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Summary. While many methods are available to detect structural changes in a time series,
few procedures are available to quantify the uncertainty of these estimates post-detection.
In this work, we fill this gap by proposing a new framework to test the null hypothesis that
there is no change in mean around an estimated changepoint. We further show that it is
possible to efficiently carry out this framework in the case of changepoints estimated by bi-
nary segmentation and its variants, `0 segmentation, or the fused lasso. Our setup allows
us to condition on much less information than existing approaches, which yields higher
powered tests. We apply our proposals in a simulation study and on a dataset of chromo-
somal guanine-cytosine content. These approaches are freely available in the R package
ChangepointInference at https://jewellsean.github.io/changepoint-inference/.

Keywords: `0 optimization, binary segmentation, fused lasso, selective inference

1. Introduction

Detecting structural changes in a time series is a fundamental problem in statistics,
with a variety of applications (Bai and Perron, 1998, 2003; Muggeo and Adelfio, 2010;
Schröder and Fryzlewicz, 2013; Futschik et al., 2014; Xiao et al., 2019; Harchaoui and
Lévy-Leduc, 2007; Hotz et al., 2013). A structural change refers to the phenomenon that
at a certain (unknown) timepoint τ , the law of the data may change: that is, observations
y1, . . . , yT are heterogeneous, in the sense that y1, . . . , yτ ∼ F , whereas yτ+1, . . . , yT ∼ G,
for distribution functions F 6= G. In the presence of possible structural changes, it is
of interest not only to estimate the times at which these changes occur — that is, the
value of τ — but also to conduct statistical inference on the estimated changepoints.

In this paper, we consider the most common changepoint model,

Yt = µt + εt, εt
iid∼ N(0, σ2), t = 1, . . . , T, (1)

and assume that µ1, . . . , µT is piecewise constant, in the sense that µτj+1 = µτj+2 =
. . . = µτj+1

6= µτj+1+1, for j = 0, . . . ,K − 1, and µτK+1 = µτK+2 = . . . = µτK+1
. Here

0 = τ0 < τ1 < . . . < τK < τK+1 = T , and τ1, . . . , τK represent the true change-
points. Changepoint detection refers to the task of estimating the changepoint locations
τ1, . . . , τK , and possibly the number of changepoints K. A huge number of proposals for
this task have been made in the literature; see Truong et al. (2020) and Fearnhead and



2 Jewell et al.

Rigaill (2020) for a comprehensive review. These proposals can be roughly divided into
two classes. One class iteratively searches for one changepoint at a time (Vostrikova,
1981; Olshen et al., 2004; Fryzlewicz, 2014; Badagián et al., 2015; Anastasiou and Fry-
zlewicz, 2019); the canonical example of this approach is binary segmentation. Another
class of proposals simultaneously estimates all changepoints by solving a single optimiza-
tion problem (Auger and Lawrence, 1989; Jackson et al., 2005; Tibshirani et al., 2005;
Niu and Zhang, 2012; Killick et al., 2012; Haynes et al., 2017; Maidstone et al., 2017;
Jewell and Witten, 2018; Fearnhead et al., 2019; Hocking et al., 2020; Jewell et al., 2020);
examples include `0 segmentation and the fused lasso. We review these approaches in
Section 2. Although not a focus of our work, changepoint estimation and inference
have also been studied from a Bayesian perspective (Fearnhead, 2006; Nam et al., 2012;
Ruanaidh and Fitzgerald, 2012).

In the single changepoint setting, estimation and inference for the location of the
changepoint have been studied in the asymptotic (Hinkley, 1970; Yao, 1987; James
et al., 1987; Bai, 1994) and non-asymptotic (Enikeeva and Harchaoui, 2019) settings.
These approaches are typically extended to the multiple changepoint case by repeated
application of tests for a single changepoint to sliding subsets of the data.

In the multiple changepoint setting, the multiscale approach of Frick et al. (2014) es-
timates the changepoints and provides confidence intervals for the changepoint locations
and the unknown mean. However, this approach aims to control the probability of falsely
detecting a change, and can lose power when there are many changes, particularly when
they are hard to detect. Similarly, Ma and Yau (2016) produce asymptotically valid
confidence intervals, but assume an asymptotic regime where all of the changepoints are
detected with probability tending to one; this regime is unrealistic in many settings.

To overcome these issues, Li et al. (2016) develop a multiscale procedure that controls
the false discovery rate of detections. But their method uses a very weak definition of a
“true changepoint”. In extreme cases, this could include an estimated changepoint that
is almost as far as T/2 observations from an actual changepoint.

Non-parametric approaches to estimate multiple changepoints, such as moving-sum
or scan statistics, have also been proposed (Bauer and Hackl, 1980; Hušková, 1990; Chu
et al., 1995). Eichinger and Kirch (2018) recently showed consistency for the number and
locations of changepoints, and established rates of convergence for moving-sum statistics.

Despite the huge literature on estimation and inference in changepoint detection
problems, there remains a gap between the procedures used by practitioners to estimate
changepoints and the statistical tools to assess the uncertainty of these estimates:

(a) Much of the theory for changepoint detection, especially in the multiple changepoint
setting, focuses on specialized estimation procedures that are designed to facilitate
inference. Therefore, these results are not directly applicable to the procedures
commonly used by data analysts to estimate changepoints in practice.

(b) Classical techniques to test for a single changepoint give (mostly) asymptotic re-
sults, which involve complicated limiting distributions that do not directly apply
to the multiple changepoint setting.

(c) Earlier works (mostly) provide confidence statements for the location of the change-
point. However, downstream analyses often rely on the size of the shift in mean,
and not its precise location.
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To address these limitations, we consider testing the null hypothesis that there is no
change in mean around an estimated changepoint. Our interest lies not in determining
whether there is a change in mean at a precise location, but rather, whether there is a
change in mean nearby. This is a challenging task, since we must account for the fact that
the changepoint was estimated from the data — and thus that the null hypothesis was
chosen using the data — when deriving the null distribution for a test statistic. A recent
promising line of work was introduced by Hyun et al. (2018) and Hyun et al. (2021),
who develop valid tests for a change in mean associated with changepoints estimated
with the generalized lasso or binary segmentation, respectively. Their work leverages
recent results for selective inference in the regression setting (Fithian et al., 2014, 2015;
Tibshirani et al., 2016; Lee et al., 2016; Tian et al., 2018). In greater detail, they compute
the probability of observing such a large change in mean associated with an estimated
changepoint, conditional on the fact that the changepoint was estimated from the data,
as well as some additional quantities required for computational tractability. However,
the fact that they condition on much more information than is used to choose the null
hypothesis that is tested leads to a substantial reduction in power, as pointed out by
Fithian et al. (2014), Lee et al. (2016), and Liu et al. (2018).

