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Abstract12

The network capacity expansion problem is a key network optimization problem practitioners regularly13

face. There is an uncertainty associated with the future traffic demand, which we address using a14

scenario-based robust optimization approach. In most literature on network design, the costs are15

assumed to be linear functions of the added capacity, which is not true in practice. To address this, two16

non-linear cost functions are investigated: (i) a linear cost with a fixed charge that is triggered if any arc17

capacity is modified, and (ii) its generalization to piecewise-linear costs. The resulting mixed-integer18

programming model is developed with the objective of minimizing the costs.19

Numerical experiments were carried out for networks taken from the SNDlib database. We show20

that networks of realistic sizes can be designed using non-linear cost functions on a standard computer21

in a practical amount of time within negligible suboptimality. Although solution times increase in22

comparison to a linear-cost or to a non-robust model, we find solutions to be beneficial in practice. We23

further illustrate that including additional scenarios follows the law of diminishing returns, indicating24

that little is gained by considering more than a handful of scenarios. Finally, we show that the results25

of a robust optimization model compare favourably to the traditional deterministic model optimized26

for the best-case, expected, or worst-case traffic demand, suggesting that it should be used whenever27

computationally feasible.28
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1 Introduction33

Network design and capacity planning has always been of strategic importance in most34

organization. This implies that it needs to be decided far ahead of time based on the35

estimation of future traffic demand. Projection for future traffic is usually done using traffic36

measurements and population statistics in combination with other marketing data. This37

often results in a large discrepancy between planned and actual carried traffic volume and38

distribution.39

To provide a more detailed motivation and positioning of our paper, we focus on the40

telecommunications field (other network design applications, such as line planning for41

public transport, are also well within the scope of this work). Here, this discrepancy could42
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be as large as 10% according to [3]. Hence, the re-forecasting and re-planning becomes a43

continuous exercise using traffic measurements and traffic optimization tools, which are44

often based on deterministic concepts assuming the traffic demand is estimated without45

error.46

The demand for capacity in mobile wireless networks has seen an ever-growing trend47

in the last couple of decades and growth rate is expected to be even higher going into the48

future. This explosion in demand for data is coming at a lower cost rate. This means that in49

order to provide an acceptable quality of service, capacity will need to be regularly extended50

with optimal investment in capital expenditure. This balancing act of traffic volume, quality51

of service and capital expenditure has made network capacity expansion a key strategic52

function resulting in high global telecoms investment. Similar capacity expansion challenges53

are present to network designers and operators in other types of networks as well, such54

as transport networks. The network capacity expansion problem can hence be considered one55

of the key network optimization problems practitioners are expected to regularly face in56

present and future.57

To have a network that is robust against uncertain estimated traffic demand, this un-58

certainty needs to be factored in already during the planning and design process, which59

we address using a scenario-based robust optimization approach. This methodology is60

geared towards producing results that are insensitive to the uncertain demand, by solving61

the problem using two separate stages. In the first stage, we determine the capacity expan-62

sion, and in the second stage, demand scenarios are realized. The resulting mixed-integer63

programming model is developed with the objective of minimizing costs.64

In most literature on network design, costs are assumed to be linear functions of the65

added capacity, which is not true in practice. Real-world costs typically follow a volume66

discount regime which is reflected by a non-linear function, which can be attributed to67

bulk buy. To address this, two non-linear cost functions are investigated in this paper: (i) a68

linear cost with a fixed charge that is triggered if any arc capacity is modified, and (ii) its69

generalization that is piecewise-linear in added capacity.70

To the best of our knowledge, this is the first paper that includes non-linear cost func-71

tions in the robust network capacity planning problem. This extension leads to a more72

computationally-demanding model than the one with linear cost. The contributions of73

our paper are as follows: We show that networks of realistic sizes can be designed using74

non-linear cost functions in a practical amount of time within negligible suboptimality.75

