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ABSTRACT
Fault-tolerance (FT) support is a key challenge for ensuring depend-
able Internet of Things (IoT) systems. Many existing FT-support
mechanisms in IoT are static, tightly coupled, inflexible implemen-
tations that struggle to adapt in dynamic IoT environments. This
paper proposes Complex Patterns of Failure (CPoF), an approach to
providing reactive and proactive FT using Complex Event Process-
ing (CEP) and Machine Learning (ML). Error-detection strategies
are defined as nondeterministic finite automata (NFA) and imple-
mented via CEP systems. Reactive-FT support is monitored and
learned from to train ML models that proactively handle immi-
nent future occurrences of known errors. We evaluated CPoF on
an indoor agriculture system with experiments that used time and
error correlations to preempt battery-depletion failures. We trained
predictive models to learn from reactive-FT support and provide
preemptive error recovery.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems;Dependable and fault-tolerant systems and
networks; • Computing methodologies → Machine learning.
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1 INTRODUCTION
The Internet of Things (IoT) provides an infrastructure for a vast net-
work of real-world “things” to be discoverable and interconnected
in order to achieve greater value and services in domains such as
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logistics, healthcare, and agriculture [4, 20]. An important chal-
lenge to realize IoT is how to provide a dependable infrastructure
for billions of devices and deliver their intended services without
failing in unexpected and catastrophic ways [9]. This problem can
be addressed by designing IoT systems to support fault tolerance
(FT) so that they can detect errors caused by faults and recover
from them to mitigate and prevent service failures.

The dynamic and emergent nature of IoT systems makes it diffi-
cult to specify adequate error detection and recovery mechanisms
a priori. Most IoT systems operate in dynamic contexts, where new
services, devices, and features may be added, removed, and changed
over time. Therefore, IoT systems should be able to harness context
awareness for dynamic and intelligent decision making [32]. For FT,
this means that error-detection logic must constantly evolve with
system changes.

Current FT-support implementations in IoT are inadequate be-
cause they are designed for bespoke architectures [31] and specific
applications (e.g. healthcare [36]), and only designed to handle spe-
cific faults (e.g. component failures [16] and communication link
failures [18]). IoT systems present three key challenges for ensuring
effective FT support, namely: (1) how do we infer erroneous system
behaviors given system context? (2) How do we mask the failure
of many constrained and ephemeral smart objects? (3) How do we
ensure FT support remains relevant?

Sezer et al. [29] identify that both rule-based and supervised
learning approaches are commonly used for context-based rea-
soning in IoT systems. Complex Event Processing (CEP) is used in
research and industry to identifying complex situations (composite
events) by defining rule-based patterns in stream data (primitive
events). It is considered the paradigm of choice for monitoring and
reactive applications [6, 13], making it ideal for reactive, context-
aware FT support.Machine Learning (ML) has beenwidely proposed
in literature to address many IoT use cases, such as smart traffic/ci-
ties, healthcare, and agriculture [23]. In IoT, ML has been used for
making predictions, finding insights hidden in data, and making
intelligent decisions from the big data generated in IoT [24]. These
attributes are useful for providing data-centric FT support that
uses data to identify and anticipate erroneous system behaviors for
proactive FT support.

Our proposed solution is Complex Patterns of Failure (CPoF), an
approach that uses CEP and ML to provide reactive- and proactive-
FT support for IoT systems, where error-detection events are de-
fined as nondeterministic finite automata (NFA) which act as input
to CEP systems. Events are recursively fed back into the CEP sys-
tem for use in more complex detection events, a process we call
Complexity via Recursion (CvR). Error events are used to train ML
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models to preemptively detect and recover from errors in the future.
The rest of the paper is as follows. Section 2 discusses related work.
Section 3 explores NFAs for error detection. Section 4 covers CvR.
Section 5 evaluates CPoF. Section 6 concludes our work.

2 RELATEDWORK
Reactive FT refers to a situation where system recovery is initi-
ated after an error has occurred and been detected. Reactive FT
techniques fall within five categories outlined by Egwutuoha et
al. [14], namely: redundancy, migration, failure semantics, failure
masking, and recovery. Choubey et al. [8] presented a smart home
architecture where sensors were analyzed for correlations so that,
if some data could be predicted using other correlating sensor data,
a neural network was trained to predict the data, which provided
redundancy and job migration for devices. Hu et al. [16] presented
a framework that enabled developers to employ backward error
recovery via checkpointing implemented via user-defined exception
handling to handle sensor component failures.