In this paper, we consider testing for a change in mean associated with an estimated
changepoint, while conditioning on far less information than Hyun et al. (2018) and
Hyun et al. (2021). In effect, we conduct local conditioning, as opposed to the global
conditioning needed in Hyun et al. (2021). Moreover, we develop a test for a change in
mean associated with changepoints detected via `0 segmentation, rather than only fused
lasso and binary segmentation. Both of these advances lead to more powerful procedures
for testing for the presence of changepoints. We develop this framework in detail for the
change-in-mean model, but the general ideas can be applied more widely.

The rest of this paper is organized as follows. In Section 2, we review the relevant
literature on changepoint detection and inference. In Section 3, we introduce a framework
for inference in changepoint detection problems, which allows us to test for a change in
mean associated with a changepoint estimated on the same dataset. In Sections 4 and 5,
we develop efficient algorithms that allow us to instantiate this framework in the special
cases of binary segmentation (Vostrikova, 1981) and its variants (Olshen et al., 2004;
Fryzlewicz, 2014), and `0 segmentation (Killick et al., 2012; Maidstone et al., 2017);
the case of the fused lasso (Tibshirani et al., 2016) is straightforward and addressed
in the Supplementary Materials. Our framework is an improvement over the existing
approaches for inference on the changepoints estimated using binary segmentation and
its variants and the fused lasso; it is completely new in the case of `0 segmentation. After
a preprint of this work appeared (Jewell et al., 2019), another research group developed
a less efficient dynamic programming approach to assess the uncertainty in changepoints
estimated from `0 segmentation (Duy et al., 2020). In Section 6, we present a comparison
to some recent proposals from the literature in a simulation study. In Section 7, we show
that our procedure leads to additional discoveries versus existing methods on a dataset
of chromosomal guanine-cytosine (G-C) content. Extensions are in Section 8, and some
additional details are deferred to the Supplementary Materials.

The R package ChangepointInference, along with code and data to reproduce all
figures, can be found at https://jewellsean.github.io/changepoint-inference.
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2. Background

2.1. Changepoint detection algorithms
2.1.1. Binary segmentation and its variants
Binary segmentation (Vostrikova, 1981) and its variants (Olshen et al., 2004; Fryzlewicz,
2014) search for changepoints by solving a sequence of local optimization problems. For
the change-in-mean problem, these use the cumulative sum (CUSUM) statistic

g>(s,τ,e)y :=

√
1

1
|e−τ | + 1

|τ+1−s|
(ȳ(τ+1):e − ȳs:τ ), (2)

defined through a contrast g(s,τ,e) ∈ RT , which summarizes the evidence for a change
at τ in the data ys:e := (ys, . . . , ye) by the difference in the empirical mean of the data
before and after τ (normalized to have the same variance for all τ). In (2), the notation
ȳa:b represents the sample mean of (ya, . . . , yb).

In binary segmentation (Vostrikova, 1981), the set of estimated changepoints is sim-
ply the set of local CUSUM maximizers: the first estimated changepoint maximizes the

CUSUM statistic over all possible locations, τ̂1 = argmax
τ∈[1:(T−1)]

{
|g>(1,τ,T )y|

}
. Subsequent

changepoints are estimated at the location that maximizes the CUSUM statistic when
we consider regions of the data between previously estimated changepoints. For example,

the second estimated changepoint is τ̂2 = argmax
τ∈[1:(T−1)]\τ̂1

{
|g>(1,τ,τ̂1)y|1(1≤τ<τ̂1) + |g>(τ̂1,τ,T )y|1(τ̂1<τ<T )

}
.

We continue in this manner until a stopping criterion is met.

2.1.2. Simultaneous estimation of changepoints
As an alternative to sequentially estimating changepoints, we can simultaneously es-
timate all changepoints by minimizing a penalized cost that trades off fit to the data
against the number of changepoints (Killick et al., 2012; Maidstone et al., 2017), i.e.

minimize
0=τ0<τ1<···<τK<τK+1=T,

u0,u1,...,uK ,K

{
1

2

K∑
k=0

τk+1∑
t=τk+1

(yt − uk)2 + λK

}
. (3)

This is equivalent to solving an `0 penalized regression problem

minimize
µ∈RT

{
1

2

T∑
t=1

(yt − µt)2 + λ

T−1∑
t=1

1(µt 6=µt+1)

}
, (4)

in the sense that the vector µ̂ that solves (4) satisfies {t : µ̂t 6= µ̂t+1} = {τ̂1, . . . , τ̂K̂},
where τ̂1, . . . , τ̂K̂ are the changepoints that solve (3). The tuning parameter λ specifies
the improvement in fit to the data needed to add an additional changepoint.

Replacing the `0 penalty in (4) with an `1 penalty leads to the well-studied trend
filtering or fused lasso optimization problem (Rudin et al., 1992; Tibshirani et al., 2005),

minimize
µ∈RT

{
1

2

T∑
t=1

(yt − µt)2 + λ

T−1∑
t=1

|µt − µt+1|

}
. (5)
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2.2. Existing methods for inference on changepoints post-detection
Suppose that we estimate some changepoints τ̂1, . . . , τ̂K̂ , and then wish to quantify the
evidence for these estimated changepoints. We might naively apply a standard z-test for
the difference in mean around each estimated changepoint. However, this approach is
problematic, because it entails using the same data for testing that was used to estimate
the changepoints, and thus to select the hypotheses to be tested. In particular, the
z-statistic is not normally distributed under the null hypothesis. In the linear regression
setting, Tibshirani et al. (2016) and Lee et al. (2016) have shown that it is possible to
select and test hypotheses based on the same set of data, provided that we condition on
the output of the hypothesis selection procedure.

Hyun et al. (2018) and Hyun et al. (2021) extend these ideas to the changepoint
detection setting. For each changepoint τ̂j estimated using either binary segmentation,
its variants, or the fused lasso, Hyun et al. (2021) propose to test whether there is a

change in mean around τ̂j . They construct the test statistic d̂jν
>
j Y , where d̂j is the sign

of the estimated change in mean at τ̂j , and νj is a T -vector of contrasts, defined as

νj,t =


0 if t ≤ τ̂j−1 or t > τ̂j+1,

1
τ̂j−τ̂j−1

if τ̂j−1 < t ≤ τ̂j ,
− 1
τ̂j+1−τ̂j if τ̂j < t ≤ τ̂j+1.