We present the benefits of considering a robust optimization model (even with two scen-76

arios) instead of the traditional deterministic model, and present the benefits of considering77

non-linear costs instead of the usual linear costs. It is illustrated that including additional78

scenarios approximately follows the law of diminishing returns, indicating that little is79

gained by considering more than a handful of scenarios. Finally, we show that the results80

of a robust optimization model compare favourably to the traditional deterministic model81

optimized for the best-case, expected, or worst-case traffic demand, suggesting that it should82

be used whenever computationally feasible.83

The rest of this paper is organized as follows. section 2 presents a literature review of84

related research. In section 3, we then introduce the problem description of robust network85

capacity expansion and mathematical models. Experimental results using networks from86

the SNDLib (see [21]) are discussed in section 4. Finally, section 5 concludes our work and87

points out future research directions.88
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2 Literature Review89

2.1 Robust Optimization in Network Design90

In robust optimization, we assume that all possible data scenarios are given in form of91

an uncertainty set. For general surveys, we refer, e.g., to [13, 14]. The classic approach92

aims at finding a solution that is feasible for all scenarios from the uncertainty set, while93

optimizing a worst-case performance. This approach is relaxed through two-stage robust94

optimization, where not all decisions need to be taken in advance, see [6]. Instead, one95

distinguishes between "here and now" decisions that need to be fixed in advance, and "wait96

and see" variables that are determined once a scenario has been revealed. Two-stage robust97

optimization problems are also known as adjustable robust counterparts.98

Adjustable robust optimization has been applied to radio telecommunication services in99

the area of network design and expansion. This helps to model decisions that are delayed in100

time, e.g., traffic needs to be routed only once the demand scenario is known. Three closely101

related problems are the radio network design problem, the radio network loading problem102

and the virtual private network problem [17].103

In telecoms, the long term strategic network planning can be viewed as the first stage104

"here and now" decision making, while the traffic redistribution that occurs after the real-105

isation of the traffic demand pattern would be the second stage "wait and see" adjustment106

decision. Unrestricted second stage recourse in robust network design is called dynamic107

routing, see [7]. Most applications of adjustable robust optimization have focused on108

approximations that put a restriction on the recourse.109

A special type of recourse restriction based on a specific type of uncertainty model (Hose110

model) has been proposed independently by [11] and [12] for an asynchronous transfer111

mode and broadband traffic network. They also introduced the concept of static routing,112

which [5] applied under their generalized polyhedral uncertainty model using a column113

and constraint generation algorithm. [20] investigated network capacity expansion under114

demand and cost uncertainty and recently, [23] used a cutting plane algorithm while taking115

into consideration the outsourcing costs for unmet demand. Some papers use an affine116

decision rule to restrict the recourse decisions, thus creating a tractable robust counterpart.117

[22] introduced affine routing in the their robust network capacity planning model, while118

[24] and [3] used polyhedral uncertainty sets. On the other hand, [2] study the problem in119

detail by exploiting the underlying network structure.120

2.2 Related Work on Non-linear Cost Functions121

In general, routing costs, transportation costs or capacity costs can be a non-linear functions122

of traffic flows. In the following, we review literature on fixed-charge costs and piecewise-123

linear costs.124

2.2.1 Fixed-Charge Cost Models125

In a network with fixed-charge costs, an initial outlay cost is incurred to make an arc126

available. In this setting, one needs to pay a fixed initial cost in addition to the arc expansion127

cost. The fixed costs could be the installation costs, cabinet outlay costs, additional energy128

or utility costs and line replacement costs. Applications are found in wide areas of network129

design problems and not limited to energy networks, transportation and communication. A130

survey is provided by [16] that demonstrate many applications in logistics, transportation131
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and communications. The fixed-charge cost network design problem (FCND) has been132

found to be NP-hard, see [16, 19].133

Literature on the FCND has concentrated on solution algorithms for the different model134

variants. [8] addressed the multi-commodity capacitated FCND using a cutting plane135

algorithm with an improvement on the mixed-integer programming (MIP) formulation. [9]136

presented a detailed survey on the use of Benders decomposition to solving a wide range137

of FCND’s which includes two facility networks. This can be viewed as a two-commodity138

network with a variant that introduces a quality of service measure. In [1], a heuristic139

approach for separating and adding violated partition inequalities was implemented. [26]140

solved a FCND using a variant of Benders decomposition which they referred to as the141

Bender-and-cut technique. The closest work to our model is [18]. Here, they formulate142

a robust network design problem with both transportation cost and demand uncertainty.143

Investment in arc capacity is modeled as a binary decision (i.e., expansion or no expansion).144