Past literature has also explored proactive FT, where system re-
covery is initiated before an error has occurred. As software “ages”
during its life-cycle, there is an increased failure rate and perfor-
mance degradation that is attributed to software changes and ‘elu-
sive’ bugs that accumulate and lead to an eventual software failure
[10]. Software rejuvenation stops aging software, cleans its inter-
nal state, and resumes it, where the downtime is masked using FT
strategies [5]. Umesh et al. [33] used rejuvenation to examine the
behavior and utilization of virtual machines (VMs) such that, when
a VM was predicted to fail imminently, services were migrated to
new VMs to avoid downtime. Preemptive migration is designed to
prevent failures by preemptively migrating parts of a system away
from hardware or software that will soon fail [26]. However, it is
not capable of addressing all types of failures, and thus a mixture
of reactive and proactive FT provides coverage for unpredictable
faults as well.

A core challenge when analyzing stream data is how to infer the
occurrence of interesting and complex situations in the environ-
ment. We focus on NFA-based CEP systems because NFA is the es-
tablished mechanism upon which most CEP systems are based [15].
The language model of existing CEP systems share many common
operators, such as [12, 37]: (1) logic operators that define rules by
combining several items (e.g. conjunction, disjunction, negation);
(2) sequences that are similar to logic operators but items are order
dependent i.e. detected in a specified order; iterations are a special
case, where the sequence length is not a priori known, enabling
unbounded sequences; (3) windows involve limiting portions of
input flow to those only within a given timeframe, also ensuring
the termination of unbounded iterations; and (4) event selection:
events can be dispersed over many input streams and, thus, are not
always contiguous; we focus on the skip till next match (STNM)
selection policy, where irrelevant events are skipped until the next
relevant event occurs.

Moreno-Cano et al. [25] applied CEP to ‘trip-chaining’, whereby
a transit system, which could only record the origin of a trip made
by a user, attempted to recover both the origin and the destination
of a trip. Combining CEP with a fuzzy clustering album enabled
a large volume of profiles to be identified in semi-real-time and

Figure 1: NFAdiagram symbols: (a) transition between states
using STNM; (b) same as (a), omitting some intermediary
states; (c) arrow pointing to composite event(s) produced af-
ter NFA acceptance; (d) a starting point; (e) a state; (f) an ac-
cepting final state; (g) a non-accepting final state.

produced many meaningful patterns of transit usage. Wang et al.
[34] proposed the multilayered adaptive dynamic Bayesian network
model for large-scale transportation IoT that used proactive CEP to
mitigate or eliminate undesirable future events (e.g. traffic conges-
tion) using predictions and automated decision making methods.
Wang et al. [35] later proposed a predictive CEP method based on
evolving Bayesian networks that used a Gaussian mixture model
and the expectation-maximization algorithm for approximate in-
ference of traffic prediction. Their evaluation included simulated
and real data from a traffic-monitoring network, where vehicles
traveled to and from home, office, and supermarket locations. Akbar
et al. [1] proposed the adaptive moving window regression algorithm
that combined CEP and ML to provide a proactive solution to cope
with dynamic environments and IoT data. The model utilized a
moving window for training the model and updated as new data
arrived. Their evaluation used traffic data to predict traffic speed
and intensity throughout the day, and CEP was used to infer traffic
state and avoid congestion.

3 ERROR DETECTION
An error is a deviation of a program operation from its exact require-
ments due to the presence of bugs that only appear when a program
is running or being tested [19]. An error is detected if its presence
is indicated by an error message/signal, and latent if undetected
[3]. We want to consider how service failures can be detected using
error checks expressed as NFAs that can be implemented in CEP
systems.

3.1 Automata Model
Our automata model is similar to that in [28] and we represent
our NFA diagrams using the symbols in Figure 1. For each state
transition there is an event ei that causes a transition to some state
Si , starting at state S1. An event has a value ev , i.e. its data; an origin
eo , i.e. where it was generated; and a timestamp et , i.e. when it was
generated. We assume the STNM selection policy (Section 2) for
transitions because strict contiguity is unsuitable for analyzing the
high-volume, heterogeneous data in IoT. SA is the final accepting
state of an NFA. A dashed arrow (Figure 1c) points from SA to a
composite error-detection event d and an error-recovery event r ;
recovery is not mandatory. The events that caused a composite
event to be generated are called the pattern of the event. SF is the
non-accepting state that causes an NFA to halt when transitioned to
it. An NFA might transition to SF regardless of its current state for
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Figure 2: NFAs for (a) limit, (b) trend, (c) performance, (d) persistence, and (e) correlation checking.

state clearance. It can be implemented using: (1) a time window, that
halts on a time elapse; and (2) an until predicate, that halts if true.