(6)

They consider the null hypothesis H0 : d̂jν
>
j µ = 0 versus the one-sided alternative

H1 : d̂jν
>
j µ > 0. Since both d̂j and νj are functions of the estimated changepoints, it

is clear that valid inference requires somehow conditioning on the estimation process, in
the spirit of Tibshirani et al. (2016) and Lee et al. (2016). DefineM(y) to be the set of
changepoints estimated from the data y, i.e.,M(y) = {τ̂1, . . . , τ̂K̂}. Then, it is tempting

to define the p-value as PrH0

(
d̂jν
>
j Y ≥ d̂jν>j y | M(Y ) =M(y)

)
. However, this p-value

is not immediately amenable to the selective inference framework proposed by Tibshirani
et al. (2016) and Lee et al. (2016), which requires that the conditioning set be polyhedral;
i.e., the conditioning set can be written as {Y : AY ≤ b} for a matrix A and vector
b. Thus, in the case of binary segmentation, Hyun et al. (2021) condition on three
additional quantities: (i) the order in which the estimated changepoints enter the model,
O(Y ) = O(y); (ii) the sign of the change in mean due to the estimated changepoints,

∆(Y ) = ∆(y) = (d̂1, . . . , d̂K̂); (iii) Π⊥νjY = Π⊥νjy, where Π⊥νj = I − νjν>j /||νj ||22 is the
orthogonal projection matrix onto the subspace that is orthogonal to νj . Conditioning
on (i) and (ii) ensures that the conditioning set is polyhedral, whereas conditioning on
(iii) ensures that the test statistic is a pivot. This leads to the p-value

PrH0

(
d̂jν

>
j Y ≥ d̂jν>j y | M(Y ) =M(y),O(Y ) = O(y),∆(Y ) = ∆(y),Π⊥

νjY = Π⊥
νjy
)
, (7)

which can be easily computed because the conditional distribution of d̂jν
>
j Y is a Gaus-

sian truncated to an interval. For slightly different conditioning sets, Hyun et al. (2021)
show similar results for variants of binary segmentation and for the fused lasso.

Importantly, Hyun et al. (2021) choose the conditioning set in (7) for computational
reasons: there is no clear statistical motivation for conditioning on O(Y ) = O(y) and



6 Jewell et al.

∆(Y ) = ∆(y). Furthermore, it might be possible to account for the fact that change-
points are estimated from the data without conditioning on the full setM(Y ) =M(y).
In fact, Fithian et al. (2014) argue that when conducting selective inference, it is better
to condition on less information, i.e. to condition on Y being in a larger set of possi-
ble data, since conditioning on more information reduces the Fisher information that
remains in the conditional distribution of the data.

For this reason, in the regression setting, some recent proposals seek to increase
the size of the conditioning set. Lee et al. (2016) propose to condition on just the
selected model, rather than on the selected model and the corresponding coefficient
signs, by considering all possible configurations of the signs of the estimated coefficients.
Unfortunately, this comes at a significant computational cost. Continuing in this vein,
Liu et al. (2018) partition the selected variables into high value and low value subsets,
and then condition on the former and the variable of interest.

In this paper, we develop new insights that allow us to test the null hypothesis that
there is no change in mean at an estimated changepoint, without restriction to the
polyhedral conditioning sets pursued by Hyun et al. (2021). Because we do not need to
use the full conditioning set in (7), we obtain higher-powered tests. Additionally, since
we avoid conditioning on ∆(Y ) = ∆(y), we can consider two-sided tests of

H0 : ν>µ = 0 versus H1 : ν>µ 6= 0, (8)

rather than the one-sided tests considered by Hyun et al. (2021). In (8), and for the
remainder of this paper, we suppress the j subscript on νj for notational convenience.
Thus, the vector ν should be interpreted as shorthand for νj .

It is natural to ask whether we can avoid the complications of selective inference
and use alternative approaches that control the false discovery rate (Benjamini and
Hochberg, 1995; Benjamini and Yekutieli, 2001; Barber and Candès, 2015; Candes et al.,
2018). However, these alternatives are not suitable for the changepoint setting in the
following sense. Often we do not want to know if a true changepoint is exactly at τ̂j ,
but rather whether there is a true changepoint near τ̂j ; that is, we are willing to accept
small estimation errors in the location of a changepoint. With a suitable choice of ν in
(8), we can test whether there is a change in mean near τ̂j , where near can be defined
appropriately for a given application. By contrast, while knockoffs (Barber and Candès,
2015) or a related approach could likely be used to test for a change in mean at a precise
location, in our experience such approaches tend to have almost no power to detect
modest changes in the mean, due to the large uncertainty in the precise location of the
change.

2.3. Toy example illustrating the cost of conditioning
In this section, we demonstrate that the power of a test of (8) critically depends on the
size of the conditioning set. In Figure 1, we consider two choices for the conditioning
set. In panel a), we condition on M(Y ) = M(y),O(Y ) = O(y),∆(Y ) = ∆(y), and
Π⊥ν Y = Π⊥ν y: this is essentially the test proposed by Hyun et al. (2021). In panel b)
we condition on just M(Y ) = M(y) and Π⊥ν Y = Π⊥ν y. Observed data (grey points)
are simulated according to (1) with the true underlying mean displayed in blue. 19-step
binary segmentation is used to estimate changepoints, which are displayed as vertical



Testing for a Change in Mean After Changepoint Detection 7

lines, and are colored based on whether the associated p-value is less than 0.05 (blue) or
greater than 0.05 (red). In this example, conditioning on less information allows us to
reject the null hypothesis when it is false more often (i.e., we obtain five additional true
positives), without inflating the number of false positives.

With this toy example in mind, we turn to our proposal in the following section. It
does not require polyhedral conditioning sets, and thus allows us to condition on much
less information than previously possible.
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0 50 100 150 200

a)

−10
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0
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0 50 100 150 200
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Fig. 1. The power of a test of (8) critically depends on the size of the conditioning set. Obser-
vations (displayed in grey) were simulated from (1) with σ = 1 and µ1, . . . , µT displayed in dark
blue. Our proposed test of (8) was conducted for each of the changepoints estimated via 19-step
binary segmentation. Estimated changepoints for which the p-value is less than 0.05 are dis-
played in blue, and the remaining estimated changepoints are displayed in red. In panel (a), we
conducted our proposed test by conditioning on M(Y ) = M(y),O(Y ) = O(y),∆(Y ) = ∆(y),
and Π⊥

ν Y = Π⊥
ν y (this is essentially the proposal of Hyun et al. (2021)). In panel (b), we condi-

tioned on the much larger setM(Y ) =M(y) and Π⊥
ν Y = Π⊥

ν y.

3. Two new tests with larger conditioning sets

In this section, we consider testing a null hypothesis of the form (8) using a much larger
conditioning set than used by Hyun et al. (2021). Our approach is similar in spirit to
the “general recipe” proposed in Section 6 of Liu et al. (2018). We consider two possible
forms of the contrast vector ν in Sections 3.1 and 3.2.

3.1. A test of no change in mean between neighboring changepoints
We first consider testing the null hypothesis (8) for ν defined in (6). In order to account
for the fact that we estimated the changepoints, it is natural to condition on all of the
estimated changepoints, M(y) = {τ̂1, . . . , τ̂K̂}. Thus, we define the p-value

p ≡ PrH0

(
|ν>Y | ≥ |ν>y| | M(Y ) =M(y),Π⊥ν Y = Π⊥ν y

)
. (9)

As in Hyun et al. (2021), we condition on Π⊥ν Y = Π⊥ν y for technical reasons; see Fithian
et al. (2014) for additional discussion. Roughly speaking, (9) asks: “Out of all data sets
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yielding this particular set of changepoints, what is the probability, under the null that
there is no true change in mean at this location, of observing such a large difference in
mean between the segments on either side of τ̂j?” Our next result reveals that comput-
ing (9) involves a univariate truncated normal distribution. Related results appear in
Tibshirani et al. (2016), Lee et al. (2016), and Liu et al. (2018).