The model is approximated using an affine decision rule.145

2.2.2 Piecewise-Linear Cost Models146

The piecewise-linear cost model (PLC) can be used to model costs with economies of scale.147

In general, optimization problems involving PLC arise in domains including transportation,148

communications networks, large scale integrated circuits, supply chain management and149

logistics planning. They are usually modeled as MIPs, see [25]. The problem has been150

proven to be NP-hard for general concave cost objective functions, see [15].151

As is the case for fixed-charge costs, most literature in this domain tends to focus on152

solution algorithms, see [10]. A continuous relaxation technique for solving network design153

with piecewise-linear costs was presented by [19]. [15] noted that exact techniques based on154

dynamic programming and branch and bound are only efficient for specific subclasses of155

the problem. A number of MIP model formulations exist for piecewise-linear functions. The156

names for these were unified in [27], which also provides a performance comparison. In157

terms of execution speed, they recommended the use of Multiple Choice Model (MCM) by158

[4] or the Incremental approach for a small number of segments.159

3 Problem Formulation160

We consider s a multi-commodity network design problem where capacities are to be added161

on top of existing ones on a subset of arcs, with the aim of minimizing the total cost involved162

and so that routing of traffic for the different commodities over the arcs subject to design and163

network constraints is possible. We call this problem the Robust Network Capacity Expansion164

Problem (RNCEP). We first introduce the basic problem version with linear costs, before165

introducing two non-linear cost extensions.166

3.1 RNCEP with Linear Costs167

A communications network topology can be represented by a directed connected graph168

G = (V,A). Each of the arcs a ∈ A has an original capacity ua. The original capacity on each169

arc a can be expanded at a cost ca per each additional unit of capacity. A set of commodities170

K represents potential traffic demands. A commodity k ∈ K corresponds to node pair171

(sk, tk) ∈ V × V and a demand dk ≥ 0 for traffic from sk to tk. The actual demand values172

are considered to be uncertain and depend on random scenarios ξ ∈ Ξ. We assume a finite173
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set Ξ = {ξ1, . . . , ξN} of possible demand scenarios and write dk(ξ) for the demand of pair174

(sk, tk) in scenario ξ.175

The robust network capacity expansion problem is to find a minimum-cost installation176

of additional capacities while satisfying all traffic demands dk(ξ) for all k ∈ K and all ξ ∈ Ξ.177

In this respect, RNCEP is a two-stage robust program. The additional capacity we install on178

arc a ∈ A is denoted by xa and is a first stage decision variable, which has to be fixed before179

observing a demand realization ξ ∈ Ξ. Once the demand scenario ξ becomes known, traffic180

is routed through a multi-commodity flow with variables fka (ξ).181

Let δ+(v) and δ−(v) denote the sets of outgoing and incoming arcs at node v ∈ V ,182

respectively. The problem can now be formulated as the following linear program.183

min
∑
a∈A

caxa (1)184

s.t.
∑

a∈δ−(v)

fka (ξ)−
∑

a∈δ+(v)

fka (ξ) =


−dk(ξ) if v = sk

dk(ξ) if v = tk

0 otherwise

∀v ∈ V, k ∈ K, ξ ∈ Ξ (2)185

∑
k∈K

fka (ξ) ≤ ua + xa ∀ξ ∈ Ξ, a ∈ A (3)186

fka (ξ) ≥ 0 ∀k ∈ K, ξ ∈ Ξ, a ∈ A (4)187

xa ≥ 0 ∀a ∈ A (5)188
189

Objective function (1) is to minimize the total cost of capacity expansion subject to flow190

conservation constraint (2), while constraint (3) imposes that the amount of flow does not191

exceed the sum of existing and added arc capacity.192

3.2 RNCEP with Fixed-Charge Costs193

We now introduce an extension of the previous model, where a fixed charge occurs if the194

capacity of an arc is modified. To this end, let pa be this fixed charge associated with arc195

a ∈ A.196

We introduce a new variable ha ∈ {0, 1} to denote if the capacity of arc a is modified.197