3.2 Error-Detection Checks
Lee et al. [21] define seven error-detection checks: replication, tim-
ing, reversal, coding, reasonableness, structural, and diagnostic
checks. Due to space constraints, we will explore three of these,
discussed next.

3.2.1 Reasonableness. Event reasonableness refers to whether an
event is acceptable based on criteria envisaged by the system de-
signer and implemented via the internal design and construction of
the system [21]. We consider three types of data unreasonableness
explored by Liu et al. [22], namely: (1) outliers, where ev exceeds
some threshold ϵ ; (2) stuck-at faults, where the last n event val-
ues are all equal; and (3) spikes, where some values in the last n
events are drastically higher or lower than others, resulting in high
variance.

Limit Checking. Detecting outliers involves checking if ev is
‘within its limits’. In a NFA, this would simply require a predicate
that checks if e1 is not within some defined limits (Figure 2a), e.g.
¬(ϵmin ≤ ev ≤ ϵmax ). If true, the NFA transitions to SA and an
error-detection event dl is produced, optionally followed by error-
recovery event rl . The pattern for dl and rl is {e1}.

Trend Checking. Isermann [17] proposed calculating trend check-
ing by taking the first derivative of the event value f ′(ev ), and then
limit check as before, e.g. ¬(ϵmin ≤ f ′(ev ) ≤ ϵmax ). If true, a trend
has not been smooth, and thus can be considered unreasonable. We
propose the NFA in (Figure 2b) for trend checking, which calcu-
lates the slope between all relevant events that occur within time
window t . If the slope between two events e1, em , or an aggregate
of n prior events f (e1, ..., en ), em , surpasses a slope threshold, error
events dt , rt are generated. Otherwise, em is ignored and the NFA
reattempts with some future em event, or halts on state clearance.
This design enables spike detection by checking for exceptionally
large trend changes between events. Stuck-at detection occurs if the
trend is persistently 0. The pattern for dt and rt is {e1, ..., en, em }.

3.2.2 Timing. A timing check is a simple implementation that
detects when an operation fails to satisfy a specified time bound,
and typically uses absolute or interval timers to invoke the detection
mechanism. These checks address three scenarios: (1) where there
exist two events e, e ′ and an ‘unacceptable’ time interval ϵ between

them; (2) where one event e exists and an unacceptable time elapse
ϵ that occurs without the next event e ′; and (3) where n events
occur within some time bound ϵ . We explore these next.

Performance Checking. We want to identify timeliness errors
such that an event beyond time threshold ϵ would produce error
event de , representing a performance failure i.e. a late timing failure
(Figure 2c). Event e1 is first accepted, and a transition to SA occurs
if: eo2 = eo1 ∧ (et2 − et1) > ϵ . If ≤ ϵ , the NFA halts. To detect when
a second event does not arrive at all, the CEP system still needs
an e2 event to reach SA. A limitation with NFAs is that negation
(Section 2) cannot be the final state transition i.e. it cannot reach
SA by waiting for something to not happen. In literature, pruning
NFAs is accomplished using a periodically generated null event,
e ∅ , that helps when reasoning about intervals between events [2].
Thus, the time between e1 and e2 = e ∅ is calculated instead.

Persistence Checking. Persistence is classified as [3, 19]: (1) tran-
sient: arbitrary faults that cause erroneous behavior for a short time
before going away; (2) intermittent: faults that oscillate between
being active and dormant; and (3) permanent: faults assumed to be
continuous in time. If the pattern of an error event d does refer-
ence some other error event d ′, then we consider d to be transient,
because it is independent from any other detected system errors.
In Figure 2d, we consider how de from Figure 2c can be checked
for persistence. For intermittent and permanent persistence, the
NFA accepts n > 1 events of type de to reach SA. Halting occurs
on state clearance. We propose that intermittent persistence be
implemented as having n > 1 occurrences of de in time t , and
permanent persistence as having n′ ≥ n occurrences in time t ′ ≥ t .
The intuition behind this is that permanent persistence would have
more error occurrences over more time than intermittent faults.