Theorem 1. The p-value in (9) is equal to

p = Pr
(
|φ| ≥ |ν>y| | M(y′(φ)) =M(y)

)
, (10)

where φ ∼ N(0, ‖ν‖2σ2) and where

y′(φ) = y − νν>y

||ν||22
+

νφ

||ν||22
. (11)

In light of Theorem 1, to evaluate (9) we must simply characterize the set

S = {φ :M(y′(φ)) =M(y)}; (12)

as we will see in Section 3.3, this is the set of perturbations of y that result in no change
to the estimated changepoints. In Sections 4 and 5, we do exactly this in the case of
binary and `0 segmentation, respectively. We discuss the fused lasso in Section D.1 of
the Supplementary Materials.

3.2. A test of no change in mean within a fixed window size
We now consider testing the null hypothesis (8) with ν given by

νt =


0 if t ≤ τ̂j − h or t > τ̂j + h,
1
h if τ̂j − h < t ≤ τ̂j ,
− 1
h if τ̂j < t ≤ τ̂j + h.

(13)

Thus, we are testing whether the mean in a window to the left of the jth estimated
changepoint equals the mean in a window to the right of the jth estimated changepoint,
for a fixed window size h > 0. When considering this null hypothesis, it makes sense to
condition only on the jth estimated changepoint, leading to a p-value defined as

p ≡ PrH0

(
|ν>Y | ≥ |ν>y| | τ̂j ∈M(Y ),Π⊥ν Y = Π⊥ν y

)
, (14)

where once again, we condition on Π⊥ν Y = Π⊥ν y for technical reasons. Roughly speaking,
(14) asks: “Out of all data sets yielding a changepoint at τ̂j , what is the probability,
under the null that there is no true change in mean at this location, of observing such a
large difference in mean between the windows of size h on either side of τ̂j?”

The p-values in (14) and (9) are calculated for slightly different null hypotheses:
the null for (14) is that there is no changepoint within a distance h of the estimated
changepoint, τ̂j . By contrast, (9) tests for no change in mean between the estimated
changepoints immediately before and after τ̂j . Furthermore, (14) conditions on less in-
formation. We believe that in many applications, the null hypothesis assumed by (14)
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is more natural and informative, since it allows a practitioner to specify how accurately
they want to detect changepoint locations, and it avoids rejecting the null due to changes
that are arbitrarily far away from τ̂j . Moreover, the ability to condition on less informa-
tion intuitively should lead to higher power. If required, the ideas used to calculate (14)
could also be applied to test for the null hypothesis assumed by (9), while conditioning
on less information. We further investigate these issues in Sections 6 and 8.1.

Theorem 1 can be extended to show that (14) is equal to

p = Pr
(
|φ| ≥ |ν>y| | τ̂j ∈M(y′(φ))

)
, (15)

where φ ∼ N(0, ‖ν‖2σ2), and where y′(φ) was defined in (11). Thus, computing the
p-value requires characterizing the set

S = {φ : τ̂j ∈M(y′(φ))}; (16)

this is the set of perturbations of y that result in estimating a changepoint at τ̂j .

We show in Sections 4 and 5 that S can be efficiently characterized for binary and `0
segmentation. We discuss the fused lasso in Section D.1 of the Supplementary Materials.

3.3. Intuition for y′(φ) and S
To gain intuition for y′(φ) in (11), we consider ν defined in (6) (similar results apply for
ν defined in (13)). We see that

y′t(φ) ≡


yt if t ≤ τ̂j−1 or t > τ̂j+1,

yt + φ−ν>y
1+

τ̂j−τ̂j−1

τ̂j+1−τ̂j

if τ̂j−1 < t ≤ τ̂j ,

yt − φ−ν>y
1+

τ̂j+1−τ̂j
τ̂j−τ̂j−1

if τ̂j < t ≤ τ̂j+1.

(17)

Thus, y′t(φ) is equal to yt for t ≤ τ̂j−1 or t > τ̂j+1, and otherwise equals the observed
data perturbed by a function of φ around τ̂j . In other words, we can view y′(φ) as a
perturbation of the observed data y by a quantity proportional to φ− ν>y, within some
window of τ̂j . Furthermore, S = {φ :M(y′(φ)) =M(y)} is the set of such perturbations
that do not affect the set of estimated changepoints.

Figure 2 illustrates the intuition behind y′(φ) in a simulated example of length 200
with a change in mean at the 100th position, and where φ = ν>y = −1. In panel a), the
observed data are displayed. Here, 1-step binary segmentation estimates τ̂1 = 100. In
panel b), the observed data are perturbed using φ = 0 so that 1-step binary segmentation
no longer estimates a changepoint at the 100th position. Conversely, in panel c), the
data are perturbed using φ = −2 to exaggerate the change at timepoint 100; 1-step
binary segmentation again estimates a changepoint at the 100th position. Hence, for 1-
step binary segmentation, −1 and −2 are in S = {φ :M(y′(φ)) =M(y)}, but 0 is not.
The procedure from Section 4 for efficiently characterizing S gives S = {φ :M(y′(φ)) =
M(y)} = (−∞,−0.2] ∪ [0.2,∞); see panel d) of Figure 2.
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Fig. 2. a) A simulated dataset with φ = ν>y = −1 is displayed in grey, and the true underlying
mean is shown in blue. b) The perturbed dataset y′(φ) is shown, with φ = ν>y = 0. The
perturbed dataset does not have a change in mean at the 100th timepoint, and so 1-step binary
segmentation does not detect a changepoint at that position. c) The perturbed dataset y′(φ)
is shown, with φ = ν>y = −2. There is now a very pronounced change in mean at the 100th
timepoint, and so 1-step binary segmentation does detect a changepoint at that position. d)
Values of φ for which M(y′(φ)) = M(y) are shown in blue, and those for which M(y′(φ)) 6=
M(y) are shown in red, forM given by 1-step binary segmentation.

4. Efficient characterization of (12) and (16) for binary segmentation and its vari-
ants

We now turn our attention to computing the set (12) for k-step binary segmentation; (16)
is detailed in Section B.4 of the Supplementary Materials. We begin by paraphrasing
Proposition 1 of Hyun et al. (2021).

Proposition 1 (Proposition 1 of Hyun et al., (2021)). The set of y for which
k-step binary segmentation yields a given set of estimated changepoints, orders, and signs
is polyhedral, and takes the form {y : Γy ≤ 0} for a k(2T − k − 3)× T matrix Γ, which
is a function of the estimated changepoints, orders, and signs.