The RNCEP with fixed-charge costs can then be formulated as the following mixed-integer198

program:199

min
∑
a∈A

(caxa + hapa) (6)200

s.t. xa ≤Maha ∀a ∈ A (7)201

ha ∈ {0, 1} ∀a ∈ A (8)202

Constraints (2)− (5) (9)203
204

Here, Ma for all a are constants that are sufficiently large not to restrict the solution. For205

instance, taking any Ma ≥ maxξ∈Ξ
∑
k∈K d

k(ξ) for all a is valid.206

3.3 RNCEP with Piecewise-Linear Cost207

We further extend the RNCEP by introducing a piecewise-linear cost function. To this208

end, we apply the multiple choice model (MCM) as mentioned in the literature review.209

We assume that for every arc, there are up to S segments with different slopes in the cost210
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function. Let us write S = {1, . . . , S}. For every arc a and segment s, let bsa denote the load211

breakpoint, with an additionally defined b0a := 0. Let csa denote the cost slope of segment s,212

and psa its y-intercept.213

In addition to the variables of RNCEP, we introduce two new sets of auxiliary variables.214

Variables hsa are binary variables that select the cost segment where the added capacity215

xa falls in. Variables xsa denote the amount of capacity that is added within each cost216

segment. This gives the following mixed-integer programming formulation for the RNCEP217

with piecewise-linear costs:218

min
∑
s∈S

∑
a∈A

(csaxsa + hsap
s
a) (10)219

s.t. xa =
∑
s∈S

xsa ∀a ∈ A (11)220

bs−1
a hsa ≤ xsa ≤ bsahsa ∀a ∈ A, s ∈ S (12)221 ∑
s∈S

hsa ≤ 1 ∀a ∈ A (13)222

xa ≤Ma

∑
s∈S

hsa ∀a ∈ A (14)223

xsa ≥ 0 ∀a ∈ A, s ∈ S (15)224

hsa ∈ {0, 1} ∀a ∈ A, s ∈ S (16)225

Constraints (2)− (5) (17)226
227

4 Experimental Study228

We implemented the fixed-charge cost model and the piecewise-linear cost model using229

instances from the SNDLib library by [21]. Network parameters characteristics on the four230

considered networks from SNDLib are presented in Table 1.231

Table 1 Network parameters characteristics (rounded to integers)

Network Janos26 Janos39 Sun27 Node39
|V| 26 39 27 39
|A| 84 122 102 172
|K| 650 1,482 67 1,471
dk (mean±SD) 123±198 69±243 28±16 5±2
ua (mean±SD) 64±0 1,008±0 40±0 160±0
ca (mean±SD) 468±225 313±162 19±10 23±11

Models were implemented using Julia and Gurobi version 7.5 on a Lenovo desktop232

machine with 8 GB RAM and Intel Core i5-6500 CPU at 2.50Ghz on 4 Cores. We used a time233

limit of 4000s for each problem instance and optimality is achieved once the optimality gap234

is below 0.01%.235

4.1 Experimental Setup236

Both the fixed-charge cost and the piecewise-linear cost models were implemented with237

one scenario (single-scenario) and with two scenarios (double-scenario). The base demand238

scenario was provided from the SNDLib library, which we randomly modified to generate239

additional demand scenarios. The amount of modification is controlled by a parameter240
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Table 2 Experimental setup for generating 120 problem instances for each network.

Parameters # options Options
Number of scenarios 2 1 (single) / 2 (double)
Scenario variability λ 2 0.3d̂ / 0.6d̂
Fixed-charge factor P 3 0 / 10 / 100
Number of runs 10 —

Table 3 Proportion of instances not solved to optimality within the time limit (rounded to one
decimal).

Network Janos26 Janos39 Sun27 Node39
Total 0.0% 24.2% 35.0% 66.7%

P = 0 0.0% 0.0% 0.0% 0.0%
P = 10 0.0% 0.0% 12.5% 100.0%
P = 100 0.0% 72.5% 92.5% 100.0%

Single-scenario 0.0% 15.0% 28.3% 66.7%
Double-scenario 0.0% 33.3% 41.7% 66.7%

λ, the maximum deviation of modified demand from the base demand. The parameter λ241

is chosen to be a fraction of the mean base demand d̂; we consider λ = round(0.3d̂) and242

λ = 2 · round(0.3d̂), corresponding to small uncertainty and large uncertainty, respectively.243

The value is then used as a bound for uniformly generating the modified demands around244

the base demand of every arc.245

We summarize the experimental setup in Table 2. For each of the four networks, we con-246

sider the single-scenario and the double-scenario case, as well as small and large uncertainty.247