3.2.3 Reversal. A reversal check takes the output from a system
and calculates what the input(s) should have been in order to pro-
duce that output, where the calculated inputs are used to compare
with the actual inputs to check for an error [21]. This check has
predominantly deterministic applications (e.g. reading back what
was just written to disk). However, we consider how this check can
be used in scenarios to check for a relationship between two (sets
of) events.

Correlation Checking. We want to identify whether, given n ≥

1 system events e1, ..., en , there were n ≥ 1 erroneous events
en+1, ..., em that occurred afterwards within a given time frame, or
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Figure 3: The process of CvR.

halt otherwise (Figure 2e). If they do occur, we can react as though
the latter event(s) were caused by the former. This check helps to
handle scenarios where an error propagates through a system and
causes more errors [3].

4 COMPLEXITY VIA RECURSION
Instead of defining complex, monolithic NFAs to handle application-
specific error scenarios, we want to define simple, modular, and
reusable NFAs, where error-detection and recovery events produced
by them are recursively fed back into the CEP system for use in
other NFAs to express more complex scenarios. The process (Figure
3) is as follows:

(a) A stream of events enter the CEP system over time.
(b) Each event is passed to the NFAs. When an event fulfills the

predicate to transition to the first state of an NFA, a copy of
the NFA, called a run, is created.

(c) Events are passed to each incomplete and unhalted run and
might cause a state transition.

(d) A run might eventually transition to SA, producing an error
event d , or halt if it transitions to SF .

(e) Event d may be passed to an error-recovery handler that
will attempt to recover from d , producing an error-recovery
event r detailing the actions taken to handle the error and
whether they were successful or not.

(f) Events d, r are fed back into the CEP data stream to poten-
tially be used in other runs.

This approach to error definition means that common errors
which are universal to any IoT system have standard error-check
NFAs that can be used to detect them. This makes FT-support
setup easier for system designers because they simply need to
understand what failures can occur in their system and pair them
with appropriate NFAs.

We consider limit, trend, and performance checks (Figures 2a-c)
to be the most simple, resuable, and generic checks of the checks
we have defined. For example, the three data faults from Section 3
(i.e. outliers, stuck-at faults, spikes) can be detected using limit and
trend checking, and data loss can be detected using performance
checks. These errors are generic and highly applicable to any IoT
device on any IoT system, making them easy to implement as they
are.

We consider persistence and correlation checks (Figures 2d-e) to
be complex because they are more appropriate for detecting errors
based upon prior composite events generated by other checks that
have re-entered the system. For example, in our evaluation (Section

Figure 4: Our indoor agricultural system.

5), we detected data loss using a performance check and checked for
device battery depletion by whether the data-loss events had been
persistent using a persistence check. An even more complex sce-
nario might be whether n devices all generated persistent-data-loss
events within a short space of time. Correlating all of these via a
correlation check might infer that the gateway to the n devices had
failed and was causing a data blackout across the n devices, instead
of individual hardware failures as previously inferred. This ap-
proach enables intermediary errors to be built upon to gain greater
insight into complex system failures that are difficult to define as
a single NFA. System designers have fine-grained control of how
errors are correlated and handled because the FT-support system is
able to handle errors separately and as a whole.

We propose that CvR is used as the basis for providing proactive-
FT support via supervised learning techniques to predict imminent
system error events using correlation check NFAs, as follows. The
first NFA receives event e1 and is followed by the second event
e2 ∈ d within some time t , which reaches SA and produces error
event dr , where dr acts as a ‘positive’ predictive label 1 for the
dataset of a supervised learning model. The second NFA generates
eventd ′r when e2 does not occur after e1 in time t (i.e. when e2 = e ∅),
where d ′r acts as a ‘negative’ predictive label 0. With these, we wish
to predict ∥P(e2 |e1)∥ = 1when e2 is likely to follow e1 in time t and
proactively performing recovery as though e2 ∈ d had just been
detected. Conversely, we wish to predict ∥P(¬e2 |e1)∥ = 0 when
e2 is unlikely to occur in time t . We apply this approach in our
evaluation when we check for correlations between data-spike and
persistent-data-loss errors, discussed next.

5 EVALUATION
We evaluated CPoF on an indoor, automated agriculture system.
This was motivated by the growing trend of vertical farms that grow
produce indoors, where environmental factors can be controlled to
ensure a correct and efficient amount of light and water for produce
[4]. Our objective was to see whether the combination of CEP and
ML was effective in providing reactive and proactive FT support.