Recall from Section 2.2 that M(y), O(y), and ∆(y) are the locations, orders, and signs
of the changepoints estimated from k-step binary segmentation applied to data y. We
first present a corollary of Proposition 1.

Corollary 1. The set S in (12) is the union of sets of the form {φ : M(y′(φ)) =
m,O(y′(φ)) = o,∆(y′(φ)) = d}, each of which is an interval. Furthermore, each of these
intervals can be computed analytically using the matrix Γ in Proposition 1.

This leads to the following result.

Proposition 2. Let I denote the set of orders and signs of the changepoints that
can be obtained via a perturbation of y that yields changepoints M(y): that is,

I :=
{

(o, d) : ∃φ ∈ R such that M(y′(φ)) =M(y),O(y′(φ)) = o,∆(y′(φ)) = d
}
. (18)
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Then, there exists an index set J and scalars . . . , a−3, a−2, a−1, a0, a1, a2, a3, . . . such
that |J | = |I|, and the set S in (12) is the union of |J | intervals: that is,

S = {φ :M(y′(φ)) =M(y)} =
⋃
i∈J

[ai, ai+1]. (19)

In Proposition 2, |J | and |I| denote the cardinality of the sets J and I, respectively.
Importantly, |J | = |I| � 2kk!, which is the total number of possible orders and signs
for the k changepoints. To simplify notation in (19), we have used the convention that
if ai = −∞ then [ai, ai+1] should be interpreted as (ai, ai+1], and similarly if ai+1 = ∞
then [ai, ai+1] should be interpreted as [ai, ai+1).

Proposition 3 guarantees that Proposition 2 is of practical use.

Proposition 3.
⋃
i∈J [ai, ai+1] defined in (19) can be efficiently computed.

Proposition 3 follows from a simple argument; see Algorithm 1 of the Supplementary
Materials for additional details. We first run k-step binary segmentation on the data
y to obtain estimated changepoints M(y), orders O(y), and signs ∆(y). We then ap-
ply Corollary 1 to obtain the interval [a0, a1] = {φ : M(y′(φ)) = M(y),O(y′(φ)) =
O(y),∆(y′(φ)) = ∆(y)}. By construction, [a0, a1] ⊂ S. The set J indexes the intervals
comprising the set S; therefore, we set J = {0}.

Next, for some small η > 0, we apply Corollary 1 with m = M(y′(a1 + η)), o =
O(y′(a1 + η)), and d = ∆(y′(a1 + η)) to obtain the interval [a1, a2] = {φ : M(y′(φ)) =
m,O(y′(φ)) = o,∆(y′(φ)) = d}. (If the left endpoint of this interval does not equal
a1, then we must use a smaller value of η.) We then check whether M(y′(a1 + η)) =
M(y). If so, then [a1, a2] ⊂ S and we set J equal to J ∪ {1}; if not, then J remains
unchanged. Next, we apply Corollary 1 with m =M(y′(a2 +η)), o = O(y′(a2 +η)), and
d = ∆(y′(a2+η)) to obtain the interval [a2, a3]. We then determine whether [a2, a3] ⊂ S;
if so, then we set J equal to J ∪{2}, and if not, then J remains unchanged. We continue
in this way until we reach an interval containing ∞. We then repeat this process in the
other direction, applying Corollary 1 with m = M(y′(a0 − η)), o = O(y′(a0 − η)), and
d = ∆(y′(a0−η)), determining whether the resulting interval [a−1, a0] belongs to S, and
updating J accordingly. We continue until we arrive at an interval containing −∞.

Proposition 4 shows that this procedure can be stopped early in order to obtain
conservative p-values, while substantially reducing computational costs.

Proposition 4. Let S̃ be defined as the set

S̃ = (−∞, a−r] ∪

 ⋃
i∈J∩{−r,...,r′}

[ai, ai+1]

 ∪ [ar′+1,∞),

for some r and r′ such that a−r ≤ −|ν>y| and ar′+1 ≥ |ν>y|. Then the p-value obtained
by conditioning on {φ ∈ S̃} exceeds the p-value obtained by conditioning on {φ ∈ S}:

Pr(|φ| ≥ |ν>y| | φ ∈ S̃) ≥ Pr(|φ| ≥ |ν>y| | φ ∈ S).
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Section B of the Supplementary Materials contains proofs of Corollary 1 and Propo-
sitions 2 and 4. In that section, we also show that Propositions 2 and 3 can be easily
modified to characterize (16). Section D.1 of the Supplementary Materials contains a
straightforward modification of this procedure to characterize (12) and (16) in the case
of the fused lasso.

It turns out that all of the ideas developed in this section for binary segmentation
can be directly applied to the circular binary segmentation proposal of Olshen et al.
(2004) and the wild binary segmentation proposal of Fryzlewicz (2014). In particular,
it is shown in the Supplementary Materials of Hyun et al. (2021) that a result almost
identical to Proposition 1 holds for these two variants of binary segmentation, for a
different matrix Γ. This means that Propositions 2–4 follow directly.

We have assumed that k, the number of steps of binary segmentation, is pre-specified.
Hyun et al. (2021) showed that a stopping rule based on the Bayesian information
criterion yields a polyhedral conditioning set. Hence, we could extend the ideas in this
section to select k adaptively. However, as shown by Hyun et al. (2021), this approach
requires conditioning on additional information, and thereby results in a loss of power.

5. Efficient characterization of (12) and (16) for `0 segmentation

In this section, we develop an efficient algorithm to analytically characterize S in (12) for
the `0 segmentation problem (4) with a fixed value of λ; Section C.2 of the Supplementary
Materials considers S in (16). Recall that in the context of S in (12), y′(φ) is defined in
(11) and ν is defined in (6).

Roughly speaking, we show that it is possible to write (12) in terms of the cost to
segment the perturbed data y′(φ). To compute the necessary cost functions, we derive
recursions similar to those in Rigaill (2015) and Maidstone et al. (2017). However, these
recursions involve functions of two variables, rather than one. Consequently, fundamen-
tally different techniques are required for efficient computation.

5.1. Recharacterizing S in (12) in terms of C(φ) and C ′(φ)

Let K̂ denote the number of estimated changepoints resulting from `0 segmentation (4)
on the data y with fixed tuning parameter value λ, and let τ̂1 < . . . < τ̂K̂ denote the
positions of those estimated changepoints; for notational convenience, let τ̂0 ≡ 0 and
τ̂K̂+1 ≡ T . For a given value of φ, M(y′(φ)) = M(y) if and only if the cost of `0
segmentation of the data y′(φ) with the changepoints restricted to occur at τ̂1, . . . , τ̂K̂ ,

C(φ) = min
u0,u1,...,uK̂

1

2

K̂∑
k=0

τ̂k∑
t=τ̂k+1

(y′t(φ)− uk)2 + λK̂

 , (20)

is no greater than the cost of `0 segmentation of y′(φ),

C ′(φ) = min
0=τ0<τ1<···<τK<τK+1=T,

u0,u1,...,uK ,K

{
1

2

K∑
k=0

τk+1∑
t=τk+1

(y′t(φ)− uk)2 + λK

}
. (21)
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In other words,
S = {φ : C(φ) ≤ C ′(φ)}. (22)

The following result follows from the fact that (11) and (6) imply that for all j = 0, . . . , K̂,
there exists a constant cj such that y′t(φ) = yt + cj for all t = τ̂j + 1, . . . , τ̂j+1.