Additionally, for fixed-cost models we use three different fixed-charge factors P . These are248

used to calculate the fixed charges pa of arc a by setting pa = Pca. With P = 0, we recover249

the basic linear cost model without fixed charge. All networks and parameter settings are250

run 10 times to reduce variability in the results. In total, this gives 4 · 2 · 2 · 3 · 10 = 480251

optimization problem instances that need to be solved for the fixed charge case. For the252

piecewise-linear case, we follow the same setup with 4 · 2 · 2 · 10 = 160 instances. Each arc253

has three cost segments where the cost of each segment is calculated as ratio of the nominal254

arc cost. This gives segment costs as csa = ca · rs where r ∈ {1.00, 0.90, 0.75}.255

4.2 Results for RNCEP with Fixed-Charge Cost256

4.2.1 Single- and Double-Scenario Results257

Table 3 summarizes the results of the 480 problem instances, reporting the proportion258

of instances that were not solved to optimality within the time limit. We can see the259

optimization performance of problem instances in total, for different values of P , and for260

different number of scenarios. This performance measure gives a high-level summary of the261

hardness of particular instances. We can conclude that the instances become harder to solve262

as P increases, or as the number of scenarios increases.263

Other performance metrics are presented in more detail in Table 4 and Table 5, where264

each cell gives an average and standard deviation from a sample of 20 problem instances.265

Optimality gap refers to the sub-optimality estimated and reported by Gurobi using the266

built-in procedure for lower-bounding the objective. Solution time is the time reported by267

Gurobi, capped by the time limit. Capacity added is the overall network capacity added on268

ATMOS 2019
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Table 4 Single-scenario results (rounded to one decimal).

Janos26 Janos39 Sun27 Node39
Optimality gap P = 0 0.0% 0.0% 0.0% 0.0%

P = 10 0.0% 0.0% 0.0% 7.7 ±2.9%
P = 100 0.0% 0.3 ±0.6% 5.0 ±2.8% 51.9 ±4.8%

Solution time P = 0 6.5 ±0.5 156.9 ±17.0 0.3 ±0.1 536.4 ±82.2
P = 10 7.4 ±0.6 227.1 ±86.0 201.7 ±201.4 4,000.1 ±0.0
P = 100 10.8 ±2.1 3,120.9 ±1,088.0 3,694.8 ±815.9 4,000.1 ±0.1

Capacity added P = 0 268,698 ±23,970 331,864 ±57,041 3,043 ±271 1,194 ±357
P = 10 270,931 ±23,195 329,330 ±54,751 2,925 ±412 1,204 ±281
P = 100 275,409 ±23,476 321,808 ±53,261 3,652 ±447 1,167 ±357

Table 5 Double-scenario results (rounded to one decimal).

Janos26 Janos39 Sun27 Node39
Optimality gap P = 0 0.0% 0.0% 0.0% 0.0%

P = 10 0.0% 0.0% 0.1 ±0.2% 11.0 ±1.8%
P = 100 0.0% 1.3 ±0.5% 10.8 ±1.4% 57.1 ±3.3%

Solution time P = 0 88.4 ±25.1 1,285.6 ±349.5 1.2 ±0.2 2,256.6 ±317.9
P = 10 92.2 ±21.0 2,373.9 ±770.5 1,729.0 ±1,418.2 4,000.2 ±0.1
P = 100 189.0 ±57.7 4,000.3 ±0.2 4,000.1 ±0.1 4,000.2 ±0.1

Capacity added P = 0 278,358 ±8,988 363,225 ±26,348 4,399 ±304 1,185 ±154
P = 10 278,031 ±7,857 367,324 ±18,522 4,635 ±329 1,286 ±254
P = 100 282,467 ±9,830 368,547 ±19,887 5,668 ±503 1,236 ±254

top of the original capacity (which can be calculated as |A|ua from Table 1).269

Interestingly, network Sun27 shows large variability in solution time, for both single-270

scenario and double-scenario settings. While with P = 0 it is the quickest to solve out of271

all networks, for larger values of P it is roughly similar to Janos39, despite dealing with a272

smaller number of commodities. On the other hand, solution time of Janos26 is affected273