5.1 Case Study
Our system had two shelves, each with two plants (Figure 4). Be-
neath the plants were water containers (d) that pumped water to
each plant. Grow lights (b) turned on when the room was dark, and
off when bright. Microcontrollers (c) each had moisture sensors for
each plant. Two multi-sensors, DevicePrimary and DeviceBackup
(a), sent infrared-light data every 5 seconds to a Raspberry Pi 3 at
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Figure 5: Infrared light data from DevicePrimary (blue) and
DeviceBackup (orange): (a) data during the lifetime of De-
vicePrimary; and (b) a close-up of battery depletion and
switchover to DeviceBackup.

the network edge. Water pumps and grow lights were controlled
using smart plugs (e). If a moisture value were < 0.5, its associated
water pump activated. If an infrared-light value were < 0.2, the
grow lights switched on, or off if higher. We used FlinkCEP v1.4.21
for CEP and scikit-learn v0.22 for ML.

We focused on the failure scenario of sensor battery depletion
and how we can infer its occurrence via CEP and predict its immi-
nent occurrence via ML. Low battery voltage has been identified as
a prevalent cause of data spikes in IoT sensors [7]; our multi-sensors
exhibited this phenomenon in previous work [27]. We considered
how temporal correlations, as well as correlations with other errors
(i.e. data spikes) could be exploited to reactively and proactively
handle power failures.

5.2 Experiment: Reactive FT
5.2.1 CEP Setup. To handle our failure scenario, we defined error
automata for CEP. A data spike error was defined using the trend
check (Figure 2b). As multi-sensor data was sent every 5 seconds,
we considered the last 12 infrared-light events from DevicePrimary
to get roughly the last minute’s worth of data from the device. The
first 11 events e1, ...e11 were consumed. On the twelfth event e12,
1https://ci.apache.org/projects/flink/flink-docs-release-1.4/dev/libs/
cep.html
2https://scikit-learn.org/0.20/

the values of the first 11 events were averaged, avд = (
∑11
i=1 e

v
i )/11,

and comparedwith e12 as (ev12−avд)/avд to compute the percentage
by which ev12 had increased beyond the average. When the increase
was ≥ 150%, error dt was generated.

A data loss error was defined using the performance check (Fig-
ure 2c). It first checked for event e1 from DevicePrimary, followed
by a null event e2 = e ∅ that occurred 15 seconds after e1. If another
DevicePrimary event were received in this time, the NFA would
halt; otherwise error de was generated. The recovery re for de was
to ping DevicePrimary. For every 15 seconds that elapsed without
DevicePrimary data, another de , re was generated. If 3 unsuccessful
re were generated without any successful pings or DevicePrimary
data within 60 seconds, the persistent data loss error dp was gen-
erated using a persistence check (Figure 2d), and recovery rp would
cause a switchover to DeviceBackup.

We also checked for error correlations using the correlation
check (Figure 2e). Specifically, we checked whether a data spike
e1 = dt was followed by persistent data loss e2 = dp on the same
device within 10minutes, which produced error dr . Conversely, we
defined another NFA to check when dp did not follow dt within 10
minutes (i.e. if e2 = e ∅ instead), which produced event d ′r .

Demonstration. We ran DevicePrimary on full charge until de-
pletion, and monitored the infrared-light values generated by it.
Throughout the day, the values fluctuated (Figure 5a-i) which pro-
duced several data-spikedt errors. Minutes before battery depletion,
the values would spike several times to 65279 (Figure 5a-ii). It also
produced three unsuccessful data-loss recovery re events, which
led to a persistent-data-loss dp error and caused a switchover to
DeviceBackup (Figures 5a-iii & 5b). The wait for dp meant that
failure recovery took approx. 45 seconds to complete.

5.3 Experiment: Proactive FT
5.3.1 Time Correlation. Our first approach to predicting battery
depletion correlated data-loss eventswithDevicePrimary’s duration
online. The intuition was that a data-loss event that occurred when
DevicePrimary often failed was more likely to be persistent. Thus,
the system could avoid a persistent-data-loss error by preempting
the switchover instead.

We used a support-vector machine (SVM) for C-support vector
classification. SVMs are linear classifiers that attempt to construct
a maximum-margin hyperplane to optimally separate data into
two categories to provide the best generalization capacity, and are
suitable for binary classification problems such as ours [30]. We
used the minutes online and elapse seconds as two features for this
model (Figure 6a). Both features had been normalized before train-
ing the model because, with SVMs, normalization of feature vectors
had been shown to lead to superior generalization performance
[11]. The C hyperparameter was set to 1000.0 and was trained
with 1000 iterations. The benefit of a SVM was that it provided the
widest margin between data points in both classes and prevented
the decision boundary from being too close to any particular data
point, which might have provided unrealistic predictions.