Proposition 5. C(φ) is a constant function of φ. That is, C(φ) = C(φ′) for all φ
and φ′.

Proposition 5 implies that C(φ) is easy to calculate: we just compute it for a single
value of φ, e.g. φ = νT y. Hence, to characterize S using (22), it remains to calcu-
late C ′(φ), i.e., to perform `0 segmentation on y′(φ). In the interest of computational
tractability, we need a single procedure that works for all values of φ simultaneously,
rather than (for instance) having to repeat the procedure for values of φ on a fine grid.

Let Cost(y′1:τ̂j (φ);u) be the cost of segmenting y′1:τ̂j (φ) with µτ̂j = u. Then C ′(φ) can

be decomposed into the cost of segmenting the data y′(φ) with a changepoint at τ̂j ,

C ′τ̂j (φ) = min
u

{
Cost(y′1:τ̂j (φ);u)

}
+ min

u′

{
Cost(y′T :(τ̂j+1)(φ);u′)

}
+ λ, (23)

and the cost of segmenting the data y′(φ) without a changepoint at τ̂j ,

C ′¬τ̂j (φ) = min
u

{
Cost(y′1:τ̂j (φ);u) + Cost(y′T :(τ̂j+1)(φ);u)

}
. (24)

Combining (23) and (24), we have

C ′(φ) = min
{
C ′τ̂j (φ), C ′¬τ̂j (φ)

}
. (25)

Next, we will show that it is possible to analytically calculate Cost(y′1:τ̂j (φ);u) as a
function of the perturbation, φ, and the mean at the τ̂jth timepoint, u. A similar
approach can be used to compute Cost(y′T :(τ̂j+1)(φ);u).

5.2. Analytic computation of Cost(y′1:τ̂j (φ);u)

We first note that Cost(y1:s;u), the cost of segmenting y1:s with µs = u, can be efficiently
computed (Rigaill, 2015; Maidstone et al., 2017). The cost at the first timepoint is simply
Cost(y1;u) = 1

2(y1 − u)2. For any s > 1 and for all u,

Cost(y1:s;u) = min
{

Cost(y1:(s−1);u),min
u′

{
Cost(y1:(s−1);u

′)
}

+ λ
}

+
1

2
(ys − u)2. (26)

For each u, this recursion encapsulates two possibilities: (i) there is no changepoint at
the (s− 1)st timepoint, and the optimal cost is equal to the previous cost plus the cost
of a new data point, Cost(y1:(s−1);u) + 1

2(ys − u)2; (ii) there is a changepoint at the
(s − 1)st timepoint, and the optimal cost is equal to the optimal cost of segmenting
up to s − 1 plus the penalty for adding a changepoint at s − 1 plus the cost of a
new data point, min

u′

{
Cost(y1:(s−1);u

′)
}

+ λ + 1
2(ys − u)2. The resulting cost functions

Cost(y1;u), . . . ,Cost(y1:T ;u) can be used to determine the exact solution to (4).
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At first blush, the recursion in (26) appears to be intractable due to the fact that,
naively, Cost(y1:s;u) needs to updated for each value of u ∈ R. However, Rigaill (2015)
and Maidstone et al. (2017) show that these updates can be performed by efficiently
manipulating piecewise quadratic functions of u, without needing to explicitly consider
individual values of u, using a procedure that they call functional pruning.

It turns out that many of the computations made in the recursion (26) can be
reused in the calculation of Cost(y′1:τ̂j (φ);u). In particular, we note that from (11)

and (6), y′s(φ) = ys for all s /∈ {τ̂j−1 + 1, . . . , τ̂j+1}, and therefore, Cost(y′1:τ̂j−1
(φ);u) =

Cost(y1:τ̂j−1
;u). As a result, we only require a new algorithm to efficiently compute

Cost(y′1:(τ̂j−1+1)(φ);u), . . . ,Cost(y′1:τ̂j (φ);u). We now show that for s = τ̂j−1 + 1, . . . , τ̂j ,

Cost(y′1:s(φ);u) is the pointwise minimum over a set Cs of piecewise quadratic functions
of u and φ that can be efficiently computed.

Theorem 2. For τ̂j−1 < s ≤ τ̂j,

Cost(y′1:s(φ);u) = min
f∈Cs

f(u, φ), (27)

where {f(u, φ)}f∈Cs is a collection of s − τ̂j−1 + 1 piecewise quadratic functions of u

and φ constructed recursively from τ̂j−1 + 1 to s, and where Cτ̂j−1
= {Cost(y1:τ̂j−1

;u)}.
Furthermore, the set Cτ̂j can be computed in O((τ̂j − τ̂j−1)2) operations.

Section C.1 of the Supplementary Materials contains a proof of Theorem 2.

5.3. Computing C ′(φ) based on Cost(y′1:τ̂j (φ);u) and Cost(y′T :(τ̂j+1)(φ);u)

Recall from (25) that C ′(φ) is the minimum of C ′τ̂j (φ) and C ′¬τ̂j (φ), in (23) and (24),

respectively. We now show how to compute C ′τ̂j (φ).

We apply Theorem 2 to build the set Cτ̂j , and recall from (27) that Cost(y′1:τ̂j (φ);u) =

minf∈Cτ̂j f(u, φ). Additionally, we define C̃τ̂j+1+1 = {Cost(yT :(τ̂j+1+1);u)}, and build

C̃τ̂j+1
, . . . , C̃τ̂j+1 such that Cost(y′T :(τ̂j+1)(φ);u) = minf∈C̃τ̂j+1

f(u, φ), using a modifica-

tion of Theorem 2 that accounts for the reversal of the timepoints. Plugging into (23),

C ′τ̂j (φ) = min
u

{
min
f∈Cτ̂j

{f(u, φ)}

}
+ min

u′

{
min

f∈C̃τ̂j+1

{
f(u′, φ)

}}
+ λ (28)

= min
f∈Cτ̂j

{
min
u
{f(u, φ)}

}
+ min
f∈C̃τ̂j+1

{
min
u′

{
f(u′, φ)

}}
+ λ. (29)

Since f(u, φ) is piecewise quadratic in u and φ (Theorem 2), we see that min
u
{f(u, φ)} is

piecewise quadratic in φ. Therefore, min
f∈Cτ̂j

{
min
u
{f(u, φ)}

}
and min

f∈C̃τ̂j+1

{
min
u
{f(u, φ)}

}
can be efficiently performed using ideas from Rigaill (2015) and Maidstone et al. (2017),
which allow for efficient manipulations of piecewise quadratic functions of a single vari-
able. This means that C ′τ̂j (φ) can be efficiently computed. Recall from Theorem 2 that
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the set Cτ̂j contains τ̂j− τ̂j−1 +1 functions and can be computed in O((τ̂j− τ̂j−1)2) oper-
ations. Therefore, computing C ′τ̂j (φ) requires O((τ̂j − τ̂j−1)2) operations to compute Cτ̂j

and O((τ̂j+1 − τ̂j)2) operations to compute C̃τ̂j+1, followed by performing the operation
minu{f(u, φ)} a total of O(τ̂j+1 − τ̂j−1) times. We can similarly obtain the piecewise
quadratic function C ′¬τ̂j (φ) of φ. Therefore, we can analytically compute C ′(φ).