very little by different values of P .274

Comparing the solution time reported in Table 4 and Table 5, the double-scenario model,275

as expected, takes longer to solve to optimality as the goal here is to factor in robustness into276

the solution. On average, this double-scenario model resulted in 7.39% additional capacity277

across the networks for instances that were solved to optimality. The average increase in278

solution time across the instances that were solved to optimality is 828.24%.279

We also note that capacity added is highly network dependent. The capacity of Janos26280

and Janos39 is expanded dramatically due to the high variability in the demand, which for281

some commodities significantly exceeds the original capacity (see Table 1). On the other282

hand, the demands in Sun27 and Node39 are small compared to the original capacity, so the283

capacity added is relatively small.284

Not reported elsewhere is the effect of scenario variability λ: the solution time becomes285

smaller if the uncertainty is larger, i.e., on the average for all the networks and parameter286

settings, the 0.6d̂ variability results in lower solution times than for the 0.3d̂ variability. This287

was also found to be the trend when looking at single networks. This is summarized in288

Table 6.289

Overall, it is possible to solve most of the problem instances to optimality within the290

time limit, and even most of those not solved to optimality report very small optimality gap.291

The only settings that would significantly benefit from an increased time limit are Sun27 at292

P = 100 and Node39 at P = 10 and P = 100.293
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4.2.2 Effect of Number of Scenarios294

While the previous discussion focused only on single- and double-scenario instances, it is295

also of interest to understand how an increased number of scenarios affects the performance296

measures. Considering more scenarios is expected to lead to a solution which in practical297

terms guarantees the network ability to accommodate a higher level of demand variation298

and provides additional capacity.299

To illustrate that, we tested network Janos26 with fixed charge P = 10. We started300

with a single-scenario instance, where the base scenario considered reflects the expected301

demand (this is the original demand from SNDLib). We then generated and gradually302

added additional scenarios by randomly perturbating all the demands of the base scenario303

within ±λ, in the large uncertainty setting.304

For comparison, we also considered the optimistic instance, which is a single-scenario305

instance in which the demand is generated by subtracting λ from the expected demand on306

every arc. This instance expands the capacity of the network to satisfy only the smallest307

demand scenario, and would be almost surely unable to satisfy the realized demand. Finally,308

we considered the pessimistic instance, which is a single-scenario instance in which the309

demand is generated by adding λ to the expected demand on every arc. This instance310

expands the capacity of the network to satisfy all the possible demand scenarios.311

The results are presented in Table 7. These results are representative; similar results312

were obtained when we replicated the experiment with other randomly generated scenarios.313

The key observations are as follows: By gradually expanding the set of scenarios, the cost314

(our minimization objective) non-decreases; the added capacity follows a similar trend, but315

is not necessarily monotone (cf. 8 vs 9 scenarios); the solution time (reported in seconds316

and as a multiple of the expected scenario instance) increases exponentially; expansion317

by adding more scenarios approximately follows the law of diminishing returns in both318

the cost and added capacity: the increase is highest when expanding from 1 (expected)319

scenario to 2 scenarios (which includes the expected scenario and one randomly generated),320

with only a minor increase when considering more than 3 scenarios, indicating the value of321

considering a robust optimization approach even with few scenarios; the increase in both the322

cost and added capacity is dramatic (36.9%) when expanding from 1 (expected) scenario to323

2 scenarios (which includes the expected scenario and one randomly generated), indicating324

that optimizing the network based on the expected scenario (i.e. on point forecasts) only may325

be an inappropriate approach, leading to a large amount of unsatisfied realized demand;326

optimizing the network for the pessimistic scenario is very expensive (the increase in both327

the cost and added capacity is about 115% compared to the expected scenario), indicating328

the value of considering a robust optimization approach even with few scenarios; optimizing329

the network for the optimistic scenario leads to savings (the decrease in both the cost and330

added capacity is about 10% compared to the expected scenario), but may not be acceptable331

in practice if the consequences of having practically no satisfied realized demand are non-332

negligible.333

Table 6 Effect of higher λ on solution time.

Solution Time Single Scenario Double Scenario

λ = 0.3d̂ 527.31 3,010.85
λ = 0.6d̂ 346.62 2,299.23

% Improvement 34.3% 23.6%

ATMOS 2019



XX:10 Robust Network Capacity Expansion with Non-linear Costs

Table 7 Results on Janos26 with fixed-charge cost (P = 10) for different numbers of scenarios.

