetic and
epigenetic alterations in a sequential order. Specifically, three distinct pathogenetic
pathways are found to be involved in the evolution of this malignancy: (1) chromosomal
instability (CIN), (2) microsatellite instability (MSI) and (3) CpG island methylator

phenotype (CIMP) [40-42].

Interestingly, methylation of the SOCS3 promoter was found to play a crucial regulatory
role in colonic SOCS3 expression. It was found that IL-6 signalling can induce an
increase in methylation of SOCS3 by stimulating increased expression of DNA
(cytosine-5-)-methyltransferase (DNMT1), which in turn induced signalling through
STATS. In line with this observation, overexpression of DMNTL1 protein was detected
in UC and its expression was strongly correlated in areas with high 1L-6 signalling and
those presented with cancer. The SOCS3 promoter STAT3-binding module has a vital
role for stimulating SOCS3 expression in response to IL-6 signalling, and its

methylation appears to demonstrate a rate-limiting step in CRC development [43].

Chromosomal instability is characterised as an elevated propensity to acquire

chromosome aberration such as gene deletions, duplications and chromosomal
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rearrangements. CIN occurs approximately 70%-85% of colon cancers and are
characterised by the accumulation of genetic aberrations in distinct oncogenes and
tumour suppressor genes including adenomatous polyposis coli (APC), KRAS,
phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA), B-
Raf proto-oncogene, serine/threonine kinase (BRAF), SMAD4 and TP53, hence

influencing pathways important for carcinogenesis [44, 45].

Furthermore, these specific pathogenetic pathways are thought in fact to play a vital
role in the diversity of gene expression, phenotypic changes and the intra-heterogeneity
within these CRC tumours. This heterogeneity serves a major clinical challenge for
devising appropriate therapeutic treatments. Further understanding of the heterogeneity
in CRC molecular pathways is needed to elucidate the diverse morphologic features of
Colon malignancy and customize treatment strategies tailored to the need of an

individual patient [37, 46].

1.3 IBD-associated colorectal cancer (IBD-CRC)

Inflammatory bowel disease (IBD)-related colorectal cancer (IBD-CRC) accounts for
about 1% to 2% of all colorectal cancers and counts for approximately 10% to 15% of
all deaths among IBD patients [47]. Furthermore, patients with IBD colitis are at 6 times
higher the risk to develop colorectal cancer than the general population and this risk is
related with the extend and duration of the disease, early age of onset and the severity

of inflammation [48].

The development of the disease has been shown to occur through a multistep process
of increasing grades of epithelial dysplasia, from no dysplasia progressing to indefinite
dysplasia, low-grade dysplasia, high-grade dysplasia and finally to invasive

adenocarcinoma. However, colorectal cancer can develop without progressing through
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each of these steps [49]. Ulcerative colitis-associated colon cancer tends to affect the
rectum and sigmoid colon, while colorectal cancer associated with CD is evenly

distributed between the different colon segments [47, 50].

It is now clear that chronic inflammation plays a crucial role in inflammatory bowel
disease (IBD) and inflammation-promoted colorectal cancer. Even though the
molecular mechanisms of inflammation is being studied extensively, its role in the

development of IBD-CRC is not fully understood yet [51].

Strong line of evidence suggests that when commensal enteric bacteria breach the
intestinal epithelial barrier, they induce a chronic, immune-mediated inflammation,
which is an indispensable participant in the neoplastic development of the overlying

intestinal epithelium [52, 53].

At the cellular level, a variety of soluble mediators that are known to critically be
involved in IBD pathogenesis have also been shown to mediate interactions between
cancer cells and stromal cells in the tumour microenvironment of CAC. Elevated
production of cytokines, chemokines, growth factors matrix-degrading enzymes as well
as reactive oxygen and nitrogen species favours the emergence of tumorigenesis by
establishing a microenvironment promoting intestinal epithelial cell proliferation,
survival and migration [52-55]. Previous clinical reports and animal experiments have
established a significant role of proinflammatory pathways, particularly nuclear factor
kappa B (NF-kB), cyclooxygenase (COX-2)/PGEz, IL-23/Th17 and IL-6/STAT3
signalling processes, in the pathogenesis of colitis-associated CRC. In addition, these
signalling pathways control the expression of a vast array of inflammatory regulators
and orchestrate a cancer-promoting microenvironment. The malignant-supporting

effects of these processes include the upregulation of antiapoptotic molecules and the
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increased proliferation of intestinal epithelial cells at the inflammatory location, which
initiate cancer progression and growth in CRC [56]. Moreover, these signalling
processes also promote the expression of several growth factors, including VEGF as

well as chemokines such as IL-8 leading to angiogenesis [57].

Importantly, these physiological processes governing inflammation show a wide range
of dynamic behaviours. In the past two decades, these signalling systems have attracted
the attention by system biologists, who have studied their dynamic behaviour of these
pathways using mathematical modelling. Specifically, in response to consistent
cytokine stimuli, the NF-«B transcription factor complex exhibits a repeated oscillatory
pattern between the nucleus and the cytoplasm with a period of ~100 min. The dynamic

behaviour of NF-kB appears to regulate the cellular response to inflammation [58, 59].

Moreover, research studies analysing the dynamics JAK-STAT signalling cascade have
proven beneficial to gain insights into the molecular basis of this complex signalling
process, and its mechanisms in a variety of physiological conditions [60]. Negative
feedback regulation of the JAK/STAT pathway by Suppressors of Cytokine Signalling
(SOCS) also compromises an example of oscillatory signalling. Yoshiura et al. [61]
identified serum-induced ultradian oscillations of STAT3 protein and its inhibitor
SOCS3 in mouse fibroblast cells. It is yet unknown as to the 