Finally, recall from (22) that S = {φ : C(φ) ≤ C ′(φ)}. Since we have efficiently
characterized both C(φ) and C ′(φ), our characterization of S is complete.

6. Experiments

6.1. Simulation set-up and methods for comparison
We simulate y1, . . . , y2000 according to (1) with σ2 = 1. The mean vector µ ∈ R2000

is piecewise constant with 50 changepoints. After each even-numbered changepoint the
mean equals 0, and after each odd-numbered changepoint it equals δ, for δ ∈ {0, 0.5, 1.0,
1.5, 2.0, 2.5, 3.0, 3.5, 4.0}. The K = 50 changepoints are sampled without replacement
from {1, 2, . . . , 1999}. Panel a) of Figure 3 depicts a realization with δ = 3.

We compare four tests of a change in mean at an estimated changepoint:

Approach 1. For the jth changepoint estimated by binary segmentation, test H0 :
ν>µ = 0 using ν in (6). Condition on the locations, orders, and signs of all of the
estimated changepoints from binary segmentation. This is closely related to Hyun
et al. (2021)’s proposal.

Approach 2. For the jth changepoint estimated by binary segmentation, test
H0 : ν>µ = 0 using ν in (6). Condition on the locations of all of the estimated
changepoints from binary segmentation.

Approach 3. For the jth changepoint estimated by binary segmentation, test H0 :
ν>µ = 0 using ν in (13). Condition only on the location of the jth estimated
changepoint from binary segmentation.

Approach 4. For the jth changepoint estimated by `0 segmentation, test H0 :
ν>µ = 0 using ν in (13). Condition only on the location of the jth estimated
changepoint from `0 segmentation.

Unless stated otherwise, we take h = 50 in (13) for Approaches 3–4. As our aim is
to compare the power of Approaches 1–4, we assume the true number of changepoints
(K = 50) is known, so that both binary segmentation and `0 segmentation estimate
the same number of changepoints†. We also assume that the underlying noise variance
(σ2 = 1) is known; see Section 8.3 for a more detailed discussion. All results are averaged
over 100 replicate data sets with µ fixed.

In Section E of the Supplementary Materials, we present timing results for esti-
mating changepoints as well as computing p-values using Approaches 1–4. Surprisingly,
Approach 4 is even faster than Approaches 1–3: in our C++ implementation, the former
takes only 15 seconds when T = 1000. Approaches 1–3 take longer because calculating S
in the case of binary segmentation requires manipulating a large set of linear equations.

†On a given data set, there may not exist a λ such that `0 segmentation yields precisely 50 es-
timated changepoints. In this case, we select λ to give approximately 50 estimated changepoints.
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Fig. 3. a) The grey points represent a realization from the mean model (1), with true change
in mean due to a changepoint δ = 3. The mean µ1, . . . , µT is shown as a blue line, and the
changepoints are shown as grey vertical lines. b) Quantile-quantile plot comparing sample p-
value quantiles under (1) with µ1 = . . . = µ2000 versus theoretical quantiles of the Unif(0, 1)
distribution, for Approaches 1–4 in Section 6.1, and Approaches 5–6 in Section 6.2. c) Empiri-
cal power, averaged over 100 replicates, is displayed for Approaches 1–3 defined in Section 6.1,
each of which results from testing H0 : ν>µ = 0 for changepoints estimated using binary seg-
mentation with different conditioning sets. Various values of δ, the true change in mean due to
a changepoint, are shown on the x-axis. Power increases with the size of the conditioning set.

6.2. Type I error control under a global null
We take δ = 0, so that µ1 = . . . = µ2000, and consider testing H0 : ν>µ = 0 using
Approaches 1–4, as well as the following two approaches that rely on a standard z-test:

Approach 5. For the jth changepoint estimated by binary segmentation, test H0 :
ν>µ = 0 using ν in (6), without conditioning.

Approach 6. For the jth changepoint estimated by `0 segmentation, test H0 :
ν>µ = 0 using ν in (6), without conditioning.

These two approaches do not account for the fact that the changepoints were estimated
from the data. Panel b) of Figure 3 displays quantile-quantile plots of the observed
p-value quantiles versus theoretical Unif[0, 1] quantiles. The plots indicate that Ap-
proaches 1–4 control the Type 1 error, whereas Approaches 5–6 do not.



Testing for a Change in Mean After Changepoint Detection 17

6.3. Increases in power due to conditioning on less information
Next, we illustrate that the power increases as the size of the conditioning set increases,
by considering Approaches 1–3 from Section 6.1. Each approach uses binary segmenta-
tion, though with different conditioning sets.

On a given dataset, we define the empirical power as the fraction of true changepoints
for which the nearest estimated changepoint has a p-value below α and is within ±m
timepoints,

P̂ower :=

∑K
i=1 1(|τi−τ̂j(i)|≤m and pj(i)≤α)

K
. (30)

Here, j(i) = argmin1≤l≤K |τi − τ̂l|. Panel c) of Figure 3 shows the empirical power
for the three approaches with α = 0.05 and m = 2. As the size of the conditioning
set increases, from {φ : M(y′(φ)) = M(y),O(y′(φ)) = O(y),∆(y′(φ)) = ∆(y)} to
{φ :M(y′(φ)) =M(y)} to {φ : τ̂j ∈M(y′(φ))}, the power increases substantially.

6.4. Power and detection probability
We now compare the performances of Approaches 1–4, defined in Section 6.1, as well as
two additional approaches that are based on sample splitting (Cox, 1975):

Approach 7. Apply binary segmentation to the odd timepoints. For the jth es-
timated changepoint, test H0 : ν>µ = 0 on the even timepoints, with ν in (6),
without conditioning.
Approach 8. Apply `0 segmentation to the odd timepoints. For the jth estimated
changepoint, test H0 : ν>µ = 0 on the even timepoints, with ν in (6), without
conditioning.

Because we estimate and test the changepoints on two separate halves of the data, we
can apply a standard z-test in Approaches 7 and 8 (Fithian et al., 2014).