# Scenarios Cost ∆Cost Added ∆Added Time ∝Time
(in 103) Capacity Capacity (sec.)

1 (optimistic) 83,001 -10.9% 192,610 -9.2% 8 1x

1 (expected) 93,116 — 212,104 — 8 —
2 127,484 36.9% 292,893 38.1% 59 8x
3 129,804 39.4% 298,131 40.6% 376 50x
4 130,265 39.9% 300,426 41.6% 768 102x
5 130,272 39.9% 300,492 41.7% 1,080 143x
6 130,462 40.1% 300,913 41.9% 3,124 413x
7 130,753 40.4% 301,598 42.2% 2,488 329x
8 131,206 40.9% 301,936 42.4% 4,456 589x
9 131,255 41.0% 301,715 42.2% 8,869 1173x

1 (pessimistic) 200,593 115.4% 456,182 115.1% 8 1x

Table 8 Solution results for piecewise-linear cost.

Single-Scenario Sun27 Janos26 Janos39 Node39
Optimality Gap 0.00% 2.90% 10.43% 22.43%
Solution time 653.67 ±640.84 4000.22 ±0.11 4000.22 ±0.06 4000.16 ±0.04
Capacity Added 2,863 ±539 276,172 ±26,036 335,258 ±58,895 1,472 ±574
Double-Scenario
Optimality Gap 1.43% 6.73% 37.44% 77.99%
Solution time 4000.04 ±0.01 4000.21 ±0.23 4000.10 ±0.03 4000.12 ±0.04
Capacity Added 4,380 ±278 296,354 ±11,398 472,889 ±110,491 4,117 ±2,601

These results provide an indication of the ability of our model to become more robust334

by including more demand scenarios. We note that Gurobi was able to deal with up335

to approximately 200 scenarios for this network without giving an out-of-memory error,336

however, it would be unlikely to compute a close-to-optimal solution in a reasonable amount337

of time.338

4.3 Results for RNCEP with Piecewise-Linear Costs339

Next we consider the robust network capacity expansion problem with piecewise-linear340

costs. Overall, 12.5% of all problem instances were solved to optimality within the time341

limit, 77.5% returned a non-optimal solution, and 10% were timed out already during the342

root relaxation. None of the double-scenario problem instances reached optimality within343

the time limit. Only one of the networks, Sun27, reached optimality and this was for all344

the problem instances in the single-scenario case. Two networks, Janos39 and Node39, had345

instances timing out under the root relaxation phase.346

Table 8 presents more detailed results of this model for each network. The optimality347

gap is further illustrated in Figure 1, indicating that the optimality gap may be acceptable348

because of small values and small variability for Sun27 and Janos26 in the single-scenario349

setting and for Sun27 in the double-scenario setting. Better solutions can of course be350

achieved by increasing the time limit, which would be recommendable in the remaining351

settings.352

The optimality gap provides insight into the increased difficulty of solving these problem353

instances, which also translates into longer solution time. It takes at least 512% more time354

to solve the double-scenario models compared to the single-scenario using Sun27 network,355

which is the easiest setting considering its very low optimality gap of 1.43% for the double-356
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Figure 1 Optimality gap for piecewise-linear cost.

scenario instances. A further analysis was performed on the solution time using the paired357

sample t-Test which indicates no significant difference between solution time returned by358

0.3d̂ and 0.6d̂ with a t-statistic of −0.2047 and a p-value 0.8423.359

5 Conclusions360

In this paper, a robust approach to network capacity expansion with non-linear cost functions361

was investigated. We developed robust models with fixed-charge costs and with piecewise-362

linear costs. They were implemented on four networks taken from the SNDlib, [21], with363

results compared to using linear costs. In the experimental setup, a number of possible364

parameter configurations was considered, including different demand variability and fixed-365

charges.366

When further increasing the number of scenearios, we found that results follow a law367

a diminishing returns. While objective values and added capacity change little beyond368

five scenarios, computation times increase considerably. This is an indicator that already369

few scenarios suffice to find solutions that are robust against uncertainty in demand. The370

next pursuit will be to further improve the solution time for these models by developing371

specialized algorithms.372
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