Demonstration. DevicePrimary was activated on a full charge
with the model running. It died at approx. 18:29:37 (Figure 6b). The
device had been online for approx. 495 minutes (approx. 0.9 when



IoT 2019, October 22–25, 2019, Bilbao, Spain Power and Kotonya

Figure 6: (a) Linear SVM model to predict battery depletion;
and (b) a data loss error correctly identified as persistent.

normalized in Figure 6a). When a data-loss error (Figure 6b, orange
circle) occurred 15 seconds after the last infrared-light value from
DevicePrimary, the model predicted that this error would persist
and preemptively switched over to DeviceBackup. This solution
provided preemptive error detection that was approx. 30 seconds
faster than the reactive-FT solution. However, it was only effective
at predicting failure when DevicePrimary was on a full charge.
Next, we considered a complementary model that identified the
same failure based on error correlations.

5.3.2 Error Correlation. Our second approach to predicting battery
depletion correlated data-spike events with data-loss events. We
wanted to exploit the data spikes caused by low battery voltage
(Figure 5a-ii) by detecting them using error-correlation event dr
and executing a preemptive switchover to DeviceBackup before
complete depletion of DevicePrimary’s battery.

To build the model’s dataset, we activated DevicePrimary 60
times with varying levels of initial battery charge to build a dataset
of 473 total data spikes: 187 caused by malfunctions (class 1) and
286 not caused by malfunction i.e. instead caused by natural light
fluctuations (class 0). We trialed several classification algorithms
and decided on Random Forest (RF)3 with 10 trees/estimators and a
maximum tree depth of 2 (Figure 7a). Class 1 is shown in orange
with its data instances as triangles and class 0 in blue with squares.
We used RF because the decision boundary was not too curved
and kept the threshold close to class 0, which was appropriate
for this task. The model was trained and tested with an 80%-20/%

3https://scikit-learn.org/0.20/modules/generated/sklearn.ensemble.Random
ForestClassifier.html

Figure 7: (a) RF model to predict battery depletion; and (b) a
close-up of the switchover to DeviceBackup (orange) before
battery depletion had occurred on DevicePrimary (blue).

randomized dataset split and achieved an accuracy of 97.89% and
F1 score of 96.43%.

During data collection, we identified the following phenomena.
As the battery neared depletion, the infrared values would often
spike to unusually high values, predominantly 65279. It sometimes
spiked within a ‘reasonable’ value range (i.e. 0-3500), which influ-
enced the predictions in the model at around 510 minutes online
(Figure 7a) because it caused the model to predict class 1 for spikes
in the normal range if the device had been online for a long time.

Demonstration. We re-executed the DevicePrimary data from
the reactive-FT experiment (Figure 5a) into the system in the same
manner as the original, to be able to compare how much faster
proactive-FT support was to the reactive-FT solution. During exe-
cution, many of the early data spikes (Figure 5a-i) were correctly
predicted as being in class 0 because they did not pass the deci-
sion boundary that sits approx. at 3500 (Figure 7a). However, on
the first spike to 65279 (Figure 5a-ii), the model predicted class 1,
and triggered a switchover to DeviceBackup, leading to the early
introduction of its data before DevicePrimary had fully depleted
(Figure 7b).

This solution provided preemptive migration that was approx.
45 seconds faster than the reactive-FT solution and 30 seconds
faster compared to the previous proactive-FT solution. However, it
was only effective at predicting failure if a prior data spike error
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occurred, which was not always guaranteed to happen near battery
depletion.

6 CONCLUSION AND FUTUREWORK
FT support is a key challenge for ensuring dependable IoT systems,
with many existing implementations being static, tightly coupled,
and inflexible. We proposed CPoF, an approach to provide reac-
tive and proactive FT support in IoT, where error detection was
defined using NFA that were implemented in CEP systems, and
errors could be learned from and predicted over time using ML. We
evaluated CPoF on an indoor agriculture system and considered
how it could be used to provide reactive- and proactive-FT support,
where time and error correlations were used to train predictive
models to preempt battery-depletion failures and provide preemp-
tive error recovery. In future work, we will expand our taxonomy
of error-detection NFAs to establish a generic framework for the
easy and adaptive FT implementation in IoT systems.
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