In addition to calculating the empirical power (30) for each approach, we also consider
each approach’s ability to detect the true changepoints. This is defined as the fraction
of true changepoints for which there is an estimated changepoint within ±m timepoints,

̂Detection probability :=

∑K
i=1 1(min1≤l≤K |τi−τ̂l|≤m)

K
. (31)

Panels b) and c) of Figure 4 display the power and detection probability for Ap-
proaches 1–4 and 7–8, with α = 0.05 and m = 2. Approach 4 (which makes use of
`0 segmentation, and conditions only on the jth estimated changepoint) performs the
best, in terms of both power and detection probability, especially as δ increases. Figure 4
also illustrates the benefit of the inferential framework developed in this paper over naive
sample-splitting approaches. Sample splitting has limited ability to detect changepoints,
since only half of the data is used to estimate changepoints.

6.5. Assessment of different window sizes for testing H0 : ν>µ = 0 for ν in (13)
Figure 4 suggests that Approaches 3 and 4 from Section 6.1 have high power. However,
they require pre-specifying the window size h in (13). We now address this possible
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Fig. 4. Empirical power and detection probability for different changepoint estimation and infer-
ence procedures. a) Power for Approaches 1–4, which are described in Section 6.1, as well as
Approaches 7–8, which are described in Section 6.4. b) Detection probability for binary seg-
mentation and `0 segmentation using all of the data, as well as half of the data. In this panel,
the curve shown for Approach 1 applies to Approaches 1-3 since Approaches 1-3 use binary
segmentation. c) Power of Approaches 3 and 4 for testing H0 : ν>µ = 0 for ν in (13), for three
values of the window size h.

weakness. In Figure 4c), we assess the performance of Approaches 3 and 4 with h ∈
{1, 30, 50, 100}. In this particular setting, we see that our test has high power when h
takes on a value of around 50. However, in general, the optimal value of h will depend
on the true positions of changepoints. In Section 8.1 we discuss an extension that does
not rely on a fixed window size h.

7. Real data example

We now consider guanine-cytosine (G-C) content on a 2Mb window of human chromo-
some one, binned so that T = 2000. Data was originally accessed from the National
Center for Biotechnology Information, and is available via the R package changepoint

(Killick and Eckley, 2014). We used a consistent estimator of σ described in Section 8.3
to scale the data and calculate p-values.

We estimate changepoints using k-step binary segmentation, where k = 38 is cho-
sen based on the modified Bayesian information criterion (Zhang and Siegmund, 2007)
implemented in the changepoint package. To facilitate comparisons, we then fit `0
segmentation using a value of λ that yields 38 changepoints. Figure 5 displays the
estimated changepoints from these two methods, along with an indication of whether
Approaches 1–4 from Section 6.1 resulted in a p-value below 0.05. The number of dis-
coveries (estimated changepoints whose p-value is less than 0.05) is substantially greater
using Approaches 2–4 than using Approach 1, which conditions on far more information.
Approach 1 results in 15 discoveries, versus 26, 25, and 27 in Approaches 2, 3, and 4,
respectively. These p-values can be adjusted for multiple testing using ideas from e.g.
Benjamini and Hochberg (1995), Storey (2002), and Dudoit and Van Der Laan (2007).
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Fig. 5. The number of discoveries depends on the size of the conditioning set. Each panel
displays scaled G-C content on a 2Mb window of human chromosome one. The G-C content
is binned leading to T = 2000 (displayed in black). Estimated changepoints from Approaches
1–4 from Section 6.1 (organized by panel) for which the p-value is less than 0.05 are displayed
in blue; the remaining estimated changepoints are displayed in red.

8. Discussion

8.1. Larger conditioning sets for testing (9) with ν in (6)

No special properties of the conditioning set were used to prove Theorem 1. Thus, instead
of conditioning on the full set of changepoints as in Section 3.1, we could have instead
conditioned on the jth estimated changepoint and its immediate neighbors. This would
yield the p-value p = Pr

(
|φ| ≥ |ν>y| | {τ̂j−1, τ̂j , τ̂j+1} ⊆ M(y′(φ))

)
. Characterizing the

set S = {φ : {τ̂j−1, τ̂j , τ̂j+1} ⊆ M(y′(φ))} would require only minor modifications to the
algorithms in Sections 4 and 5 and the Supplementary Materials.

8.2. Extensions to related problems
The ideas in this paper apply beyond the change-in-mean model (1). For instance, they
can be applied to the analysis of data from calcium imaging, a recent technology for
recording neuronal activity in vivo (Dombeck et al., 2007). A number of authors (Vo-
gelstein et al., 2010; Friedrich et al., 2017) have assumed that the observed fluorescence
trace for a neuron, yt, is a noisy version of the underlying calcium concentration, ct,
which decays exponentially with a rate γ < 1, except when there is an instantaneous
increase in the calcium because the neuron has spiked, st > 0:

Yt = ct + εt, εt
iid∼ N(0, σ2), ct = γct−1 + st.
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In this model, scientific interest lies in determining the precise timepoints of the spikes,
i.e. the set {t : st > 0}. Jewell and Witten (2018) and Jewell et al. (2020) estimate this
quantity by solving a variant of the `0 segmentation problem (4) in Section 2.1.2. The
framework from Section 3, and the algorithms from Section 5, can be used to test the
null hypothesis that there is no increase in the calcium concentration around a spike,
H0 : ν>c = 0, for a suitably chosen contrast ν. Details are in Chen et al. (2021).

It is natural to wonder whether these ideas can be extended to the change-in-slope
proposals of Fearnhead et al. (2019) and Baranowski et al. (2019). Extending the ideas
in Section 5 to the former is quite challenging, since the continuity constraint in the
optimization problem induces dependence across segments that complicate the develop-
ment of computationally-feasible recursions. By contrast, the latter is closely related to
binary segmentation, and so an extension of the approach in Section 4 can be applied.

8.3. Additional extensions
Relaxing assumptions in (1) The model (1) assumes that the error terms are Gaussian,
independent, and identically distributed. These assumptions are critical to the proof of
Theorem 1, as they guarantee that ν>Y and Π⊥ν Y are independent. However, recent
work in selective inference has focused on relaxing these assumptions (Tian et al., 2018;
Tibshirani et al., 2018; Taylor and Tibshirani, 2018), and may be applicable here.

Estimation of the error variance in (1) Throughout this paper, we have assumed
that the error variance in (1) is known. However, if it is unknown, then we can plug
in any consistent estimator of σ in evaluating the p-values in (9) and (14). Then,
under H0 : ν>µ = 0, the resulting p-values will converge in distribution to a Unif[0, 1]
distribution, i.e. they will have asymptotic Type 1 error control. In Section F of the
Supplementary Materials, we present the results of a simulation study using a simple
consistent estimator of σ obtained by taking the median absolute deviation of the first
differences of y1, . . . , yT and dividing by

√
2Φ−1(3/4). We see that this approach leads

to adequate Type 1 error control, as well as substantial power under the alternative.

Confidence intervals The conditional distribution of ν>Y can be used to develop a
confidence interval for ν>µ that has correct selective coverage; see, e.g., Lee et al. (2016).
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